2023

References

Main Textbooks

Roger Webster: convexity. G. Giorgi, Angelo Guerraggio, J. Thierfelder: Mathematics of Optimization Hukukane Nikaido: introduction to sets and mappings in modern economics.

Convexity

Niels Lauritzen: Undergraduate convexity Valeriu Sultan: lectures on convex sets Mark Steinberger: A course in low-dimensional geometry Wayne Roberts, Dale Varberg: Convex functions Stephen Robinson: Convexity and Monotonicity in Finite-Dimensional Spaces Steven Lay: Convex Sets and their application.

Optimization

Mokhtar Bazaraa, Hanif Sherali, C.M. Shetty: Nonlinear programming Alberto Cambini, Laura Martein: Generalized Convexity and Optimization Monique Florenzano and Cuong Le Van: Finite Dimensional Convexity and Optimization

Topology

Michael Muger: Topology for the working mathematician Claude Berge: Topological spaces Kenneth Hoffman: Analysis in Euclidean space

fixed point theory

Kim Border: Fixed Point Theorems with Applications to Economics and Game Theory P. V. Subrahmanyam: Elementary Fixed-Point Theorems

Topics

Euclidean spaces

Flats, hyperplanes, affine maps, affine dimension, compactness, continuity **Convex sets**

Projection and nearest points, relative interior, Separation and support theorems.

Theorems of the alternative

Linear inequalities, Farkas, Fredholm, Gordan, stiemke, de Finetti...

Optimization

The theorems of Weierstrass, Fritz John, and Arrow-Enthoven.

Convex polytopes

Polytopes, simplices, Polyhedra, facial structure, double description, finite basis theorem.

Convex and quasi-convex functions

Continuity, differentiability, support, characterization.

Brouwer's fixed point theorem

Simplices, subdivision, Sperner's lemma.

Evaluation

Take-home exam, in-class exam.