Econometrics

Maximum Likelihood Estimation: Prerequisites

November 2023 - January 2024

Maximum Likelihood Estimation

Estimation procedure: given a probabilistic model we estimate its parameters in a consistent with the observed data way.

Assume to have 6 i. i. d. observations $\mathcal{D} = \{y(1), y(2), ..., y(6)\}$, where $y(i) \sim \mathcal{N}(\mu, \sigma^2)$

The **pdf** of a single random variable is

$$f(y(i)|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \left(\frac{y(i) - \mu}{\sigma}\right)^2\right]$$

Maximum Likelihood Estimation: The likelihood function

- Consider a random sample $Y = (y_1, \ldots, y_n)$, i.e., i.i.d observations drawn (or following) the Gaussian distribution $N(\mu, \sigma^2)$. Notation: $y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$.
- ▶ The likelihood of the observed data for **fixed** values of the parameters μ , σ^2 is the joint pdf of the data vector Y

$$\begin{array}{c} \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) & \text{define} \\ \left(\bigcap_{i \in \mathcal{N}} \mathcal{N} \right) &$$

- The product above is the product of the blue dots in the previous Figure.
- Notice the notation $L(\mu, \sigma^2; Y)$ $f_Y(Y; \mu, \sigma^2)$ is seen as **function of the parameters** of the model when is considered as likelihood function; for given data and a grid for the values of the parameters we can draw the Figure of the likelihood.

Maximum Likelihood Estimation: Example

Let's assume $\sigma^2 = 1$ known and aim to find the MLE of μ .

The MLE of μ is that value of μ that maximizes the likelihood $L(\mu; Y) = \prod_{i=1}^{n} N(y_i; \mu, 1)$

Figure 1: Distribution of likelihood corresponding to different θ values

Maximum Likelihood Estimation

We generally work with the log-likelihood and aim to solve the maximisation problem

$$\max_{\boldsymbol{\theta}} \ln L(\boldsymbol{\theta}; Y) = \ln \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}) = \sum_{i=1}^{n} \ln f(y_i; \boldsymbol{\theta}),$$

where $oldsymbol{ heta} \in \mathbb{R}^k$ is the vector with parameters of interest.

▶ In the case of the Gaussian example $\theta = (\mu, \sigma^2)$ and $f(y_i; \theta) = N(y_i; \mu, \sigma^2)$.

Maximum Likelihood Estimation

We generally work with the log-likelihood and aim to solve the maximisation problem

$$\max_{\boldsymbol{\theta}} \ln L(\boldsymbol{\theta}; Y) = \ln \prod_{i=1}^{n} f(y_i; \boldsymbol{\theta}) = \sum_{i=1}^{n} \ln f(y_i; \boldsymbol{\theta}),$$

where $\theta \in \mathbb{R}^k$ is the vector with parameters of interest.

- ▶ In the case of the Gaussian example $\theta = (\mu, \sigma^2)$ and $f(\mathbf{v}_i; \boldsymbol{\theta}) = N(\mathbf{v}_i; \boldsymbol{\mu}, \sigma^2).$
- Homework: $\hat{\theta}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} y_i$ South the second of t

Maximum Likelihood Estimation: Procedure

▶ Use F.O.C. to find location of possible maximum

$$\frac{\partial \ln L(\theta; Y)}{\partial \theta} = \begin{pmatrix} \frac{\partial \ln L(\theta)}{\partial \theta_1} \\ \frac{\partial \ln L(\theta)}{\partial \theta_2} \\ \dots \\ \frac{\partial \ln L(\theta)}{\partial \theta_k} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} = \mathbf{0}_{k \times 1}$$

Maximum Likelihood Estimation: Procedure

Use F.O.C. to find location of possible maximum

$$\frac{\partial \ln L(\boldsymbol{\theta}; Y)}{\partial \boldsymbol{\theta}} = \begin{pmatrix} \frac{\partial \ln L(\boldsymbol{\theta})}{\partial \theta_1} \\ \frac{\partial \ln L(\boldsymbol{\theta})}{\partial \theta_2} \\ \dots \\ \frac{\partial \ln L(\boldsymbol{\theta})}{\partial \theta_k} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix} = \mathbf{0}_{k \times 1}$$

Use S.O.C. to ensure global maximum.

$$\frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} = \begin{pmatrix} \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_1^2} & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_1 \partial \theta_k} \\ \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_2^2} & \cdots & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_2 \partial \theta_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_k \partial \theta_1} & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_k \partial \theta_2} & \cdots & \frac{\partial^2 \ln L(\boldsymbol{\theta})}{\partial \theta_k^2} \end{pmatrix} = \boldsymbol{H}$$

H is the Hessian matrix which should be negative definite at $\hat{\theta}$

Maximum Likelihood Estimation: Properties

Prerequisites:

- ► Score function: $E\left[\frac{\partial \ln L(\theta;Y)}{\partial \theta}\right]$
- ▶ Information matrix: $I(\theta) = -E\left[\frac{\partial^2 \ln L(\theta)}{\partial \theta \partial \theta'}\right] = -E[H]$

Maximum Likelihood Estimation: Properties

Prerequisites:

- Score function: $E\left[\frac{\partial \ln L(\theta;Y)}{\partial \theta}\right]$
- ▶ Information matrix: $I(\theta) = -E\left[\frac{\partial^2 \ln L(\theta)}{\partial \theta \partial \theta'}\right] = -E[H]$
- Cramer-Rao lower bound:

Theorem

The variance of an unbiased estimator of a parameter θ will always be at least as large as

$$(I(\theta))^{-1} = \left(-E\left[\frac{\partial^2 \ln L(\theta)}{\partial \theta^2}\right]\right)^{-1} = \left(E\left[\frac{\partial \ln L(\theta)}{\partial \theta}\right]^2\right)^{-1}$$

i.e.

$$Var(\theta) \ge (I(\theta))^{-1}$$

Maximum Likelihood Estimation: Properties

Proposition: Under regularity conditions (on $f(y|X;\theta)$), the MLE estimator $\hat{\theta}$ has the following asymptotic properties:

- M1: Consistency: $p \lim (\hat{\theta}) = \theta_0$
- M2: Asymptotic normality: $\sqrt{n} \left(\hat{\theta} \theta_0 \right) \stackrel{d}{\to} N \left(0, \left(\frac{I(\theta_0)}{n} \right)^{-1} \right)$, or in practice $\hat{\theta} \stackrel{a}{\sim} N \left(\theta_0, I(\theta_0)^{-1} \right)$, where $I(\theta_0) = E\left[-\partial^2 \ln L/\partial\theta\partial\theta' \right]$.
- M3: Asymptotic efficiency: $\hat{\theta}$ achieves the CRLB and it's asymptotically efficient.
- M4: Invariance: MLE of $\gamma_0 = c(\theta_0)$ is $\hat{\gamma} = c(\hat{\theta})$.

The underlying assumption above is that $f(\cdot)$ is the true density.

