PROBLEM SET 7

THE ECONOMY

- two consumers, 1 and 2.
- Two goods: A and X, written in this order.
- One firm, with production function

$$
\hat{A}=F(\hat{X})=\left\{\begin{array}{ccc}
0 & \text { if } & \hat{X} \leq 1 \tag{1}\\
\hat{X}-1 & \text { if } & \hat{X}>1
\end{array}\right.
$$

- Consumer 1

Consumption set \mathbb{R}^{2} utility function $U_{1}=A_{1} X_{1}$

- Consumer 2

Consumption set \mathbb{R}^{2} utility function $U_{2}=X_{2}$

- Aggregate endowment vector [0,2]

1.compute all efficient allocations

2.Compute all competitive equilibria with transfers.

3.Does the first welfare theorem hold true?

4.Does the second welfare theorem hold true?

ANSWERS

The feasible set is

$$
\begin{equation*}
S=\left\{\left[A_{1}, X_{1}, X_{2}, \hat{X}\right] \in \mathbb{R}_{+}^{4}: A_{1} \leq F(\hat{X}), X_{1}+X_{2}+\hat{X} \leq 2\right\} \tag{2}
\end{equation*}
$$

The objective function is

$$
\begin{equation*}
\mathbb{R}_{+}^{4} \xrightarrow{f} \mathbb{R}^{2}, f\left(A_{1}, X_{1}, X_{2}, \hat{X}\right)=\left[A_{1} X_{1}, X_{2}\right] \tag{3}
\end{equation*}
$$

The point $Z_{2}=\left[A_{1}=0, X_{1}=0, X_{2}=2, \hat{X}=0\right]$ is efficient. Any efficient point with $\hat{X} \leq 1$ is Z_{2}. Hence from now on we restrict the search for efficient points to those that satisfy $\hat{X}>1$. The feasible set becomes

$$
\begin{equation*}
S=\left\{\left[A_{1}, X_{1}, X_{2}, \hat{X}\right] \in \mathbb{R}_{+}^{4}: A_{1} \leq \hat{X}-1, X_{1}+X_{2}+\hat{X} \leq 2, \hat{X} \geq 1\right\} \tag{4}
\end{equation*}
$$

We write down the first auxiliary problem, for $\theta=\left[\theta_{1}, \theta_{2}\right] \in \mathbb{R}^{2}$

$P_{1}(\theta)$
$\operatorname{MAX} U_{1}=A_{1} X_{1}$ subject to
$A_{1} \leq \hat{X}-1$
$X_{1}+X_{2}+\hat{X} \leq 2$
$\hat{X} \geq 1$
$X_{2} \geq \theta_{2}$
$\left[A_{1}, X_{1}, X_{2}, \hat{X}\right] \in \mathbb{R}_{+}^{4}$
variables $A_{1}, X_{1}, X_{2}, \hat{X}$
parameters θ_{2}

We record the global maxima of (5)

$$
G_{1}(\theta)=\left\{\begin{array}{ccc}
{\left[A_{1}=\frac{1-\theta_{2}}{2}, X_{1}=\frac{1-\theta_{2}}{2}, X_{2}=\theta_{2}, \hat{X}=\frac{3-\theta_{2}}{2}\right]} & \text { if } & 0 \leq \theta_{2}<1 \tag{6}\\
{\left[A_{1}=\frac{1}{2}, X_{1}=\frac{1}{2}, X_{2}=\theta_{2}, \hat{X}=\frac{3}{2}\right]} & \text { if } & \theta_{2} \leq 0 \\
\varnothing & \text { if } & \theta_{2} \geq 1
\end{array}\right.
$$

By (6), the maxima are essentially unique, hence we do not have to solve the auxiliary problem of consumer 2,and the set of efficient points is $\left\{Z_{2}\right\} \cup \bigcup_{\theta \in \mathbb{R}^{2}} G_{1}(\theta)$. Eliminating θ we obtain

$$
\begin{align*}
& \frac{\text { efficient points }}{\text { EFFICIENT POINTS }=\left\{Z_{2}\right\} \cup} \\
& \bigcup_{0 \leq X_{2}<1}\left\{\left[A_{1}=\frac{1-X_{2}}{2}, X_{1}=\frac{1-X_{2}}{2}, X_{2}, \hat{X}=\frac{3-X_{2}}{2}\right]\right\} \tag{7}
\end{align*}
$$

COMPETITIVE EQUILIBRIA WITH TRANSFERS

We compute competitive equilibria for all endowment vectors
$e_{1}=\left[0, \bar{X}_{1}\right] \in \mathbb{R}_{+}^{2}, e_{2}=\left[0, \bar{X}_{2}\right] \in \mathbb{R}_{+}^{2}$ such that $e_{1}+e_{2}=[0,2]$, and all profit share parameters σ_{1}, σ_{2}

1. NAME the price of each good
$p=$ price of $A, w=$ price of X. Normalize $p=1$
2.DEFINE consumer incomes

$$
\begin{equation*}
m_{i}=w \bar{X}_{i}+\sigma_{i} \Pi, i=1 . .2 \tag{8}
\end{equation*}
$$

3. SOLVE the optimization problem of the firm
profit $\Pi=p F(\hat{X})-w \hat{X}=\left\{\begin{array}{ccc}-w \hat{X} & \text { if } & \hat{X} \leq 1 \\ (1-w) \hat{X}-1 & \text { if } & \hat{X} \geq 1\end{array}\right.$
is maximized at

$$
[\hat{A}, \hat{X}, \Pi]=\left\{\begin{array}{lll}
\text { NONE } & \text { if } & w<1 \tag{9}\\
{[0,0,0]} & \text { if } & w \geq 1
\end{array}\right.
$$

By (9),the only candidate equilibrium prices are $w \geq 1$.Hence from now on

$$
\begin{equation*}
[\hat{A}, \hat{X}, \Pi]=[0,0,0], w \geq 1, m_{i}=w \bar{X}_{i} \tag{10}
\end{equation*}
$$

4. SOLVE the optimization problems of consumers
$\max U_{2}=X_{2}$ subject to
$0 \leq w X_{2} \leq m_{2}=w \bar{X}_{2}$
variables: X_{2}
$\max U_{1}=A_{1} X_{1}$
subject to
$A_{1}+w X_{1} \leq m_{1}=w \bar{X}_{1}$
$A_{1} \geq 0, X_{1} \geq 0$
variables : A_{1}, X_{1}
The solutions are

$$
\begin{align*}
& X_{2}=\bar{X}_{2} \\
& {\left[A_{1}, X_{1}\right]=\left[\frac{w \bar{X}_{1}}{2}, \frac{\bar{X}_{1}}{2}\right]} \tag{11}
\end{align*}
$$

5. SOLVE the equilibrium conditions

$$
\begin{equation*}
A_{1}=\hat{A}, X_{2}+X_{1}+\hat{X}=2 \tag{12}
\end{equation*}
$$

By (12),(11),(10) we obtain

$$
\begin{equation*}
\frac{w \bar{X}_{1}}{2}=0, \bar{X}_{2}+\frac{\bar{X}_{1}}{2}+0=2 \tag{13}
\end{equation*}
$$

The system (13) has no solutions, unless $\bar{X}_{1}=0, \bar{X}_{2}=2$ hence

$$
\begin{aligned}
& \text { equilibria with transfers } \\
& Z_{2}=\left[A_{1}=0, X_{1}=0, X_{2}=2, \hat{X}=0\right] \\
& \mathrm{EQ}\left(e_{1}, e_{2}, \sigma_{1}, \sigma_{2}\right)=\left\{\begin{array}{ccc}
\left\{Z_{2}\right\} & \mathrm{IF} & \bar{X}_{2}=2 \\
\varnothing & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

By (14) we obtain

$$
\begin{equation*}
\bigcup_{e_{1}, e_{2}, \sigma_{1}, \sigma_{2}} \mathrm{EQ}\left(e_{1}, e_{2}, \sigma_{1}, \sigma_{2}\right)=\left\{Z_{2}\right\} \tag{15}
\end{equation*}
$$

3.Does the first welfare theorem hold true?

Yes, because $\bigcup_{e_{1}, e_{2}, \sigma_{1}, \sigma_{2}} \mathrm{EQ}\left(e_{1}, e_{2}, \sigma_{1}, \sigma_{2}\right)=\left\{Z_{2}\right\} \subseteq$ EFFICIENT POINTS

4.Does the second welfare theorem hold true?

$$
\text { No, because EFFICIENT POINTS } \not \subset \bigcup_{e_{1}, e_{2}, \sigma_{1}, \sigma_{2}} \mathrm{EQ}\left(e_{1}, e_{2}, \sigma_{1}, \sigma_{2}\right)=\left\{Z_{2}\right\}
$$

In this example, there is a tradeoff between efficiency and distribution. The only efficient point that is decentralizable is Z_{2}, where consumer 2 gets everything and consumer 1 gets nothing. Efficiency cannot be separated from distribution.

