0.1 Cournot’s pricing game with complementary products

Overview: Modeling competition in hardware-software industries. The “col-
lusive” incentive of firms is to lower price, which benefits consumers as well.

Firm 1 produces a hardware and charges p; and firm 2 produces a software
and charges ps. Both products are needed for the system to be functional. The
price of the system is p; + po = ps. The system demand is D (ps) = 1 — pgs.
The non-cooperative equilibrium prices are,
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Now suppose that 1 and 2 merge. The monopoly price is 1/2, less than 2/3.
A monopolist chooses lower prices than the duopoly price. The intuition is as
follows. Since the two products are perfect complements a price increase by
one firm reduces the demand of both products. This negative externality on
the rival’s demand is not internalized by the firms and as a result each firm,
when firms act independently, overprices. This externality is internalized by the
monopolist and that is why prices are lower.

Sonnenschein (JPE, 1968) has shown that the Nash equilibrium where firms
compete in price and sell perfect complements is isomorphic to the case where
firms compete in quantities and sell perfect substitutes. In the latter case, a
merger to monopoly would reduce aggregate quantity and increase price.

0.2 A quadratic utility, representative consumer model

Overview: Integrate price/quantity and complements/substitutes models. Com-
pare prices and quantities. Strategic complements and substitutes. Reinterpret
the model in the context of a heterogeneous population of individuals, as op-
posed to a representative individual.

Singh and Vives (RAND, 1984).

Two firms 1 and 2, each producing one product. The utility function of the
representative consumer is,
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The UMP is,
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There is a third good (many goods) that the consumer buys competitively.
We impose the following restrictions,

L 318y =7 >0

2. aiff; —ajy>0,i#
3. 0,>0,8;,>0and ys0



The demand system is,
p1o= o= B1q1 =g
P2 = 2= Baq2 — Y@
Cournot game
Firms compete in quantities. The profit function of firm 1 is,
71 (q1,q2) = p1aa-

The Nash equilibrium is denoted by ¢{, ¢S’
Bertrand game
We solve the demand system with respect to quantities.

Bigi+vq2 = a—p;
Yq1 + Bagz = a—pa.

Using Cramer’s rule we solve for ¢,
a—p1 7
a—p2 By _ a1y —asy = Bopr + P2
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Similarly, we can solve for gs. The profit function of firm 1 is,

@ = =ay — bip1 + cpo.

™ (p1,P2) =Piq-

The Nash equilibrium is denoted by pP, pf.

It turns out that pic > pP and ¢ > q,L-C for any «. Thus, Bertrand compe-
tition is more efficient.

When the goods are substitutes 7¢ > 72, In this case firms prefer higher
prices.

When the goods are complements 7¢ < w2, In this case firms prefer lower
prices.

0.3 Horizontal differentiation and spatial competition

Overview: Firms may have incentives to differentiate their products so as to
soften price competition, but this depends on “transportation costs.” Welfare
analysis of location/product offering under linear and quadratic models. Welfare
analysis of the number of products (variety).

Consumers are uniformly distributed on the [0, L] interval. Firm 1 is located
at a and firm 2 is located b distance from L. The per-unit transportation cost
ist>0.

The mill prices are p; and p2. The effective prices are p; +tx if the consumer
buys from firm 1 and py + ty if the consumer buys from firm 2. The marginal
consumer satisfies (see figure 77),
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We must also have z +y = L — (a + b). Solving the system of two equations
we get,

1 P2 — P1
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The demand functions are,
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Note that this model is a special case of the previous (Singh and Vives)
model.
The first order conditions yield,
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For both firms to have positive sales, it must be the case that,!
(L—a—=0b)t>|p1 —pal.

Fix p;. When p; € (po — (L —a—b)t, po + (L —a —b)t), the profit func-
tion of firm 1 is concave and both firms have strictly positive sales. In this case,
the solution to the system of first order conditions yields,

plzt(L—l—a;b) andpgzt(L—l—b;a).

The equilibrium profits are,

t a—0b\? t b—a\?

Note that 7y is increasing in a and 79 is increasing in b. This suggests that
a = b= L/2 (principle of minimum differentiation). However, this is not true.
Equilibrium prices must satisfy (L —a — b)t > |p1 — p2|. This holds as long as
3L > 5b+ a. This condition is violated when a = b = L/2. Hence, the principle
of minimum differentiation does not hold.

The problem is that when the inequality (L —a — b) ¢ > |p; — p2| is violated
the profit function is discontinuous. When p; is slightly below ps — (L — a — ) ¢,

I This comes from the conditions that say that = and y (from above) must be positive.



firm 1 grabs the ‘captive’ market of firm 2, which has size b and consequently
its profit function jumps up. When p; is slightly above ps + (L — a — b) ¢, firm 1
looses its ‘captive’ market, which has size a and consequently its profit function
jumps down. When firms are very close to each other, i.e., a and/or b are
large, the discontinuities are more pronounced and this causes a non-existence
problem. When firms are very close to each other the firm who charges a
higher price makes zero profits and has incentive to undercut the rival and grab
the whole market. This will drive the prices down to zero, but this is not an
equilibrium either, unless a + b = L.

0.3.1 Quadratic transportation costs

D’Aspermont et. al., (Econometrica, 1979).
Instead of linear, the transportation cost is quadratic. The marginal con-
sumer satisfies,
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Solving with respect to x and y we obtain,
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The demand function of firm 1 is,
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Similarly, we can derive Ds. The equilibrium prices are,

p1=t(L—a—"0) (L—i—as_b> and py =t (L —a —b) <L+b_a>.
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These prices are valid for any a and b. Once we substitute the prices back into
the profit functions, we can compute that dr1 (p1 (a,b), p2 (a,b);a,b) /0a and
Ora (p1 (a,b) ,p2 (a,b);a,b) /Ob are negative. Hence, firms will choose maximum
differentiation.

0.3.2 Social planner’s problem

The social planner will choose the two locations a and b to minimize the total
transportation cost given by (see also figure ?7?),
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Minimization of C' yields,

tL
=

The social planner would locate one firm at 1/4 and the other at 3/4. Hence,
the non-cooperative outcome generates “too much” differentiation from the so-
cial point of view.

a=1b

0.3.3 Circular city model

Salop (Bell, 1979).

In stage 1 firms choose whether to enter the market. Each firm that enters
pays a fixed cost F'. For simplicity, we assume that the n firms that have entered
locate equidistantly around the circle. In stage 2 firms compete in prices. We
search for a symmetric equilibrium. Suppose each of the n — 1 firms charges p’
and firm ¢ charges p. The marginal consumer satisfies,

1
p+tr=p +t ( —x) )
n
The demand of firm 7 is,

_p=p+t/n
=

2x

The profit function of firm 7 is,
p(p —p+t/n)
. .
After taking the first order conditions and imposing symmetry, p = p’, we
derive the equilibrium prices,

p=—.
n

The firm profit is,

t
T=——F.
n2

In the free entry equilibrium the number of firms is,

" t
n'=4/=.
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Social planner’s problem The social planner chooses the number of firms
to minimize the sum of the total transportation cost and the cost of entry, given
by,

t
C’(n):%—knF.

The socially optimal number of firms is,

0_1lt<>s<

Too much variety from the social perspective.



