

Decision Analysis

- Key Components of Decision Making
- Decision Making Criteria With and Without Probabilities
- Decision Trees

Expected Outcomes

- You will be able to:
 - Analyse situations & Base your decisions on a specific criterion
 - Calculate the expected value of perfect information
 - Develop skills to make decisions

Classification of Problems

	A single decision maker	More than two decision makers
Deterministic		
Stochastic		

Stochastic

Decision Analysis Overview

- Some parameters are not known (with certainty)
- Two categories of decision situations:
 - Probabilities can be assigned to future occurrences
 - Probabilities cannot be assigned to future occurrences

Problem: Lottery Ticket

Choice A:

A lottery ticket that wins £50

Choice B:
 A lottery ticket that
 Wins £100, p= 0.50
 Ioses (£0), p= 0.50

Steps of Decision Making

- 1. Define the problem
- 2. List **ALL** the possible alternatives
- 3. Identify all the possible outcomes for each alternative
- 4. Determine the payoff for each alternative and outcome combination
- 5. Use a decision modelling technique to make your decision

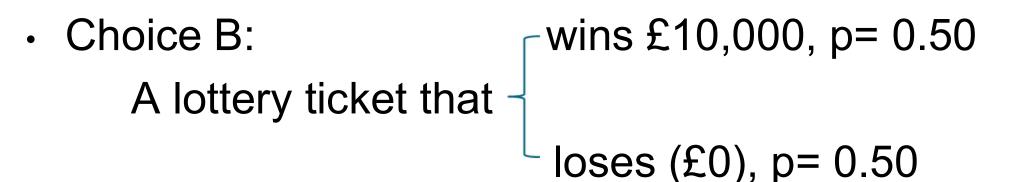
Choice A or B

- A: win
- B: win or lose
- A -> £50
- B -> £100 win
- B -> £0 lose

Problem: Lottery Ticket 1

Choice A:

A lottery ticket that wins £50



Choice B:
 A lottery ticket that
 Wins £100, p= 0.50
 Ioses (£0), p= 0.50

Problem: Lottery Ticket 2

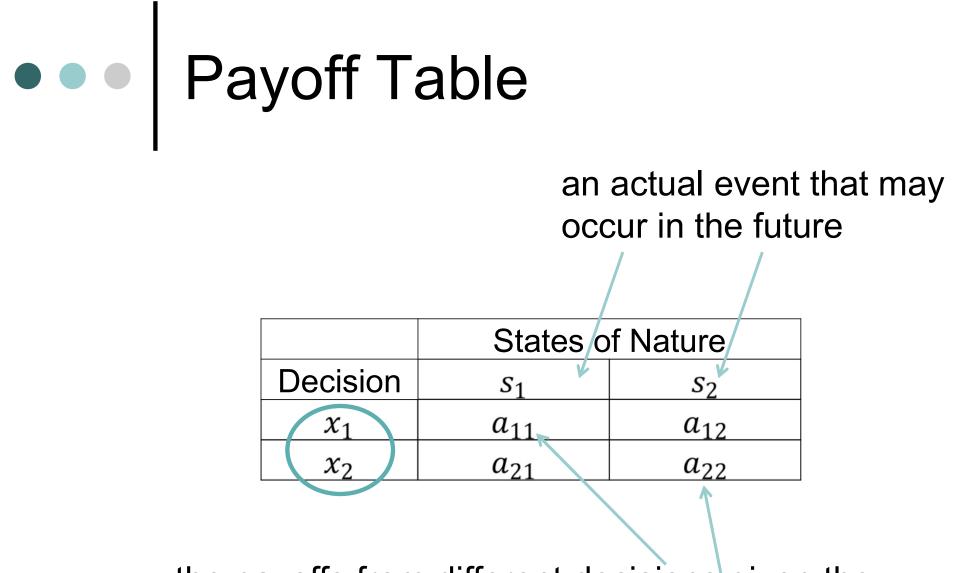
Choice A:

A lottery ticket that wins £5,000

• • Problem: Lottery Ticket 3

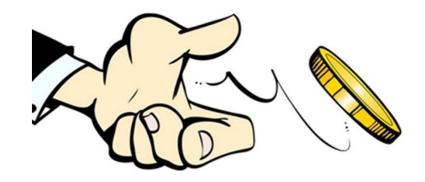
Choice A:

A lottery ticket that wins £500,000


Choice B:
 A lottery ticket that
 Wins £1,000,000, p= 0.50
 Ioses (£0), p= 0.50

• • Human Behaviour

- Risk attitudes:
 Risk attitudes:
 risk neutral risk prone
- Risk averse: Prefers the guaranteed payment
- Risk neutral: Indifferent between the two choices
- Risk prone: Prefers the bet


Key Components of a Decision Model

- 1. Decisions
- 2. State of nature is an actual event that may occur in the future
- **3. Payoff table** is a means of organising a decision situation, presenting the payoffs from different decisions given the various states of nature

the payoffs from different decisions given the various states of nature

Example: Flip a Coin

Bet A gives: £60, if you guess outcome correctly £20, if you don't

Bet B gives: £100, if you guess outcome correctly £0, if you don't

Key Components

- Decisions: Bet A or Bet B
- States of nature: Guess outcome correctly or not
- Payoffs: £60, £20, £100, £0

	States of Nature		
Decision	Guess correctly Not guess correctly		
Bet A	£60	£20	
Bet B	£100	£0	

The components of a decision model are: 1) Decisions

2) States of nature

3) Payoffs

	States of Nature		
Decision	<i>S</i> ₁	<i>S</i> ₂	
<i>x</i> ₁	a_{11}	<i>a</i> ₁₂	
<i>x</i> ₂	a_{21}	a_{22}	

Real Estate Investment Decision

Office building		States of Nature			
		Warehouse	Decision (Purchase)	Good Economic Conditions	Poor Economic Conditions
	2		Apartment building	\$50,000	\$30,000
			Office building	100,000	-40,000
mie		Itera	Warehouse	30,000	10,000
Economic report		report			

Decision-Making Criteria without Probabilities

- 1. Maximax Criterion
- 2. Maximin Criterion
- 3. Hurwicz Criterion
- 4. Equal Likelihood Criterion (or Laplace)

I. Maximax Criterion

The decision maker selects the decision that will result in the maximum of maximum payoffs (an optimistic criterion)

		States of Nature		
	Decision (Purchase)	Good Economic Conditions	Poor Economic Conditions	
	Apartment building	\$50,000	\$30,000	
maximum	Office building	100,000	-40,000	
	Warehouse	30,000	10,000	

• • 2. Maximin Criterion

The decision maker selects the decision that will reflect the maximum of the minimum payoffs (a pessimistic criterion)

	States of	Nature	
Decision (Purchase)	Good Economic Conditions	Poor Economic Conditions	-
Apartment building	\$50,000	\$30,000	—maximum
Office building	100,000	-40,000	
Warehouse	30,000	10,000	

• • 3. Hurwicz Criterion

- The Hurwicz criterion is a compromise between the maximax and maximin criteria
- A coefficient of optimism, a, is a measure of the decision maker's optimism
- The Hurwicz criterion multiplies the best payoff by a and the worst payoff by 1-a, for each decision, and the best result is selected

Decision	Values (if <i>a</i> = 0.40)
Apartment building	50,000(0.4) + 30,000(0.6) = 38,000
Office building	100,000(0.4) - 40,000(0.6) = 16,000
Warehouse	30,000(0.4) + 10,000(0.6) = 18,000

4. Equal Likelihood Criterion

The equal likelihood (or Laplace) criterion multiplies the decision payoff **for each state of nature** by an equal weight, thus assuming that the states of nature are equally likely to occur

Decision	Values
Apartment building	50,000(0.5) + 30,000(0.5) = 40,000
Office building	100,000(0.5) - 40,000(0.5) = 30,000
Warehouse	30,000(0.5) + 10,000(0.5) = 20,000

Dominant Decision

A **dominant** decision is one that has a **better payoff** than another decision under each state of nature

States of Nature			
Decision (Purchase)	Good Economic Conditions	Poor Economic Conditions	
Apartment building	\$50,000	\$30,000	
Office building	100,000	-40,000	
Warehouse	30,000	10,000	

No reason at all to buy a warehouse

Decision-Making Criteria with Probabilities

Expected monetary value (EMV) is computed by multiplying each decision outcome under each state of nature by the probability of its occurrence

Number of states of nature

$$EMV(x_i) = \sum_{j=1}^{n} a_{ij}P(S = s_j)$$
Probability of state of nature *j*
Decision *i*

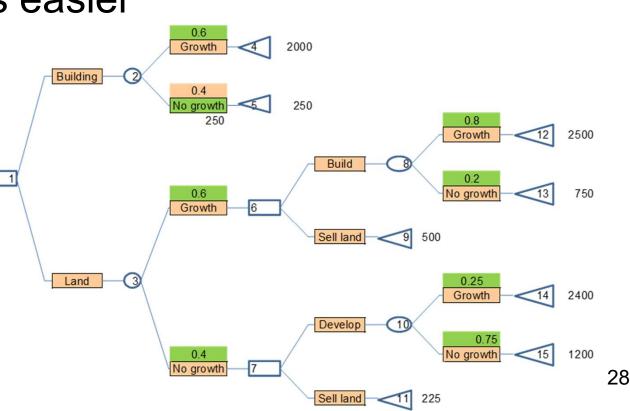
Payoff from decision *i* under state of nature *j*

Real Estate Investment Decision

Office building	States of Nature		
Apartment building Warehouse	Decision (Purchase)	Good Economic Conditions (0.6)	Poor Economic Conditions (0.4)
?	Apartment building	\$50,000	\$30,000
	Office building	100,000	-40,000
Economic report The seconomic	Warehouse	30,000	10,000

	States of Nature		
	Good	Poor	
Decision	Economic	Economic	
(Purchase)	Conditions	Conditions	
	(0.6)	(0.4)	
Apartment building	\$50,000	\$30,000	
Office building	100,000	-40,000	
Warehouse	30,000	10,000	

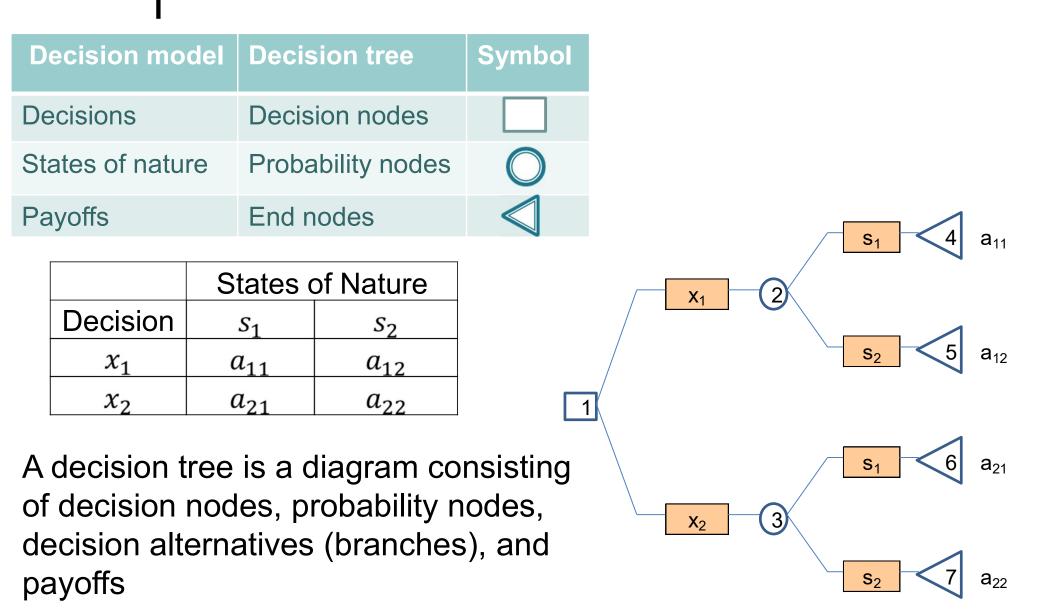
EMV(Apartment) = ?



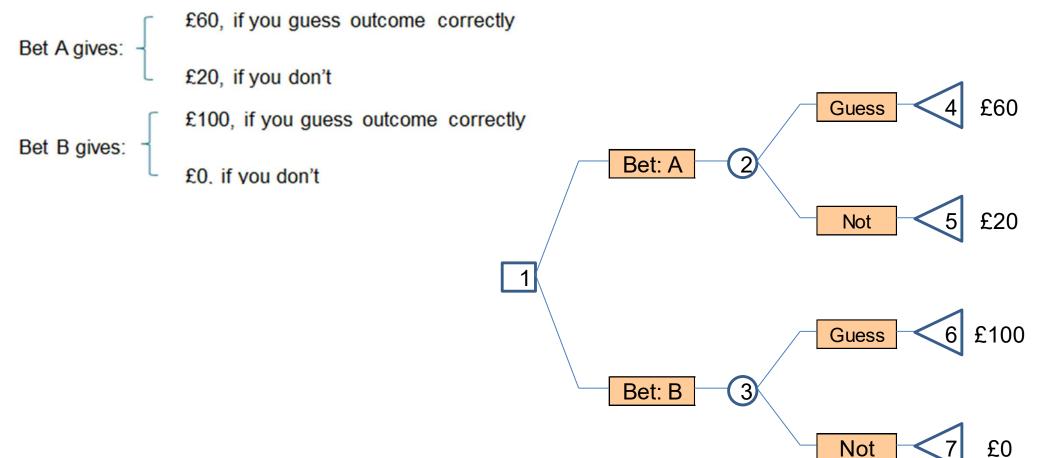
	States of Nature		
	Good	Poor	
Decision	Economic	Economic	
(Purchase)	Conditions	Conditions	
	(0.6)	(0.4)	
Apartment building	\$50,000	\$30,000	
Office building	100,000	-40,000	
Warehouse	30,000	10,000	

EMV(Apartment) = 50,000(0.6) + 30,000(0.4) = \$42,000EMV(Office) = 100,000(0.6) - 40,000(0.4) = \$44,000EMV(Warehouse) = 30,000(0.6) + 10,000(0.4) = \$22,000

Decision Trees


- Simplify complex situations
- Visualise the problem
- Make the analysis easier
- Find the solution

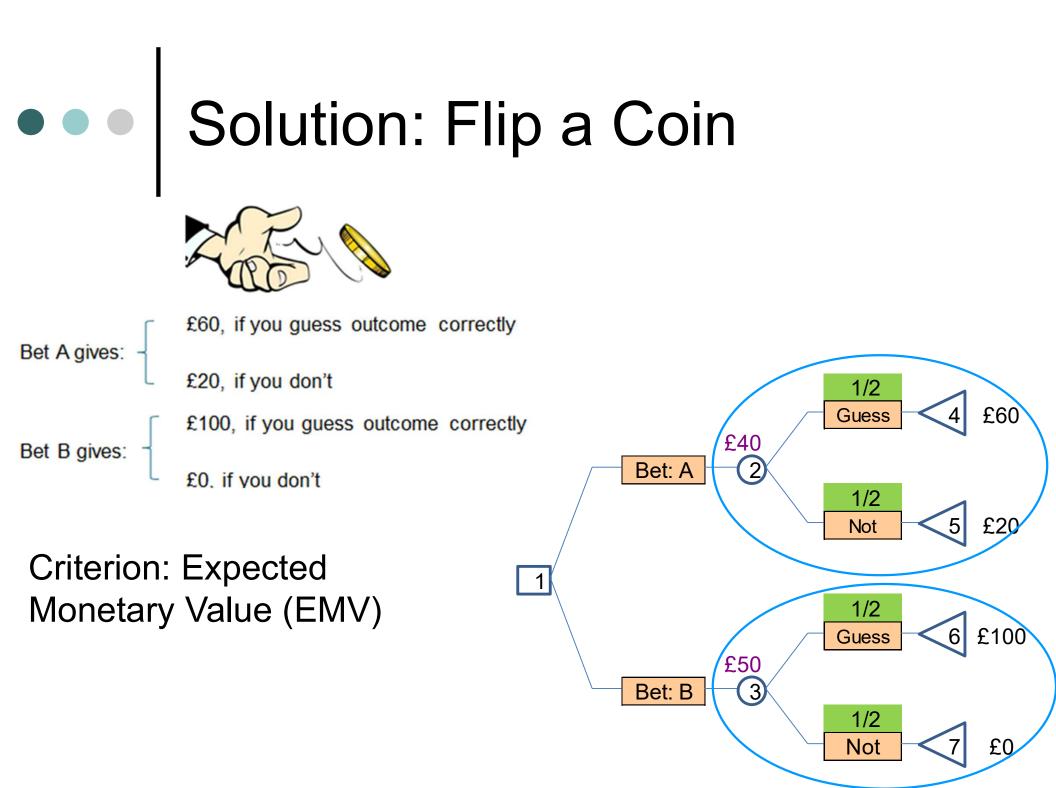
Decision Trees

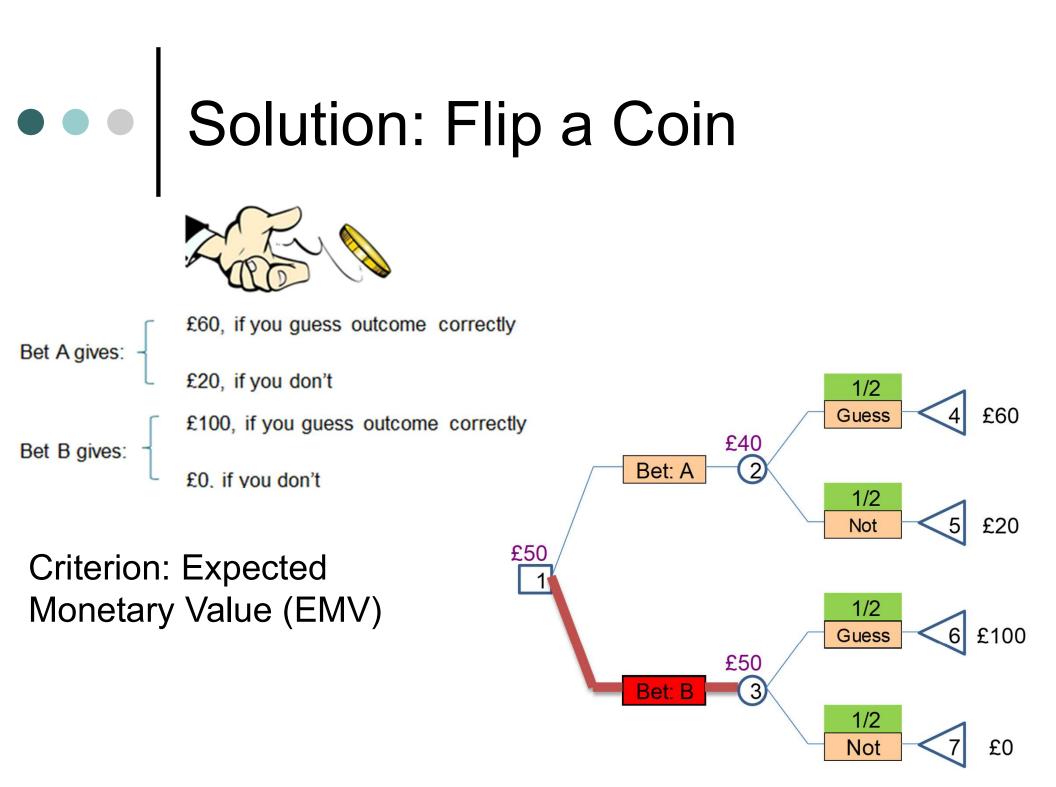

- A decision tree is a diagram consisting of the key components of decision-making models
- Recognise the key components:
 - · Decisions,
 - States of nature,
 - · Payoffs.
- Construct a decision tree
- Find the optimal decision

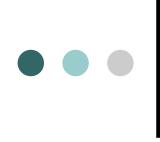
Construct a Decision Tree

Tree Representation: Flip a Coin

Expected Monetary Value: Flip a Coin

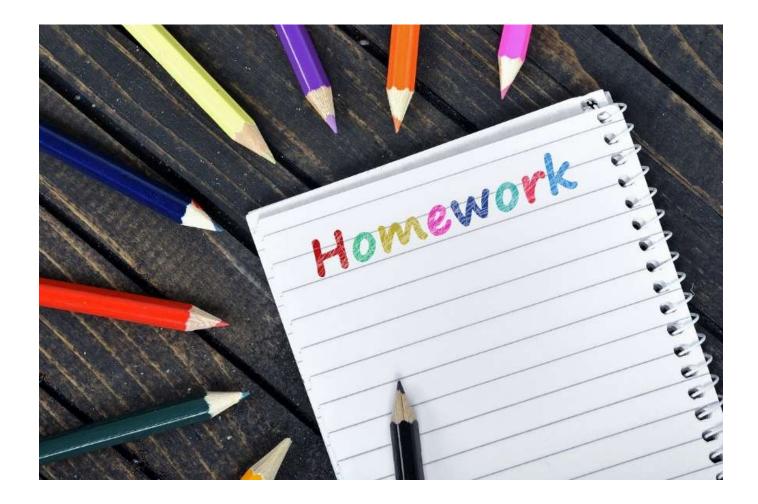

$$EMV(x_i) = \sum_{j=1}^n a_{ij} P(S = s_j)$$


	States of Nature		£40
Decision	Guess correctly	Not guess correctly	
Bet A	£60	£20	$EMV(A) = 60 * \frac{1}{2} + 20 * \frac{1}{2}$
Bet B	£100	£0	$BMV(B) = 100 * \frac{1}{2} + 0 * \frac{1}{2}$


Probability("Guess correctly") = 1/2

Probability("Not guess correctly") = 1/2

£50



• • Homework

Thompson Lumber Company

- John Thompson is the founder and president of Thompson Lumber Company, a profitable firm located in Norwich.
- The problem that John Thompson identifies is whether to expand his product line by manufacturing and marketing a new product, backyard storage sheds.
- Assuming that John decides that his alternatives are as follows:
 - build a large plant to manufacture the storage sheds,
 - build a small plant to manufacture the storage sheds, or
 - build no plant at all.

Thompson Lumber Company

- Demand for sheds will be:
 - High,
 - Moderate,
 - Low.
- Payoff table:

	States of Nature		
Decisions	High Demand	Moderate Demand	Low Demand
Build Large Plant	£200,000	£100,000	-£120,000
Build Small Plant	£90,000	£50,000	-£20,000
Do Nothing	0	0	0

Thompson Lumber Company

What will you suggest John to do based on:

- 1. Maximax Criterion
- 2. Maximin Criterion
- 3. Hurwicz Criterion (for a = 0.45)
- 4. Equal Likelihood Criterion (or Laplace)

Maximax Criterion

	States of Nature			
Decisions	High Demand	Moderate Demand	Low Demand	Max
Build Large Plant	£200,000	£100,000	-£120,000	£200,000
Build Small Plant	£90,000	£50,000	-£20,000	£90,000
Do Nothing	0	0	0	0

Maximin Criterion

	States of Nature			
Decisions	High Demand	Moderate Demand	Low Demand	Min
Build Large Plant	£200,000	£100,000	-£120,000	-£120,000
Build Small Plant	£90,000	£50,000	-£20,000	-£20,000
Do Nothing	0	0	0	0

Hurwicz Criterion (for a = 0.45)

	States of Nature			
Decisions	High Demand	Moderate Demand	Low Demand	Value
Build Large Plant	£200,000	£100,000	-£120,000	£24,000
Build Small Plant	£90,000	£50,000	-£20,000	£29,500
Do Nothing	0	0	0	0

Build Large Plant: $0.45 \times 200,000 + 0.55 \times (-120,000) = 24,000$ Build Small Plant: $0.45 \times 90,000 + 0.55 \times (-20,000) = 29,500$ Do Nothing: $0.45 \times 0 + 0.55 \times 0 = 0$

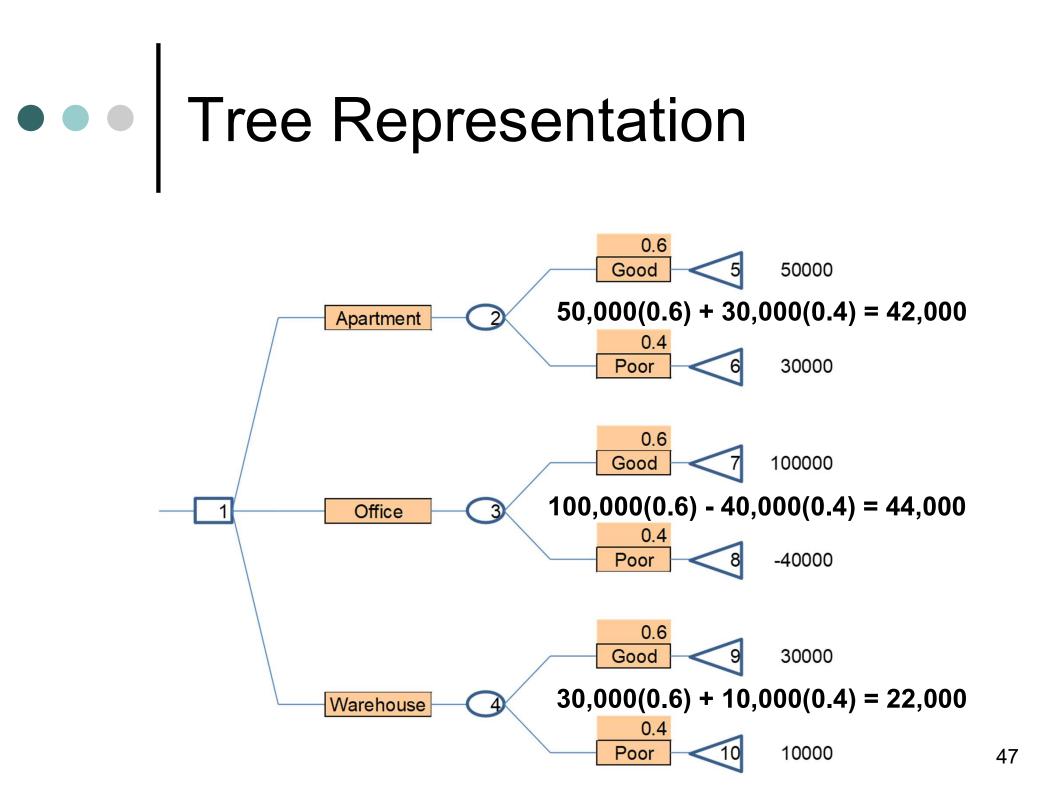
Equal Likelihood Criterion

	States of Nature			
Decisions	High Demand	Moderate Demand	Low Demand	Value
Build Large Plant	£200,000	£100,000	-£120,000	£60,000
Build Small Plant	£90,000	£50,000	-£20,000	£40,000
Do Nothing	0	0	0	0

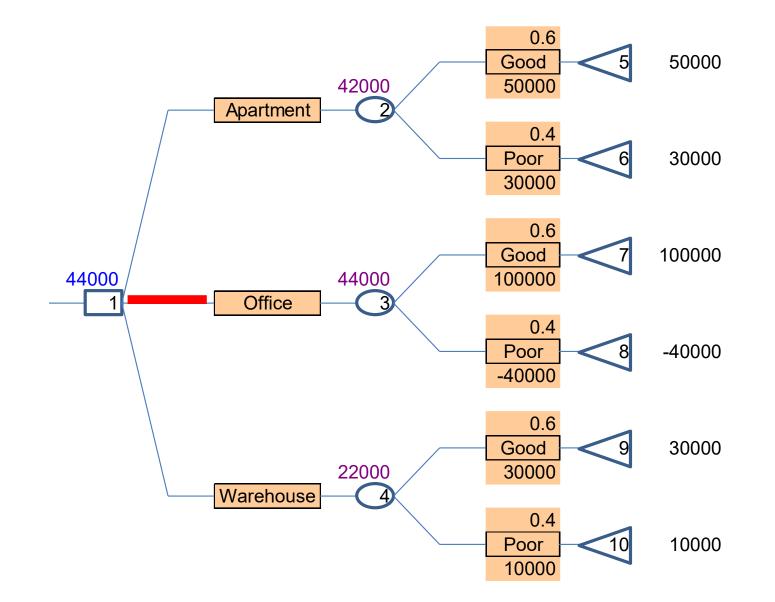
Build Large Plant: (200,000 + 100,000 - 120,000)/3 = 60,000Build Small Plant: (90,000 + 50,000 - 20,000)/3 = 40,000Do Nothing: (0 + 0 + 0)/3 = 0

Could you eliminate any of the decisions A, B, C, D, E?

	Stat	es of Natur	'e
Decision	Good	Fair	Poor
А	10	6	3
В	20	5	-1
С	15	5	0
D	12	7	5
Е	13	8	4


Homework (2) - Solution

Could you eliminate any of the decisions A, B, C, D, E?


		Stat	es of Natur	e
De	cision	Good	Fair	Poor
			-	_
	В	20	5	-1
	С	15	5	0
	D	12	7	5
	E	13	8	4

Homework (3) Real Estate Investment Decision - Tree Representation

Office building	_		States of N	ature
Apartment building	Warehouse	Decision (Purchase)	Good Economic Conditions (0.6)	Poor Economic Conditions (0.4)
?	1 Mar	Apartment building	\$50,000	\$30,000
		Office building	100,000	-40,000
report	Economic report	Warehouse	30,000	10,000
	-	Criterion: E Monetary V	xpected ⁄alue (EMV)	

Homework (4)

A corporate raider contemplates the future of a recent acquisition. Three alternatives are being considered in two states of nature. The payoff table is below

Decision	State of Nature Good Conditions (0.7)	State of Nature Poor Conditions (0.3)
Expand	\$800,000	\$500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

a) Determine the best decision by using the expected value criterion.

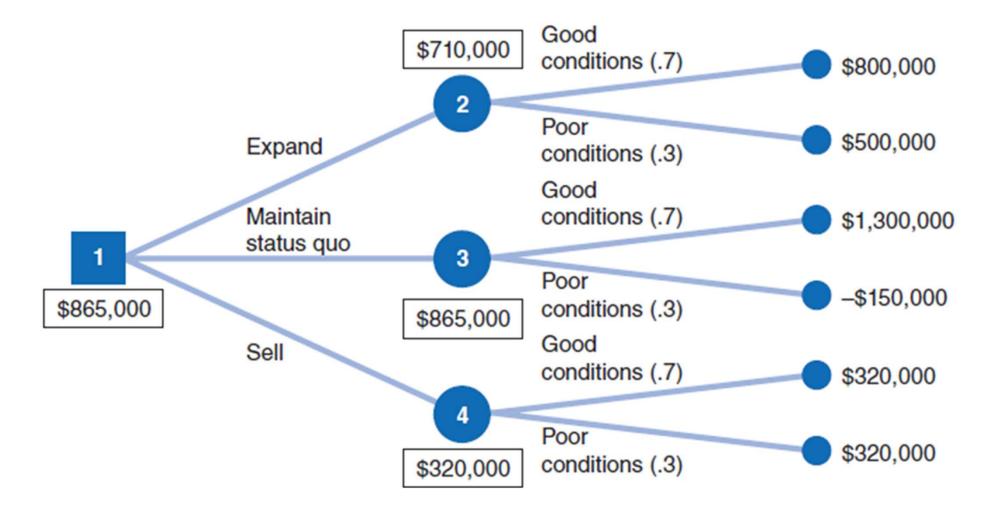
- b) Compute expected value of perfect information.
- c) Develop a decision tree with expected value at the nodes.

Homework (4) - Solution

Expected monetary value decision: Maintain status quo

Expand	800,000(0.7) + 500,000(0.3) = \$710,000
Status quo	1,300,000(0.7) - 150,000(0.3) = \$865,000
Sell	320,000(0.7) + 320,000(0.3) = \$320,000

Homework - Solution


Compute EVPI

Decision without perfect information: EMV(Maintain status quo) = \$865,000

Decision with perfect information: 1,300,000(0.7) + 500,000(0.3) = \$1,060,000

EVPI: 1,060,000 - 865,000 = \$195,000

Homework - Solution

