
0.1 Cournot�s pricing game with complementary products

Overview: Modeling competition in hardware-software industries. The �col-
lusive�incentive of �rms is to lower price, which bene�ts consumers as well.
Firm 1 produces a hardware and charges p1 and �rm 2 produces a software

and charges p2. Both products are needed for the system to be functional. The
price of the system is p1 + p2 = pS . The system demand is D (pS) = 1 � pS .
The non-cooperative equilibrium prices are,

p1 = p2 =
1

3
and pS =

2

3
.

Now suppose that 1 and 2 merge. The monopoly price is 1=2, less than 2=3.
A monopolist chooses lower prices than the duopoly price. The intuition is as
follows. Since the two products are perfect complements a price increase by
one �rm reduces the demand of both products. This negative externality on
the rival�s demand is not internalized by the �rms and as a result each �rm,
when �rms act independently, overprices. This externality is internalized by the
monopolist and that is why prices are lower.
Sonnenschein (JPE, 1968) has shown that the Nash equilibrium where �rms

compete in price and sell perfect complements is isomorphic to the case where
�rms compete in quantities and sell perfect substitutes. In the latter case, a
merger to monopoly would reduce aggregate quantity and increase price.

0.2 A quadratic utility, representative consumer model

Overview: Integrate price/quantity and complements/substitutes models. Com-
pare prices and quantities. Strategic complements and substitutes. Reinterpret
the model in the context of a heterogeneous population of individuals, as op-
posed to a representative individual.
Singh and Vives (RAND, 1984).
Two �rms 1 and 2, each producing one product. The utility function of the

representative consumer is,

U (q1; q2) = �1q1 + �2q2 �
1

2

�
�1q

2
1 + 2q1q2 + �2q

2
2

�
.

The UMP is,
max
q1;q2

U (q1; q2)� p1q1 � p2q2.

There is a third good (many goods) that the consumer buys competitively.
We impose the following restrictions,

1. �1�2 � 2 > 0

2. �i�j � �j > 0, i 6= j

3. �i > 0, �i > 0 and  7 0
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The demand system is,

p1 = �1 � �1q1 � q2
p2 = �2 � �2q2 � q1.

Cournot game
Firms compete in quantities. The pro�t function of �rm 1 is,

�1 (q1; q2) = p1q1.

The Nash equilibrium is denoted by qC1 ; q
C
2 .

Bertrand game
We solve the demand system with respect to quantities.

�1q1 + q2 = �� p1
q1 + �2q2 = �� p2.

Using Cramer�s rule we solve for q1,

q1 =

���� �� p1 
�� p2 �2

����
(�1�2 � 2)

=
�1�2 � �2 � �2p1 + p2

�
= a1 � b1p1 + cp2.

Similarly, we can solve for q2. The pro�t function of �rm 1 is,

�1 (p1; p2) = p1q1.

The Nash equilibrium is denoted by pB1 ; p
B
2 .

It turns out that pCi > p
B
i and q

B
i > q

C
i for any . Thus, Bertrand compe-

tition is more e¢ cient.
When the goods are substitutes �C > �B . In this case �rms prefer higher

prices.
When the goods are complements �C < �B . In this case �rms prefer lower

prices.

0.3 Horizontal di¤erentiation and spatial competition

Overview: Firms may have incentives to di¤erentiate their products so as to
soften price competition, but this depends on �transportation costs.�Welfare
analysis of location/product o¤ering under linear and quadratic models. Welfare
analysis of the number of products (variety).
Consumers are uniformly distributed on the [0; L] interval. Firm 1 is located

at a and �rm 2 is located b distance from L. The per-unit transportation cost
is t > 0.
The mill prices are p1 and p2. The e¤ective prices are p1+tx if the consumer

buys from �rm 1 and p2 + ty if the consumer buys from �rm 2. The marginal
consumer satis�es (see �gure ??),

p1 + tx = p2 + ty ) x� y = p2 � p1
t

.
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We must also have x+ y = L� (a+ b). Solving the system of two equations
we get,

x =
1

2

�
L� (a+ b) + p2 � p1

t

�
y =

1

2

�
L� (a+ b) + p1 � p2

t

�
.

The demand functions are,

q1 = a+ x =
1

2

�
L+ a� b+ p2 � p1

t

�
q2 = b+ y =

1

2

�
L� a+ b+ p1 � p2

t

�
.

Note that this model is a special case of the previous (Singh and Vives)
model.
The �rst order conditions yield,

L+ a� b+ p2
t
� 2p1

t
= 0

L� a+ b+ p1
t
� 2p2

t
= 0.

For both �rms to have positive sales, it must be the case that,1

(L� a� b) t > jp1 � p2j .

Fix p2. When p1 2 (p2 � (L� a� b) t, p2 + (L� a� b) t), the pro�t func-
tion of �rm 1 is concave and both �rms have strictly positive sales. In this case,
the solution to the system of �rst order conditions yields,

p1 = t

�
L+

a� b
3

�
and p2 = t

�
L+

b� a
3

�
.

The equilibrium pro�ts are,

�1 =
t

2

�
L+

a� b
3

�2
and �2 =

t

2

�
L+

b� a
3

�2
.

Note that �1 is increasing in a and �2 is increasing in b. This suggests that
a = b = L=2 (principle of minimum di¤erentiation). However, this is not true.
Equilibrium prices must satisfy (L� a� b) t > jp1 � p2j. This holds as long as
3L > 5b+ a. This condition is violated when a = b = L=2. Hence, the principle
of minimum di¤erentiation does not hold.
The problem is that when the inequality (L� a� b) t > jp1 � p2j is violated

the pro�t function is discontinuous. When p1 is slightly below p2�(L� a� b) t,
1This comes from the conditions that say that x and y (from above) must be positive.
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�rm 1 grabs the �captive�market of �rm 2, which has size b and consequently
its pro�t function jumps up. When p1 is slightly above p2+(L� a� b) t, �rm 1
looses its �captive�market, which has size a and consequently its pro�t function
jumps down. When �rms are very close to each other, i.e., a and/or b are
large, the discontinuities are more pronounced and this causes a non-existence
problem. When �rms are very close to each other the �rm who charges a
higher price makes zero pro�ts and has incentive to undercut the rival and grab
the whole market. This will drive the prices down to zero, but this is not an
equilibrium either, unless a+ b = L.

0.3.1 Quadratic transportation costs

D�Aspermont et. al., (Econometrica, 1979).
Instead of linear, the transportation cost is quadratic. The marginal con-

sumer satis�es,

p1 + tx
2 = p2 + ty

2 ) t
�
x2 � y2

�
= p2 � p1

) (x+ y) (x� y) = p2 � p1
t

using x+ y = L� a� b

(L� a� b) (x� y) =
p2 � p1
t

) (x� y) = p2 � p1
t (L� a� b) .

Solving with respect to x and y we obtain,

x =
1

2

�
L� a� b+ p2 � p1

t (L� a� b)

�
and y =

1

2

�
L� a� b+ p1 � p2

t (L� a� b)

�
.

The demand function of �rm 1 is,

D1 = a+ x =
1

2

�
L+ a� b+ p2 � p1

t (L� a� b)

�
.

Similarly, we can derive D2. The equilibrium prices are,

p1 = t (L� a� b)
�
L+

a� b
3

�
and p2 = t (L� a� b)

�
L+

b� a
3

�
.

These prices are valid for any a and b. Once we substitute the prices back into
the pro�t functions, we can compute that @�1 (p1 (a; b) ; p2 (a; b) ; a; b) =@a and
@�2 (p1 (a; b) ; p2 (a; b) ; a; b) =@b are negative. Hence, �rms will choose maximum
di¤erentiation.

0.3.2 Social planner�s problem

The social planner will choose the two locations a and b to minimize the total
transportation cost given by (see also �gure ??),

C (a; b) =

Z a

0

t (a� s) ds+
Z L�b+a

2

a

t (s� a) ds+
Z L�b

L�b+a
2

t (L� b� s) ds+
Z L

L�b
t (s� L+ b) ds

=
tL2

4
+
3ta2

4
+
3tb2

4
� tL
2
(a+ b) +

tab

2
.
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Minimization of C yields,

a = b =
tL

4
.

The social planner would locate one �rm at 1=4 and the other at 3=4. Hence,
the non-cooperative outcome generates �too much�di¤erentiation from the so-
cial point of view.

0.3.3 Circular city model

Salop (Bell, 1979).
In stage 1 �rms choose whether to enter the market. Each �rm that enters

pays a �xed cost F . For simplicity, we assume that the n �rms that have entered
locate equidistantly around the circle. In stage 2 �rms compete in prices. We
search for a symmetric equilibrium. Suppose each of the n� 1 �rms charges p0
and �rm i charges p. The marginal consumer satis�es,

p+ tx = p0 + t

�
1

n
� x

�
.

The demand of �rm i is,

2x =
p0 � p+ t=n

t
.

The pro�t function of �rm i is,

� =
p (p0 � p+ t=n)

t
.

After taking the �rst order conditions and imposing symmetry, p = p0, we
derive the equilibrium prices,

p =
t

n
.

The �rm pro�t is,

� =
t

n2
� F .

In the free entry equilibrium the number of �rms is,

n� =

r
t

F
.

Social planner�s problem The social planner chooses the number of �rms
to minimize the sum of the total transportation cost and the cost of entry, given
by,

C (n) =
t

4n
+ nF .

The socially optimal number of �rms is,

no =
1

2

r
t

F
< n�.

Too much variety from the social perspective.
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