PROBLEM 1

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be an injective linear map and *A* a closed set in \mathbb{R}^n .

1.Show that T(A) is a closed set.

2.Provide an example of a linear map T and a closed set A such that T(A) is not closed

3.Generalize to injective affine maps

PROBLEM 2

Let *A* be a closed convex set and $x \in \mathbb{R}^n$, $x \notin A$. Let $\mathbb{R}^n \xrightarrow{\Pi} A$ be the nearest point map onto *A*. By the geometric form of the Hahn-Banach theorem , there exists $p \in \mathbb{R}^n$ such that

$$\sup_{\alpha \in A} (p\alpha) = p\Pi(x) < px, |p| = 1$$
(1)

Provide a sharper version of (1) in the case that *A* is a closed convex **cone**.

PROBLEM 3

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}$ be defined by

$$T(x_1,..,x_n) = \max(x_1,..,x_n)$$
(2)

Show that *T* is a continuous nonlinear function.

PROBLEM 4

Let *A* be a set in \mathbb{R}^n . Show that

$$cl(A^{c}) = \left(\operatorname{int}(A)\right)^{c} \tag{3}$$

PROBLEM 5

The perspective map $\mathbb{R}^n \times \mathbb{R}_{++} \xrightarrow{P} \mathbb{R}^n$ is defined by

$$P(x,t) = \frac{x}{t} \tag{4}$$

Show that

1.if *A* is a convex set in $\mathbb{R}^n \times \mathbb{R}_{_{++}}$, then *P*(*A*) is a convex set in \mathbb{R}^n

2.if *B* is a convex set in \mathbb{R}^n , then $P^{-1}(B)$ is a convex set in \mathbb{R}^{n+1}