
Maximum Likelihood Estimation of Normal Linear
Regression Model

Estimation
We consider the ML estimator of β for the linear model
y = Xβ + u where u|X ∼ N (0, σ2In)
Maximum likelihood principle: what values of β and σ2 make
the observed sample most probable.
Define the likelihood function L (β, σ2) = f (β, σ|X , y) as the
joint pdf of the sample.



Given u|X ∼ N (0, σ2In), then using the fact that u = y − Xβ
we have that

f (y |X ; β, σ) = f (u (y) |X ; β, σ) |u′ (y)| = f (u (y) |X ; β, σ) ,

since u′ (y) = 1. Hence, y |X ∼ N (Xβ, σ2In).



For y ∼ MVNormal (µ,Σ):

f (y) = (2π)−n/2 |Σ|−1/2 exp
{
−1
2 (y − µ)′Σ−1 (y − µ)

}
,

in our case Σ = σ2In. So, |Σ|−1/2 = (σ2)−n/2 and µ = Xβ, so
the likelihood function is

L
(
β, σ2|y ,X

)
=

(2π)−n/2
(
σ2
)−n/2

exp
{
− 1
2σ2 (y − Xβ)′ (y − Xβ)

}
.

We define the log-likelihood function as

`
(
β, σ2

)
≡ ln L =

−n
2 ln (2π)− n

2 ln
(
σ2
)
− 1

2σ2 (y − Xβ)′ (y − Xβ) .



Note: One advantage of working with ln L is that since
L =

∏
i f (yi) =⇒ ln L =

∑
i ln f (yi), then ln L

n is a sample average and
thus can use LLN and CLT.

FOCs:

∂ ln L
∂β

= 1
2σ22X

′ (y − Xβ) = 0 =⇒ β̂ML = (X ′X )−1 X ′y

∂ ln L
∂σ2 = − n

2σ2 + 1
2σ4 (y − Xβ)′ (y − Xβ) = 0

=⇒ σ̂2
ML = û′û

n , where û = y − X β̂ML.

Notice that
σ̂2

ML = n − k
n s2 6= s2,

which implies that σ̂2
ML is biased.



Remark : Under the normality assumption u|X ∼ N (0, σ2In),
we have that β̂ML equals b the LS estimator, but σ̂2

ML = n−k
n s2

is a biased estimator of σ2.
In general, LS estimator and MLE are different.

Remark : s2 a somewhat method of moments estimator. It
does not derive from the maximisation of an objective
function. We simply adjust by the DoF to get an unbiased
estimator.

Remark : Estimation imposes the gradient equality
∂ ln L/∂θ = 0. This is called the likelihood equation. MLE is
then a root of the likelihood equation.



Score function
The score function is the vector of first partial derivatives of
the log-likelihood function, ∂ ln L/∂θ; in our case θ = (β, σ2)′.
That is, the score is just the gradient vector.
The expected value of the score function is 0, that is

E
[
∂ ln L
∂θ

]
= 0.

To verify this in the normal linear model assume that
E [u|X ] = 0. Consider

E
[
∂ ln L
∂β

]
= E

[
E
[
∂ ln L
∂β
|X
]]

= E
[
E
[( 1

2σ22X
′u
)
|X
]]

= E
[ 1
σ2X

′E [u|X ]
]

= 0



and

E
[
∂ ln L
∂σ2

]
= E

[
E
[
∂ ln L
∂β
|X
]]

= E
[
E
[(
− n
2σ2 + 1

2σ4

n∑
i=1

u2
i

)
|X
]]

= E
[(
− n
2σ2 + 1

2σ4

n∑
i=1

E
[
u2

i |X
])]

= − n
2σ2 + nσ2

2σ4 = 0



Information matrix
The information matrix is minus the expectation of the
Hessian matrix, evaluated at the true parameters.

I (θ) ≡ −E
[
∂2 ln L
∂θ∂θ′

]

In our linear normal model, we have θ = (β, σ2)′.

∂2 ln L
∂β∂β′

= ∂

∂β′

(
∂ ln L
∂β

)

= ∂

∂β′

( 1
2σ22X

′ (y − Xβ)
)

= −X ′X
σ2

=⇒ E
[
−∂

2 ln L
∂β∂β′

|X
]

= X ′X
σ2 .



Also,

∂2 ln L
∂β∂σ2 = ∂

∂σ2

(
∂ ln L
∂β

)

= ∂

∂σ2

( 1
σ2X

′u
)

= −X ′u
σ4

=⇒ E
[
− ∂

2 ln L
∂β∂σ2 |X

]
= E [X ′u|X ]

σ4 = 0
σ4 = 0.



Finally,

∂2 ln L
∂ (σ2)2 = ∂

∂σ2

(
− n
2σ2 + 1

2σ4u
′u
)

= n
2σ4 − 2 1

2σ6 ε
′ε

=⇒ E
[
− ∂

2 ln L
∂ (σ2)2 |X

]
= −E

[ n
2σ4 − 2 1

2σ6 ε
′ε|X

]

= − n
2σ4 + 2nσ

2

2σ6

= n
2σ4 .



The information matrix is

I (β, σ|X ) =
[

X ′X
σ2 0k×1

01×k
n

2σ4

]
.



Variance of score function
The variance of the score is:

Var
[
∂ ln L
∂θ

]
= E

[
∂ ln L
∂θ

(
∂ ln L
∂θ

)′]
− E

[
∂ ln L
∂θ

]
︸ ︷︷ ︸

=0

E
[(
∂ ln L
∂θ

)′]
︸ ︷︷ ︸

=0

= E
[
∂ ln L
∂θ

(
∂ ln L
∂θ

)′]
,

Note that the information matrix also equals the variance of
the score and in fact we have the result called the information
matrix equality

Var
[
∂ ln L
∂θ

]
= −E

[
∂2 ln L
∂θ∂θ′

]
= I (θ) .



Remark : The result that

Var
[
∂ ln L
∂θ

]
= −E

[
∂2 ln L
∂θ∂θ′

]

depends on the assumption that we have specified the true
density. We could test whether we have specified the true
density by measuring the scaled distance of the two.



CR-Lower Bound (CRLB)

Theorem[CR Lower bound]: If E
[
θ̂
]

= θ then
Var

[
θ̂
]
≥ I (θ)−1. I (θ)−1 is called the Cramèr-Rao Lower

Bound.
Remark : ML uses more information than LS since we know
the the pdf. LS is an curve-fitting approach, of
semi-parametric nature.

β̂ML = b =⇒ b is Best Unbiased Estimator
The CRLB is

I (β, σ|X )−1 =
[
σ2 (X ′X )−1 0k×1

01×k
2σ4

n

]
.



Remark : Therefore, β̂ML = b attains the CR lower bound.
That is, under the linear normal model the LS estimator b is
the best among the class of unbiased estimators. This is
stronger result than GM result according to which b is the
best among the class of unbiased and linear estimators. In our
case, we obtain the stronger result for the LS estimator b
under the error normality assumption.



Remark : There does not exist an unbiased estimator of σ2

that attains the CR lower bound. To see that s2 does not
attain the bound suppose u|X ∼ N (0, σ2In). Then,

û′û
σ2 ∼ χ2

n−k =⇒ (n − k) s2

σ2 ∼ χ2
n−k .

Then,

E
[

(n − k) s2

σ2

]
= n − k =⇒ E

[
s2
]

= σ2

Var
[

(n − k) s2

σ2

]
= 2 (n − k) =⇒ Var

[
s2
]

= 2σ4

n − k >
2σ4

n .

And,
Var

[
σ̂2

ML

]
= 2 (n − k)

n2 σ4.



Properties of ML estimator

Definition: An estimator θ̂ is said to be asymptotically
efficient if it is CAN (consistent, asymptotically normal) and
there is no other estimator in this class with smaller
variance/covariance matrix. That is, Var

[
θ̃
]
− Var

[
θ̂
]
is

positive semi-definite for any θ̃ in the CAN class.



Proposition: Under regularity conditions (on f (y |X ; θ)), the
MLE estimator θ̂ has the following asymptotic properties:
M1: Consistency: p lim

(
θ̂
)

= θ0

M2: Asymptotic normality:
√
n
(
θ̂ − θ0

) d→ N
(
0,
(

I(θ0)
n

)−1
)
,

or in practice θ̂ a∼ N
(
θ0, I (θ0)−1

)
, where

I (θ0) = E [−∂2 ln L/∂θ∂θ′].
M3: Asymptotic efficiency: θ̂ achieves the CRLB and it’s

asymptotically efficient.
M4: Invariance: MLE of γ0 = c (θ0) is γ̂ = c

(
θ̂
)
.

The underlying assumption above is that f (·) is the true
density.



Hypothesis tests

Consider the maximum likelihood estimation of a parameter θ
and a test of the hypothesis H0 : c (θ) = 0. The logic of the 3
different test bases are illustrated in the next graph. But this
testing bases extent to other estimation procedures, such as
the LS.



Figure: Three Bases for Hypothesis Tests



1) LR test: If c (θ) = 0, the imposing it should not lead to a
large reduction in the log-likelihood function. So, we test
the difference ln LU − ln LR .

This requires that we estimate both models. The F-test with
SSRU and SSRR is the LR form of the F-test.
2) Wald test: If the restriction is valid, then c

(
θ̂MLE

)
should

be close to zero because MLE is consistent. Therefore,
the test is based on c

(
θ̂MLE

)
and we reject the

hypothesis if this value is significantly different from zero.
This requires that we estimate only the unrestricted model and
evaluate the restriction at the unrestricted estimator value. For
example, if c (θ) = Rβ − r = 0, then as we have seen above
we can express the F-test in terms of c

(
θ̂
)

= Rb − r = 0,
which is the Wald representation of the F-test.



3) Lagrange Multiplier (LM) or Rao’s Score test: If the
restriction is valid, then the restricted estimator should be
near the point that maximises the log-likelihood function.
Therefore, the slope of the log-likelihood function
∂ ln L/∂θ should be near zero at the restricted estimator.
The test is based on the slope of the log-likelihood at the
point where the function is maximised subject to the
restriction.

These three tests are asymptotically equivalent under the null
hypothesis, but they can behave differently in a small sample.

• All LR, LM (Score), Wald test statistics asymptotically follow

χ2(J), J = number of restrictions under H0



Suppose H0 : c (θ) = q.
Theorem:[LR test] λ = LR/LU . We have
−2 lnλ = 2 (ln LU − ln LR) d−→

H0
χ2

J .

Theorem:[Wald test] Wald statistic

w =
[
c
(
θ̂
)
− q

]′ (
AVar

[
c
(
θ̂
)
− q

])−1 [
c
(
θ̂
)
− q

] d−→
H0

χ2
J ,

where

AVar
[
c
(
θ̂
)
− q

]
= C AVar

[
θ̂
]
C ′,

C = ∂c (θ)
∂θ

or in practice
ˆAVar

[
c
(
θ̂
)
− q

]
= Ĉ AVar

[
θ̂
]
Ĉ ′,

Ĉ = ∂c (θ)
∂θ
|θ=θ̂.



For the LM test, write the Lagrangian

ln L∗ (θ) = ln L (θ) + λ′ (c (θ)− q)

FOC (define C = ∂c(θ)
∂θ

):

∂ ln L∗ (θ)
∂θ

= ∂ ln L (θ)
∂θ

+ C ′λ = 0

∂ ln L∗ (θ)
∂λ

= c (θ)− q = 0,

If the restrictions are valid, then imposing them will not lead to
a significant difference in the maximised value of the likelihood
function. In the FOC, this means that the second term in the
derivative vector should be small. In particular, λ will be small.
We could test this, i.e. H0 : λ = 0, which leads to the ML test.



An equivalent and simpler formulation is the following. At the
restricted maximum

∂ ln L
(
θ̂R
)

∂θ
= −Ĉ ′λ̂ ≡ ĝR .

If the restrictions are valid, within the range of sampling
variability, then ĝR = 0. That is, the derivatives of the
log-likelihood evaluated at the restricted parameter will be
approximately zero.1 The vector of first derivatives is the score
function. The variance of the score function is the information
matrix, which we use to find the asymptotic covariance matrix
of the MLE.
Theorem:[LM test] LM test

LM =
∂ ln L

(
θ̂R
)

∂θ̂R

′ (I (θ̂R
))−1

∂ ln L
(
θ̂R
)

∂θ̂R

 d−→
H0

χ2
J .

1Below we do this for the linear regression model, where the score
function is g = X ′ε.



F-test as an LR test
The LR test of the null hypothesis compares LU , the
maximised likelihood of the unrestricted model, and LR , the
maximised likelihood of the restricted model.
If the LR λ ≡ LU/LR is too large then the null might be wrong.
The F-test of the H0 : Rβ = r is an LR test since it’s a
monotone transformation of λ.

LR =
(2π

n

)−n/2
exp

(
−n
2

)
SSR−n/2

R

LU =
(2π

n

)−n/2
exp

(
−n
2

)
SSR−n/2

U ,



Hence

λ ≡
(
SSRU

SSRR

)−n/2

⇐⇒ λn/2 ≡
(
SSRR

SSRU

)

and

F = (SSRR − SSRU) /J
SSRU/ (n − K ) =

(
SSRR
SSRU

− 1
)
/J

1/ (n − K )

=

(
λn/2 − 1

)
/J

1/ (n − K )

so that two tests are the same.



Quasi-Maximum Likelihood
Without the normality assumption β̂ML may not be the LS
estimator or that the LS estimator achieves the CR lower
bound. But the LS estimator b is a quasi-ML-estimator, an
estimator that maximises a misspecified likelihood function,
which is assumed to be normal.



Generalised Least Squares

Generalised Linear Regression Model
We extend the linear regression model by allowing a more
general form for the variance/covariance matrix of the error
term. Specifically, we consider the (data generating) model

y = Xβ + u, E [uu′|X ] = σ2V (X ) 6= σ2In;

where V (X ) is a symmetric and positive definite matrix and a
function of X , i.e. non-spherical errors. We write V for
convenience.



Example:
Under heteroskedasticity with no autocorrelation,

V =


h1 0 · · · 0
0 h2 · · · 0
... . . . ...
0 0 ... hn

 6= In.

Under autocorrelation with homoskedasticity,

V =


1 ρ1 ρ2 · · · ρn−1
ρ1 1 ρ1 · · · ρn−2
... ... . . . ...

ρn−1 · · · ρ2 ρ1 1

 6= In.



Estimation: GLS Estimator
Consequences for Least Squares estimator: Not BLUE
Under the assumption of strict exogeneity (zero conditional
mean), E [ε|X ] = 0, the LS estimator b = (X ′X )−1 X ′y is
unbiased and consistent; E [b] = E [b|X ] = β.
The general form of the (conditional) variance/covariance
matrix of the the LS estimator b is

Var [b|X ] = E
[
(b − E [b|X ]) (b − E [b|X ])′ |X

]
= E

[
(b − β) (b − β)′ |X

]
= E

[(
(X ′X )−1 X ′u

) (
(X ′X )−1 X ′u

)′
|X
]

= E
[
(X ′X )−1 X ′uu′X (X ′X )−1 |X

]
= (X ′X )−1 X ′E [uu′|X ]X (X ′X )−1

=⇒ Var [b|X ] = σ2 (X ′X )−1 X ′VX (X ′X )−1
.



Notice that V = In =⇒ Var [b|X ] = σ2 (X ′X )−1. But in
general this is not the case. Therefore, using
se (bk) =

√
s2
[
(X ′X )−1

]
kk

is not valid; it’s biased and

inconsistent. Similarly, using se (bk) =
√
s2
[
(X ′X )−1

]
kk

implies that the t-statistic does not, under normality, follow
t-distribution or does not converge to the normal distribution
asymptotically. The same result holds for the F-statistic and
Wald-statistic.

LS is Not BLUE:
Since V 6= In violates the GM theorem premises; the GM
theorem requires Var [u|X ] = σ2In. Hence, b it’s not MVUE,
in the framework of MLE.


