Econometrics

Maximum Likelihood Estimation: Prerequisites

November 2023 — January 2024



Maximum Likelihood Estimation

» Estimation procedure: given a probabilistic model we
estimate its parameters in a consistent with the observed
data way.

Assume to have 6 i.i.d. observations D = {y(1),y(2), ...,y(6)}. where y(i) ~ N (u,02)

2 The pdf of a single random variable is
N, "\) _ OO

(i) -
HO@ID  fOOI) = \/_exp —5(’ — ‘)]

y@) yB3) y@ »6) y6)



Mobile User


Maximum Likelihood Estimation: The likelihood function

» Consider a random sample Y = (yi1,...,yn), i.e., i.i.d
observations drawn (or following) the Gaussian distribution

N(u,0?). Notation: y; " N(u,o?).
» The likelihood of the observed data for fixed values of the
parameters s, o2 is the joint pdf of the data vector Y

u)f\ -\L’V" 2. Y) = f . 2\ - N(v;:: 2
ﬂD \Afl) (,LL,O‘ ' )_ Y()/L---,)/m,uaff )_H (y,,,u,a ) hym\}s\‘(
(_A’(\\L"}D(e/k%‘(} i=1 '/\
N g
? » The product™ahove is the product of the blue dots in the [( W"/(
previous Figure.

» Notice the notation
function of the parameters of theTmodel when is considered
as likelihood function; for given data and a grid for the values
of the parameters we can draw the Figure of the likelihood.
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Maximum Likelihood Estimation: Example
Let's assume o2 = 1 known and aim to find the MLE of p.

» The MLE of p is that value of 1 that maximizes the likelihood
L(p: Y) = TIZy NQyis i, 1)
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Figure 1: Distribution of likelihood corresponding to different 6 values
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Maximum Likelihood Estimation

We generally work with the log-likelihood and aim to solve the
maximisation problem

maxInLO Y) Iany,, ):ZInf(y,-;G

where @ € R is the vector with parameters of interest.

> In the case of the Gaussian example 8 = (u, o2) and
F(yi:0) = N(yi . 0°).



Maximum Likelihood Estimation

We generally work with the log-likelihood and aim to solve the
maximisation problem

max In L(6; ) |any,, 0)=> Inf(y;6

where @ € R is the vector with parameters of interest.

> In the case of the Gaussian example 8 = (u, o2) and

I 1y’

f(yi: 0) = N(y, /w)
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Maximum Likelihood Estimation: Procedure
» Use F.O.C. to find location of possible maximum
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Maximum Likelihood Estimation: Procedure

» Use F.O.C. to find location of possible maximum

dln L(0)
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» Use S.0.C. to ensure global maximum.
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H is the Hessian matrix which should be negative definite at 0



Maximum Likelihood Estimation: Properties

Prerequisites:

» Score function: E[al%(:;y)]

» Information matrix: /(0) = —E [%} = —E[H]



Maximum Likelihood Estimation: Properties

Prerequisites:

» Score function: E[%(:;Y)]
» Information matrix: /(0) = —E [%} = —E[H]

» Cramer-Rao lower bound:

Theorem
The variance of an unbiased estimator of a parameter 6 will always
be at least as large as

(1)) = <—E [821;92(9)]>_1 _ (E [alr:?gw)r> -1

Var(0) > (1(9))_1

ie.



Maximum Likelihood Estimation: Properties

Proposition: Under regularity conditions (on f (y|X;6)), the
MLE estimator € has the following asymptotic properties:

M1: Consistency: plim (9) = 6o
M2: Asymptotic normality: /n (QA — 90) Y (0’ </(00))—1),

n

or in practice § 2 N (90, 1(90)_1), where
1(6p) = E[—0?In L/000F].

M3: Asymptotic efficiency: 0 achieves the CRLB and it's
asymptotically efficient.

M4: Invariance: MLE of 7o = c(6p) is 5 = ¢ (9)

The underlying assumption above is that f (-) is the true
density.



