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Before moving to the pure time series models we shall need the notion of or-

thogonal projections. We need this to evaluate the partial correlation coeffi cients,

especially for Moving Average models.

1 Projections (Orthogonal)

Assume the usual linear regression setup, i.e.

y = Xβ + u, u|X v D
(
0, σ2In

)
where y is the n × 1 vector of endogenous variables, X is the n × k matrix of

weakly exogenous explanatory variables, β is the k×1 vector of mean parameters

and u is the n× 1 vector of errors.

When we estimate a linear regression model, we simply map the regressand

y into a vector of fitted values Xβ̂ and a vector of residuals û = y −Xβ̂. Geo-

metrically, these mappings are examples of orthogonal projections. A projection

is a mapping that takes each point of En into a point in a subset of En, while

leaving all the points of the subset unchanged, where En is the usual Euclidean

vector space, i.e. the set of all vectors in Rn where the addition, the scalar

multiplication and the inner product (hence the norm) are defined. Because of

this invariance the subspace is called invariant subspace of the projection. An

orthogonal projection maps any point into the point of the subspace that is

closest to it. If a point is already in the invariant subspace, it is mapped into

itself.

Algebraically, an orthogonal projection on to a given subspace can be per-

formed by premultiplying the vector to be projected by a suitable projection

matrix. In the case of OLS, the two projection matrices that yield the vector

of fitted values and the vector of residuals, respectively, are

PX = X
(
X/X

)−1
X/
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and

MX = In − PX = In −X
(
X/X

)−1
X/.

To see this notice that the fitted values

ŷ = Xβ̂ = X
(
X/X

)−1
X/y = PXy.

Hence the PX projection matrix project on to S (X), i.e. the subspace of En

spanned by the columns of X. Notice that for any vector α ∈ Rk the vector Xα

belongs to S (X). As now Xα ∈ S (X) then it should be the case, due to the

invariance of PX , that

PXXα = Xα.

But notice that

PXX = X
(
X/X

)−1
X/X = XIk = X.

It is clear that when PX is applied to y it yields the vector of fitted values.

On the other hand the MX projection matrix yields the vector of residuals as

MXy =
[
In −X

(
X/X

)−1
X/
]
y = y − PXy = y −Xβ̂ = û.

The image of MX is S⊥ (X), the orthogonal complement of the image of PX .

To see this, consider any vector w ∈ S⊥ (X). It must satisfy the condition

X/w = 0, which implies that PXw = 0, by the definition of PX . Consequently,

(In − PX)w = MXw = w and S⊥ (X) must be contained in the image of MX ,

i.e. S⊥ (X) ⊆ Im (MX). Now consider any image ofMX . It must take the form

MXz. But then

(MXz)/X = z/MXX = 0

as MX symmetric. Hence MXz belongs to S⊥ (X), for any z. Consequently,

Im (MX) ⊆ S⊥ (X) and hence the image of MX coincides with S⊥ (X).
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For any matrix to represent a projection, it must be idempotent. This is

because the vector image of a projection matrix is say S (X), and then project it

again, the second projection should have no effect, i.e. PXPXz = PXz for any

z. It is easy to prove that this is the case with PX and MX , as

PXPX = PX and MXMX = MX .

By the definition of MX it is obvious that

MX = In −X
(
X/X

)−1
X/ = In − PX ⇒MX + PX = In,

and consequently for any vector z ∈ En we have

MXz + PXz = z.

The pair of projections MX and PX are called complementary projections,

since the sum MXz and PXz restores the original vector z.

Assume that we have the following linear regression model:

y = Xβ + ε

where y and ε are N × 1, β is k × 1,and X is N × k.

For k = 2 and if the first variable is a constant we have that :

yi = β0 + xiβ1 + εi for i = 1, 2, ..., N.

Now

β̂ =

(
β̂0

β̂1

)
=
(
X/X

)−1
X/y =

 T
∑
x∑

x
∑
x2

−1 ∑
y∑
xy


=

1

T
∑
x2 − (

∑
x)2

 ∑
x2 −

∑
x

−
∑
x T

 ∑
y∑
xy


=

 ∑
y
∑
x2−

∑
x
∑
xy

T
∑
x2−(

∑
x)2

T
∑
xy−

∑
x
∑
y

T
∑
x2−(

∑
x)2

 .
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Notice however that

T
∑

x2 −
(∑

x
)2

= T

[∑
x2 − T

(∑
x

T

)2
]

= T
[∑

x2 − T (x)2
]

= T
[∑(

x2 − x2
)]

= T
[∑(

x2 − 2xx+ 2xx+ x2 − 2x2
)]

= T
[∑

(x− x)2 + 2x
∑

(x− x)
]

= T
∑

(x− x)2 ,

and

T
∑

xy −
∑

x
∑

y = T
[∑

(x− x) (y − y)
]
.

Hence(
β̂0

β̂1

)
=

 Ty
∑
x2−Tx

∑
xy

T
∑

(x−x)2∑
(x−x)(y−y)∑

(x−x)2

 =

 y(T
∑

(x−x)2+(
∑
x)2)−x{T [

∑
(x−x)(y−y)]+

∑
x
∑
y}

T
∑

(x−x)2∑
(x−x)(y−y)∑

(x−x)2


=

 y − [
∑

(x−x)(y−y)]∑
(x−x)2

x∑
(x−x)(y−y)∑

(x−x)2

 =

 y − β̂1x∑
(x−x)(y−y)∑

(x−x)2

 .

Furthermore,

V ar
(
β̂
)

= V ar

(
β̂0

β̂1

)
= σ2

(
X/X

)−1
= σ2

 T
∑
x∑

x
∑
x2

−1

=
σ2

T
∑
x2 − (

∑
x)2

 ∑
x2 −

∑
x

−
∑
x T

 .

Hence

V ar
(
β̂0

)
= σ2

∑
x2

T
∑

(x− x)2 = σ2

∑
(x− x)2 + Tx2

T
∑

(x− x)2 = σ2

[
1

T
+

x2∑
(x− x)2

]
,

and V ar
(
β̂1

)
=

σ2∑
(x− x)2 .

Notice that to estimate these quantities we need an estimator of σ2. We can

employ its unbiased estimator, i.e.

σ̂2 =
1

T − 2

∑
e2
t where e2

t = yt − β̂0 − β̂1xt.
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Part I

Linear Dynamic Stationary Processes

2 Autoregressive Models

These classes of models are of the form:

y∗t = µ+ α1y
∗
t−1 + α2y

∗
t−2 + ...+ αpy

∗
t−p + ut

i.e. the current y∗t depends, directly, on p lags. Examples for various values of p

are the AR(1),

y∗t = µ+ α1y
∗
t−1 + ut

the AR(3),

y∗t = µ+ α1y
∗
t−1 + α2y

∗
t−2 + α3y

∗
t−3 + ut

etc.

2.1 Autoregressive of Order 1

This class of models is given by

y∗t = µ+ αy∗t−1 + ut (1)

where y∗t is the observed process and ut are iid (0, σ2).

Properties

Notice that

y∗t = µ+ αy∗t−1 + ut = µ+ αµ+ α2y∗t−2 + ut + αut−1 = ...

= µ
(
1 + α + ...+ αt−1

)
+ αty∗0 + ut + αut−1 + ...+ αt−1u1

= µ
αt − 1

α− 1
+ αty∗0 + ut + αut−1 + ...+ αt−1u1.
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Hence

E (y∗t ) = µ
αt − 1

α− 1
+ αtE (y∗0) .

It is clear that for stationarity we need |α| < 1 so as t→∞

E (y∗t )→ µ
1

1− α

which is independent of t.

To find the variance of y∗t notice that

V ar (y∗t ) = E
{

[y∗t − E (y∗t )]
2} = E

{[
y∗t −

µ

1− α

]2
}

and that

y∗t −
µ

1− α = µ− µ

1− α + αy∗t−1 + ut = α

(
y∗t−1 −

µ

1− α

)
+ ut.

Hence, if we substitute yt = y∗t − µ
1−α , it follows that

yt = αyt−1 + ut and E

{[
y∗t −

µ

1− α

]2
}

= E
(
y2
t

)
. (2)

Now squaring and taking expectations we get

E
(
y2
t

)
= α2E

(
y2
t−1

)
+ E

(
u2
t

)
+ 2αE (yt−1ut)⇒

E
(
y2
t

)
= α2E

(
y2
t−1

)
+ σ2

as E (u2
t ) = σ2 , by assumption, and E (yt−1ut) = 0. To see that the last

expectation is equal to zero, substitute backwards yt−1 to get

E (yt−1ut) = E [(αyt−2 + ut−1)ut] = E
[(
α2yt−3 + αut−2 + ut−1

)
ut
]

= ... =

= E
[(
ut−1 + αut−2 + α2ut−3 + ...

)
ut
]

= E (ut−1ut) + αE (ut−2ut) + α2E (ut−3ut) + ...

and all expectations are zero as the ut′s are independent (as before we need

|α| < 1 so αkyt−k → 0 as k →∞).

6



Hence

E
(
y2
t

)
= α2E

(
y2
t−1

)
+ σ2 = α2

[
α2E

(
y2
t−2

)
+ σ2

]
+ σ2 =

= α4E
(
y2
t−2

)
+ α2σ2 + σ2 = .... = α2kE

(
y2
t−k
)

+
(
α2(k−1) + ....+ α2 + 1

)
σ2

=
(
1 + α2 + ...+ α2(k−1) + α2k + ....

)
σ2 =

σ2

1− α2

as for k → ∞, α2k → 0, and the sum in the parenthesis is an infinite sum of a

declining geometric series (for |α| < 1).

To find the autocorrelation function notice that

ρk =
γk
γ0

=
Cov

(
y∗t , y

∗
t−k
)

V ar (y∗t )
=
E
{

[y∗t − E (y∗t )] ,
[
y∗t−k − E

(
y∗t−k

)]}
E (y2

t )
=

=
E
{[
y∗t − µ

1−α
]
,
[
y∗t−k − µ

1−α
]}

E (y2
t )

=
E (yt, yt−k)

E (y2
t )

=
E (yt, yt−k)

σ2

1−α2
.

To find the numerator multiply (2) by yt−k and take expectations to get

E (ytyt−k) = αE (yt−1yt−k) + E (utyt−k) = αE (yt−1yt−k)⇒ γk = αγk−1.

This is a difference equation with stable solution if |α| < 1 (which is assumed

due to stationarity). Hence

ρ1 =
γ1

γ0

=
αγ0

γ0

= α and ρk = αk

in general.

Notice that for the existence of E (y∗t ), V ar (y∗t ), and γk the only requirement

is that |α| < 1. Furthermore, for this condition the three quantities are indepen-

dent of t. Hence the only condition for second order stationarity is |α| < 1.

The partial autocorrelation of order k, ρ•k, is the autocorrelation of y
∗
t with

y∗t−k after we have taken in to account the autocorrelations of y
∗
t with y

∗
t−1,

y∗t−2,.., y
∗
t−k+1, i.e. is the theoretical coeffi cient of y

∗
t−k in a regression of y

∗
t on

a constant, y∗t−1, y
∗
t−2,.., y

∗
t−k+1, y

∗
t−k, i.e. of the regression

y∗t = c+ β1y
∗
t−1 + β2y

∗
t−2 + ...+ βk−1y

∗
t−k+1 + ρ•ky

∗
t−k + εt.
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Of course for k = 1 we have that ρ1 = ρ•1 = α. In the case of the AR(1) model

is obvious that equation in (1) can be written as

y∗t = µ+ αy∗t−1 + 0y∗t−2 + ut

so that ρ•2 = 0, Also

y∗t = µ+ αy∗t−1 + 0y∗t−2 + 0y∗t−3 + ut

so that ρ•3 = 0. Hence, we can write that, for any k ≥ 1, ρ•k = 0 as

y∗t = µ+ αy∗t−1 + 0y∗t−2 + 0y∗t−3 + ...+ 0y∗t−k+1 + 0y∗t−k + ut.

Figure 2.1: ACF of the AR(1) model y∗t = 0.1 + 0.89y∗t−1 + ut, and

ut are iid N (0, 1.4) .

Notice that any ARMA(p, q) model has a unique pair of autocorrelation

and partial autocorrelation functions. In other words the two functions define

uniquely the order of an ARMA(p, q) model. This procedure is what Box and

Jenkins call Identification Procedure of an ARMA(p, q) model. For the AR(1)

model ρk decreases with a power law and ρ
•
k is non-zero for k = 1 and drops to

zero for k ≥ 2.
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The last property of ARMA models is invertibility, i.e. the property of

these models so that they can be written as pure AR(∞) or MA(∞) models.

Specifically for the AR(1) model we can investigate under what conditions is the

model invertible. Let us define he lag operator L as follows:

Lkxt = xt−k

for any time series xt, i.e. the lag operators lags any time series observation by

so many periods as its exponent. The usual properties of powers apply to the

lag operators, as well, i.e.

LkLm = Lk+m,
(
Lk
)m

= Lkm,
Lk

Lm
= Lk−m.

With this definition we can write the model in equation (1) as

y∗t = µ+ αy∗t−1 + ut = µ+ αLy∗t + ut

⇒ y∗t − αLy∗t = µ+ ut ⇒ (1− αL) y∗t = µ+ ut

⇒ y∗t =
µ

1− α +
1

1− αLut.

Notice that as µ is nonstochastic L is dropped. Now if |α| < 1 then 1
1−αL can

be considered as the sum of an infinite declining geometric series with ratio αL.

Consequently,

y∗t =
µ

1− α +
1

1− αLut =
µ

1− α +
(
1 + αL+ α2L2 + α3L3 + ....

)
ut

⇒ y∗t =
µ

1− α + ut + αLut + α2L2ut + α3L3ut + ....

⇒ y∗t =
µ

1− α + ut + αut−1 + α2ut−2 + α3ut−3 + .....

which is an MA(∞). Hence the invertibility condition is the same, in this case,

as the stationarity one, i.e. |α| < 1.
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Prediction (with known parameters)

If we had no information on the model and we wanted to predict the value

of y∗t+1, or if we believed that the process y
∗
t is white noise, or if we wanted to

unconditionally predict y∗t+1, then we would employ the unconditional distribution

of y∗t+1, which is the same as the unconditional distribution of y
∗
t To find this

recall that we can substitute backwards to get

y∗t = µ
(
1 + α + α2 + ...

)
+ ut + αut−1 + α2ut−2...

Let us assume that ut
iid∼ N (0, σ2). Consequently, the distribution of y∗t is

Normal, as it is a linear combination of independent Normal random variables,

with

E (y∗t ) =
µ

1− α, V ar (y∗t ) =
σ2

1− α2
.

Hence

y∗t ∼ N

(
µ

1− α,
σ2

1− α2

)
.

In this set up the best prediction for yt+1 is its unconditional mean, i.e.

ŷ∗t+1 =
µ

1− α,

with error variance

V ar
(
y∗t+1 − ŷ∗t+1

)
= V ar

(
y∗t+1 −

µ

1− α

)
=

σ2

1− α2
.

On the other hand, if we wanted to utilise the information that the true

model is an AR(1), then we would employ the conditional distribution of y∗t+1,

i.e. the distribution of y∗t+1 given the previous observations and the model. Again

under the Normality of u′ts, the conditional distribution of y
∗
t+1, conditional on

the previous observation y∗t , is Normal with mean µ+ αy∗t and variance σ
2, i.e.

E
(
y∗t+1|y∗t

)
= E [(µ+ αy∗t + ut+1) |y∗t ] = µ+ αy∗t + E [ut+1|y∗t ] = µ+ αy∗t

and

V ar
(
y∗t+1|y∗t

)
= E

[
y∗t+1 − E

(
y∗t+1|y∗t

)]2
= E

(
y∗t+1 − µ− αy∗t

)2
= E (ut)

2 = σ2.
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and it follows that

y∗t+1|y∗t ∼ N
(
µ+ αy∗t , σ

2
)
.

Hence the conditional predictor of y∗t+1 is

ŷ∗t+1 = µ+ αy∗t

with an error variance of σ2 (the variance of ut+1)

V ar
(
y∗t+1 − ŷ∗t+1

)
= V ar (ut+1) = σ2.

Notice that the distribution is not the same for all t (as the yt′s have different

values for different t′s with probability 1). Consequently, the conditional predictor

is better than the unconditional one as it has smaller error variance.

Prediction (with estimated parameters)

In practice, predictions are made with estimated parameters. Let us assume, for

easy of calculations that µ = 0, and that from a sample of T observations we

have estimated α, say by regression. Then our prediction for yT+1 is

ỹT+1 = α̂y∗T

where µ̂ and α̂ are the estimated parameters. We can decompose the prediction

error of the above prediction as

yT+1 − ỹT+1 =
(
yT+1 − ŷ∗T+1

)
+
(
ŷ∗t+1 − ỹT+1

)
.

The first term on the right hand side represents the prediction error when µ and

α are known, and the second is coming from the estimation of the parameters.

Substituting in the second parenthesis the values of ŷ∗t+1 and ỹT+1 we get:

yT+1 − ỹT+1 =
(
yT+1 − ŷ∗T+1

)
+ (α− α̂) y∗T .
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One can prove that

MSE (ỹT+1) = s2

1 +
(y∗T )2

T∑
t=2

(
y∗t−1

)2

 ' σ2 +
(y∗T )2 (1− α2)

T

whereMSE is the Mean Square Error. Notice thatMSE is bigger to V ar
(
y∗t+1 − ŷ∗t+1

)
by (y∗T )

2
(1−α2)
T

.

Estimation

To estimate the AR(1) model in (1) we can employ either the simple regression

or the maximum likelihood.

Employing the formulae for the linear regression we get:

µ̂ = y∗ (1− α̂) and α̂ =

∑T
t=2 (y∗t − y∗)

(
y∗t−1 − y∗

)∑T
t=2

(
y∗t−1 − y∗

)2 .

Notice that the summation runs from t = 2. Hence in a sample of T observations

we employ T − 1 for the estimation of α. Furthermore, the unbiased estimator

of σ2 is

σ̂2 =
1

T − 3

T∑
t=2

e2
t where e2

t = y∗t − µ̂− α̂y∗t−1.

To find theMaximum Likelihood Estimators, let us denote by L(µ, α, σ2) =

L (y∗1, y
∗
2, ..., y

∗
T ;µ, α, σ2) the likelihood function for the random variables then it

can be written as

L(µ, α, σ2) = L
(
y∗1, y

∗
2, ..., y

∗
T ;µ, α, σ2

)
=

= L
(
y∗T |y∗T−1, ..., y

∗
2, y
∗
1;µ, α, σ2

)
L
(
y∗T−1, ..., y

∗
2, y
∗
1;µ, α, σ2

)
i.e. the joint Likelihood equals the conditional of the last observation y∗T (on rest

of the sample y∗T−1, ..., y
∗
2, y
∗
1) times the marginal (of the rest of the sample).
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Repeating the above procedure we have (dropping the parameters to conserve

space):

L(µ, α, σ2) = L
(
y∗T |y∗T−1, ..., y

∗
2, y
∗
1

)
L
(
y∗T−1|y∗T−2..., y

∗
2, y
∗
1

)
...L (y∗2|y∗1)L (y∗1) .

Now the conditional distribution of y∗t is (see Prediction section):

y∗t |y∗t−1 ∼ N
(
µ+ αy∗t−1, σ

2
)
.

Of course the same is true for the conditional, on all previous observations,

distribution of y∗t , i.e.

y∗t |y∗t−1, y
∗
t−2, ..., y

∗
2, y
∗
1 ∼ N

(
µ+ αy∗t−1, σ

2
)
,

as y∗t depends only on the previous observation y
∗
t−1.

Hence the Likelihood can be written as:

L(µ, α, σ2) =
T∏
t=2

1√
2πσ2

exp

(
−
(
y∗t − µ− αy∗t−1

)
σ2

)
L (y∗1) .

Now the distribution of y∗1 is different as there is no information in the sample for

the previous observation. Consequently the distribution of y∗1 is the unconditional

distribution of the AR(1) model, i.e. (see Prediction section)

y∗1 ∼ N

(
µ

1− α,
σ2

1− α2

)
.

Therefore, the Likelihood function is

L(µ, α, σ2) =
T∏
t=2

1√
2πσ2

exp

(
−
(
y∗t − µ− αy∗t−1

)
σ2

)
1√

2π σ2

1−α2

exp

(
−
(
y∗1 − µ

1−α
)

σ2

1−α2

)
,

and the log-Likelihood is

`(µ, α, σ2) = −T − 1

2
ln (2π)− T − 1

2
lnσ2 −

T∑
t=2

(
y∗t − µ− αy∗t−1

)2

2σ2

−1

2
ln (2π)− 1

2
lnσ2 − 1

2
ln
(
1− α2

)
−
(
y∗1 − µ

1−α
)2

2 σ2

1−α2
.
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The first order condition are given by:

∂`

∂µ
=

T∑
t=2

(
y∗t − µ− αy∗t−1

)
σ2

+

{
(1 + α)

(
y∗1 − µ

1−α
)

σ2

}
= 0,

∂`

∂α
=

T∑
t=2

(
y∗t − µ− αy∗t−1

)
y∗t−1

σ2
+

 α

1− α2
+

(
y∗1 − µ

1−α
) [

µ(1+α)
1−α + α

(
y∗1 − µ

1−α
)]

σ2

 = 0

and

∂`

∂σ2
= −T − 1

2σ2
+

T∑
t=2

(
y∗t − µ− αy∗t−1

)2

2σ4
+

{
− 1

2σ2
+

(1− α2)
(
y∗1 − µ

1−α
)2

2σ4

}
= 0,

where in curly brackets are the derivatives of the log-Likelihood of the first ob-

servation y∗1.

Notice that the estimator that solve the above first order conditions are dif-

ferent from the estimators of the regression. These estimators are called Full

Information Maximum Likelihood Estimators. However, if we drop the contribu-

tion of the first observation to the log-likelihood function, by assuming that y∗1

is constant, then solving the first order conditions we have:

µ̂ = y∗ (1− α̂) , α̂ =

∑T
t=2 (y∗t − y∗)

(
y∗t−1 − y∗

)∑T
t=2

(
y∗t−1 − y∗

)2 ,

which are identical to the regression estimators. These estimators are called

Conditional (on the first observation) Maximum Likelihood Estimators.

3 Moving Average Models

These classes of models are of the form:

y∗t = µ+ ut − θ1ut−1 − θ2ut−2 − ...− θqut−q

i.e. the current y∗t depends, directly, on q lags of ut. Examples for various values

of q are the MA(2),

y∗t = µ+ ut − θ1ut−1 − θ2ut−2

14



the MA(4),

y∗t = µ+ ut − θ1ut−1 − θ2ut−2 − θ3ut−3 − θ4ut−4

etc.

3.1 Moving Average of Order 1

These models are given by

y∗t = µ+ ut − θut−1 (3)

where y∗t is the observed process and ut are iid (0, σ2).

Properties

It easy to prove that, for any value of θ,

E (y∗t ) = E (µ+ ut − θut−1) = µ+ E (ut)− θE (ut−1) = µ,

and

V ar (y∗t ) = E [y∗t − E (y∗t )]
2 = E [ut − θut−1]2 = σ2

(
1 + θ2

)
as E (utut−1) = E (ut)E (ut−1) = 0 due to independence of the ut′s. Further-

more, it easy to prove that the autocorrelation is given by

ρk =

 − θ
1+θ2

for k = 1

0 for k > 1
.

as

γk = Cov
(
y∗t , y

∗
t−k
)

= E
[
(y∗t − µ)

(
y∗t−k − µ

)]
= E [(ut − θut−1) (ut−k − θut−k−1)]

= E (utut−k)− θE (utut−k−1)− θE (ut−1ut−k) + θ2E (ut−1ut−k−1)

= −θE (ut−1ut−k) + θ2E (ut−1ut−k−1)

15



for any positive k and due to independence of the u′ts. Hence for k = 1 we have

that

γ1 = −θE
(
u2
t−1

)
+ θ2E (ut−1ut−3) = −θσ2

whereas, for k > 1

γk = 0.

Notice that E (y∗t ), V ar (y∗t ), and γk are independent of t for any value of

θ, i.e. the MA(1) process is 2nd order stationary for any value of θ.

In terms of the partial correlation we know that

ρ1 = ρ•1.

Now to find ρ•2 we have to find the theoretical coeffi cient of yt−2 of the regression

(projection) of yt on yt−1 and yt−2, i.e.

yt = αyt−1 + ρ•2yt−2,

where yt = y∗t − µ for all t. Hence

yt =
(
yt−1 yt−2

) α

ρ•2

 .

Now from the normal equations we have

E

( yt−1 yt−2

) yt−1

yt−1

 α

ρ•2

 = E

 yt−1

yt−2

 yt


and it follows

E

 (yt−1)2 yt−1yt−2

yt−1yt−2 (yt−2)2

 α

ρ•2

 = E

 yt−1yt

yt−2yt


 γ0 γ1

γ1 γ0

 α

ρ•2

 =

 γ1

γ2


16



or dividing by γ0  1 ρ1

ρ1 1

 α

ρ•2

 =

 ρ1

ρ2

 .
Hence

ρ•2 =

∣∣∣∣∣∣ 1 ρ1

ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣∣
=
ρ2 − ρ2

1

1− ρ2
1

= − ρ2
1

1− ρ2
1

, α =

∣∣∣∣∣∣ ρ1 ρ1

ρ2 1

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣∣
=
ρ1 (1− ρ2)

1− ρ2
1

,

as ρ2 = 0. Substituting for ρ1 = − θ
1+θ2

we get

ρ•2 = −

(
− θ

1+θ2

)2

1−
(
− θ

1+θ2

)2 = − θ2(
1 + θ2

)2 − θ2
= −θ2 1− θ2

1− θ6 α = −
θ
(
1 + θ2

)(
1 + θ2

)2 − θ2
.

With the same logic, the normal equations for ρ•3 are
1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1




a

b

ρ•3

 =


ρ1

ρ2

ρ3

 ,
and

ρ•3 =

∣∣∣∣∣∣∣∣∣
1 ρ1 ρ1

ρ1 1 0

0 ρ1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 0

ρ1 1 ρ1

0 ρ1 1

∣∣∣∣∣∣∣∣∣

=

ρ1

∣∣∣∣∣∣ ρ1 1

0 ρ1

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣∣− ρ1

∣∣∣∣∣∣ ρ1 ρ1

0 1

∣∣∣∣∣∣
=

ρ3
1

1− 2ρ2
1

=

(
− θ

1+θ2

)3

1− 2
(
− θ

1+θ2

)2 = − θ3(
1 + θ2

) [(
1 + θ2

)2 − 2θ2
] = −θ3 1− θ2

1− θ8 .
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In general we have that

ρ•k = −θk 1− θ2

1− θ2(k+1)
,

consequently we have that ρ•k declines with a power law if |θ| < 1.

Hence for theMA(1) model ρ1 is non zero and ρk is zero for k ≥ 2, whereas

ρ•k decreases with a power law (compare with the AR(1) model). Notice that

for any value of θ the MA(1) process is stationary.

Figure 3.1: ACF and Partial ACF for the MA(1) process with θ = 0.8,

σ2 = 1.4, µ = 1.0.

In terms of invertibility, notice that equation (3) can be written as

y∗t = µ+ (1− θL)ut ⇒
1

1− θLy
∗
t =

µ

1− θ + ut

and if |θ| < 1 we have that

⇒
(
1 + θL+ θ2L2 + θ3L3 + ...

)
y∗t =

µ

1− θ + ut

⇒ y∗t =
µ

1− θ − θy
∗
t−1 − θ2y∗t−2 − θ3y∗t−3 − ...+ ut

which is an AR(∞).
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Prediction (with known parameters)

The unconditional distribution for an MA(1) model is Normal, as it is a linear

combination of independent Normal random variables, with

E (y∗t ) = µ, V ar (y∗t ) = σ2
(
1 + θ2

)
.

Hence

y∗t ∼ N
(
µ, σ2

(
1 + θ2

))
.

In this set up the best prediction for yt+1 is its unconditional mean, i.e.

ŷ∗t+1 = µ,

and the error variance is given by

V ar
(
y∗t+1 − ŷ∗t+1

)
= V ar

(
y∗t+1 − µ

)
= V ar (ut+1 − θut) = σ2

(
1 + θ2

)
.

For the conditional distribution we need to assume a value for u0, say u0 = 0.

Then

u1 = y∗1 − µ+ θu0

which is known, provided that the parameters µ and θ are known. Consequently

u2 = y∗2 − µ+ θu1

is known and so forth. Hence

ut = y∗t − µ+ θut−1

is known. Hence for t = t + 1 we have that y∗t+1, conditional on the values

of y∗t , y
∗
t−1, y

∗
t−2,..., y

∗
2, y

∗
1, and u0, is distributed as Normal, because the only

stochastic element is ut+1 which is Normally distributed, with mean µ− θut and
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variance σ2, i.e.

E
(
y∗t+1|y∗t , y∗t−1, ..., y

∗
1, u0

)
= µ− θut

and

V ar
(
y∗t+1|y∗t , y∗t−1, ..., y

∗
1, u0

)
= E (ut+1)2 = σ2.

and it follows that

y∗t+1|y∗t , y∗t−1, ..., y
∗
1, u0 ∼ N

(
µ− θut, σ2

)
.

Notice that the distribution is not the same for all t (as the yt′s have different

values for different t′s with probability 1). Hence the conditional predictor of y∗t+1

is now µ− θut with an error variance of σ2 (the variance of ut+1). Consequently,

the conditional predictor is better than the unconditional one as it has smaller

error variance. Furthermore, notice that we need to condition not only on y∗t ,

as in the case of the AR(1), but on the whole series of the previous y∗′t s, i.e.

on y∗t , y
∗
t−1, ..., y

∗
1 as well as on u0. To understand this difference recall that the

MA(1) model, if invertible, is an AR(∞), and consequently the last observation

depends on all previous ones.

Estimation

To estimate the MA(1) model in (3) we can employ either the Method of Mo-

ments or the maximum likelihood.

To apply theMethod of Moments we equate the theoretical mean and first

order autocorrelation with their sample counterparts we could estimate µ and θ,

i.e.

µ̂ =
1

T

T∑
t=1

y∗t = y∗, θ̂ solve s − θ̂

1 + θ̂
2 =

∑T
t=2 (y∗t − y∗)

(
y∗t−1 − y∗

)√∑T
t=2 (y∗t − y∗)

2∑T
t=2

(
y∗t−1 − y∗

)2
.
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Notice that the equation in θ̂ is a quadratic with two roots such that θ̂1 = 1

θ̂2
and

consequently if they are real one one is less than 1, in absolute value, the other

will be greater than 1. To raise this indeterminacy we adopt the convention that

θ is less than 1 in absolute value, and consequently we choose the solution which

has absolute value less than 1. This also is a condition for the invertibility of the

MA(1) process.

For the Maximum Likelihood, let L(µ, α, σ2) = L (y∗1, y
∗
2, ..., y

∗
T ;µ, α, σ2)

be the likelihood function for the random variables then, as in the AR(1) case,

it can be written as

L(µ, α, σ2) = L
(
y∗T |y∗T−1, ..., y

∗
2, y
∗
1

)
L
(
y∗T−1|y∗T−2..., y

∗
2, y
∗
1

)
...L (y∗2|y∗1)L (y∗1) .

Now the conditional distribution of y∗t is (see Prediction section):

y∗t |y∗t−1, y
∗
t−2, ...y

∗
1, u0 ∼ N

(
µ− θut−1, σ

2
)
.

Hence the Likelihood can be written as:

L(µ, α, σ2) =
T∏
t=1

1√
2πσ2

exp

(
−(y∗t − µ+ θut−1)

σ2

)
and the log-Likelihood is

`(µ, α, σ2) = −T
2

ln (2π)− T

2
lnσ2 −

T∑
t=1

(y∗t − µ+ θut−1)2

2σ2
.

Recall that

ut = y∗t − µ+ θut−1

for t = 1, ..., T . Hence, the ut′s depend on both µ and θ. This is important for

the first order conditions which are given by:

∂`

∂µ
=

T∑
t=1

(y∗t − µ+ θut−1)

(
1− θ∂ut−1

∂µ

)
= 0,
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where

ut
∂µ

= −1 + θ
∂ut−1

∂µ
for t = 1, 2, ..., T and

∂u0

∂µ
= 0

∂`

∂θ
= −

T∑
t=1

(y∗t − µ+ θut−1)

(
θ
∂ut−1

∂θ
+ ut−1

)
= 0

where

ut
∂θ

= ut−1 + θ
∂ut−1

∂θ
for t = 1, 2, ..., T and

∂u0

∂θ
= 0,

and
∂`

∂σ2
= − T

2σ2
+

T∑
t=2

(y∗t − µ+ θut−1)2

2σ4
= 0,

Notice that the equations do not have an explicit solution. The dependence

of the ut′s on the parameters is the main reason for not being able to estimate

the parameters by a simple regression.

4 Mixed Models

Mixed models have both parts, i.e. an autoregressive and a moving average part.

The order of the ARMA models is defined from the order of the AR and MA

part, i.e. ARMA (3, 2) means a process which depends on 3 lags of its own

value and 2 lagged errors, i.e.

y∗t = µ+ α1y
∗
t−1 + α2y

∗
t−2 + α3y

∗
t−3 + ut − θ1ut−1 − θ2ut−2.

In general an ARMA (p, q) is written as

y∗t = µ+ α1y
∗
t−1 + α2y

∗
t−2 + ...+ αpy

∗
t−p + ut − θ1ut−1 − θ2ut−2...− θqut−q.

Notice that the first number in the parenthesis refer to the AR part and the

second to the MA part.

22



4.1 ARMA of Order 1,1

These models are given by

y∗t = µ+ αy∗t−1 + ut − θut−1 (4)

where y∗t is the observed process and ut are iid (0, σ2).

Properties

Notice that equation (4) is written as:

y∗t =
µ

1− α +
1− θL
1− αLut

and provided that |α| < 1 we have that

y∗t =
µ

1− α + (1− θL)
(
1 + αL+ α2L2 + α3L3 + ...

)
ut.

Multiplying the Lag polynomials and collecting terms we get:

y∗t =
µ

1− α +
[
1 + (α− θ)L+ (α− θ)αL2 + (α− θ)α2L3 + ...

]
ut

and multiplying through we get

y∗t =
µ

1− α + ut + (α− θ)ut−1 + (α− θ)αut−2 + (α− θ)α2ut−3 + ... (5)

which is an MA (∞) process. Hence

E (y∗t ) =
µ

1− α,

as E (ut) = 0 for all t′s. Furthermore,

V ar (y∗t ) = σ2
[
1 + (α− θ)2 + (α− θ)2 α2 + (α− θ)2 α4 + ...

]
= σ2 + σ2 (α− θ)2 [1 + α2 + α4 + ...

]
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and provided that |α| < 1 we have that

V ar (y∗t ) = σ2 +
σ2 (α− θ)2

1− α2
= σ2 1− 2αθ + θ2

1− α2
.

To find the autocorrelation function, notice that in deviation, from the

mean µ
1−α , form the model is written:

yt = αyt−1 + ut − θut−1.

Multiply both sides by yt−k and taking expectations we get:

E (ytyt−k) = αE (yt−1yt−k) + E (utyt−k)− θE (ut−1yt−k) .

Clearly, E (utyt−k) = 0 for any k, as yt−k depends on ut−k and the previous u′ts,

see equation (5). Now for k = 1 we have

E (ytyt−1) = αV ar (yt−1)− θE (ut−1yt−1)

where E (ut−1yt−1)

E (ut−1yt−1) = αE (ut−1yt−2) + E
(
u2
t−1

)
− θE (ut−1ut−2)⇒

E (ut−1yt−1) = 0 + σ2 − 0 = σ2.

Hence

γ1 = αγ0 − θσ2 = ασ2 + α
σ2 (α− θ)2

1− α2
− θσ2 = σ2 (α− θ) (1− αθ)

1− α2

and

ρ1 =
(α− θ) (1− αθ)

1− 2αθ + θ2

For k ≥ 2, we have that

E (ytyt−k) = αE (yt−1yt−k+1)⇒ γk = αγk−1

and consequently,

ρk = αρk−1.
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Hence

ρk =


(α−θ)(1−αθ)

1−2αθ+θ2
for k = 1

αk−1ρ1 for k ≥ 2
,

i.e. for k ≥ 2 the autocorrelation function of an ARMA(1, 1) is the same as the

equivalent of an AR(1) model, i.e. declines as a power law (for |α| < 1). Hence

we can conclude that the ARMA(1,1) model is stationary if and only if |α| < 1.

In terms of the partial correlation we know that

ρ1 = ρ•1.

Now to find ρ•2 we have to find the theoretical coeffi cient of yt−2 of the regression

(projection) of yt on yt−1 and yt−2, i.e.

yt = αyt−1 + ρ•2yt−2,

where yt = y∗t − µ
1−α for all t. Hence

yt =
(
yt−1 yt−2

) α

ρ•2

 .

Now from the normal equations we have

E

( yt−1 yt−2

) yt−1

yt−1

 α

ρ•2

 = E

 yt−1

yt−2

 yt


and it follows

E

 (yt−1)2 yt−1yt−2

yt−1yt−2 (yt−2)2

 α

ρ•2

 = E

 yt−1yt

yt−2yt


 γ0 γ1

γ1 γ0

 α

ρ•2

 =

 γ1

γ2


or dividing by γ0  1 ρ1

ρ1 1

 α

ρ•2

 =

 ρ1

ρ2

 .
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Hence

ρ•2 =

∣∣∣∣∣∣ 1 ρ1

ρ1 ρ2

∣∣∣∣∣∣∣∣∣∣∣∣ 1 ρ1

ρ1 1

∣∣∣∣∣∣
= ρ1

α− ρ1

1− ρ2
1

,

as ρ2 = αρ1. Substituting for ρ1 = (α−θ)(1−αθ)
1−2αθ+θ2

we get

ρ•2 =
(α− θ) (1− αθ) θ

[1− θ (α− θ)]2 − θ2

It is easy but tedious to prove that ρ•k will decline with a power law, depending

on α− θ. Hence we can conclude that ρ•k behaves like in the MA(1) case.

Figure 4.1: ACF and Partial ACF for the ARMA(1, 1) process with

α = −0.8, θ = 0.8, σ2 = 1.4, µ = 1.0.

In terms of invertibility the process is invertible if |α| < 1, so that it can be

written as an MA(∞), and |θ| < 1 so that it can be written as an AR(∞).
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Prediction (with known parameters)

The unconditional distribution for an ARMA(1, 1) model is Normal, as it is a

linear combination of independent Normal random variables, with

E (y∗t ) =
µ

1− α, V ar (y∗t ) =
1− 2αθ + θ2

1− α2
.

Hence

y∗t ∼ N

(
µ

1− α,
1− 2αθ + θ2

1− α2

)
.

In this set up the best prediction for yt+1 is its unconditional mean, i.e.

ŷ∗t+1 =
µ

1− α,

and the error variance is given by

V ar
(
y∗t+1 − ŷ∗t+1

)
= V ar

(
y∗t+1 −

µ

1− α

)
= V ar

(
ut + (α− θ)ut−1 + (α− θ)αut−2 + (α− θ)α2ut−3 + ...

)
=

1− 2αθ + θ2

1− α2
.

For the conditional distribution we need to assume a value for u1, say u1 = 0,

and the value of y1 is constant in repeating sampling. Then

u2 = y∗2 − µ− αy1 + θu1

which is known, provided that the parameters µ, α,and θ are known. Conse-

quently

u3 = y∗3 − µ− αy2 + θu2

is known and so forth. Hence

ut = y∗t − µ− αyt−1 + θut−1

is known. Hence for t = t + 1 we have that y∗t+1, conditional on the values

of y∗t , y
∗
t−1, y

∗
t−2,..., y

∗
2, y

∗
1, and u1, is distributed as Normal, because the only
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stochastic element is ut+1 which is Normally distributed, with mean µ+αyt−θut
and variance σ2, i.e.

E
(
y∗t+1|y∗t , y∗t−1, ..., y

∗
1, u1

)
= µ+ αyt − θut

and

V ar
(
y∗t+1|y∗t , y∗t−1, ..., y

∗
1, u1

)
= E (ut+1)2 = σ2.

and it follows that

y∗t+1|y∗t , y∗t−1, ..., y
∗
1, u0 ∼ N

(
µ+ αyt − θut, σ2

)
.

Notice that the distribution is not the same for all t (as the yt′s have different

values for different t′s with probability 1). Hence the conditional predictor of

y∗t+1 is now µ + αyt − θut with an error variance of σ2 (the variance of ut+1).

Consequently, the conditional predictor is better than the unconditional one as

it has smaller error variance. Furthermore, notice that we need to condition not

only on y∗t , as in the case of the AR(1), but on the whole series of the previous

y∗′t s, i.e. on y
∗
t , y
∗
t−1, ..., y

∗
1 as well as on u1, as in the case of the MA(1) model.

To understand this difference recall that the ARMA(1, 1) model, if invertible, is

an AR(∞), and consequently the last observation depends on all previous ones.

Estimation

To estimate the ARMA(1, 1) model in (2) we can employ the maximum likeli-

hood.

For the Maximum Likelihood, let L(µ, α, σ2) = L (y∗1, y
∗
2, ..., y

∗
T ;µ, α, σ2)

be the likelihood function for the random variables. Now assuming that y1 is

constant, and consequently it does not contribute to the likelihood, and that

u1 = 0 we can write:

L(µ, α, σ2|y1, u1) = L
(
y∗T |y∗T−1, .., y

∗
2, y
∗
1, u1

)
L
(
y∗T−1|y∗T−2, .., y

∗
2, y
∗
1, u1

)
..L (y∗2|y∗1, u1) .
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Now the conditional distribution of y∗t is (see Prediction section):

y∗t |y∗t−1, y
∗
t−2, ...y

∗
1, u0 ∼ N

(
µ+ αyt−1 − θut−1, σ

2
)
.

Hence the Likelihood can be written as:

L(µ, α, σ2) =
T∏
t=2

1√
2πσ2

exp

(
−(y∗t − µ− αyt−1 + θut−1)

σ2

)
and the log-Likelihood is

`(µ, α, σ2) = −T − 1

2
ln (2π)− T − 1

2
lnσ2 −

T∑
t=2

(y∗t − µ− αyt−1 + θut−1)2

2σ2
.

Recall that

ut = y∗t − µ− αyt−1 + θut−1

for t = 2, ..., T . Hence, the ut′s depend on both µ, α,and θ. This is important

for the first order conditions which are given by:

∂`

∂µ
=

T∑
t=2

(y∗t − µ+ θut−1)

(
1− θ∂ut−1

∂µ

)
= 0,

where
ut
∂µ

= −1 + θ
∂ut−1

∂µ
for t = 2, ..., T and

∂u1

∂µ
= 0.

∂`

∂α
=

T∑
t=2

(y∗t − µ− αyt−1 + θut−1)

(
yt−1 − θ

∂ut−1

∂α

)
where

∂ut
∂α

= −yt−1 + θ
∂ut−1

∂α
for t = 2, ..., T and

∂u1

∂α
= 0.

∂`

∂θ
= −

T∑
t=2

(y∗t − µ− αyt−1 + θut−1)

(
ut−1 + θ

∂ut−1

∂θ

)
where

∂ut
∂θ

= ut−1 + θ
∂ut−1

∂θ
for t = 2, ..., T and

∂u1

∂θ
= 0.
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Finally,
∂`

∂σ2
= −T − 1

2

1

σ2
+

T∑
t=2

(y∗t − µ− αyt−1 + θut−1)2

2σ4
.

Notice that the equations do not have an explicit solution. Again, the de-

pendence of the ut′s on the parameters is the main reason for not being able to

estimate the parameters by a simple regression.

5 Testing for Autocorrelation

We shall mainly employ the Portmantau Q test.

5.1 Autocorrelation Coefficients

Given a stationary (second order) time series yt we have already defined the kth

order autocovariance and autocorrelation coeficients, γk and ρk, as:

γk = Cov (yt, yt−k) , ρk =
γk
γ0

.

For a given sample {yt}Tt=1 autocovariance and autocorrelation coeffi cients

can be estimated in the natural way by replacing population moments with the

sample counterparts:

∧
γk =

1

T

T∑
t=k+1

(rt −
_
rT )(rt−k −

_
rT ) for 0 ≤ k < T and

∧
ρk =

∧
γk
∧
γ0

, where
_
rT =

1

T

T∑
t=1

rt

Depending on the assumed process for yt we can derive the distributions of
∧
γk and

∧
ρk. If yt is white noise, has variance σ

2, its distribution is symmetric and
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the sixth moment is proportional to σ6, then:

E
(
∧
ρk

)
= − T − k

T (T − 1)
+©(T−2) and

Cov
(
∧
ρk,

∧
ρl

)
=

 T−k
T 2

+©(T−2) if k = l 6= 0

©(T−2) otherwise
.

Notice that although, under the white noise assumption, the true ρk = 0

for all k′s, the sample autocorrelations are negatively biased. This negative bias

comes from the fact that by estimating the sample mean and subtracting it

from the data results in deviations that sum to zero. Hence on average positive

deviations are followed by negative ones and vice versa and consequently result

in negative sum of the product.

In large samples, under the assumption that the true ρk = 0, we have that

√
T
∧
ρk

A∼ N(0, 1).

5.2 Portmanteau Statistics

Since the white noise assumption implies that all autocorrelations are zero we

can use the Box-Pierce Q− statistic. Under the null H0 : ρ1 = ρ2 = ...ρm = 0

it easy to see that:

Qm = T
m∑
k=1

(
∧
ρk

)2 A∼ χ2
m.

The Ljung-Box small sample correction is:

Q∗m = T (T + 2)
m∑
k=1

(
∧
ρk

)2

T − k
A∼ χ2

m.

Notice that for unnecessarily big m the tests has low power, whereas for

too small m it does not pick up higher possible correlation. This is one of the

reasons that most econometric packages print the Q∗m for various values of m

(see Figures 2.1, 3.1, and 4.1).
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Remark R.1 When the residuals of an ARMA(p,q) are employed for the Qm

test then we have that, under the null of no extra autocorrelations,

Qm
A∼ χ2

m−p−q.
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Part II

Conditional Heteroskedasticity

6 Conditional Heteroskedastic Models

These are models which have time varying conditional variance, i.e. the condi-

tional variance is a function of all available information at time t− 1.

6.1 ARCH(1)

The Autoregressive Conditional Heteroskedasticity models of order (1) are given

by (Engle 1982)

yt = µ+ ut where ut|It−1 ∼ N
(
0, σ2

t

)
and σ2

t = c+ αu2
t−1 (6)

where y∗t is the observed process and It−1 = {yt−1, yt−2, ...}. Notice that given

It−1 σ2
t (the conditional variance) is known, i.e. non-stochastic. Of course

unconditionally, i.e. when the conditioning set is the empty set, σ2
t is stochastic.

Properties

To capitalise on the properties of the ARMA models, notice that the conditional

variance can be written as:

u2
t = c+ αu2

t−1 + u2
t − σ2

t ⇒ u2
t = c+ αu2

t−1 + vt (7)

where vt = u2
t − σ2

t (this parameterisation was suggested by Pantula). Now vt

has the following properties:

E (vt) = E
(
u2
t − σ2

t

)
= E

[
E
(
u2
t − σ2

t

)
|It−1

]
= E

[
E
(
u2
t |It−1

)
− σ2

t

]
= E

[
σ2
t − σ2

t

]
= 0

33



where the second equality follows from the Law of Iterated Expectations, and

the forth from the definition of σ2
t . Furthermore,

E (vtvt−k) = E
[(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)]

= E
[
E
(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)
|It−1

]
= E

[
E
(
u2
t |It−1

) (
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= E
[
σ2
t

(
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= 0.

Hence vt is a martingale sequence, i.e. a zero mean and uncorrelated stochastic

sequence. Additionally,

E
(
u2
t−1vt

)
= E

[
u2
t−1

(
u2
t − σ2

t

)]
= E

[
u2
t−1E

(
u2
t |It−1

)
− u2

t−1σ
2
t

]
= E

[
u2
t−1σ

2
t − u2

t−1σ
2
t

]
= 0.

Consequently, equation (7) describes an AR(1) model. This in turn means that

the process u2
t is 1st order stationary iff |α| < 1, consequently yt is 2nd

order stationary under the same condition.

Furthermore,

E (yt) = E (µ+ ut) = µ+ E (ut) = µ+ E [E (ut|It−1)] = µ+ E [0] = µ,

and

V ar (yt) = V ar (µ+ ut) = V ar (ut) = E
(
u2
t

)
=

c

1− α.

The autocorrelation function of the process u2
t (say ρ

(u2

k ) is given by the

autocorrelation function of the AR(1) model, i.e.

corr
(
u2
t , u

2
t−k
)

= ρ
(u2

k = αk.

Notice that as σ2
t is a conditional variance then it must be positive (with

probability 1). This is achieved by imposing the so-called positivity constraints,

i.e. σ2
t is positive with probability 1 (P [σ2

t > 0] = 1) if and only if

c > 0 and α ≥ 0.
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Estimation

To estimate the parameters of the model in (6), we employ the maximum likeli-

hood. From (6) we get that

yt|It−1 ∼ N
(
µ, σ2

t

)
and σ2

t = c+ αu2
t−1.

Assuming that u0 = 0 we have that the likelihood is given by

L(µ, c, α|u0) =

T∏
t=1

L (yt|It−1, u0) ,

and the log-likelihood is:

`(µ, c, α|u0) = −T
2

ln (2π)− 1

2

T∑
t=1

lnσ2
t −

T∑
t=1

(yt − µ)2

2σ2
t

.

The first order conditions are:

∂`(µ, c, α|u0)

∂µ
=

T∑
t=1

1

σ2
t

αut−1+
T∑
t=1

(yt − µ)σ2
t − αut−1 (yt − µ)2

σ4
t

where u0 = 0.

∂`(µ, c, α|u0)

∂c
= −1

2

T∑
t=1

1

σ2
t

+
T∑
t=1

(yt − µ)2

2σ4
t

.

∂`(µ, c, α|u0)

∂α
= −1

2

T∑
t=1

1

σ2
t

u2
t−1 +

T∑
t=1

(yt − µ)2

2σ4
t

u2
t−1 where u0 = 0.

It is obvious that the conditions do not have explicit solutions.

6.2 GARCH(1,1)

The Generalised ARCH models of order (1, 1) are given by

yt = µ+ut where ut|It−1 ∼ N
(
0, σ2

t

)
and σ2

t = c+αu2
t−1 +βσ2

t−1 (8)

where yt is the observed process and It−1 = {yt−1, yt−2, ...}. Notice that given

It−1 σ
2
t is known, i.e. non-stochastic. Of course unconditionally, i.e. when the

conditioning set is the empty set, σ2
t is stochastic. Notice that we can also write

yt = µ+ut where
ut√
σ2
t

= zt ∼ iid N (0, 1) and σ2
t = c+αu2

t−1+βσ2
t−1.
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Properties

Again, to capitalise on the properties of the ARMA models, we employ the

Pantula parameterisation, i.e.

u2
t = c+(α + β)u2

t−1+β
(
σ2
t−1 − u2

t−1

)
+u2

t−σ2
t ⇒ u2

t = c+(α + β)u2
t−1+vt−βvt−1

(9)

where vt = u2
t − σ2

t , which is a martingale sequence as:

E (vt) = E
[
E
(
u2
t − σ2

t

)
|It−1

]
= E

[
E
(
u2
t |It−1

)
− σ2

t

]
= E

[
σ2
t − σ2

t

]
= 0,

and

E (vtvt−k) = E
[(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)]

= E
[
E
(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)
|It−1

]
= E

[
E
(
u2
t |It−1

) (
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= E
[
σ2
t

(
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= 0.

Furthermore,

E (yt) = E (µ+ ut) = µ+ E (ut) = µ+ E [E (ut|It−1)] = µ+ E [0] = µ,

and

V ar (yt) = V ar (µ+ ut) = V ar (ut) = E
(
u2
t

)
=

c

1− α− β ,

given that |α + β| < 1, for stationarity reasons.

The autocorrelation function of the process u2
t is given by the autocorre-

lation function of the ARMA(1, 1) model, i.e.

corr
(
u2
t , u

2
t−k
)

= ρ
(u2

k =


α[1−(α+β)β]

1−2αβ−β2 for k = 1

(α + β)k−1 ρ1 for k ≥ 2
.

Notice that as σ2
t is a conditional variance then it must be positive (with

probability 1). This is achieved by imposing the so-called positivity constraints,

i.e. σ2
t is positive with probability 1 if and only if

c > 0, β ≥ 0 and α ≥ 0.
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Estimation

To estimate the parameters of the model in (8), we employ the maximum likeli-

hood. From (8) we get that

yt|It−1 ∼ N
(
µ, σ2

t

)
and σ2

t = c+ αu2
t−1 + βσ2

t−1.

Assuming that u0 = 0 and σ2
0 = c

1−α−β , the unconditional variance, we have

that the likelihood is given by

L(µ, c, α, β|u0, σ
2
0) =

T∏
t=1

L
(
yt|It−1, u0, σ

2
0

)
,

and the log-likelihood is:

`(µ, c, α, β|u0, σ
2
0) = −T

2
ln (2π)− 1

2

T∑
t=1

lnσ2
t −

T∑
t=1

(yt − µ)2

2σ2
t

.

The first order conditions are:

∂`(µ, c, α, β|u0, σ
2
0)

∂µ
= −1

2

T∑
t=1

1

σ2
t

∂σ2
t

∂µ
+

T∑
t=1

2 (yt − µ)σ2
t +

∂σ2t
∂µ

(yt − µ)2

2σ4
t

where
∂σ2

t

∂µ
= −2αut−1 + β

∂σ2
t−1

∂µ
, u0 = 0,

∂σ2
0

∂µ
= 0.

∂`(µ, c, α, β|u0, σ
2
0)

∂c
= −1

2

T∑
t=1

1

σ2
t

∂σ2
t

∂c
+

T∑
t=1

(yt − µ)2

2σ4
t

∂σ2
t

∂c

where
∂σ2

t

∂µ
= 1 + β

∂σ2
t−1

∂µ
,

∂σ2
0

∂c
=

1

1− α− β

∂`(µ, c, α, β|u0, σ
2
0)

∂α
= −1

2

T∑
t=1

1

σ2
t

∂σ2
t

∂α
+

T∑
t=1

(yt − µ)2

2σ4
t

∂σ2
t

∂α

where
∂σ2

t

∂α
= u2

t−1 + β
∂σ2

t−1

∂α
, u0 = 0,

∂σ2
0

∂α
= − c

(1− α− β)2 .
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∂`(µ, c, α, β|u0, σ
2
0)

∂β
= −1

2

T∑
t=1

1

σ2
t

∂σ2
t

∂β
+

T∑
t=1

(yt − µ)2

2σ4
t

∂σ2
t

∂β

where
∂σ2

t

∂β
= σ2

t−1 + β
∂σ2

t−1

∂β
, σ2

0 =
c

1− α− β , u0 = 0,

∂σ2
0

∂α
= − c

(1− α− β)2 .

It is obvious that the conditions do not have explicit solutions.

6.3 GQARCH(1,1)

The Generalised Quadratic ARCH models of order (1, 1) (Sentana. 1995) are

given by

yt = µ+ut where ut|It−1 ∼ N
(
0, σ2

t

)
and σ2

t = c+α (ut−1 − γ)2+βσ2
t−1

(10)

where y∗t is the observed process and It−1 = {yt−1, yt−2, ...}. Notice that given

It−1 σ
2
t is known, i.e. non-stochastic. Of course unconditionally, i.e. when the

conditioning set is the empty set, σ2
t is stochastic. Notice that the conditional

variance equation can be reparameterized as:

σ2
t = ω + αu2

t−1 − δut−1 + βσ2
t−1 where ω = c+ γ2 and δ = 2αγ.

To explore the properties of the model the last parameterisation is very useful.

Furthermore, recall that the equation in (10) can be also written as:

yt = µ+ut where
ut√
σ2
t

= zt iid ∼ N (0, 1) and σ2
t = c+α (ut−1 − γ)2+βσ2

t−1

Properties

Again, to capitalise on the properties of the ARMA models, we employ the

Pantula parameterisation, i.e.

u2
t = ω + (α + β)u2

t−1 − δut−1 + vt − βvt−1
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where vt = u2
t − σ2

t , which is a martingale sequence as:

E (vt) = E
[
E
(
u2
t − σ2

t

)
|It−1

]
= E

[
E
(
u2
t |It−1

)
− σ2

t

]
= E

[
σ2
t − σ2

t

]
= 0,

and

E (vtvt−k) = E
[(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)]

= E
[
E
(
u2
t − σ2

t

) (
u2
t−k − σ2

t−k
)
|It−1

]
= E

[
E
(
u2
t |It−1

) (
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= E
[
σ2
t

(
u2
t−k − σ2

t−k
)
− σ2

t

(
u2
t−k − σ2

t−k
)]

= 0.

Furthermore,

E (yt) = E (µ+ ut) = µ+ E (ut) = µ+ E [E (ut|It−1)] = µ+ E [0] = µ,

and

V ar (yt) = V ar (µ+ ut) = V ar (ut) = E
(
u2
t

)
= E

(
z2
t σ

2
t

)
= E

(
z2
t

)
E
(
σ2
t

)
= E

(
σ2
t

)
=

ω

1− α− β ,

given that |α + β| < 1, for stationarity reasons.

It is not very diffi cult to prove that the autocorrelation function of the

process u2
t is given by

Cov(u2
t , u

2
t−k) = Cov(σ2

t , σ
2
t−k) = (α+β)k

[
2ω2α2 + 4α2δ2ω (1− α− β)(

1− 3α2 − β2 − 2αβ
)

(1− α− β)2

]
,

provided that 3α2 + β2 + 2αβ < 1, a stronger condition than α + β < 1, and

Cov(u2
t , ut−k) = E(u2

tut−k) = E(σ2
tut−k) = −2(α + β)k−1 δαω

1− α− β

Notice that as σ2
t is a conditional variance then it must be positive (with

probability 1). This is achieved by imposing the so-called positivity constraints,

i.e. σ2
t is positive with probability 1 if and only if

c > 0, β ≥ 0 and α ≥ 0.
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Estimation

To estimate the parameters of the model in (10), we employ the maximum

likelihood. From (10) we get that

yt|It−1 ∼ N
(
µ, σ2

t

)
and σ2

t = ω + αu2
t−1 − δut−1 + βσ2

t−1.

Assuming that u0 = 0 and σ2
0 = c

1−α−β , the unconditional variance, we have

that the likelihood is given by

L(µ, ω, α, β, δ|u0, σ
2
0) =

T∏
t=1

L
(
yt|It−1, u0, σ

2
0

)
,

and the log-likelihood is:

`(µ, ω, α, β, δ|u0, σ
2
0) = −T

2
ln (2π)− 1

2
lnσ2

t −
T∑
t=1

(yt − µ)2

2σ2
t

.

The first order conditions are similar to GARCH(1, 1) process they are re-

cursive and do not have explicit solutions.

6.4 EGARCH(1,1)

The Exponential GARCH models of order (1, 1) (Nelson 1991) are given by

yt = µ+ ut where ut|It−1 ∼ N
(
0, σ2

t

)
(11)

and lnσ2
t = c+ αzt−1 + γ (|zt−1| − E |zt−1|) + β lnσ2

t−1

where zt =
ut√
σ2
t

iid ∼ N (0, 1)

where y∗t is the observed process and It−1 = {yt−1, yt−2, ...}. Notice that given

It−1 σ2
t is known, i.e. non-stochastic. Of course unconditionally, i.e. when

the conditioning set is the empty set, σ2
t is stochastic. Furthermore under the

assumed normality E |zt| =
√

2
π
for all t′s.
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Compared to GARCH(1, 1) models, the EGARCH(1, 1) models do not

require any positivity constraints on the parameters so that the conditional

variance is positive. Furthermore, the 2nd order stationarity of EGARCH (1, 1)

is satisfied if |β| < 1 whereas the 2nd order stationarity ofGARCH (1, 1) requires

|α + β| < 1 (see equation (10)), i.e. the sum of two coeffi cients to be less than

1. This constrain is diffi cult to impose.

Properties

The process yt is 2nd order Stationarity if and only if |β| < 1. The uncondi-

tional mean and variance of y∗t is:

E (yt) = E (µ+ ut) = µ+ E (ut) = µ+ E [E (ut|It−1)] = µ+ E [0] = µ,

and

V ar (yt) = V ar (µ+ ut) = V ar (ut) = E
(
u2
t

)
= E

(
z2
t σ

2
t

)
= E

(
z2
t

)
E
(
σ2
t

)
= E

(
σ2
t

)
= exp

c− γ
√

2
π

1− β

 ∞∏
i=0

[
Φ
(
βiγ∗

)
exp

(
β2i (γ∗)2

2

)
+ exp

(
β2iδ2

2

)
Φ
(
βiδ
)]
,

where γ∗ = γ + α, δ = γ − α and Φ (k) is the value of the cumulative standard

Normal evaluated at k, i.e. Φ (k) =
∫ k
−∞

1√
2π

exp
(
−x2

2

)
dx.

The autocovariance function of the process u2
t is rather complicated and

given by

Cov[u2
t , u

2
t−k] = Cov[σ2

t , σ
2
t−k] = exp

2
c− γ

√
2
π

1− β

×
 $∗∗k

k−1∏
i=0

[
exp

(
β2i(γ∗)2

2

)
Φ(βiγ∗) + exp

(
β2iδ2

2

)
Φ(βiδ)

]
−E (σ2

t )

 ,
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where γ∗ and δ as before and

$∗∗k =
∞∏
i=0

 exp
(

[(1+βk)βiγ∗]2

2

)
Φ
[(

1 + βk
)
βiγ∗

]
+ exp

(
[(1+βk)βiδ]2

2

)
Φ
[(

1 + βk
)
βiδ
]
 .

The dynamic asymmetry (leverage) is given by

Cov[u2
t , ut−k] = E[u2

tut−k] = E[σ2
tut−k] = βk−1 exp

3

2

c− γ
√

2
π

1− β

$∗k

k−2∏
i=0

[
exp

(
β2i (γ∗)2

2

)
Φ(βiγ∗) + exp

(
β2iδ2

2

)
Φ(βiδ)

]
[
γ∗Φ(βk−1γ∗) exp

(
β2k−2 (γ∗)2

2

)
− δΦ(βk−1δ) exp

(
β2k−2δ2

2

)]

where

$∗k =
∞∏
i=0

 exp
(

[( 1
2

+βk)βiγ∗]2

2

)
Φ
[
(1

2
+ βk)βiγ∗

]
+ exp

(
[( 1
2

+βk)βiδ]2

2

)
Φ
[
(1

2
+ βk)βiδ

]
 .

Estimation

To estimate the parameters of the model in (11), we employ the maximum

likelihood. Assuming that z0 = 0 and lnσ2
0 = c

1−β , the unconditional variance,

we have that the likelihood is given by

L(µ, c, α, β, γ|z0, σ
2
0) =

T∏
t=1

L
(
yt|It−1, z0, lnσ

2
0

)
,

and the log-likelihood is:

`(µ, c, α, β, γ|z0, σ
2
0) = −T

2
ln (2π)− 1

2

T∑
t=1

lnσ2
t −

T∑
t=1

(yt − µ)2

2σ2
t

.

The first order conditions are again recursive and consequently do not have

explicit solutions.
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6.5 Stochastic Volatility of Order 1

Let us consider the following SV(1) model:

yt = µ+ ut where ut = zt
√
σ2
t , (12)

ln(σ2
t ) = α0 + β ln(σ2

t−1) + ηt−1

and

 zt

ηt

 iid ∼ N

 0

0

 ,

 1 ρση

ρση σ2
η

 .
Notice that given the information set Jt−1 =

{
yt−1, yt−2, ...ηt−1, ηt−2, ...

}
. the

conditional variance σ2
t is known, i.e. non-stochastic. However, our information

set is It−1 = {yt−1, yt−2, ...} ⊂ Jt−1 , as the only observed process is the yt, and

consequently σ2
t is stochastic (this is the origin of the name of this model). This

is the main difference between this model and various heteroskedastic models

where the conditional variance is non-stochastic, given It−1.

Properties

Under the normality assumption and for |β| < 1 the process {yt is covari-

ance (2nd order) and strictly stationary, and we can also invert the AR(1)

representation of the conditional variance and write the MA representation as

ln(ht) = α0
1−β +

∞∑
i=0

ψiηt−1−i where ψi = βi. The unconditional mean and vari-

ance of yt is:

E (yt) = E (µ+ ut) = µ+ E (ut) = µ+ E [E (ut|It−1)] = µ+ E [0] = µ,

and

V ar (yt) = V ar (µ+ ut) = V ar (ut) = E
(
u2
t

)
= E

(
z2
t σ

2
t

)
= E

(
z2
t

)
E
(
σ2
t

)
= E

(
σ2
t

)
= exp

(
α0

1− β +
σ2
η

2(1− β2)

)
.

43



The autocorrelation function of the process u2
t is less complicated, as

compared to EGARCH(1, 1), and given by

ρ(u2
t , u

2
t−k) =

(1 + β2k−2ρ2σ2
η) exp

(
βk

σ2η
1−β2

)
− 1

3 exp
(

σ2η
1−β2

)
− 1

and

Cov(σ2
t , σ

2
t−k) = exp

(
2
α0

1− β +
σ2
η

1− β2

)[
exp

(
βk

σ2
η

1− β2

)
− 1

]
.

The dynamic asymmetry (leverage) is given by

E
(
σ2
tut−k

)
= ρσηβ

k−1 exp

(
3α0

2(1− β)
+ σ2

η

βk + 5
4

2(1− β2)

)
.

Notice that for ρ = 0, as in Harvey et. al. (1994), the correlation of the squared

errors is the same as in Shephard (1996) and Taylor (1984). Furthermore, in this

case we have that E (htεt−k) = 0, i.e. the leverage effect is 0. Moreover, it is

easy to prove that ρ(u2
t , u

2
t−k) ≤ 1

3
ρ(σ2

t , σ
2
t−k) <

1
3
.

Estimation

The main diffi culty of employing the SV(1) model is that it is not obvious how

to evaluate the likelihood, i.e. the distribution of yt given It−1 = {yt−1, yt−2, ...}.

One solution is to employ the Generalised Method of Moments. Another pos-

sibility is to apply the Kalman Filter and maximise the likelihood of one-step

prediction error, as if this distribution was normal (quasi-likelihood). Other pos-

sibilities include MCMC and Bayesian methods.

7 Conditional Heteroskedastic in Mean Models

These are models which have the time varying conditional variance in the mean

specification as well, i.e.

rt = δht + εt, εt = zt
√
ht (13)
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where

hλt = ω + αλf ν(zt−1)hλt−1 + βhλt−1 + φηληt−1, (14)

f(zt−1) = |zt−1 − b| − γ(zt−1 − b), (15)

and  zt

ηt

 ∼ iid N

 0

0

 ,

 1 ρση

ρση σ2
η

 . (16)

A variety of conditionally heteroskedastic in mean models are nested in the

above parametrization. However, here we consider only three possible values of

the parameter λ and two possible values of ν, i.e. λ ∈ {0, 1/2, 1}and ν ∈ {1, 2}.

Among others, the following models are nested in our parameterization:

• Standard GARCH (GARCH(1,1); Bollerslev (1986) and GARCH(1,1)-M;

Engle et. al. (1987)) (λ = 1, ν = 2, φη = b = γ = 0).

• Nonlinear Asymmetric GARCH (NLGARCH(1,1); Engle and Ng (1993))

(λ = 1, ν = 2, φη = γ = 0).

• Glosten-Jagannathan-Runkle GARCH (GJR-GARCH(1,1) and GJR-GARCH(1,1)-

M; Glosten et al. (1993)) (λ = 1, ν = 2, φη = b = 0).

• Threshold GARCH (TGARCH(1,1); Zakoian (1994)) (λ = 1
2
, ν = 1, φη =

b = 0).

• Absolute Value GARCH (AVGARCH(1,1); Taylor (1986) and Schwert (1989)

(λ = 1
2
, ν = 1, φη = b = γ = 0).

• Exponential GARCH (EGARCH(1,1) and EGARCH(1,1)-M; Nelson (1991))

(λ = 0, ν = 1, φη = 0, b = 0).

• Stochastic Volatility (SV(1); Harvey and Shephard (1996)) (λ = 0, α = 0,

φη = 1).
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Furthermore, we consider the Quadratic GARCH (GQARCH(1,1) and GQARCH(1,1)-

M; Sentana (1995)) which does not fall within the modelling of equations 14 and

15.

In principle, we can impose restrictions of the parameters of the model de-

scribed in equations 13-16, so that the stochastic process {rt} is second order

and strictly stationary. We further assume that the process {ht} started from

some finite value in the distant past and the conditional variance is positive with

probability one. Now we have that under the appropriate conditions of second

order and strict stationarity we have that γk = Cov(rt, rt−k) is a quadratic

function in δ given by (Arvanitis and Demos 2004 and 2004b):

γk = Cov(rt, rt−k) = E (rtrt−k)− E(rt)E(rt−k)

= E [(δht + εt) (δht−k + εt−k)]− E(δht + εt)E(δht−k + εt−k)

= E (δhtδht−k + εtδht−k + δhtεt−k + εtεt−k)− δ2E(ht)E(ht−k)

= δ2 [E (htht−k)− E(ht)E(ht−k)] + δE (htεt−k)

= δ2Cov(ht, ht−k) + δE (htεt−k)

It is important to mention that the assumption of normality of the errors is

by no means a necessary condition for the above formula. It can be weakened

and substituted for higher moment conditions. From formula above it is imme-

diately obvious that if E (htεt−k) is zero, as in the GARCH-M model of Engle

et al. (1987), then the k-order autocovariance of the series has the sign of the

autocovariance of the conditional variance irrespective of the value of δ; this

could explain the poor empirical performance of GARCH-M models (see Fioren-

tini and Sentana (1998)). Ideally, one would like to employ a model which can be

compatible with either negative or positive mean autocorrelations, and potentially

different from of the sign of the autocorrelation of the conditional variance. As an

example consider the volatility clustering observed in financial data. This implies
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that the autocorrelation of the returns’conditional variance is positive. However,

short horizon returns are positively autocorrelated, whereas long horizon ones are

negatively autocorrelated (see Poterba and Summers (1988)).

It is a well documented fact that in all applied work with financial data, the

estimated values of β are positive, indicating the observed volatility clustering,

and the estimated values of ρ are negative due to the asymmetry effect (see

Harvey and Shephard (1996)). These two facts imply that E (htεt−k) is nega-

tive and Cov(ht, ht−k) is positive, for any k. Consequently, γk is negative for δ ∈

(0,−E (htεt−k) /Cov(ht, ht−k)) and is positive for δ ∈ (−E (htεt−k) /Cov(ht, ht−k),∞),

i.e. there are positive values of δ, the price of risk, that can incorporate both

negative and positive autocorrelations of the observed series. Furthermore, no-

tice that for positive β the autocorrelation of the squared errors, of any order, is

positive for any ρ.

It turns out that not all first-order dynamic heteroskedasticity in mean mod-

els are compatible with negative autocorrelations of observed series. In fact, the

GARCH(1,1)-M, AVGARCH(1,1)-M and SV(1)-M with uncorrelated mean and

variance errors models are not compatible with data sets that exhibit negative

autocorrelations. This statement rests on the assumption of symmetric distrib-

utions of the errors, which are mostly employed in applied work. On the other

hand, all the other models considered above are compatible with either positive

or negative autocorrelations of the observed data. In fact, under the assumption

of symmetric distribution of the errors, models which incorporate the leverage

effect can also accommodate the observed series autocorrelation of either sign.
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7.1 The Log Conditional Variance Models

Let us consider the model in equations 13-16 and reparameterize equation 14 so

that now it reads

hλt − 1

λ
= ω∗+αf ν(zt−1)hλt−1+β

hλt−1 − 1

λ
+φηηt−1, where ω∗ =

ω − 1− β
λ

.

Taking the limit now as λ → 0 we have a family of first-order processes where

the natural log of the conditional variance is modeled in the variance equation

(Demos 2002), i.e.

lnht = ω∗ + αf ν(zt−1) + β lnht−1 + φηηt−1

Now for α = 0 and φη = 1 we have the first-order Stochastic Volatility

of Harvey and Shephard (1996), whereas for ν = 1 and φη = 0 we have the

first-order Exponential GARCH of Nelson (1991). In fact we can consider a

generalization of the above equation, i.e.

lnht = α0 + α
∞∑
i=0

θif(zt−1−i) + φη

∞∑
i=0

ψiηt−1−i (17)

where θ0 = ψ0 = 1. Under the normality assumption, {δt}, {lnht} and {ht}

are covariance and strictly stationary if |ϕ| < 1,
∞∑
i=0

θ2
i and

∞∑
i=0

ψ2
i are finite. In

such a case, the observed process {rt} is covariance and strictly stationary as

well. Furthermore, an advantage of using λ = 0, over λ = 1/2 or λ = 1, is that

in this case we do not need to constrain further the parameter space to get the

positivity of the conditional variance.

Let us now state the following Lemmas which will be needed in the sequel

(see Demos 2002 for a proof).

Lemma 7.1 For the following Gaussian AR(1) process yt = α0 + βyt−1 + ηt,

where |β| < 1, ηt ∼ i.i.d.N(0, σ2
η) and τ any finite number we have that

Cov (exp(τyt), exp(τyt−k)) = exp
(
2τµy + τ 2σ2

y

) [
exp

(
τ 2βkσ2

η

1− β2

)
− 1

]
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where µy = α0
1−β and σ

2
y =

σ2η
1−β2 .

A special case of the above Lemma for τ = 1 can be found in Granger and

Newbold (1976).

Lemma 7.2 If

 z

η

 ∼ N

 0

0

 ,

 1 ρση

ρση σ2
η

 then for any κ, τ finite
real numbers we have that

E {exp [τf(z)] exp(κη)} = Φ(A− b) exp (Γ) + exp (∆) Φ(b−B)

E {z exp [τf(z)] exp(κη)} = AΦ(A− b) exp (Γ) +BΦ(b−B) exp (∆)

E
{
z2 exp [τf(z)] exp(κη)

}
=

2τ√
2π

exp

(
κ2σ2

η − (b− κσηρ)2

2

)
+(1 + A2)Φ(A− b) exp (Γ) + (1 +B2)Φ(b−B) exp (∆)

where

∆ =
[κση − τ(1 + γ)]2

2
+ τ(1 + γ)[b+ κση(1− ρ)],

Γ =
[κση + τ(1− γ)]2

2
− τ(1− γ)[b+ κση(1− ρ)],

B = κρση − τ(1 + γ) and A = κρση + τ(1− γ).

Theorem 7.3 For the models described in 13, 15, 16 and 17 above we have

that:

E (htεt−k) = exp

(
3α0

2

)
$

(1/2)
k

k−2∏
i=0

[
exp (Γi) Φ(A

(0)
0,i − b) + exp (∆i) Φ(b−Bi)

]
[
A

(0)
0,k−1Φ(A

(0)
0,k−1 − b) exp

(
Γ

(0)
0,k−1

)
+B

(0)
0,k−1Φ(b−B(0)

0,k−1) exp
(

∆
(0)
0,k−1

)]
,

E (htht−k) = exp(2α0)$
(1)
k

k−1∏
i=0

Φ(A
(0)
0,i −b) exp

(
Γ

(0)
0,i

)
+exp

(
∆

(0)
0,i

)
Φ(b−B(0)

0,i ),
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E(ε2
t ε

2
t−k) = E(htht−k)D

[
Φ(A

(0)
0,k−1 − b) exp

(
Γ

(0)
0,k−1

)
+ exp

(
∆

(0)
0,k−1

)
Φ(b−B(0)

0,k−1)
]−1

,

and

E (ht) = exp(2α0)$
(0)
0

where

$
(j)
k =

∞∏
i=0

[
exp

(
Γ

(j)
k,i

)
Φ(A

(j)
k,i − b) + exp

(
∆

(j)
k,i

)
Φ(b−B(j)

k,i )
]
,

A
(j)
k,i = φη(jψi + ψi+k)ρση + α(jθi + θi+k)(1− γ),

B
(j)
k,i = φη(jψi + ψi+k)ρση − α(jθi + θi+k)(1 + γ),

∆
(j)
k,i =

[φη(jψi + ψi+k)ση − α(jθi + θi+k)(1 + γ)]2

2

+α(jθi + θi+k)(1 + γ)[b+ φη(jψi + ψi+k)ση(1− ρ)],

Γ
(j)
k,i =

[φη(jψi + ψi+k)ση + α(jθi + θi+k)(1− γ)]2

2

−α(jθi + θi+k)(1− γ)[φη(jψi + ψi+k)ση(1− ρ) + b],

and

D =
2αθk−1√

2π
exp

(
(φηψk−1)2σ2

η − (b− φηψk−1σηρ)2

2

)
+
(

1 + (A
(0)
0,k−1)2

)
Φ(A

(0)
0,k−1 − b) exp

(
Γ

(0)
0,k−1

)
+
(

1 + (B
(0)
k−1)2

)
Φ(b−B(0)

0,k−1) exp
(

∆
(0)
0,k−1

)
.

(Proof Demos 2002)

Let us now turn our attention to individual models where the log of the

conditional variance is modeled.
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Stochastic Volatility in Mean

Consider the model in equations 13, 15-17 and impose the constraints φη = 1,

and α = 0 to get the SV −M model, i.e.

rt = δht + εt, εt = zt
√
ht (18)

where

ln(ht) = α0 +
∞∑
i=0

ψiηt−1−i (19)

and (zt, ηt)
/ are as in equations 16.

Notice that this model nests all invertible ARMA representations of the con-

ditional variance process, i.e. ln(ht) = α0 +
p∑
i=1

βi ln(ht−i) +
q∑
i=0

ξiηt−1−i with

the assumption that the roots of
[
1−

p∑
i=1

βix
i

]
lie inside the unit circle we can

invert the ARMA representation of the conditional variance equation to get:

ln(ht) = α∗0 +
∞∑
i=0

ψiηt−1−i where α
∗
0 = α0

1−β1−β2−...−βp
, ψ0 = 1, and ψi, for

i = 1, 2, ..., are the usual coeffi cients for the MA representation of an ARMA

model (see e.g. Anderson (1994)). In terms of stationarity, and under the nor-

mality assumption, the square summability of the ψ′is and |ϕ| < 1 guarantee the

second order and strict stationarity of the {ht} process, and consequently the

covariance and strict stationarity of the {rt} process.

Now we can state the following Lemma:

Lemma 7.4 For the SV-M above and under the assumptions of stationarity we

have that:

E (htεt−k) = ρσηψk−1 exp

(
3α0

2
+
σ2
η

2

k−1∑
i=0

ψ2
i +

σ2
η

2

∞∑
i=0

(ψk+i +
1

2
ψi)

2

)
,

Cov(ht, ht−k) = exp

(
2α0 + σ2

η

∞∑
i=0

ψ2
i

)[
exp

(
σ2
η

∞∑
i=0

ψiψi+k

)
− 1

]
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and

ρ(ε2
t , ε

2
t−k) =

(1 + ψ2
k−1ρ

2σ2
η) exp

(
σ2
η

∞∑
i=0

ψi+kψi

)
− 1

3 exp

(
σ2
η

∞∑
i=0

ψ2
i

)
− 1

Assume for the moment that δ is positive, i.e. the price of risk is positive.

Then in light of the above lemma and theorem 7.3 there are positive values of

δ associated with either negative or positive values of the autocovariance, γk,

(autocorrelation) of the process {rt}.

If there is no correlation between the mean and variance innovations, i.e.

ρ = 0 as in Harvey et al. (1994), we have that E (htεt−k) = 0 and conse-

quently γk is positive when Cov(ht, ht−k) is independent of the value of δ. If,

on the other hand, the Cov(ht, ht−k) is negative, then there are positive val-

ues of δ that are compatible with negative values of γk, i.e. for δ ∈ (0,−(1 −

ϕ2)Cov(ht, ht−k)/ϕ
k−1σ2

uE (htht−k)) γk is negative and for

δ ∈ (−(1− ϕ2)Cov(ht, ht−k)/ϕ
k−1σ2

uE (htht−k) ,∞) γk is positive.

Since in most applications a first order SV-M model is considered with time

invariant coeffi cient for the conditional variance in the mean equation, let us now

turn our analysis to this model.

First-Order Stochastic Volatility in Mean with Constant Coefficients

Let us consider the following SV(1)-M model:

rt = δtht + εt where εt = zt
√
ht, ln(ht) = α0 + β ln(ht−1) + ηt−1

and

 zt

ηt

 ∼ iidN

 0

0

 ,

 1 ρση

ρση σ2
η

 .
Under the normality assumption and for |β| < 1 the process {rt} is covariance

and strictly stationary, and we can also invert the AR(1) representation of the con-
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ditional variance and write the MA representation as ln(ht) = α∗0 +
∞∑
i=0

ψiηt−1−i

where α∗0 = α0/(1− β) and ψi = βi. Now we can state the following Lemma

Corollary 1 For the above SV-M we have that:

E (htεt−k) = ρσηβ
k−1 exp

(
3α0

2(1− β)
+ σ2

η

βk + 5
4

2(1− β2)

)
,

Cov(ht, ht−k) = exp

(
2
α0

1− β +
σ2
η

1− β2

)[
exp

(
βk

σ2
η

1− β2

)
− 1

]
and

ρ(ε2
t , ε

2
t−k) =

(1 + β2k−2ρ2σ2
η) exp

(
βk

σ2η
1−β2

)
− 1

3 exp
(

σ2η
1−β2

)
− 1

To our knowledge, in all applied work with financial data, the estimated

values of β are positive, indicating the observed volatility clustering, and the

estimated values of ρ are negative due to the asymmetry effect (see Harvey

and Shephard (1996)). These two facts imply that E (htεt−k) is negative and

Cov(ht, ht−k) is positive, for any k. Consequently, γk is negative for δ ∈

(0,−E (htεt−k) /Cov(ht, ht−k)) and is positive for δ ∈ (−E (htεt−k) /Cov(ht, ht−k),∞),

i.e. there are positive values of δ, the price of risk, that can incorporate both

negative and positive autocorrelations of the observed series. Furthermore, no-

tice that for positive β the autocorrelation of the squared errors, of any order, is

positive for any ρ.

Notice that for ρ = 0, as in Harvey et al. (1994), the correlation of the

squared errors is same as in Shephard (1996) and Taylor (1984). Furthermore, in

this case we have that E (htεt−k) = 0 and according to Theorem 1 γk is positive

for any value of δ. Moreover, it is easy to prove that ρ(ε2
t , ε

2
t−k) ≤ 1

3
ρ(ht, ht−k) <

1
3
.
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Exponential ARCH in Mean

Let us consider again the model in equations 13, 15-17. To derive the Time

Varying (Mean) Parameter EGARCH(1,1)-M model set ν = 1, φη = 0 and

b = 0, i.e.

rt = δht + εt, εt = zt
√
ht

ln(ht) = α∗0 +
∞∑
i=0

θig (zt−1−i) , g (zt) = α1

(
|zt| −

√
2

π

)
+ α2zt,

where zt ∼ iidN(0, 1), ut ∼ iidN(0, σ2
u), zt and ut independent, δt as in (??)

and θ0 = 1. Throughout this section we assume that α1 6= 0. In case that α1 = 0

the above model is the same as the model in section 2.1 with ρ = 1. Notice

that as it is the case for the SV-M model, this model nests all invertible ARMA

representations of the conditional variance. Under the assumption of normality

of zt′s the processes {εt} and {ht} are covariance and strictly stationary if
∞∑
i=0

θ2
i

is finite (see Nelson (1991)). Consequently, under these conditions, the process

{rt} is covariance and strictly stationary as well. We can state the following

Lemma:

Lemma 7.5 For the above EARCH-M model we have

Cov[ht, ht−k] = exp[2(α∗0 − α1

√
2

π

∞∑
i=0

θi)](
$∗∗k

k−1∏
i=0

exp

(
θ2
iα
∗2
1

2

)
Φ(θiα

∗
1) + exp

(
θ2
iα
∗2
2

2

)
Φ(θiα

∗
2)−$2

)
,

where θ0 = 1, α∗1 = α1+α2, α∗2 = α1−α2,$ =
∞∏
i=0

(
Φ(θiα

∗
1) exp

(
θ2iα

∗2
1

2

)
+ exp

(
θ2iα

∗2
2

2

)
Φ(θiα

∗
2)
)
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and $∗∗k =
∞∏
i=0

 exp
(

[(θi+θi+k)α∗1]2

2

)
Φ((θi + θi+k)α

∗
1)

+ exp
(

[(θi+θi+k)α∗2]2

2

)
Φ((θi + θi+k)α

∗
2)

,
E(htεt−k) = θk−1 exp

(
3

2
(α∗0 − α1

√
2

π

∞∑
i=0

θi)

)
$∗k

k−2∏
i=0

[
exp

(
θ2
iα
∗2
1

2

)
Φ(θiα

∗
1) + exp

(
θ2
iα
∗2
2

2

)
Φ(θiα

∗
2)

]
[
α∗1Φ(θk−1α

∗
1) exp

(
θ2
k−1α

∗2
1

2

)
− α∗2Φ(θk−1α

∗
2) exp

(
θ2
k−1α

∗2
2

2

)]

where $∗k =
∞∏
i=0

 exp
(

[( 1
2
θi+θi+k)α∗1]2

2

)
Φ((1

2
θi + θi+k)α

∗
1)

+ exp
(

[( 1
2
θi+θi+k)α∗2]2

2

)
Φ((1

2
θi + θi+k)α

∗
2)

.
Also

Cov[ε2
t , ε

2
t−k] = Cov[ht, ht−k] + θk−1E (htht−k)

 exp
(
θ2k−1(α∗1)2

2

)
Φ(θk−1α

∗
1)

+ exp
(
θ2k−1(α∗2)2

2

)
Φ(θk−1α

∗
2)

−1

 α1

√
2
π

+ θk−1α
∗2
1 Φ(θk−1α

∗
1) exp

(
θ2k−1α

∗2
1

2

)
+θk−1α

∗2
2 Φ(θk−1α

∗
2) exp

(
θ2k−1α

∗2
2

2

)


Clearly the sign of E(htεt−k) depends on the sign of θk−1 and the relative

values of α∗1 and α
∗
2. Let us now turn our attention to the first-order EGARCH

in Mean model with time invariant δt.

First-Order EGARCH in Mean with Constant Coefficients

Consider now the following EGARCH(1)-M model:

rt = δht + εt

εt = zt
√
ht where zt ∼ iid N(0, 1) and
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ln(ht) = α∗0 + β ln(ht−1) + g (zt−1) where g (zt) = α1

(
|zt| −

√
2
π

)
+ α2zt.

Provided that |β1| < 1 we can invert the above equation as:

ln(ht) = α0 +

∞∑
i=0

βig (zt−1−i) (20)

where α0 =
α∗0

1−β

Assuming normality and |β| < 1 we get the second order and strict station-

arity of {rt} and we can state the following Corollary:

Corollary 2 For the EGARCH(1)-M and under the assumptions that zt v i.i.d.N(0, 1)

and |β| < 1 we have that

Cov[ht, ht−k] = exp[2(
α∗0

1− β −
α1

1− β

√
2

π
)](

$∗∗k

k−1∏
i=0

exp

(
β2iα∗21

2

)
Φ(βiα∗1) + exp

(
β2iα∗22

2

)
Φ(βiα∗2)−$2

)
,

where α∗1 = α1+α2, α∗2 = α1−α2,$ =
∞∏
i=0

(
Φ(βiα∗1) exp

(
β2iα∗21

2

)
+ exp

(
β2iα∗22

2

)
Φ(βiα∗2)

)
and $∗∗k =

∞∏
i=0

 exp
(

[(1+βk)βiα∗1]2

2

)
Φ((1 + βk)βiα∗1)

+ exp
(

[(1+βk)βiα∗2]2

2

)
Φ((1 + βk)βiα∗2)

,
E(htεt−k) = βk−1 exp

(
3

2
(
α∗0

1− β −
α1

1− β

√
2

π
)

)
$∗k

k−2∏
i=0

[
exp

(
β2iα∗21

2

)
Φ(βiα∗1) + exp

(
β2iα∗22

2

)
Φ(βiα∗2)

]
[
α∗1Φ(βk−1α∗1) exp

(
β2k−2α∗21

2

)
− α∗2Φ(βk−1α∗2) exp

(
β2k−2α∗22

2

)]

where $∗k =
∞∏
i=0

 exp
(

[( 1
2

+βk)βiα∗1]2

2

)
Φ((1

2
+ βk)βiα∗1)

+ exp
(

[( 1
2

+βk)βiα∗2]2

2

)
Φ((1

2
+ βk)βiα∗2)

.
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Also

Cov[ε2
t , ε

2
t−k] = Cov[ht, ht−k] + βk−1E (htht−k)

 exp
(
β2k−2(α∗1)2

2

)
Φ(βk−1α∗1)

+ exp
(
β2k−2(α∗2)2

2

)
Φ(βk−1α∗2)

−1

 α1

√
2
π

+ βk−1α∗21 Φ(βk−1α∗1) exp
(
β2k−2α∗21

2

)
+βk−1α∗22 Φ(βk−1α∗2) exp

(
β2k−2α∗22

2

)


In Figure 1 we present the autocorrelation function of the conditional vari-

ance for an EGARCH(1)-M process when the parameter values are as in Nelson

(1991).1 Furthermore, we graph two approximations. The first one is employ-

ing the formula ρ(ht, ht−k) = βk−1ρ(ht, ht−1), whereas the second is given by

ρ(ht, ht−k) =
(
ρ(ht,ht−2)
ρ(ht,ht−1)

)k−2

ρ(ht, ht−2), for k ≥ 2. Notice that the exact ACF

is always between these two approximations, closer to the second. Furthermore,

for high positive values of β the first approximation is quite inaccurate, being

more so as k increases.

It is clear that the sign of E[htεt−k] depends on the relative values of β,

α∗1, and α∗2. However, notice that under the assumptions of volatility clus-

tering, leverage and asymmetry effects, i.e. β > 0, α1 > 0 and α2 < 0,

we have that α∗2 > α∗1 and α
∗
2 > 0. Hence α∗1 exp

(
(βk−1α∗1)2

2

)
Φ(βk−1α∗1) −

α∗2 exp
(

(βk−1α∗2)2

2

)
Φ(βk−1α∗2) < 0 as the exponential and the cumulative distri-

bution functions are non-decreasing. Consequently, E[htεt−k] is negative for any

k.

Now if the random sequence {g (zt)} had a normal distribution, then we would

be able to apply Lemma 1 and conclude that the autocovariance of the conditional

variance is positive for positive β. However, although {g (zt)} is an independent
1Since Nelson (1991) estimated an EGARCH(2,1)-M, we use the largest estimated root as

our β parameter.
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sequence of random variables, its distribution is clearly non-normal. Nevertheless,

under the assumptions of volatility clustering, leverage and asymmetry effects it

is possible to prove that at least the first-order autocovariance is positive up

to forth-order approximation, i.e. expanding the autocovariance with respect to

β around zero. Under these facts we can say that either positive or negative

autocorrelations of the observed series are compatible with positive expected

value of the price of risk (see Theorem 1).

7.2 Comparing the Ln Models

Comparing the two models we can see that both models can incorporate positive

and negative autocorrelations of the observed series with positive expected value

of risk price. Furthermore, both models are compatible with cyclical effects in

the ACF of the squared errors, for negative β. The SV-M models have a relative

advantage over the EGARCH-M models, in that the autocorrelation functions

of the conditional variance and the squared errors are easier to evaluate. Any

other comparison between the two models is diffi cult due to the complexity of the

formulae for the EGARCH model. Nevertheless, notice that the symmetric first-

order EGARCH model, i.e. when α1 = 0, has the same ACFs for the conditional

variance and the squared errors as a SV model with ρ = 1 and σ2
η = α2

1 (see

Demos (2002) and He et al. (1999)).

Harvey and Shephard (1996) estimated a SV(1) model for the data in Nelson

(1991). The estimates for β, ρ, and σ2
η were 0.9877, −0.66, and 0.016, respec-

tively. In Figure 2 we graph the ACF of the conditional variance and the squared

errors for the two models and the above mentioned parameter values. Notice

that although the ACF of the two conditional variances are very close this is not

the case for the ACF of the squared errors. In fact, we know that the ACF of the

squared errors for first-order SV(-M) models is bound from above by 1/3 (see
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end of section 2.1). It seems that this bound is higher for the EGARCH(-M)

models. However, the complexity of the formulae for these models makes the

verification of this conjecture very diffi cult. Nevertheless it is possible to compare

the symmetric first-order EGARCH(-M), i.e. when α2 = 0, with the SV(-M) one.

For this we shall need the following Proposition.

Proposition 3 For the symmetric Gaussian first-order EGARCH(-M) model we

have that

ρ(ht, ht−k) =

exp
(
βkα21
1−β2

) ∞∏
i=0

2Φ((1+βk)βiα1)
k(i+2)−1∏
j=ki

2Φ(βjα1)

− 1

exp
(

α21
1−β2

) ∞∏
i=0

Φ(2βiα1)

2Φ2(βiα1)
− 1

and

ρ(ε2
t , ε

2
t−k) =

exp
(
βkα21
1−β2

) ∞∏
i=0

[2Φ((1+βk)βiα1)]
k(i+2)−1∏
j=ki

2Φ(βjα1)

3 exp
(

α21
1−β2

) ∞∏
i=0

Φ(2βiα1)

2Φ2(βiα1)
− 1

1 +
βk−1α1

√
1

2π

exp
(
β2k−2(α1)2

2

)
Φ(βk−1α1)

+ β2k−2α2
1


− 1

3 exp
(

α21
1−β2

) ∞∏
i=0

Φ(2βiα1)

2Φ2(βiα1)
− 1

.

Specifically, for k = 1 and β close to 1 we have:

ρ(ε2
t , ε

2
t−1) ≈ 1

3
exp

(
−α

2
1

2

)1 +
exp

(
−α21

2

)
α1

√
2πΦ(α1)

+ α2
1

 .
In light of the above Proposition, it is immediately obvious that the upper

bound for the ACF of the squared errors is higher than 1/3. For high values of

|α1| the first-order ACF is dominated by the 1
3

exp
(
−α21

2

)
term. In fact, solving

numerically the first order condition for −2 < α1 < 2, we find that the maximum

is around 0.468 (α1 ≈ 0.84).

Recall that the ACF for the conditional variance and the squared errors of

a symmetric SV(1)(-M) model are given by ρ(ht, ht−k) =
exp

(
βk

σ2η

1−β2

)
−1

exp

(
σ2η

1−β2

)
−1

and
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ρ(ε2
t , ε

2
t−k) =

exp

(
βk

σ2η

1−β2

)
−1

3 exp

(
σ2η

1−β2

)
−1
, respectively. Let us assume that the estimated

parameters of such a model and an EGARCH(1)(-M) process are such, so that

they result in ρEGARCH(ht, ht−k) ≈ ρSV (ht, ht−k), for small k. Then, provided

that α1 is positive, we get that ρEGARCH(ε2
t , ε

2
t−k) > ρSV (ε2

t , ε
2
t−k). However,

any other comparison of the two models is extremely diffi cult. Nevertheless,

as the applicability of symmetric conditional heteroskedasticity models is rather

limited (see e.g. Gallant et al. (1997)), and a comparison of the properties of

general order asymmetric SV-M with those of EGARCH-M is extremely diffi cult,

we do not pursue this topic any further.

7.3 Modelling the Standard Deviation

All proofs of this section can be found in Arvanitis and Demos (2004) and

(2004b). Let us now consider the following alternative set of constraints on

the model in equations 13-15: φη = 0, i.e. there is no stochastic error in the

conditional variance equation, λ = 1
2
, i.e. the standard deviation is modeled. Let

us also relax the normality assumption and instead assume that z′ts are iid (0, 1)

random variables. This yields the following model:

rt = δt−1ht + εt, εt = zt
√
ht (21)

where

h
1/2
t = ω + αf ν(zt−1)h

1/2
t−1 + βh

1/2
t−1, (22)

f(zt−1) = |zt−1 − b| − γ(zt−1 − b), (23)

and

zt ∼ iid(0, 1). (24)
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When ν = 1 and φu = ϕ = b = 0 we get the TGARCH(1,1)-M of Zakoian

(1994) whereas if γ = 0 as well we get the AVGARCH(1,1)-M of Taylor (1986)

and Schwert (1989). Under the assumption E (αf ν(z) + β)4 < 1 both the

conditional variance process, {ht}, and the observed process, {rt}, are covariance

and strictly stationary (see He and Terasvirta (1999)). Furthermore, for the

positivity of the conditional variance we need β > 0, α > 0 and −1 ≤ γ ≤ 1. In

this setup we can state the following Lemma.

Lemma 7.6 If the z′ts are i.i.d. (0, 1) random variables withE (αf ν(zt) + β)4 <

1 then for k > 0 we have that:

E (htεt−k) = Bk−1B̃E(h3/2) + 2ωÃE(h)
Bk − Ak
B − A

and

Cov(ht, ht−k) = BkV (h)+2ωAE
(
h3/2

) Bk − Ak
B − A −2ω2E(h)

A(Bk − Ak)
(1− A)(B − A)

,

which is positive for any k, where

E(h) = ω2 1 + A

(1− A)(1−B)
, E(h3/2) = ω3 1 + AB + 2A+ 2B

(1− A)(1−B)(1− Γ)
,

V (h) = E(h2)−E2(h), E(h2
t ) = ω4 (1 +B) [3(A+ Γ) + 1 + AΓ] + 4(B + AΓ)

(1− A) (1−B) (1− Γ)(1−∆)
,

A = E (αf ν(z) + β) , Ã = E [z (αf ν(z) + β)] = αE (zf ν(z)) ,

B = E (αf ν(z) + β)2 , B̃ = E
[
z (αf ν(z) + β)2] = α2E

(
zf 2ν(z)

)
+ 2αβÃ,

Γ = E (αf ν(z) + β)3 and ∆ = E (αf ν(z) + β)4 .

Unfortunately the expressions derived are too complicated to draw any con-

clusions. In fact, in order to draw any conclusions in terms of the signs of various

expectations we need, at least, to specify the distribution of the zt′s. Hence, let

us assume that they are normally distributed and moreover that b = 0.
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7.4 The First-Order TGARCH-M under Normality

The Gaussian the TGARCH(1,1)-M model (see Zakoian (1994)) is defined as

follows..

rt = δht + εt, where εt = zt
√
ht,

h
1/2
t = ω + αf(zt−1)h

1/2
t−1 + βh

1/2
t−1, f(zt−1) = |zt−1| − γzt−1, and zt ∼ iidN(0, 1).

For stationarity assume that E (αf ν(z) + β)4 < 1 whereas for positivity of the

conditional variance assume that β > 0, α > 0 and −1 < γ < 1. We can now

state the following Corollary.

Corollary 4 For the above first-order TGARCH-M model and for k > 0 we have

that:

E (htεt−k) = −Bk−1α2γ(1 + 2β)E(h3/2)− 2ωαγE(h)
Bk − Ak
B − A

and

Cov(ht, ht−k) = BkV (h) + 2ωAE
(
h3/2

) Bk − Ak
B − A − 2ω2E(h)

A(Bk − Ak)
(1− A)(B − A)

where

E(h) = ω2 1 + A

(1− A)(1−B)
, E(h3/2) = ω3 1 + AB + 2A+ 2B

(1− A)(1−B)(1− Γ)
,

E(h2) = ω4 (1 +B) [3(A+ Γ) + 1 + AΓ] + 4(B + AΓ)

(1− A) (1−B) (1− Γ)(1−∆)
,

V (h) = E(h2)− E2(h), A = α

√
2

π
+ β,

B = α2 (1 + γ2)+2αβ
√

2
π
+β2, Γ = 2

√
2
π
α3 (1 + 3γ2)+3αβ

(
α (1 + γ2) + β

√
2
π

)
+

β3 and∆ = 3α4 (1 + 6γ2 + γ4)+2α2β (1 + γ2)
(

4
√

2
π
α + 3β

)
+4
√

2
π
αβ3+β4.

(for proof see Arvanitis Demos (2004)
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It is now apparent that the covariance, of any order, between the conditional

variance and the lagged error is negative, then there are positive values of δ which

are compatible with either negative or positive values of γk.

If we impose one additional restriction that the leverage parameter, γ, is zero,

we get the Absolute Value GARCH(1,1)-M of Taylor (1986) and Schwert (1989).

Notice that for this model the covariance (correlation) of the conditional variance

with the lagged errors is zero (see above Corollary). Consequently, the autoco-

variance of the observed process can have only the sign of the autocovariance of

the conditional variance which is positive.

7.5 Modelling the Conditional Variance

For λ = 1, φη = 0 we get the following GARCH-M model:

rt = δht + εt, εt = zt
√
ht (25)

where

ht = ω + αf ν(zt−1)ht−1 + βht−1, (26)

f(zt−1) = |zt−1 − b| − γ(zt−1 − b), (27)

and

zt ∼ iid(0, 1). (28)

When ν = 2, φu = φ = γ = 0 we get the NLGARCH(1,1)-M of Engle and

Ng (1993). Furthermore, if b = 0, but γ 6= 0, we get the GJR-GARCH(1,1)-M

of Glosten et al. (1993) and if in addition γ = 0 we get the GARCH(1,1) of

Bollerslev (1986) and GARCH(1,1)-M of Engle et al. (1987).

Under the assumption that |ϕ| < 1 and E (f ν(zt−1) + β)2 < 1 the process

{rt} is second order and strictly stationary (see He and Terasvirta (1999)), and if

α > 0 and β > 0 the positivity constraint for the conditional variance is satisfied,

as well. Consequently, we can state the following Lemma:
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Lemma 7.7 For the first-order GARCH model in equations 25-28 we have that

E(htεt−k) = αE [zf ν(z)]Ak−1E(h3/2),

and

Cov(ht, ht−k) = ω2Ak
B − A2

(1− A)2 (1−B)

where A = E (f ν(zt−1) + β) and B = E (f ν(zt−1) + β)2.

It is obvious that if E [zf ν(z)] = 0 then the sign of the autocovariance of

the observed series, {rt}, is positive for any value of δ.

In most models considered in applied work ν = 2. In such a case E [zf ν(z)] =

E(z3)(1 + γ2) − 2b(1 + γ2) − 2γE [|z − b|(z2 − bz)]. Consequently, for the

GARCH(1,1)-Mmodels we get thatE [zf ν(z)] = E(z3), for the GJR-GARCH(1,1)-

Mwe get thatE [zf ν(z)] = E(z3)(1+γ2)−2γE(z2|z|) and for the NLGARCH(1,1)-

Mmodel we get thatE [zf ν(z)] = E(z3)−2b. Consequently, for the GARCH(1,1)-

M model we get that for symmetric distributions of zt′s the autocovariance of

the observed series can only be positive independent of the value of δ.

7.6 First-Order GQARCH in Mean

Consider the following GQARCH(1,1) in Mean model:

rt = δht + εt, εt = zt
√
ht where zt ∼ iid(0, 1)

sequence of random variables and

ht = ω + α(εt−1 − b)2 + βht−1.

In terms of stationarity we need α2E(z4) + β2 + 2αβ < 1, whereas we need

both α and β to be positive for positivity of the conditional variance (see Sentana

(1995)).
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The Sastry Pantula parameterization (see Bollerslev (1986)) of the condi-

tional variance of the GARCH model applies also to GQARCH-M, i.e.

ε2
t = ω∗ + (α + β)ε2

t−1 − 2αbεt−1 + νt − βνt−1

where ω∗ = ω + b2 and νt = ε2
t − ht is a martingale difference sequence, as

E(νt) = E(ε2
t − ht) = E

(
Et−1(ε2

t )− ht
)

= 0,

and for k > 0

E(νtνt−k) = E
(
(ε2
t − ht)(ε2

t−k − ht−k)
)

= E(htε
2
t−k)− E(htε

2
t−k)− E(htht−k) + E(htht−k) = 0.

We can state the following Lemma.

Lemma 7.8 For a GQARCH(1,1) in Mean model we have:

E(htεt−k) = E(ε2
t εt−k) = (α + β)k−1

[
αE(z3)E(h3/2)− 2αbE (h)

]
and

Cov(ht, ht−k) = (α + β)k
[
E(h2)− E2(h)

]
= (α + β)kV (h)

where E(h2) =
ω∗2+(4α2b2+2ω∗α+2ω∗β)E(h)−4α2bE(z3)E(h3/2)

1−α2E(z4)−β2−2αβ
, E(h) = ω∗

1−α−β , and

E(h
3
2 ) a finite number.

From the above lemma it is clear that if the zt′s are symmetrically dis-

tributed, i.e. E(z3) = 0, and the asymmetry parameter b is positive then,

E(htεt−k) is less than zero for any value of k. Consequently, the autocovariance

of the process is negative for δ ∈ (0,−2αb(α + β)−1E (h) /V (h)) and positive

for δ ∈ (−2αb(α + β)−1E (h) /V (h),∞). Furthermore, notice that if in the

GQARCH(1,1)-M we set b = 0 we get the GARCH(1,1)-M. Hence, if zt has a

symmetric distribution, the autocovariance of any order of the GARCH(1,1)-M

can have only non-negative values independent of the value δ (see also Hong

(1991) and Fiorentini and Sentana (1998)).
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7.7 Conclusions

It turns out that not all first-order dynamic heteroskedasticity in mean models,

with time invariant conditional variance coeffi cient in the mean, δ, are compatible

with negative autocorrelations of observed series. In fact, the GARCH(1,1)-M,

AVGARCH(1,1)-M and SV(1)-M with uncorrelated mean and variance errors

models are not compatible with data sets that exhibit negative autocorrelations.

This statement rests on the assumption of symmetric distributions of the er-

rors, which are mostly employed in applied work. On the other hand, all the

other models considered here are compatible with either positive or negative au-

tocorrelations of the observed data. In fact, under the assumption of symmetric

distribution of the errors, models which incorporate the leverage effect can also

accommodate the observed series autocorrelation of either sign.

Finally, the expressions for the autocovariances of the square residuals for the

SV-M and EGARCH-M models make it possible to see how well the theoretical

properties of the models fit the observed data, something which is important

for the identification of the order of the conditional variance process along the

lines of Bollerslev (1984) and Nelson (1991). A relative advantage of the SV-M

model over the EGARCH-M one is that for the former it is simpler to evaluate

the autocovariance function of the conditional variance and the squared errors.

In fact, in terms of formulae simplicity the SV-M and GARCH with λ = 1 and

ν = 2 models have an advantage over the rest. Comparing the two models, in

terms of the autocorrelation function of the squared errors we have the following

Proposition:

Proposition 5 If the decline from the first to the second order autocorrelation

in the conditional variance or squared errors is the same for a SV(1)-M and a

G(Q)ARCH(1,1)-M model then the autoregressive parameter in the log condi-

tional variance equation of the SV model, β, is bigger or equal to the persistence
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of the G(Q)ARCH model, i.e. the sum of GARCH and ARCH coeffi cients.

In other words, if the β in the SV model is equal to the variance persistence

parameter, as defined by the sum of the ARCH and GARCH parameters, the

autocorrelation function of the conditional variance and the squared errors for the

SV model decline at a rate which is at most equal and generally lower to those of

the G(Q)ARCH model. The β and persistence parameters play an important part

in the stationarity of the SV(1)-M and G(Q)ARCH(1,1)-Mmodels. Consequently,

if the objective function of a maximization procedure were the matching of the

ACFs of the conditional variance or the squared errors the G(Q)ARCH(1,1)-M

models would produce estimated values that are within the stationary region of

the parameter space with higher probability.

However, in the majority of the applications of these models, a Quasi Maxi-

mum Likelihood method is employed for parameter estimation, leaving the struc-

ture in the squared errors as a diagnostic tool. Nevertheless, intuition suggests

that considering an in Mean model would make these results relevant to esti-

mation as well. This is something that we investigate now. Another interesting

topic would be to investigate the autocorrelation function of the squared ob-

served variables and the so called Taylor effect. Again this is a complete project

on its own that is under consideration.

Of course our analysis is by no means exhaustive. Many members of the

dynamic heteroskedasticity in mean family are not analyzed, e.g. models where

λ and ν take any non-integer values in the range [0, 2] as in Ding et al. (1993),

or models where a fourth-order power of the errors is added in the conditional

variance equation, as in Yang and Bewley (1995).
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Part III

Non-stationarity

8 Non-stationary processes

For this chapter stationary process means second order weakly stationary, i.e. the

mean, variance and autocovariances of the process are independent of t. There

are several reasons to pay attention on stationarity.

1) For a Radmon Walk (see below), a shock at time t will have the same

effect on the process at time t, t + 1, t + 2,..... The same is not true

for a stationary process, e.g. for the stationary AR (1) the effect on the

process at t + j is αj, where α is the AR coeffi cient. In other words, the

Impulse-Response function of a Random Walk is 1 at all horizons.

2) The "spurious regression" problems, i.e. when two non-stationary variables

seem to be connected when they are not related to one another (see below

on this).

3) The forecast variance of a simple Random Walk grows linearly with the

forecast horizon.

4) Heuristically, the autocorrelation function of a Random Walk is 1 for any

lag. In effect this means that the correlogram would die out very slowly.

5) Dealing with non-stationary variables in a regression framework would in-

validate most of the asymptotic analysis, i.e. the usual ‘t-ratios’could not

follow a t-distribution, and the F-statistic would not follow an F-distribution

etc.
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There are two models that are usually employed to describe non-stationarity.

First, the Trend Stationary (TS) process:

yt = a+ bt+ ut, where ut is WN, (29)

and WN stands for White Noise. In fact the term a + bt is the deterministic

term, as it is completely predictable. It can be any polynomial function in t, e.g.

it can be of the following form: a, a+ bt, a+ bt+ ct2, etc.

Second, the random walk (RW ) with drift, i.e.

xt = b+ xt−1 + zt, where zt is WN, (30)

where b is called the drift. Assuming that x0 = 0, substituting backwards we get

that

xt = 2b+ xt−2 + zt + zt−1 = ... = bt+ zt + zt−1 + ...+ z1

justifying in this way the name drift.

8.1 Trend Stationary Process

Let us consider the TS process in equation (29). Assuming normality, i.e. ut ∼

N (0, σ2), all classical assumptions apply and consequently, the usual t-statistic

and F-statistic have the standard Students-t and F distributions. However, as

soon as we drop the assumption of normality things change.

Let us rewrite equation (29) as:

yt = (1, t)

(
a

b

)
+ ut = x′tγ + ut, where xt =

(
1

t

)
(31)

γ =

(
a

b

)
and ut iid with E (ut) = 0, E

(
u2
t

)
= σ2 and E

(
u4
t

)
<∞.

Let γ̂ denote the OLS estimator of γ based on n observations, i.e.

γ̂ =

(
â

b̂

)
=

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xtyt.
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Substituting out yt, employing equation (31), we get

γ̂ =

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xt (x′tγ + ut) = γ +

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xtut

and it follows that

γ̂ − γ =

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xtut ⇒

√
n (γ̂ − γ) =

(
1

n

n∑
t=1

xtx
′
t

)−1
1√
n

n∑
t=1

xtut.

Under standard assumptions we have that 1
n

n∑
t=1

xtx
′
t
P→M , whereM a non-

singular matrix and P→ denotes convergence in probability. Further, 1√
n

n∑
t=1

xtut
D→

N (0, σ2M). It follows that
√
n (γ̂ − γ)

D→ N (0, σ2M−1). However, for the TS

case we have that:

γ̂ − γ =


n

n∑
t=1

t

n∑
t=1

t
n∑
t=1

t2


−1

n∑
t=1

(
ut
tut

)
. (32)

Now notice that

n∑
t=1

t =
n (n+ 1)

2
= O

(
n2
)
,

n∑
t=1

t2 =
n (n+ 1) (2n+ 1)

6
= O

(
n3
)

and it follows that


n

n∑
t=1

t

n∑
t=1

t
n∑
t=1

t2

 =

 n n(n+1)
2

n(n+1)
2

n(n+1)(2n+1)
6

. Notice also,
for future reference that

n∑
t=1

t3 =

[
n (n+ 1)

6

]2

= O
(
n4
)
.
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Hence, scaling this matrix by 1
n
would lead to non-convergent ellements. On the

other hand scaling by 1
n3
would result to a singular limiting matrix. Consequently,

â and b̂ require different rates for asymptotic convergence. In fact we have to

scale â by
√
n and b̂ by n3/2. Hence, employing equation (32), we get( √

n (â− a)

n3/2
(
b̂− b

)) =

 √n 0

0 n3/2

(â− a
b̂− b

)
= Nn

(
n∑
t=1

xtx
′
t

)−1 n∑
t=1

xtut

= Nn

(
n∑
t=1

xtx
′
t

)−1

NnN
−1
n

n∑
t=1

xtut

=

(
N−1
n

n∑
t=1

xtx
′
tN
−1
n

)−1

N−1
n

n∑
t=1

xtut,

where Nn =

 √n 0

0 n3/2

. Now
N−1
n

n∑
t=1

xtx
′
tN
−1
n =

 1 n−1 n+1
2

n−1 n+1
2

n−2 (n+1)(2n+1)
6

→
 1 1

2

1
2

1
3

 = M.

For the next term, notice that

N−1
n

n∑
t=1

xtut =

( 1√
n

n∑
t=1

ut

1
n3/2

n∑
t=1

tut

)

and as ut is iid with finite fourth moment we get that 1√
n

n∑
t=1

ut
D→ N (0, σ2).

Further we can prove that 1
n3/2

n∑
t=1

tut
D→ N (0, σ2/3) (see Hamilton 1994), and

the linear combination of the two elements converges to normality we conclude

that

( 1√
n

n∑
t=1

ut

1
n3/2

n∑
t=1

tut

)
D→ N

(
0, σ2M

)
,

71



and it follows that ( √
n (â− a)

n3/2
(
b̂− b

)) D→ N
(
0, σ2M−1

)
(33)

establishing the superconsistency of b̂.

Further, it is an easy exercise to prove the asymptotic normality of the t −

statistics for â and b̂. Here we consider only the t−statistic for the hypothesis

H0 : b = b0 (see Hamilton 1994 for details).

tb̂ =
b̂− b0√
s2m22

, where m22 is the (2, 2) element of

(
n∑
t=1

xtx
′
t

)−1

and

s2 =
1

n− 2

n∑
t=1

(
yt − â− t̂b

)2

.

Hence

tb̂ =
b̂− b0√√√√√s2

(
0 1

)( n∑
t=1

xtx′t

)−1
 0

1


=

n3/2
(
b̂− b0

)
√√√√√s2

(
0 n3/2

)( n∑
t=1

xtx′t

)−1
 0

n3/2


=

n3/2
(
b̂− b0

)
√√√√√s2

(
0 1

) √n 0

0 n3/2

( n∑
t=1

xtx′t

)−1
 √n 0

0 n3/2

 0

1


=

n3/2
(
b̂− b0

)
√√√√√s2

(
0 1

) √n 0

0 n3/2

−1
n∑
t=1

xtx′t

 √n 0

0 n3/2

−1−1 0

1


.

Now from above we know that

 √n 0

0 n3/2

−1
n∑
t=1

xtx
′
t

 √n 0

0 n3/2

−1

→

M . Further, s2 P→ σ2 and n3/2
(
b̂− b

)
D→ N (0, σ2m22) (by equation (33)).
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Hence we get:

tb̂
P→

n3/2
(
b̂− b0

)
√√√√√σ2

(
0 1

)
M−1

 0

1


D→ N (0, 1) .

8.2 Over and Under Differencing

Let us now consider the cases where the true model is RW and we treat it as

TS (under − differencing) as well as the reverse case, i.e. the true model is

TS and we treat it as RW (over − differencing).

Under-Differencing

Assume that we estimate the following equation

yt = â+ b̂t+ êt

where â and b̂ denote the LS coeffi cients, êt denotes the LS residual, and

t = 1, ...n. However, the true model is

yt = µ+ yt−1 + ut,

where ut is such that St =
∑t

j=1 uj sutisfy an appropriate functional Central

Limit Theorem (see Durlauf and Phillips 1988 for details). In this setup it is

posible to prove that (see Theorem 3.1 in Durlauf and Phillips 1988), as n→∞:

1) n−1/2â
D→ N (0, 2σ2/15), where σ2 = limn→∞ n

−1
∑
E (S2

n)

2) n1/2
(
b̂− µ

)
D→ N (0, 6σ2/5)

3) The t− statistics, ta=0 and tb=0, diverge

4) The DW (Durbin-Watson) statistic goes in probability to 0
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5) The R2 has a nondegenerate distribution.

The results do not change if µ = 0 (see Theorems 2.1 and 2.2 in Durlauf and

Phillips 1988), just set µ = 0 in 2). Notice that the asymtotic distribution of â

is non-standard, whereas the one of b̂ is. However, the tb=0 diverges, invalidating

any standard inference. Notice that the DW is going to 0 indicating that, for

large data sets the probability of mistaken a RW process as a TS one is very

low. However, a low DW statistic does not necessarily imply a RW process.

The R2 converges in distribution to a nondegenerate random variable with an

expected value approximately 0.44 (see Nelson and Kang 1981).

Another effect of under-differencing is the spurious periodicity of the auto-

correlations of the fitted values, ŷt = â + b̂t (see Nelson and Kang 1981 and

Patterson 2011).

Over-Differencing

Consider the following process

yt = a+ bt+ εt,

where εt is iid with E(ε4
t ) <∞. It follows that

∆yt = b+ εt − εt−1,

i.e. over-differencing induces a nonivertible MA (1) process. It seems that over-

diffrencing is less of problem, as compared to under-differencing, provided that

the autocorrelation of the errors are taken into acount. In fact, estimating the

following model

∆yt = b+ εt − θεt−1,

by ML, provided that εt is iid N (0, σ2), it is possible to prove that θ̂ is n con-

sistent (see Shephard 1993 and Sargan and Bhargava 1983). However, although
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θ̂ converges to 1 faster than the standard
√
n rate, its asymptotic distribution

is not normal (for an indirect estimator with non − iid and/or nonnormal εt

see Arvanitis 2013). Finally, for implications of over-differencing for the spectral

density function see Patterson (2011).

8.3 Spurious Regressions

Assume two independent RWs, i.e.

yt = yt−1 + ut, and xt = xt−1 + vt,

where ut and vt are independent and satisfy some heterogeneity and weak de-

pendence conditions (see Phillips 1986). Now according to Durlauf and Phillips

(1988) (Theorem 5.1) the coeffi cients in the least squares regression

yt = â+ b̂t+ ĉxt + ût, t = 1, ..., n

have the following asymptotic behaviour:

(1) ĉ converges weakly to a nondegenerate random variable;

(2) â diverges;

(3) b̂
P→ 0;

(4) s2, the estimate of the error variance, diverges;

(5) tc=0, the t− statistic for c = 0, diverges; and

(6) the Durbin-Watson statistic goes in probability to zero, i.e. DW P→ 0.

Notice that the only consistent estimator is b̂. ĉ has a nondegenarate asymp-

totic distribution, which explains the simulation results in Granger and Newbold

(1974), althought their results concern a regression without a time trend. Even

in this case, i.e. when a time trend is not included, ĉ has a nondegenarate as-

ymptotic distribution which differs by the presence of terms which express the

interaction between the time trend and the nonstationary series (see Phillips
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1986 and Durlauf and Phillips 1988). The tc=0 test, diverges as in the non-

detrended case (Phillips 1988). Hence, regardless of the inclusion of the time

trend, the t − statistic test will diverge and consequently, the nonstationarity

of the underlying series is the critical issue, rather than inappropriate detrending

(see Durlauf and Phillips 1988). Again the DW statistic converges in probability

to zero. To quote Durlauf and Phillips (1988) "The inappropriateness of the

conventional t− statistic test should thus become apparent to the investigator

from the inspection of residual DW diagnostics. Once again the results indicate

that the employment of conventional significance tests must be suspect until the

stationarity of the dependent variable is resolved."

Consider now the regression of the two independent RWs without the drift,

i.e.

yt = â+ ĉxt + ût, t = 1, ..., n.

Further, assume that the two independent RWs have a drift, i.e.

yt = γy + yt−1 + ut, and xt = γx + xt−1 + vt,

where ut is iid
(
0, σ2

y

)
, vt is iid (0, σ2

x) are ut and vt are independent for all t
′s.

Under regularity assumptions made explicit in Phillips (1986), Entorf (1992) was

able to get the following:

1∗) ĉ
P→ γy

γx
;

2∗) â diverges; and

3∗) DW
P→ 0.

It is evident that is cases that the RWs have a drift the regression coeficient,

ĉ, converges to a constant, unlike in cases where the are no drifts (see (1) above)

where the coeffi cient converges to a random variable. In both case, the consant
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of the regression â diverges. Finally, notice that in both cases the DW statistic

goes to 0 in probability, hence DW can be an important tool to detect spurious

regressions, in large samples.

9 Unit Roots

In order to derive unit root tests, against the stationary alternatives, we need first

to derive the distribution of the OLS estimator of the autoregressive parameter

under the unit root null hypothesis. This distribution turns out to be a function

of Wiener processes and hence a brief introduction to the Wiener processes is

needed.

9.1 The Wiener Process

Let ∆W be the change in the Wiener process, or standard Brownian motion, say

W , during a small time interval ∆t. Then have that:

∆W = z
√

∆t

where z ∼ N (0, 1). It follows that E (∆W ) = 0, V (∆W ) = ∆t. Further, for

any disjoint small time intervals, the values of ∆W are independent, as the zs

are independent.

Now consider the value of W during a long period T , say W (T ). Then

break the long period T in to n non-overlapping equal small intervals ∆t, i.e.

T = n∆t. Then we have that

W (T )−W (0) =

n∑
i=1

zi
√

∆t,

and since zi ∼ iidN (0, 1), assuming that W (0) = 0 we get that

E (W (T )) = 0, V (W (T )) = n∆t = T.
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Now consider ST =
∑T

t=1 zt, where zt ∼ iidN (0, 1). Then St is a random

walk as St = St−1 + zt. Assuming that S0 = 0, we have that

E (ST ) = 0, V (ST ) = T,

as in the case of W (T ).

Now divide the interval [0, 1] into T intervals of length 1/T , i.e. the points

of the interval are 0, 1/T, 2/T, ..., (T − 1) /T, 1. Further define a new index r in

[0, 1] corresponding to the time t, in {0, 1, ..., T}, by the relation

i− 1

T
≤ r <

i

T
for i = 1, ..., T.

Let [rT ] denote the integer part of rT , i.e. for T = 50 and r = 0.45, [rT ] =

[0.45 ∗ 50] = [22.5] = 22. Finally define the step function

XT (r) =
1√
T
S[rT ].

According to the so called Donsker’s Functional Central Limit Theorem we get

that

XT (r)
D→ W (r) .

Furthermore, from the Continuous Mapping Theorem we have that if g (.) is a

continuous function on [0, 1] we have that

g (XT (r))
D→ g (W (r)) ,

see Billingsley (1968) section 5 for proofs.

Results on Wiener Process

Some basic results, employing the Donsker’s theorem, are provided in the sequel.

Suppose that yt is a random walk, i.e.

yt = yt−1 + zt
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where zt ∼ iidN (0, 1), for t = 1, 2, ..., T . Assume that y0 = 0 for simplicity.

Let y = 1
T

∑T
t=1 yt, then we have the following lemma.

Lemma 9.1

(i)
1√
T
y

D→
∫ 1

0

W (r) dr, (ii)
1

T 2

T∑
t=1

y2
t
D→
∫ 1

0

[W (r)]2 dr,

(iii)
1

T
5
2

T∑
t=1

tyt
D→
∫ 1

0

rW (r) dr, (iv)
1

T
3
2

T∑
t=1

tzt
D→
∫ 1

0

rdW (r) ,

and (v)
1

T

T∑
t=1

yt−1zt
D→
∫ 1

0

W (r) dW (r) .

Proof of Lemma 9.1. (i) Consider the step function

XT (r) =
1√
T
y[rT ] =

1√
T
yi−1 for

i− 1

T
≤ r <

i

T
and XT (1) =

1√
T
yT

where XT (r) is a step function with steps yi√
T
at i

T
and is constant between

steps. Hence it follows that∫ 1

0

XT (r) dr =
T∑
i=1

∫ i
T

i−1
T

XT (r) dr =
T∑
i=1

1√
T
yi−1

∫ i
T

i−1
T

dr =
1

T

T∑
i=1

1√
T
yi−1

as ∫ i
T

i−1
T

dr = r|
i
T
i−1
T

=
i

T
− i− 1

T
=

1

T
.

Now, at least asymptotically, 1
T

∑T
i=1 yi−1 ' 1

T

∑T
i=1 yi we have that∫ 1

0

XT (r) dr =
1√
T
y.

Now by Donsker’s Theorem we have that

XT (r)
D→ W (r)

and it follows that
1√
T
y

D→
∫ 1

0

W (r) dr.
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(ii) With the same logic we have that∫ 1

0

[XT (r)]2 dr =
T∑
i=1

∫ i
T

i−1
T

[XT (r)]2 dr =

T∑
i=1

1

T
y2
i−1

∫ i
T

i−1
T

dr =
1

T 2

T∑
i=1

y2
i−1.

Now, at least asymptotically, 1
T

∑T
i=1 y

2
i−1 ' 1

T

∑T
i=1 y

2
i we have that∫ 1

0

[XT (r)]2 dr =
1

T 2

T∑
i=1

y2
i .

Now by Donsker’s Theorem and the Continuous Mapping Theorem we have that

[XT (r)]2
D→ [W (r)]2

and it follows that
1

T 2

T∑
t=1

y2
t
D→
∫ 1

0

[W (r)]2 dr.

(iii) Now∫ 1

0

rXT (r) dr =
T∑
i=1

∫ i
T

i−1
T

rXT (r) dr =
T∑
i=1

1√
T
yi−1

∫ i
T

i−1
T

rdr

=
1√
T

T∑
i=1

yi−1

(
i− 1

T 2
− 1

2T 2

)
=

1

T 5/2

T∑
i=1

(i− 1) yi−1 −
1

T 5/2

T∑
i=1

yi−1

as ∫ i
T

i−1
T

rdr =
1

2
r2
∣∣ iT
i−1
T

=
1

2

i2 − (i− 1)2

T 2
=

1

2

2i− 1

T 2
=
i− 1

T 2
− 1

2T 2
.

Further, as 1
T 5/2

∑T
i=1 yi−1

P→ 0 and 1
T 5/2

∑T
i=1 (i− 1) yi−1 = 1

T 5/2

∑T
i=1 tyt −

1
T 3/2

yT
P→ 1

T 5/2

∑T
i=1 tyt we get that

1

T 5/2

T∑
i=1

(i− 1) yi−1 −
1

T 5/2

T∑
i=1

yi−1
P→ 1

T 5/2

T∑
i=1

tyt.

Now by Donsker’s Theorem and the Continuous Mapping Theorem we have that

rXT (r)
D→ rW (r)
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it follows that
1

T 5/2

T∑
i=1

tyt
D→
∫ 1

0

rW (r) dr.

(iv) Notice

1

T
3
2

T∑
t=1

tzt =
1

T
2
2

T∑
i=1

i
1√
T
zi =

T∑
i=1

i

T

∫ i
T

i−1
T

dXT (r) =
T∑
i=1

∫ i
T

i−1
T

rdXT (r)

=

∫ 1

0

rdXT (r)
D→
∫ 1

0

W (r) dW (r) .

(v) Last

1

T

T∑
t=1

yt−1zt =

T∑
i=1

1√
T
yi−1

1√
T
zi =

T∑
i=1

∫ i
T

i−1
T

XT (r) dXT (r)

=

∫ 1

0

XT (r) dXT (r)
D→
∫ 1

0

W (r) dW (r) .

Notice the following mapping (see Maddala and Kim 1998):∑
⇒
∫
, t⇒ r, zt ⇒ dW (r) and yt ⇒ W (r) .

Now as zt ∼ iidN (0, 1) and yT =
∑T

t=1 zt it follows that
yT√
T
∼ N (0, 1) =

W (1). The following lemma presents the relation betweenW (r) and the normal

distribution.

Lemma 9.2 (i)
∫ 1

0
W (r) dr ∼ N

(
0, 1

3

)
, (ii)

∫ 1

0
rdW (r) ∼ N

(
0, 1

3

)
, (iii)∫ 1

0
(r − a)W (r) dr ∼ N

(
0, 8−25a+20a2

60

)
, (iv) If W (r) and W (r) are indepen-

dent Wiener processes then
(∫ 1

0
(W (r))2 dr

)− 1
2 ∫ 1

0
W (r) dV (r) ∼ N (0, 1), (v)

Now if zt ∼ N (0, σ2
z) but not independent and limT→∞E (y2

t ) = σ2
y > 0 then∫ 1

0
W (r) dW (r) ∼ σ2y

2
(χ2

1 − 1) +
(
σ2y−σ2z

2

)
.
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Proof of Lemma 9.2. (i) Notice that

1√
T
y =

1

T 3/2

T∑
t=1

yt =
1

T 3/2

T∑
t=1

t∑
i=1

zi =
1

T 3/2
(Tz1 + (T − 1) z2 + ...+ zT )

=
1

T 3/2

T∑
t=1

tzT−t+1.

It follows that V ar
(

1√
T
y
)

= 1
T 3
V ar

(∑T
t=1 tzT−t+1

)
= 1

T 3

∑T
t=1 t

2 = 1
T 3

T (T+1)(2T+1)
6

→
1
3
for T → ∞. Further, the distribution of 1√

T
y is normal, as it is a sum of in-

dependent normal variates. But from the previous lemma, 9.1(i), we have that
1√
T
y

D→
∫ 1

0
W (r) dr and it follows that∫ 1

0

W (r) dr ∼ N

(
0,

1

3

)
.

(ii) Again notice that V ar
(

1

T
3
2

∑T
t=1 tzt

)
= 1

T 3
T (T+1)(2T+1)

6
, E
(

1

T
3
2

∑T
t=1 tzt

)
=

0 and as the z′ts are normally distributed we get that
1

T
3
2

∑T
t=1 tzt

D→ N
(
0, 1

3

)
.

From lemma 9.1(iv) we have that 1

T
3
2

∑T
t=1 tzt

D→
∫ 1

0
rdW (r) and it follows that∫ 1

0

rdW (r) ∼ N

(
0,

1

3

)
.

(iii) Notice first that
T∑
t=1

yt = Tz1 + (T − 1) z2 + (T − 2) z3 + ...+ 2zt−1 + zT

= T

T∑
t=1

zt −
T∑
t=2

(t− 1) zt = T

T∑
t=1

zt −
T∑
t=2

tzt −
T∑
t=2

zt

and
T∑
t=1

tyt = z1 + 2 (z1 + z2) + 3 (z1 + z2 + z3) + ...+ T (z1 + z2 + z3 + ...+ zT−1 + zT )

=
T (T + 1)

2
z1 +

[
T (T + 1)

2
− 1

]
z2 +

[
T (T + 1)

2
− 1− 2

]
z3 + ...

+

[
T (T + 1)

2
− 1− 2− ...− (T − 1)

]
zT

=
T (T + 1)

2

T∑
t=1

zt −
T∑
t=2

t (t− 1)

2
zt =

T (T + 1)

2

T∑
t=1

zt −
1

2

T∑
t=2

t2zt +
1

2

T∑
t=2

tzt.
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Hence

V ar

(
1

T
5
2

T∑
t=1

tyt − a
1

T 3/2

T∑
t=1

yt

)
=

1

T 5
V ar

(
T∑
t=1

tyt

)
+ a2 1

T 3
V ar

(
T∑
t=1

yt

)
(34)

−2a
1

T 4
Cov

(
T∑
t=1

tyt,

T∑
t=1

yt

)
.

Now for the first term of the above equation we have:

1

T 5
V ar

(
T∑
t=1

tyt

)
=

1

T 5
V ar

[
T (T + 1)

2

T∑
t=1

zt −
1

2

T∑
t=2

t2zt +
1

2

T∑
t=2

tzt

]

=
1

T 5

T 2 (T + 1)2

4
V ar

(
T∑
t=1

zt

)
+

1

4T 5
V ar

[
T∑
t=2

t2zt

]
+

1

4T 5
V ar

[
T∑
t=2

tzt

]

−T (T + 1)

2T 5
Cov

[
T∑
t=1

zt,
T∑
t=2

t2zt

]
+
T (T + 1)

2T 5
Cov

[
T∑
t=1

zt,
T∑
t=2

tzt

]

−1

2

1

T 5
Cov

[
T∑
t=2

t2zt,
T∑
t=2

tzt

]

=
T 3 (T + 1)2

4T 5
+

1

4T 5

T∑
t=2

t4 +
1

4T 5

T∑
t=2

t2 − T (T + 1)

2T 5

T∑
t=2

t2

+
T (T + 1)

2T 5

T∑
t=2

t− 1

2T 5

T∑
t=2

t3 → 1

4
+

1

20
− 1

6
=

8

60

as T (T+1)
2T 5

∑T
t=2 t → 0 and 1

2T 5

∑T
t=2 t

3 → 0 for T → ∞. For the second term

in equation (34)

1

T 3
V ar

(
T∑
t=1

yt

)
=

1

T 3
V ar

(
T

T∑
t=1

zt −
T∑
t=2

tzt −
T∑
t=2

zt

)

=
1

T 3
V ar

(
T

T∑
t=1

zt

)
+

1

T 3
V ar

(
T∑
t=2

tzt

)
+

1

T 3
V ar

(
T∑
t=2

zt

)

− 2

T 2
Cov

(
T∑
t=1

zt,

T∑
t=2

tzt

)
− 2

T 2
V ar

(
T∑
t=1

zt

)
+

2

T 3
Cov

(
T∑
t=2

tzt,

T∑
t=2

zt

)

= 1 +
1

T 3

T∑
t=2

t2 − 2

T 2

T∑
t=2

t→ 1 +
1

3
− 1 =

1

3
,
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as 1
T 3
V ar

(∑T
t=2 zt

)
→ 0, 2

T 3
Cov

(∑T
t=2 tzt,

∑T
t=2 zt

)
→ 0 and 2

T 2
V ar

(∑T
t=1 zt

)
→

0 for T →∞.

1

T 4
Cov

(
T∑
t=1

tyt,

T∑
t=1

yt

)
=

1

T 4
Cov

 T (T+1)
2

∑T
t=1 zt − 1

2

∑T
t=2 t

2zt + 1
2

∑T
t=2 tzt, T

∑T
t=1 zt

−
∑T

t=2 tzt −
∑T

t=2 zt


=

T 3 (T + 1)

2T 4
− T (T + 1)

2T 4

T∑
t=2

t− 1

2T 3

T∑
t=2

t2 +
1

2T 4

T∑
t=2

t3

→ 1

2
− 1

4
− 1

6
+

1

8
=

5

24

as T (T+1)
T 4

V ar
(∑T

t=2 zt

)
→ 0, 1

T 4
Cov

(∑T
t=2 t

2zt,
∑T

t=2 zt

)
→ 0, 1

T 4
V ar

(∑T
t=2 tzt

)
→

0, 1
T 3
Cov

(∑T
t=2 tzt,

∑T
t=1 zt

)
→ 0 and 1

T 4
Cov

(∑T
t=2 tzt,

∑T
t=2 zt

)
→ 0 for

T →∞. Consequently, substituting in equation (34) we get:

V ar

(
1

T
5
2

T∑
t=1

tyt − a
1

T 3/2

T∑
t=1

yt

)
=

8

60
+ a2 1

3
− 2a

5

24
.

But from the previous lemma, 9.1(i) and (v), below, we get that 1

T
5
2

∑T
t=1 tyt

D

−a 1

T
3
2

∑T
t=1 yt →∫ 1

0
(r − a)W (r) dr and it follows that∫ 1

0

(r − a)W (r) dr ∼ N

(
0,

8− 25a+ 20a2

60

)
.

(iv) Let F1
t = σ (W (r) , r ≤ t), F2

t = σ (dV (r) r ≤ t) and Ft = σ (F1
t ∪ F2

t )

be the natural filtration generated by the two independent Wiener processes.

First, by the conditional Ito Isometry (see e.g. Steele 2001) we have that

E

[(∫ t

s

W (r) dV (r)

)2

|Ft

]
= E

[∫ t

s

W 2 (r) dr|Ft
]
,

and as

E

∣∣∣∣∫ t

0

W (r) dV (r)

∣∣∣∣ <∞, ∑
Wtn

(
Vtn+1 − Vtn

) L2→
∫ t

0

W (r) dV (r)

and due to independence and normality, which is preserved in the limit we get

that ∫ t

0

W (r) dV (r)|Ft ∼ N

(
0,

∫ t

0

W 2 (r) dr

)
.
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(v) Notice that

T∑
t=1

y2
t =

T∑
t=1

y2
t−1 + 2

T∑
t=1

yt−1zt +

T∑
t=1

z2
t .

Hence

2
T∑
t=1

yt−1zt =
T∑
t=1

y2
t −

T∑
t=1

y2
t−1 −

T∑
t=1

z2
t = y2

T −
T∑
t=1

z2
t .

and it follows that

1

T

T∑
t=1

yt−1zt =
1

2

(
1

T
y2
T −

1

T

T∑
t=1

z2
t

)
.

Further, yT =
∑T

t=1 zt and from normality of the zt′s we get 1√
T
yT ∼ N

(
0, σ2

y

)
and 1

T
y2
T ∼ σ2

yχ
2
1. From the Law of Large Numbers we have that

1
T

∑T
t=1 z

2
t →

V ar (zt) = σ2
z. Hence

1

T

T∑
t=1

yt−1zt
D→
σ2
y

2

(
χ2

1 −
σ2
z

σ2
y

)
=
σ2
y

2

(
χ2

1 − 1
)

+
σ2
y − σ2

z

2
,

and from lemma 9.1(v) we have that 1
T

∑T
t=1 yt−1zt

D→
∫ 1

0
W (r) dW (r). Now

if zt ∼ iidN (0, 1), then 1√
T
yT ∼ N (0, 1) and 1

T
y2
T ∼ χ2

1 and
1
T

∑T
t=1 z

2
t →

V ar (zt) = 1, and it follows that∫ 1

0

W (r) dW (r) ∼ 1

2

(
χ2

1 − 1
)
.

9.2 Unit Root Tests without Deterministic Trend

To visualize the difference between a stationary and a random walk process we

depict in the following figures anAR (1) process with an autoregressive coeffi cient

of 0.89 and a random walk, where the errors are drawn from a normal distribution.

The same random errors are employed for the simulations of the processes.
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Fig. 9.2: Graph of the AR (1) process

yt = 0.89yt−1 + ut, ut ∼ N (0, 1.4).
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Fig. 9.2: Graph of the random walk

xt = xt−1 + ut, ut ∼ N (0, 1.4).

Furthermore, the following figures present the correlogram of the two processes:

Fig. 9.2: Correlogram of yt = 0.89yt−1 + ut,

ut ∼ N (0, 1.4).

Fig. 9.2: Correlogram of xt = xt−1 + ut,

ut ∼ N (0, 1.4)

There are distinct differences between the graphs and the correlograms of the

two processes. However, in practice things are not so obvious. Let us now return
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to the statistical inference for a unit root.

Suppose that yt is a normal random walk, i.e.

yt = αyt−1 + zt

where zt ∼ iidN (0, 1), for t = 1, 2, ..., T . Assume that y0 = 0 for simplicity

(for more general assumptions on the distribution of zt′s and the initial y0 see

Phillips 1987). Now the maximum likelihood estimator is the same as the OLS

one and is given by

α̂ =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

= α +

∑T
t=1 yt−1zt∑T
t=1 y

2
t−1

For |α| < 1 we have that
√
T (α̂− α)√

1− α2

D→ N (0, 1)

(see Mann and Wald 1943). White (1958) showed that

|α|T (α̂− α)

α2 − 1

D→ Cauchy,

for |α| > 1.

Now for α = 1, we have, from Phillips (1987), that

T (α̂− 1) =
1
T

∑T
t=1 yt−1zt

1
T 2

∑T
t=1 y

2
t−1

D→
∫ 1

0
W (r) dW (r)∫ 1

0
[W (r)]2 dr

=
1
2

[
(W (1))2 − 1

]∫ 1

0
[W (r)]2 dr

(35)

by the Continuous Mapping Theorem and lemma 9.1 (ii) and (v), and the last

equality follows from lemma 9.2 (v). In this case, i.e. when α = 1, we have that

the t-statistic is given by:

tα̂ =
α̂− 1

s

(
T∑
t=1

y2
t−1

)1/2

where s2 =
1

T

T∑
t=1

ẑt
2 and ẑt = yt − α̂yt−1.

Notice, first, that α̂ is consistent, by equation (35), i.e. p lim α̂ = 1. Conse-

quently, s2 is a consistent estimator of the variance of zt, i.e. p lim s2 = 1.
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Hence we have that

tα̂ =
T (α̂− 1)

T
(

s2∑T
t=1 y

2
t−1

)1/2
=

T (α̂− 1)(
s2

1
T2

∑T
t=1 y

2
t−1

)1/2

D→

∫ 1
0 W (r)dW (r)∫ 1
0 [W (r)]2dr(

1∫ 1
0 [W (r)]2dr

)1/2

=

∫ 1

0
W (r) dW (r)(∫ 1

0
[W (r)]2 dr

)1/2
=

1

2

(W (1))2 − 1(∫ 1

0
[W (r)]2 dr

)1/2
,

where we employed, again, the Continuous Mapping Theorem and lemma 9.1

(ii).

Tables 8.5.1 and 8.5.2 in Fuller (1976) provide critical values for both of

these statistics, i.e. for T (α̂− 1) and tα̂. These values are employed for testing

the null of unit root versus the alternative of stationarity, under the maintained

hypothesis that there is no deterministic trend.

9.3 Unit Root Tests with Drift

Suppose, as in the previous section, that yt is a normal random walk, i.e.

yt = yt−1 + zt

where zt ∼ iidN (0, 1), for t = 1, 2, ..., T . Assume now that one estimates the

following equation:

yt = c+ αyt−1 + zt. (36)

In this case, the asymptotic distribution of T (α̂− 1) and tα̂ are again functions

of demeaned Wienner processes, i.e.

T (α̂− 1)
D→
∫ 1

0
W ∗ (r) dW (r)∫ 1

0
[W ∗ (r)]2 dr

and tα̂
D→

∫ 1

0
W ∗ (r) dW (r)(∫ 1

0
[W ∗ (r)]2 dr

)1/2
,

whereW ∗ (r) = W (r)−
∫
W (r) dr. The critical values of T (α̂− 1) and tα̂ are

presented in Tables 8.5.1 and 8.5.2 in Fuller (1976). Naturally, one would like to
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test if c = 0, as well. Consequently, the critical values of the F-statistic for the

joint hypothesis c = 0 and a = 1 are provided in Dickey and Fuller (1981) and

are evaluated via Monte Carlo, as the distribution of this statistic is not standard.

Now suppose that yt is a normal random walk with drift, i.e.

yt = µ+ yt−1 + zt

where zt ∼ iidN (0, 1), for t = 1, 2, ..., T , and for simplicity y0 = 0, the estimat-

ing equation remains the one in equation (36). Notice that in this case

yt = µt+

t∑
i=1

zi = µt+ St.

Now it is clear (see Trend Stationary Process section) that the coeffi cients α̂ and

ĉ need appropriate scaling. Hence

(√
T (ĉ− µ)

T 3/2 (â− 1)

)
=

 1 T−2
∑
yt−1

T−2
∑
yt−1 T−3

∑
y2
t−1

−1(
T−1/2

∑
zt

T−3/2
∑
yt−1zt

)
.

Now∑
yt−1zt =

∑
µ (t− 1) zt +

∑
St−1zt = µ

∑
tzt − µ

∑
zt +

∑
St−1zt.

Notice that from lemmata 9.1(iv) and 9.2(ii) T−3/2µ
∑
tzt

D→ N
(

0, µ
2

3

)
. T−3/2

∑
zt

P→

0 (as under our assumptions and by the Strong Law of Large Number T−1
∑
zt →

0 almost surely), and from lemma 9.2(v) we have that 1
T

∑
St−1zt

D→ 1
2

(χ2
1 − 1)

and it follows that T−3/2
∑
St−1zt

P→ 0. It follows that

T−3/2
∑

yt−1zt
D→ N

(
0,
µ2

3

)
.

Furthermore, T−1/2
∑
zt ∼ N (0, 1) and

Cov
(
T−1/2

∑
zt, T

−3/2
∑

yt−1zt

)
= E

(
T−2

∑
zt
∑

yt−1zt

)
→ µ

2
,
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asE (T−2
∑
zt
∑
tzt) = T−2 T (T+1)

2
, E
(
T−2 (

∑
zt)

2) = 1
T
, andE (T−2

∑
zt
∑
St−1zt) =

0. Hence (
T−1/2

∑
zt

T−3/2
∑
yt−1zt

)
D→ N

((
0

0

)
,M

)
,

where M =

 1 µ
2

µ
2

µ2

3

.
On the other hand,

T−3
∑

y2
t−1 = T−3

∑
[µ (t− 1) + St−1]2

= T−3
∑

µ2 (t− 1)2 + 2T−3µ
∑

(t− 1)St−1 + T−3
∑

S2
t−1.

Notice that

T−(ν+1)
∑

tν → 1

ν + 1
, for ν = 0, 1, 2, ...

and it follows that T−3
∑
µ2 (t− 1)2 → µ2

3
. Taking into account lemma 9.2(iii)

we get that T−3
∑
tSt−1

P→ 0 and form lemma 9.1(ii) we get that T−3
∑
S2
t−1

P→

0. Hence

T−3
∑

y2
t−1

P→ µ2

3
.

Further,

T−2
∑

yt−1 = T−2
∑

µ (t− 1) + T−2
∑

St−1
P→ µ

2
,

and it follows that 1 T−2
∑
yt−1

T−2
∑
yt−1 T−3

∑
y2
t−1

−1

P→

 1 µ
2

µ
2

µ2

3

−1

= M−1.

Hence,(√
T (ĉ− µ)

T 3/2 (â− 1)

)
D→ N

((
0

0

)
,M−1

)
= N

(0

0

)
,

 4 − 6
µ

− 6
µ

12
µ2

 ,
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proving that when there is a drift in the random walk specification the time trend

terms dominates (West 1988), leading to normal asymptotic distribution, i.e.

T 3/2 (â− 1)
D→ N

(
0,

12

µ2

)
.

The asymptotic normality of â applies, as well, in case that yt is a normal

random walk with drift and trend, i.e.

yt = µ+ βt+ yt−1 + zt

where zt ∼ iidN (0, 1), for t = 1, 2, ..., T , and the estimating equation is as in

equation (36). In fact it is possible to prove that

T 5/2 (â− 1)
D→ N

(
0,

180

µ2

)
see West (1988) or Maddala and Kim (1998).

Now notice that in equation (36) when the hypothesis H0 : α = 1 is not

rejected, yt is a random walk with drift c, i.e. it has a trend for c 6= 0. When on

the other hand H0 is rejected then yt is stationary around a constant mean, but

has no trend. However, this rather asymmetric treatment does not do justice

to the alternative, i.e. it could be the case that yt does indeed have a trend

(see Schmidt and Phillips 1992). One of course could add a trend in equation

(36). But in this case, under the null yt has a quadratic trend. This problem

does not arise in the approach of Bhargava (1986). Following the set up in Bhar-

gava (1986), Schmidt and Phillips (1992) consider the following Data Generating

Process (DGP ):

yt = ψ + ξt+ xt, xt = βxt−1 + εt

and εt ∼ iidN (0, σ2
ε) ( the iid assumption is not crucial). Notice that in this

set up the unit root corresponds to β = 1, however, the trend and drift can be

present under the null and under the alternative. From the equation above it
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follows that

yt = ψ + ξt+ β (yt−1 − ψ − ξ (t− 1)) + εt ⇒

∆yt = c0 + c1t+ ϕyt−1 + εt, where

c0 = (1− β)ψ + βξ, ϕ = β − 1 and c1 = ξ (1− β) .

Now if Ŝt−1 is the residual from the regression of yt−1 on a constant and t, then

the estimator of ϕ is the same as the estimator of ϕ from the following equation

∆yt = intercept+ ϕŜt−1 + εt, for t = 1, 2, ..., T. (37)

Further, if ϕ̂ is the least squares estimator from the above equation then under

the null that ϕ = 0, T ϕ̂ and the t−statistic have the Dickey-Fuller distribution.

On the other hand, under the null that β = 1

∆yt = ξ + εt,

and ξ can be estimated as the average of the ∆y′ts, i.e.

ξ̃ =
1

T − 1

T∑
t=2

∆yt =
yT − y1

T − 1
,

and

ψ̃ = y1 − ξ̃.

Let

S̃t = yt − ψ̃ − ξ̃t.

Now the LM test, for the null that β = 1, in Schmidt and Phillips (1992) is the

t− statistic, say τ̃ , of the estimate of ϕ in the following regression

∆yt = intercept+ ϕS̃t−1 + error. (38)

Apart from critical values for τ̃ , Schmidt and Phillips (1992) present also critical

values for T ϕ̃, as well. Notice that the difference between the LM and the DF
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test is that the LM one employes S̃t−1 whereas the DF one employes Ŝt−1.

Now, the LM test is expected to be more powerful, as under the null, Ŝt−1

is evaluated from a spurious regression (see Schmidt and Phillips 1992). This

is indeed the case, expect from cases where ε0/σε is large in absolute value.

Further, Schmidt and Phillips (1992) prove that the LM test is related to the

Bhargava (1986) one. Finally, Schmidt and Phillips (1992) deal also with the

case that the errors are not iid, by introducing a correction ala Phillips and

Perron (1988) (see below).

9.4 Similar Tests

Many inference procedures on unit roots are not invariant with respect to the

values of the nuisance parameters. In this subsection we discuss tests that do

not suffer from this problem. Hence, we discuss similar tests, i.e. tests for which

the distribution of the test statistic under the null hypothesis is independent of

nuisance parameters in the DGP (see Kiviet and Phillips 1992). If a test is not

similar, then the appropriate critical values may depend upon unknown nuisance

parameters (e.g. a constant), which will invalidate standard inferences. Let us

consider the following DGPs (in all cases εt ∼ iidN (0, σ2
ε)):

yt = αyt−1 + εt, y0 = 0 (39)

yt = αyt−1 + εt, y0 arbitrary (40)

yt = µ+ αyt−1 + εt, y0 arbitrary and (41)

yt = µ+ βt+ αyt−1 + εt, y0 arbitrary. (42)
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Let us consider possible regression model:

yt = αyt−1 + εt, (43)

yt = µ+ αµyt−1 + εt, and (44)

yt = µ+ βt+ ατyt−1 + εt, y0 arbitrary. (45)

Now for the DGP in equation (39) if one employes the regression (45) the

appropriate critical values for α̂τ and its associate t−statistic are given in the 3rd

part of Tables 85.1 and 8.5.2 in Fuller (1976). The same Tables can be employed

to make inference in DGP in equation (41), even the is a non zero µ in this

DGP . This is because regression in (45) yields a similar test (see Banerjee,

Dolado, Galbraith and Hendry 1993). Similarity implies that the distributions of

ατ and its associated t− statistic are not affected by the value, under the null,

of the nuisance parameter, and the critical values are the same as the ones that

would apply for µ = 0, namely, those in the 3rd part of Tables 8.5.1 and 8.5.2 in

Fuller (1976).

Notice that in DGP in equation (39) there are no nuisance parameters, so

that similarity is a trivial property. In general, a similar test having a Dickey-Fuller

distribution requires that the regression employed contain more parameters than

the DGP . In order to have a similar test for the DGP in equation (42), one

would then need a regression with a term such as t2, necessitating another block

of critical values, not included in Tables 8.5.1 and 85.2 in fuller (1976). On the

other hand, for the DGP in equation (40) we need at least the regression in

equation (44) (with a constant) to allow for the unknown starting value. For the

DGP in equation (41) we need the trend term in regression in equation (45) to

allow for its effect (see Kiviet and Phillips 1992 or Banerjee et al 1993). Finally,

in the case of exact parameterizations, such as DGP in equation (41) with

regression in equation (44), we do not have similar tests with the Dickey-Fuller

94



distributions. However, as West (1988) showed, the t− statistics in the exactly

parameterized case are asymptotically normal (see previous subsection). In finite

samples, however, the Dickey-Fuller distributions may be a better approximation

than the normal distribution (see Banerjee et al 1993).

9.5 Dropping the Independence assumption

There are two strands in the literature on how one can deal with possible corre-

lation in the errors. One is based on changing the estimating equation and the

other is based on modifying the test statistics.

Changing the Estimating Equation-The ADF test

Let us consider the following ARIMA(p, 1, 0) model, i.e. the first difference is

an AR (p) process:

∆yt = a1∆yt−1 + a2∆yt−2 + ...ap∆yt−p + zt zt ∼ iidN (0, 1) .

Then we can test the unit root hypothesis by regressing ∆yt on p lags of ∆yt

and yt−1, i.e.

∆yt = ρyt−1 +

p∑
i=1

ai∆yt−i + et

and test the null hypothesis H0 : ρ = 0. Then ρ̂ and the t− statistic of ρ̂ follow

the Dickey-Fuller distribution and the Tables in Fuller (1976) apply. This is the

augmented Dickey-Fuller (ADF ) test. Hence, the asymptotic distribution of ρ̂,

under the null, is not affected by the presence of the lagged ∆y′ts.

The reason behind this result is that the asymptotic correlation of an I (1)

and an I (0) stochastic process is zero (see Maddala and Kim 1998). To see this

consider the following DGP :

yt = ayt−1 + zt zt ∼ iidN (0, 1) .
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Now under the null that a = 1 we have that ∆yt = zt.

Consider the regression

yt = ayt−1 + β∆yt−1 + zt.

We shall demonstrate that the estimators â and β̂ are asymptotically independent.

As yt is, under the null, I (1) and ∆yt is I (0), we need different scaling for the

two estimators. Hence,

yt = Ta
yt−1

T
+
√
Tβ

∆yt−1√
T

+ zt =

(
yt−1

T
,
∆yt−1√

T

) Ta
√
Tβ

+ zt.

It follows that as, under the null, ∆yt = zt and it follows that T â
√
T β̂

 =

 1
T 2

∑
y2
t−1

1
T
√
T

∑
yt−1zt−1

1
T
√
T

∑
yt−1zt−1

1
T

∑
z2
t−1

−1 1
T

∑
yt−1yt

1√
T

∑
ytzt−1

 .

Now we have from lemma 9.1(ii) and (v) we have that

1

T 2

∑
y2
t−1

D→
∫ 1

0

[W (r)]2 dr,
1

T

T∑
t=1

yt−1zt−1
D→
∫ 1

0

W (r) dW (r)

and it follows that
1

T
√
T

∑
yt−1zt−1

P→ 0

and it follows that the distributions of â and β̂ are asymptotically independent.

In case that error term is a stationary invertible ARMA (p, q) process Said

and Dickey (1984) suggest to approximate the ARMA structure by a high order

AR one. This is based on the fact that any invertible MA process can by

approximated by a high order AR one. Consequently, Said and Dickey (1984)

suggest to employ an AR approximation with order that is controled by T 1/3.

Further the order p in the ADF procedure can be chosen via various information

criteria such as AIC and BIC.
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Altering the test statistics-The Phillips-Perron test

Phillips (1987) provides an alternative procedure that allows to employ the critical

values in the two tables in Fuller (1976) while allowing for quite general DGPs,

without adding extra elements in the regression model. Phillips suggests a non-

parametric correction to the standard statistics to account for the autocorrelation

that will be present.

Now under the assumption of not iid errors we have that

1

T 2

T∑
t=1

y2
t−1

D→ σ2
y

∫ 1

0

[W (r)]2 dr

and by lemma 9.2(v) we have that

T (α̂− 1)
D→

1
2

(χ2
1 − 1) +

σ2y−σ2z
2σ2y∫ 1

0
[W (r)]2 dr

and analogously is adjusted the tα̂ (”t− statistic”).

Phillips (1987), and Phillips and P. Perron (1988) suggest to estimate σ2
z and

σ2
y by s

2 and s2
T l, respectively, where

s2 =
1

T

T∑
t=1

e2
t and

s2
T l =

1

T

T∑
t=1

e2
t +

2

T

l∑
j=1

wjl

T∑
t=j+1

etet−j where wjl = 1− j

l + 1
,

and et are the residuals from any of the regressions in equations 43, 44 or 45.

The weights wjl are such that s2
T l is not negative (see Newey and West 1987).

The choice of l should increase as T increases. However for l = O
(
T 1/4

)
, s2

T l

provides a consistent estimator of σ2
y.

In comparing the ADF procedure with the Phillips-Perron one, notice that it

may be the case that many lags of ∆yt may be needed for regressors to correct

for an MA error. This could distort the size of the ADF test (see Schwert
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1989a). On the other hand, the same problem appears to the Phillips-Perron

test if the errors have a strong negative first order autocorrelation (see e.g.

Schwert 1989a, and Phillips and Perron 1988). However, notice that Perron and

Ng (1996) suggested useful modifications of the Phillips-Perron tests that solve

this problem. Finally, the power of the ADF test could affected if many lags of

∆yt are needed, due to the fact for each additional lag of ∆yt results in losing

one more initial observation (see Maddala and Kim 1998).

9.6 Testing more than one parameter and Alternative Tests

In cases such the DGPs in equations (41) and (42) it is possible to test jointly

if the parameters satisfy the null hypotheses, i.e. µ = 0 and α = 1 for the DGP

in (41), and µ = 0, β = 0 and α = 1 for the DGP and (42). Dickey, and Fuller

(1981) provide, by Monte Carlo, critical values for Likelihood Ratio, t− type and

F − type statistics for the parameters of the two DGPs.

The critical values of Dickey and Fuller (1981) are derived under the hypothe-

sis that the errors are white noise processes. However, they the same distributions

apply if the errors follow an AR process and the ADF regression is correctly

specified. Of course, the non-parametric correction of Phillps-Perron type can

be applied. However, the Phillips-Perron corrections to the standard Dickey-

Fuller statistics must be employed cautiously. Schwert (1989a) demonstrate, via

Monte Carlo, that the critical values of the ADF test statistics, given by the

standard Dickey-Fuller tables, are much more robust to the presence of moving

average terms in the errors of the random-walk process than are the correspond-

ing non-parametrically adjusted Dickey- Fuller statistics (see Schwert 1989a, and

Banerjee et al. 1993 for an example).

There have been several tests for stationarity as null, although these are not as

numerous as tests using unit AR root as null, e.g. Tanaka (1990), Kwiatkowski,
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Phillips, Schmidt, and Shin (1992), Saikkonen and Luukkonen(1993), Choi (1994),

Leybourne and McCabe (1994), and Arellano and Pantula (1995). For an exten-

sive discussion see Maddala and Kim (1998).

10 Cointegration

In order to motivate the notion of cointegration, let us consider a simple example

taken from Engle and Granger (1987) and reproduced in Banerjee et al. (1993).

Two series {xt} and {yt} are each integrated of order 1 and evolve according to

the following data-generation process:

xt + ayt = ut, ut = ut−1 + εt (46)

xt + byt = et, et = ϕet−1 + vt, |ϕ| < 1, (47) εt

vt

 iid∼ N

 0

0

 ,

 σ2
ε σε,v

σε,v σ2
v

 .

Solving for xt and yt from the above system we get that

xt =
a

a− bet −
b

a− but and (48)

yt =
1

a− but −
1

a− bet (49)

provided that a 6= b. Now xt and yt are I (1) random variables, as they are

linear combinations of a random walk, ut, and a stationary random variable, et.

However, xt + byt is stationary. In this example the vector (1, b)′ is called the

cointegrating vector and xt+byt is the long-run equilibrium relationship and

the regression in (47) is called cointegrating regression. The case a = b is

excluded as if a = b then we have that

xt + ayt − xt − byt = ut − et ⇒ ut = et
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which is impossible as ut is a random walk and et is stationary. Notice that xt

and yt are both driven by the same random walk process, i.e. the ut. Provided

now that xt and yt have a long-run equilibrium, although they are random walks,

it is only natural to think that there must be a mechanism that ties them down,

which is called the Error Correction Mechanism (ECM). To see this subtract

xt−1 and yt−1 from equations (48) and (49), respectively, multiply (49) by b and

add. We get

∆xt = −b∆yt + (ϕ− 1) et−1 + vt. (50)

This describes the ECM of the processes xt and yt. Notice that, as by assump-

tion |ϕ| < 1, we have that the coeffi cient of et−1 is negative. In the following

figure the cointegrated xt and zt are presented where the cointegrating vector is

(1,−0.8)′.

Fig. 10: xt = xt−1 + ut, ut ∼ N (0, 1), zt = 0.8xt + vt,

vt ∼ N (0, 1)

The ECM is closely related to the ‘general to specific modelling’ notion

emphasized by Hendry. In this context the ECM can be interpreted as a repara-

meterisation of the general ‘auto-regressive distributed lag’(ADL) or ‘dynamic
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linear regression’(DLR) models (see Alogoskoufis and Smith 1991, and Maddala

and Kim 1998).

As an example, consider the first order ADL for zt and xt, i.e.

zt = a0 + b0xt + b1xt−1 + a1zt−1 + εt

where εt is white noise. Now subtracting from both sides zt−1 and xt−1 we get

∆zt = b0∆xt − λ (zt−1 − α0 − γxt−1) + εt

where λ = 1 − a1 , α0 = a0
1−a1 and γ = b0+b1

1−a1 , which of course is the ECM of

zt and xt.

In this ECM parameterisation b0 is interpreted as impact effect, λ as a

scalar adjustment coeffi cient, and γ as a long-run effect (see Alogoskoufis and

Smith 1991). The ECM and DLR as well as other reparameterizations are all

observationally equivalent and consequently, there are no statistical criteria that

one can use to choose between them (see Alogoskoufis and Smith 1991). To

quote Alogoskoufis and Smith (1991) "They are all observationally equivalent,

thus there are no statistical criteria that we can use to choose between them.

The questions that arise then, relate to the parameters of interest from the point

of view of economic theory. These questions can only be answered by an explicit

theory".

Let us turn our attention to testing and estimating the cointegrating regres-

sion. First, we shall consider the two variables case, the so called Engle-Granger

method.

10.1 The Engle-Granger method

Assume that xt and yt are both I (1) random variables and

xt = ayt + ut (51)
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where ut is I (0). First of all, the cointegrating vector (1,−a)′ is unique. To see

this consider that there exist a second cointegrating vector, say (1,−a∗)′ such

that a 6= a∗, i.e.

xt = a∗yt + vt

where vt is I (0). Then subtracting the two equations we get

(a∗ − a) yt = ut − vt.

But the right hand side variables are I (0) and consequently the linear combina-

tion of I (0) random variables is a I (0) random variable. However, as yt is by

assumption I (1) we have that a I (1) random variable equals a I (0) random

variable, which is a contradiction.

Second, the OLS estimator of a, say â, is superconsistent (Stock 1987),

i.e. it converges at a rate n1−δ, for any δ > 0, instead of the usual n1/2. This

is because the term
∑n

t=1 y
2
t is Op (n2). However, there is strong Monte Carlo

evidence that â is substantially biased in small samples (see Banerjee et al. 1986

and Banerjee et al. 1993). In fact Banerjee et al. (1986) demonstrate that the

bias of â is related to 1 − R2, where R2 is the one from the regression in (51).

Hence, for high value of R2 the bias is small.

Another consequence of the high convergence rate is fact that the OLS

estimator of the cointegrated vector does not require the assumption that the

regressors are uncorrelated withy the error term. Hence, any of the cointegrated

variables can be employed as dependent variable in the regression, i.e. if instead

(51) we estimate

yt = bxt + εt

the OLS estimator of b is still superconsistent. In fact, if the R2 from the

regression in (51) is very close to 1 then b̂ ≈ 1
â
(see Maddala and Kim 1998 for

more on this normalisation issue).
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The Two-step Procedure

Engle and Granger (1987) suggested a two-step procedure to estimate the ECM

regression, equation (50). In the first step estimate the long-run (cointegrating)

relationship, by the following regression

xt = ayt + ut.

and get the residuals, say ût. Then, in the second step, estimate the Error

Correction relationship by the following regression:

∆xt = γ∆yt + θût−1 + vt.

As an example consider the two time series depicted in Figure (10). Regress-

ing zt on xt , i.e. cointegrating regression,

zt = c+ axt + ut

we get the following results:

Dependent Variable: zt

Method: Least Squares

Incl. observations: 300

Variable Coeffi cient Std. Error t-Statistic Prob

c -0.081777 0.128689 -0.635465 0.5256

a 0.790082 0.006993 112.9888 0.0000

The Error Correction regression is

∆zt = c+ γ∆xt + θût−1 + vt,

where ût−1 is the residuals from the cointegrating regression and we get the

following results:
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Dependent Variable: ∆zt

Method: Least Squares

Incl. observations: 299

Variable Coeffi cient Std. Error t-Statistic Prob

c -0.015233 0.058147 -0.261977 0.7935

γ 0.657618 0.057516 11.43358 0.0000

θ -0.994096 0.057594 -17.26040 0.0000

Although â , the coeffi cient of xt, is superconsistent however, in small samples

it is biased (see Banerjee et al. 1986) and ineffi cient, as compared to Full

Information MLE.

The Three-Step Procedure

Engle and Yoo (1991) proposed a 3-step procedure, the 2 step from the Engle

and Granger (1987) one and a third one to correct for the small sample bias of

a , the cointegrating regression coeffi cient, and provides a set of standard errors

so that the t-statistics are valid.

In the third step regress the residuals for the ECM on the right hand vari-

ables of the cointegrating regression multiplied by the minus the error correction

parameter, i.e. by −θ̂. For our example, regress v̂t on a constant and −θ̂xt. In

doing this we get the following results (where HEL = −θ̂xt):

Dependent Variable: RESECM

Method: Least Squares

Incl. observations: 299

Variable Coeffi cient Std. Error t-Statistic Prob

C 0.024588 0.128273 0.191682 0.8481

HEL 0.001512 0.007044 0.214661 0.8302
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Then the bias corrected estimator of a, say ã, is given by: ã = â + HEL,

i.e. ã = 0.790082 + 0.001512 = 0.791594 and its standard error is given by the

standard error of HEL, i.e. s.e. (ã) = 0.007044, as compared with 0.006993 of

the cointegrating regression.

Notice that in case that xt has a drift, i.e. xt = µ + xt−1 + ut, then the

estimator of a, â, is normally distributed, as in section Unit Root with Drift,

above (for details see Maddala and Kim 1998).

Let us turn our attention on the multivariate case.

10.2 The Johansen method

Let us assume that Xt is an I (1) (k × 1) vector that obeys the following V AR

equation:

Xt = A1Xt−1 + A2Xt−2 + ...+ ApXt−p + Vt

where Vt ∼ iidN (0,Ω). It follows that

∆Xt = B1Xt−1 +B2∆Xt−1 +B3∆Xt−2...+Bp∆Xt−p+1 + Vt

where B1 =

p∑
i=1

Ai − I and Bi = −
p∑
j=i

Aj for i = 2, ..., p.

As an example consider the case where p = 3. Then

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + Vt

and subtracting from both sides Xt−1 and adding and subtracting A3Xt−2 in the

right hand side we get:

Xt −Xt−1 = −Xt−1 + A1Xt−1 + (A2 + A3)Xt−2 − A3 (Xt−2 −Xt−3) + Vt.

Adding and subtracting (A2 + A3)Xt−1 we get

Xt−Xt−1 = (A1 + A2 + A3 − I)Xt−1−(A2 + A3) (Xt−1 −Xt−2)−A3 (Xt−2 −Xt−3)+Vt
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or

∆Xt = B1Xt−1 +B2∆Xt−1 +B3∆Xt−2 + Vt (52)

where B1 = A1 + A2 + A3 − I, B2 = −A2 − A3 and B3 = −A3, as required.

As now ∆Xt−1 and ∆Xt−2 are stationary, i.e. I (0), but Xt−1 is I (1) for the

above equation to be meaningful the B1 matrix must be of reduced rank, say r.

Then B1 = ab′, where a is an n× r matrix and b′ is an r × n one. This in fact

means that b′Xt−1 are the r cointegrating equations. Notice that in this set-up,

a has the interpretation of Error Correction terms.

Since our interest is in a and b′ we first eliminate B2 and B3 (consecrate out

B2 and B3), by regressing ∆Xt on ∆Xt−1 and ∆Xt−2 and call the residuals R0t.

Further regress Xt−1 on the same variables and call the residuals R1t. Hence,

the regression in (52) has become

R0t = ab′R1t + Vt.

To understand the logic, consider the following regression (see Johansen

1995):

xt = αyt + βzt + ut. (53)

where xt, yt and zt are zero mean univariate random variables. Then, the first

order condition for β, either from a normal likelihood or from a regression, is

given by ∑
t

(
xt − αyt − β̂zt

)
zt = 0

and it follows that

β̂ =

∑
t

xtzt∑
t

z2
t

− α

∑
t

ytzt∑
t

z2
t

.
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Now substituting out β from the regression equation (53) we get

xt −

∑
t

xtzt∑
t

z2
t

zt = α

yt −
∑
t

ytzt∑
t

z2
t

zt

+ ut.

However notice that xt−

∑
t

xtzt∑
t

z2t

zt is the residual, at time t, from the regression

of xt on zt, say R0t, whereas yt −

∑
t

ytzt∑
t

z2t

zt is the residual, at time t, of the yt

on zt, say R1t. Hence, by concetnrating out β, α can be estimated from the

regression of R0t on R1t, i.e.

R0t = αR1t + ut.

Hence concentrating out B2 and B3 the likelihood function, of a sample of

T observations, is proportional to:

L (a, b,Ω) = |Ω|−
T
2 exp

[
−1

2

T∑
t=1

(R0t − ab′R1t)
′
Ω−1 (R0t − ab′R1t)

]
.

Now if b were known, a and Ω can be estimated in the usual regression of R0t

on b′R1t. Hence, â and Ω̂ , as functions of b, are given by:

â (b) = S01b (b′S11b)
−1

Ω̂ (b) = S00 − S01b (b′S11b)
−1
b′S10 where

S00 =
1

T

T∑
t=1

R0tR
′
0t, S10 =

1

T

T∑
t=1

R1tR
′
0t and S11 =

1

T

T∑
t=1

R1tR
′
1t,

and they are the sample counterparts of the variance of R0t, the covariance of

R0t and R1t, and the variance of R1t, respectively (see Johansen 1991). After
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concentrating out a and Ω from the likelihood function we get that the likelihood

becomes proportional to:

L (b) =
∣∣∣Ω̂ (b)

∣∣∣−T2 =
∣∣∣S00 − S01b (b′S11b)

−1
b′S10

∣∣∣−T2 .
Hence maximizing the likelihood with respect to b is equivalent to minimize∣∣S00 − S01b (bS11b

′)−1 b′S10

∣∣ with respect to b.
Now for appropriate order matrices we know that if R represent a nonsingular

n × n matrix, S an n × m matrix, T a nonsingular m × m matrix, and U an

m× n matrix, then (see Theorem 18.1.1 in Harville 1997)

|R + STU | = |R| |T |
∣∣T−1 + UR−1S

∣∣ . (54)

Consequently, setting R = S00, T = (b′S11b)
−1, S = −S01b and U = b′S10

we get that∣∣∣S00 − S01b (b′S11b)
−1
b′S10

∣∣∣ =

∣∣b′S11b− b′S10S
−1
00 S01b

∣∣ |S00|
|b′S11b|

and consequently, we should minimize (recall that b′ is an r × n)∣∣b′S11b− b′S10S
−1
00 S01b

∣∣ |S00|
|b′S11b|

= |S00|
∣∣b′ (S11 − S10S

−1
00 S01

)
b
∣∣

|b′S11b|
.

This expression is minimized by solving the eigenvalue problem (see Lemma A.8

in Johansen 1995, or Banerjee et al. 1993, or Anderson 2003)

∣∣λS11 − S10S
−1
00 S01

∣∣ = 0 or∣∣S−1
11 S10S

−1
00 S01 − λI

∣∣ = 0

where λ′is are the r largest eigenvalues of S
−1
11 S10S

−1
00 S01, which are the r canon-

ical correlations of R1t and R0t.

Now it is known that if λ is an eigenvalue of a matrix, say A, then 1 − λ is

the eigenvalue of I−A. Further, the determinant of a matrix equals the product
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of its eigenvalues. Hence we get that

k∏
i=1

(1− λi) =
∣∣I − S−1

11 S10S
−1
00 S01

∣∣ =

∣∣S11 − S10S
−1
00 S01

∣∣
|S11|

.

It follows that finding the r largest eigenvalues we can find the eigenvectors that

correspond to each of them and consequently to estimate the n × r matrix b,

say b̂. Then b̂′Xt−1 = Zt−1 ∼ I (0).

Consequently, employing equation (54) we get that

L
− 2
T

max =

∣∣∣∣S00 − S01b̂
(
b̂′S11b̂

)−1

b̂′S10

∣∣∣∣ = C

r∏
i=1

(
1− λ̂i

)
and the Likelihood Ratio test, for the null that there are at most r cointegrating

rations (0 ≤ r < k), is given

LR = −T
k∑

i=r+1

log
(

1− λ̂i
)
, r = 0, 1, ..., k − 1.

Johansen (1988) suggests a χ2 approximation to the non-standard distribu-

tion of the LR statistic, i.e.

LR '
[
0.85− 0.58

2 (k − r)2

]
χ2

2(k−r)2 , r = 0, 1, ..., k − 1.

Hence, having estimated the r cointegrating relations, equation (52) is bal-

anced and consequently a , the Error Correction coeffi cients, can be estimated

by the following regression

∆Xt = aZt−1 +B2∆Xt−1 +B3∆Xt−2 + Vt.

The main critique to the Johansen procedure is that it is extremely sensitive

to the normality assumptions of the errors. Departure of this assumption could

lead to spurious cointegration, high variance and high probability of producing

outliers. There are alternative to Johansen procedures in a multivariate setup.

Interested reads are referred to Maddala and Kim (1998).
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