

Session 3: Forecasting & Game Theory

Introduction to Forecasting

- Definition & Demand Patterns
- Simple Forecasting Methods
- Forecast Error

Definition

What is Forecasting?

 It is the process of creating statements about outcomes of variables that presently are uncertain and will only be realized in the future.

How?

 Mainly based on past and present data and analysis of trends

Market Summary > Bitcoin

Market Summary > Bitcoin

61,918.15 EUR

+37,734.91 (156.04%) + past 6 months

Advantages

Reduce uncertainty and anticipate change(s) in the market

Disadvantages

- No one can be absolutely sure what the future holds
- Silent assumption: the future will be like the past; there is no room for human intelligence

Example #1

- Thomas Watson (CEO of IBM), forecasted the demand for computers.
- He predicted that the world market demand for computers would be 5. Yes, you read correctly, not 5 million, just 5 computers. In his defense, he made this forecast in the 1950s.

• • Example #2

- In the 1960s, the managers at Decca Recording were offered the opportunity to publish the music of a Liverpool guitar band. Decca's forecast for sales of this band was pessimistic "guitar groups are on the way out" was the management consensus.
- Unfortunately for Decca, the band that they rejected was *the Beatles*, a band that subsequently went on to become one of the most successful music bands in history.

• • Patterns

Time series

- The repeated observations of data points in their order of occurrence (time order)
- There are five basic time series patterns
 - 1. Horizontal
 - 2. Trend
 - 3. Seasonal
 - 4. Cyclical
 - 5. Random

• • 1. Horizontal

A horizontal pattern exists when data values fluctuate around a constant mean

• • | 2. Trend

A trend exists when there is a long-term increase or decrease in the data. It does not have to be linear. Sometimes we will refer to a trend "changing direction" when it might go from an increasing trend to a decreasing trend

• • 3. Seasonal

A seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week). Seasonality is always of a fixed and known period

• • 4. Cyclical

A cyclic pattern exists when data exhibit rises and falls that are not of fixed period. The duration of these fluctuations is usually of at least 2 years

No specific pattern can be identified

Forecasting Methods

- Naïve method
- Global Average method
- Moving Average method
- Weighted Moving Average method

Naïve Method

- The forecast for the next period equals the demand for the current period $\hat{y}_{t+1} = y_t$
- Comments:
 - Only the very last observation is considered
 - No smoothing or averaging is performed
 - Shortest memory possible

Naïve Method: pros and cons

- Outliers are copied forward
- No smoothing
- Fast reaction to level changes

Global Average Method

- No parameters, all values contribute equally
- The forecast is set as the mean of the observed sample
- Longest memory possible

t	Y	Average
1	98.43	
2	108.02	98.43
3	94.26	103.22
4	96.56	100.23
34	90.07	99.34
35	94.62	99.07
36	103.33	98.94
37		99.06
38		99.06
39		99.06 ²²

Global Average Method: pros and cons

- Outliers are smoothed out
- Slow reaction to level changes

Moving Average Method

- Moving average: one parameter (k)
- The forecast is set as the average of the k-most-recent observations
- The value of k corresponds to the degree of smoothing and the length of the memory
- Selecting an appropriate value for k renders the model robust against outliers (high k values) or level changes (low k values)

$$\hat{y}_{t+h} = \frac{1}{k} \sum_{i=0}^{k-1} y_{t-i}$$

t	Y	MA(3)	MA(7)
1	98.43		
2	108.02		
3	94.26		
4	96.56	100.23	
5	90.01	99.61	
6	109.87	93.61	
7	102.29	98.81	
8	91.26	100.72	99.92
9	100.54	101.14	98.90
10	99.31	98.03	97.83
34	90.07	100.15	100.49
35	94.62	100.00	98.08
36	103.33	97.38	98.71
37		96.01	97.83
38		96.01	97.83
39		96.01	97.83

MA(3):	
$\hat{y}_4 = \frac{1}{3}(y_1 + y_2 + y_3)$	
$\hat{y}_{36} = \frac{1}{3}(y_{33} + y_{34} +$	y ₃₅)

MA(7):

$$\hat{y}_{8} = \frac{1}{7}(y_{1} + y_{2} + \dots + y_{7})$$
$$\hat{y}_{36} = \frac{1}{7}(y_{29} + y_{30} + \dots + y_{35})$$

- What is the best value for k?
- Does it make sense to give equal weight to all k recent observations?

 Compute a three-week moving average forecast for the number of arrivals at Piraeus port in week 4. The numbers of arrivals for the past three weeks were as follows:

Week	Arrivals
1	400
2	380
3	411

- If the actual number of arrivals in week 4 is 415, what is the forecast error for week 4?
- What is the forecast for week 5?

The moving average forecast at the end of week 3 is:

$$\hat{y}_4 = \frac{1}{3}(y_1 + y_2 + y_3) = \frac{1}{3}(400 + 380 + 411) = 397$$

The forecast error for week 4 is:

$$y_4 - \hat{y}_4 = 415 - 397 = 18$$

The forecast for week 5 requires the actual arrivals from weeks 2 through 4, the three most recent weeks of data

$$\hat{y}_5 = \frac{1}{3}(y_2 + y_3 + y_4) = \frac{1}{3}(380 + 411 + 415) = 402$$

Weighted Moving Average Method

- In the weighted moving average method, each historical data point in the average can have its own weight, provided that the sum of the weights equals one
- The average is obtained by multiplying the weight of each period by the actual data point for that period, and then adding the products together

• There are four forecasts:

	#1	#2	#3	#4
Week 1	70	50	29	43
Week 2	55	32	52	44
Week 3	40	48	62	54
Week 4	80	60	47	49

- Which forecast is the best one?
- This cannot be answered **before** you observe the true data

Forecast Error

• We define the **forecast error (FE)** for period t as the difference between the forecast for period t and the actual value for period t:

FE at t = Actual value at t – Forecasted value at t

	#1	#2	#3	#4	Actual
Week 1	70	50	29	43	38
Week 2	55	32	52	44	49
Week 3	40	48	62	54	59
Week 4	80	60	47	49	44

• Calculate the forecast error (FE) for #1 and #2

Forecast Error Calculations

• The FE for #1 is:

Week 1: 38 - 70 = -32Week 2: 49 - 55 = -6Week 3: 59 - 40 = 19

Week 4: 44 - 80 = -36

	#1	True	Error
Week 1	70	38	-32
Week 2	55	49	-6
Week 3	40	59	19
Week 4	80	44	-36

Cumulative Forecast Error

The Cumulative Forecast Error (CFE) takes the sum of the forecast errors

$$CFE = \sum_{t=1}^{N} FE_t$$

• Then, we can calculate the Average Forecast Error as:

$$\frac{CFE}{N}$$

where *N* is the number of observations

Forecast Error Calculations

The Cumulative Sum of Forecast Error (CFE) for #1 is: CFE = (-32) + (-6) + 19 + (-36) = -55Average FE = -55/4 = -13.75

	Error
Week 1	-32
Week 2	-6
Week 3	19
Week 4	-36

- What can we comment on the (average) forecast error?
- The FE for #2 is: -12, 17, 11, -16; i.e., the average forecast error for #2 equals with 0
- What can we comment on the #2?

Quality of a Forecast

- A first way to measure the quality of a forecast is to see if it is right, on average; i.e., having the average forecast error be 0
- Calculate the average forecast error for #3
- The average forecast error for #3 = 0
- Which forecast is the best one and why?
- Both are right, on average. Does this mean that they are equally good at forecasting?

	#3	True
Week 1	29	38
Week 2	52	49
Week 3	62	59
Week 4	47	44

Mean Squared Error

The Mean Squared Error (MSE) takes the average of the squared forecast errors

$$MSE = \frac{\sum_{t=1}^{N} FE_t^2}{N}$$

 The idea behind this is to first square the errors and then average them. A negative forecast error and a positive forecast error combined will no longer cancel each other out

Mean Absolute Error

- An easier way is just to simply take the absolute values of the forecast errors and average those out
- We define the *Mean Absolute Error (MAE)* as the average of the absolute values of the forecast errors

$$MAE = \frac{\sum_{t=1}^{N} |FE_t|}{N}$$

 This is also referred to as the *Mean Absolute Deviation* (MAD)

Mean Absolute Percentage Error

The Mean Absolute Percentage Error (MAPE) is achieved by dividing the forecast errors by the actual value y_t

$$MAPE = \frac{\sum_{t=1}^{N} \left| \frac{FE_t}{y_t} \right| * 100}{N}$$

• This measure does not look at the forecast errors in absolute terms, but in relative terms

• • • Key Takeaways

- Which measure of forecast quality you use is up to you
- Be careful when you report the forecast error and when you receive the forecast error
- Keep data from your old forecasts and assess the quality of those

Game Theory

- Game Theory
- Nash equilibrium
- Public Goods Game

R. Gibbons. A Primer in Game Theory Paperback. Harlow: Prentice Hall, 1992

Game Theory Explained in One Minute

https://www.youtube.com/watch?v=YueJukoFBMU

Movie: A Beautiful Mind

Classification of Problems

	A single decision maker	More than two decision makers
Deterministic	Optimisation	Game Theory
Stochastic	Decision Analysis	Came meory

Deterministic

44

• • Many Decision Makers

- Game Theory: is the study of multiperson decision problems (Gibbons 1992)
- Eleven game-theorists have now won the economics Nobel Prize (2014, Jean Tirole)
- Categories:
 - Cooperative / Non-Cooperative games
 - Complete / Incomplete information
 - Time order: Simultaneous / Sequential
- Main Elements: Players, Strategies, Payoffs

Solution Concept

- In Game Theory, it is used the term solution concept
- Non-Cooperative games: Nash equilibrium
- Cooperative games: Core, Shapley value
- Nash equilibrium: If each player has chosen a strategy and no player can benefit by changing strategies while the other players keep theirs unchanged
- Rational players

Prisoner's Dilemma

Prisoner's Dilemma

- Two friends had robbed a bank. The Police has arrested them for speeding without having not enough evidence to arrest them for the robbery
- In both friends are offered a deal by the Police and they have to decide what to do independently
- The deal is:
- If both deny the robbery, they will be in prison for 1 year each
- If both confess the robbery, they will be in prison for 6 years
- If one confesses the robbery, then this guy will be free while the other will be in prison for 9 years

Prisoner's Dilemma: Main Elements

- o Players: P1, P2
- Strategies: Deny, Confess
- Payoffs: a pair (x, y)

P2 P1	Deny	Confess
Deny	(1,1)	(9,0)
Confess	(0,9)	(6,6)

Nash equilibrium

Is Deny vs Deny (1,1) Nash equilibrium?
Given that P2 remains on 'Deny'

P2 P1	Deny	Confess
Deny	(1,1)	(9,0)
Confess	(0,9)	(6,6)

Banned Cigarette Advertisements

- On April 1, 1970, President Richard Nixon signed legislation officially banning cigarette ads on television and radio
- The ban took effect at midnight on Jan. 2, 1971
- What will be the impact of restriction rate in profitability of tobacco companies?
- All four major tobacco companies registered higher profits than before

Food for Thought

- Magic box that doubles the money
- Two players
- \$20 each
- How much should I put in the box?

Public Goods Game

- Four players (with the "same power")
- Simultaneous game
- Box doubles the token/money
- "Public good" payoff is evenly divided among players
- Each subject also keeps the money they do not contribute
- Players are rational (i.e., to max their token/money)

How much should I put in the box?

