

Session 6: Basic Replenishment Policies

- EOQ & Discounts Recap
- Supply Chain Coordination
- Replenishment Policies

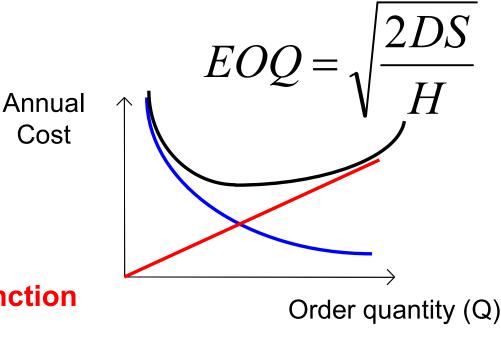
Expected outcomes

- You will be able to:
 - Select the proper inventory model under given circumstances / model assumptions
 - Calculate the optimal order quantity and the related cost
 - Use different replenishment policies

Recap: EOQ formula

Total annual cost incorporates: i) inventory holding cost, ii) ordering (or setup) cost, and iii) the materials cost

$$C = \frac{Q}{2}H + \frac{D}{Q}S + PD$$


Operating cost

C = total cost per year

- Q = order quantity (in units)
- H = cost of holding per unit of inventory for a year
- D = demand in units per year
- S = fixed cost of ordering or setting up one lot, per lot

P = unit price

Price can be a function of order quantity

Calculating Order Quantity

- To determine the optimal order quantity in the case of discounts proportional to the quantity ordered, the following approach should be followed:
 - 1. Calculate EOQ, starting from the lowest price to the next higher price
 - 2. Check for feasibility (EOQ within the volume range from the respective price)
 - 3. If the first feasible EOQ is found for the lowest price, it is optimal
 - 4. Otherwise, calculate total cost for the first feasible EOQ and the larger price break quantity at each lower price level

• • Homework (1)

- A candy wholesaler faces steady daily demand of 2 tons
- The value of one ton of candies is £1,000
- The holding cost is 20% of the value of the candies
- The ordering cost is £400 per ordering
- The wholesaler operates 200 days per year
- Determine:
 - 1. the annual operating cost if the lot size is equal to 100 tons
 - 2. the lot size that minimises the total annual cost
 - 3. the total annual setup cost for the optimal lot size
 - 4. the time between orders (cycle length) if the wholesaler orders under the EOQ

Solution Homework (1)

- Annual demand D is 2*200 = 400 tons
- Holding cost H is 20%*1000 = £200
- > Ordering cost S is £400
- 1. If Q = 100, then the annual operating cost is:

 $400^{*}(400/100) + \frac{1}{2}^{*} 200^{*}100 = \pounds11,600$

2.
$$EOQ = \sqrt{\frac{2DS}{H}} = 40$$
 tons

- 3. If Q = 40, the total annual setup cost is $400^{(400/40)} = £4,000$
- Since Q = 40 and the daily demand is 2 tons, this means the wholesaler places an order every 20 days

• The value of one ton of candies is depends on the order quantity as follows:

Order Quantity	Price per ton
0-19	1000
20-39	900
40-59	800
60-	700

• Determine the lot size that minimises the total annual cost

Solution Homework (2)

• Calculate EOQ, starting from the lowest price to the next higher price Order Price per Optimal order quantity

\mathbf{D}	Quantity	ton	
$EOO = \begin{bmatrix} 2DS \end{bmatrix}$	0-19	1000	No reason to calculate that price
$LOQ = \sqrt{\frac{H}{H}}$	20-39	900	No reason to calculate that price
¥ 11	40-59	800	44.72 tons, feasible
	60-	700	47.81 tons, not feasible

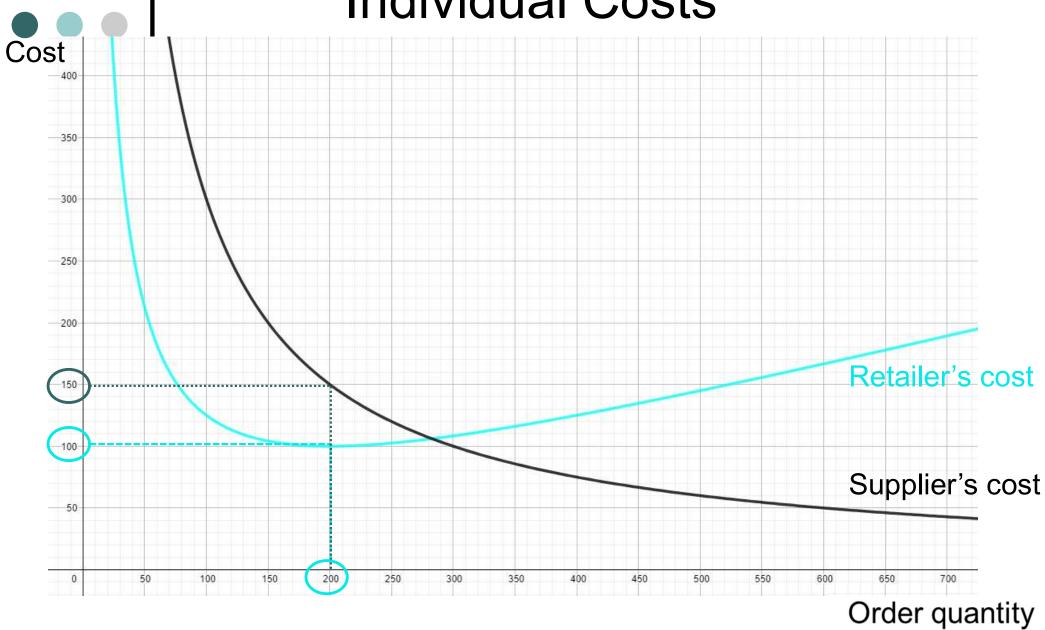
The total annual cost when ordering 44.72 tons is:

$$\frac{44.72}{2} * 0.20 * 800 + \frac{400}{44.72} * 400 + 400 * 800 = 327,155$$

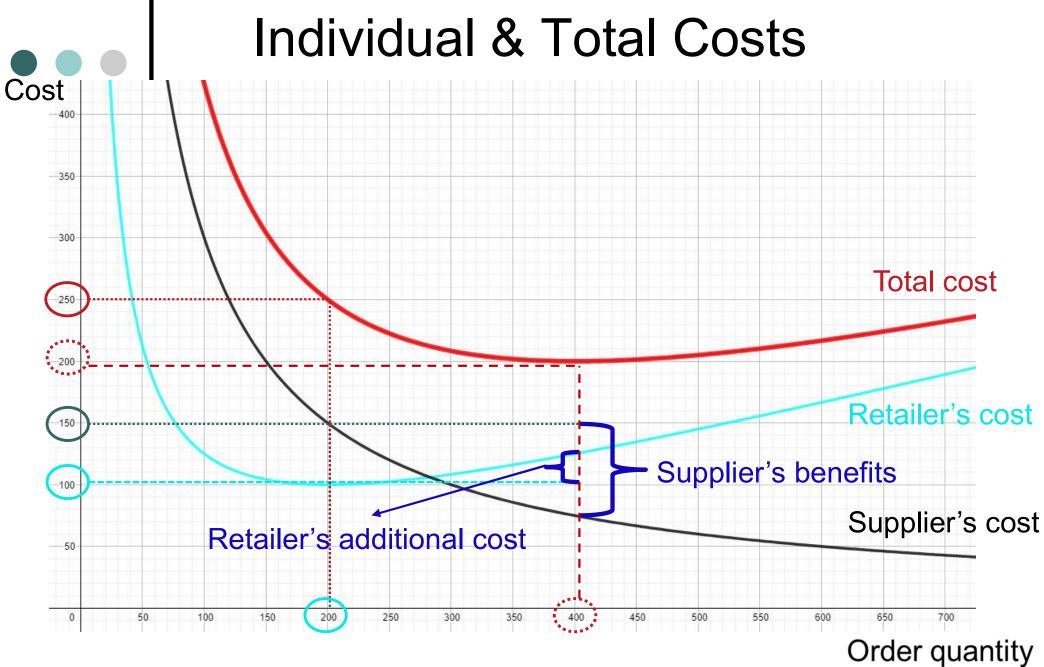
The total annual cost when ordering 60 tons is:

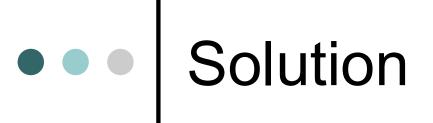
$$\frac{60}{2} * 0.20 * 700 + \frac{400}{60} * 400 + 400 * 700 = 286,867$$

Supply Chain Coordination



Supplier


Retailer


- Lot-for-lot policy; i.e. a EOQ model; i.e. setup cost per setup cost per order
 order & holding cost per unit
 - Decision: Order Quantity
 - Criterion: Individualistic

10

Individual Costs

Induce retailer to change the order quantity by providing incentives (quantity discount)

A *quantity-price pair* e.g. if you order 400 items you will have £30 discount

Replenishment Policies

Questions: How much you will order? When?

Basic Replenishment Policies:

- 1. Lot for Lot,
- 2. Fixed Order Quantity,
- 3. Fixed Order Period,
- 4. Lot Size (order size equals to a multiple of a given number).

Moreover, it could be applied some constraints such as minimum and/or maximum levels

14

Notation

- Parameters
 - t: a period (e.g., day, week, month, etc.); we will consider t = 1,..., T, where T represents the planning horizon
 - D_t : **demand** in period t (in units)
 - c_t: unit production / purchasing cost (in pounds)
 - S_t: setup/ordering cost (in pounds) to place an order in period t
 - *h_t*: holding cost (in pounds) to carry a unit of inventory from period *t* to period *t*+1
 - I_t : **inventory** level at the end of period t
- Variables Decisions
 - Q_t: order quantity in period t

I. Lot-for-Lot

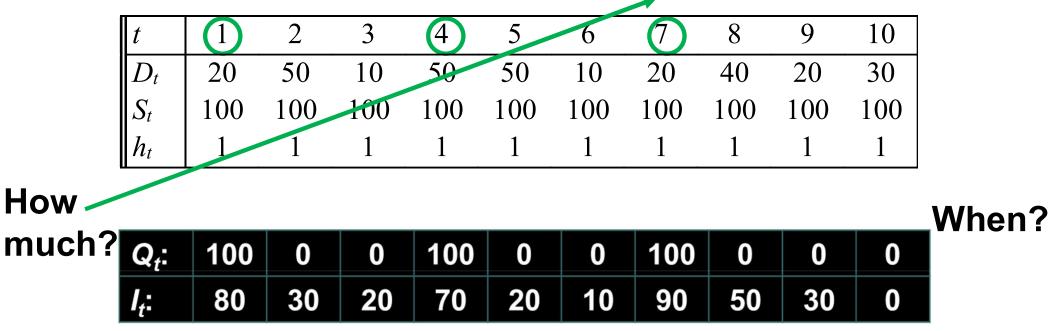
:a: [t		1	2	3	4	5	6	7	8	9	10
L	\mathbf{D}_t	20	50	10	50	50	10	20	40	20	30
S	t t	100	100	100	100	100	100	100	100	100	100
h	t	1	1	1	50 100 1	1	1	1	1	1	1

Ordering policy: Lot-for-Lot

How much should we order? & When?

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	20	50	10	50	50	10	20	40	20	30	300
I_t	0	0	0	0	0	0	0	0	0	0	0
Setup cost	100	100	100	100	100	100	100	100	100	100	1000
Holding cost	0	0	0	0	0	0	0	0	0	0	0
Total cost	100	100	100	100	100	100	100	100	100	100	1000

I. Lot-for-Lot


- Could be the Lot-for-Lot policy optimal?
- What is the necessary and sufficient condition to be the Lot-for-Lot policy optimal?

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	20	50	10	50	50	10	20	40	20	30	300
I_t	0	0	0	0	0	0	0	0	0	0	0
Setup cost	100	-10 0-	100	100	-1-00-	100	100	100	-1 00 -	100	1000
Holding cost	0	0	0	0	0	0	0	0	0	0	0
Total cost	100	100	100	-1 00 -	100	100	100	-100	100	-10 0-	1000

• If and only if setup cost equals to zero

• 2. Fixed Order Quantity

Ordering policy: Fixed Order Quantity of 100 units

Place an order (of 100 units) at periods 1, 4, and 7

2. Fixed Order Quantity

How much is the related cost?

Setup cost = £100, holding cost = £1 per unit per period

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	100	0	0	100	0	0	100	0	0	0	300
I_t	80	30	20	70	20	10	90	50	30	0	210
Setup cost	100	0	0	100	0	0	100	0	0	0	300
Holding cost	80	30	20	70	20	10	90	50	30	0	400
Total cost	180	30	20	170	20	10	190	50	30	0	700

Under Fixed Order Quantity (Q=100), the operating cost is £700, which is less than £1,000 (Lot-for-Lot)

• • Wagner-Whitin Property

- Can we do better than Fixed Order Quantity?
- Yes because of the Wagner-Whitin Property (1958):
 - Under an optimal lot-sizing policy either the inventory carried to period t+1 from a previous period will be zero or the production quantity in period t+1 will be zero

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	100	0	0	100	0	0	100	0	0	0	300
I_t	80	30	20	70	20	10	90	50	30	0	0
Setup cost	100	0	0	100	0	0	100	0	0	0	300
Holding cost	80	30	20	70	20	10	90	50	30	0	400
Total cost	180	30	20	170	20	10	190	50	30	0	700

• • 3. Fixed Order Period

Ordering policy: Fixed Order Period of 2 periods How much you will order? When?

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Q_t	70	0	60	0	60	0	60	0	50	0	300
I_t	50	0	50	0	10	0	40	0	30	0	180
Setup cost	100	0	100	0	100	0	100	0	100	0	500
Holding cost	50	0	50	0	10	0	40	0	30	0	180
Total cost	150	0	150	0	110	0	140	0	130	0	680

Under Fixed Order Period of 2 weeks, the operating cost is £680 Can we do better than Fixed Order Period? Wagner-Whitin Algorithm

• • • 4. Lot Size

Ordering policy: Lot Size of 30 units

How much you will order? When?

Shortages or backorders are not allowed

Setup cost = £100, holding cost = £1 per unit per period

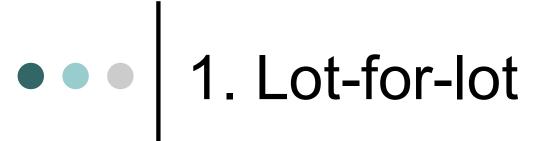
t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Total cost											

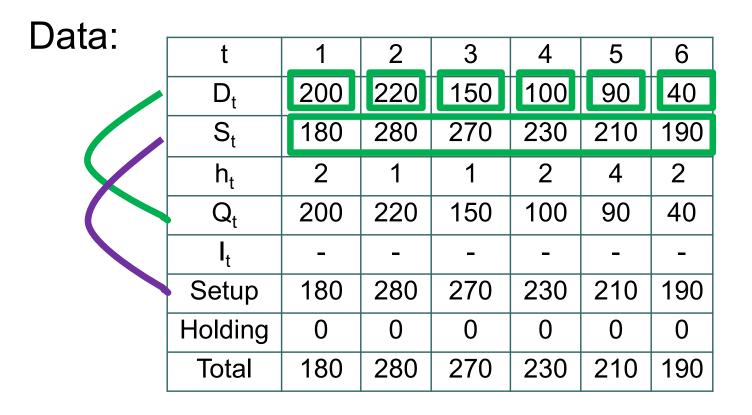
• • • 4. Lot Size

Ordering policy: Lot Size of 30 units How much you will order? When?

t	1	2	3	4	5	6	7	8	9	10	Total
D_t	20	50	10	50	50	10	20	40	20	30	300
Requirements	-20	-40		-40	-30	-10		-40		-30	
Q_t	30	60	0	60	30	30	0	60	0	30	300
I_t	10	20	10	20	0	20	0	20	0	0	100
Setup cost	100	100	0	100	100	100	0	100	0	100	700
Holding cost	10	20	10	20	0	20	0	20	0	0	100
Total cost	110	120	10	120	100	120	0	120	0	100	800

Under Lot Size of 30 units, the operating cost is £800.


Example to Practice


Data:

t	1	2	3	4	5	6
D _t	200	220	150	100	90	40
St	180	280	270	230	210	190
h _t	2	1	1	2	4	2

Calculate the operating cost under

- 1. Lot-for-lot policy
- 2. Fixed order quantity of 300 units
- 3. Fixed order period of 2 and 3 weeks
- 4. Lot size of 100 units

Total cost = Setup Cost

= 180 + 280 + 270 + 230 + 210 + 190 = £1,360

• • 2. Fixed Order Quantity

Data:

t	1	2	3	4	5	6	of 300
D _t	200	220	150	100	90	40	01 000
S _t	180	280	270	230	210	190	
h _t	2	1	1	2	4	2	
Q _t	300	300	-	300	-	-	
l _t	100	180	30	230	140	100	
Setup	180	280	0	230	0	0	690
Holding	200	180	30	460	560	200	1,630
Total	380	460	30	690	560	200	Ţ

Fixed Order Quantity units

Total cost = Setup + Holding = $\pounds 2,320$

• • 3. Fixed Order Period (2 weeks)

Data:

t	1	2	3	4	5	6	Fixe of 2
D _t	200	220	150	100	90	40	012
St	180	280	270	230	210	190	
h _t	2	1	1	2	4	2	
Q _t	420	-	250	-	130	-	
I _t	220	-	100	-	40	-	
Setup	180	0	270	0	210	0	660
Holding	440	0	100	0	160	0	700
Total	620	0	370	0	370	0	

Fixed Order Period weeks

Total cost = Setup + Holding = \pounds 1,360

• • 3. Fixed Order Period (3 weeks)

Data:

t	1	2	3	4	5	6	of 3 wee
D _t	200	220	150	100	90	40	
St	180	280	270	230	210	190	
h _t	2	1	1	2	4	2	
Q _t	570	-	-	230	-	-	
I t	370	150	-	130	40	-	
Setup	180	0	0	230	0	0	410
Holding	740	150	0	260	160	0	1,310
Total	920	150	0	490	160	0	•

Fixed Order Period eks

Total cost = Setup + Holding = \pounds 1,720

Data:

Lot Size of 100 units

							Lot Si
t	1	2	3	4	5	6	
D _t	200	220	150	100	90	40	
S _t	180	280	270	230	210	190	
h _t	2	1	1	2	4	2	
Q _t	200	300	100	100	100	-	
l _t	-	80	30	30	40	-	
Setup	180	280	270	230	210	0	1,170
Holding	0	80	30	60	160	0	330
Total	180	360	300	290	370	0	

Total cost = Setup + Holding = \pounds 1,500