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Why Bayesian econometrics?

▶ What does an econometrician do? i) Estimate parameters in a
model (e.g. regression coefficients), ii) Compare different
models (e.g. hypothesis testing), iii) Prediction

▶ Bayesian econometrics do all these based on a few simple
rules of probability.
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Bayesian Statistics

Key idea of Bayesian approach: The only satisfactory
representation of uncertainty is through probability theory.

▶ The Bayesian receipt: Whatever is unknown and you want
to estimate call it θ, whatever is known call it y . Then use
probability theory to calculate p(θ|y).

▶ Main difference with classical statistics (econometrics): θ
is a random quantity/variable and not just a number as in the
classical approach.

▶ Bayesian estimation relies on f (θ|y) the distribution of θ given
the observed data, whereas in the classical approach we rely
on f (y |θ).

▶ Before we compute f (θ|y) we need to define f (θ) which is
called the prior distribution.
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Bayesian Statistics

Key idea of Bayesian approach: The only satisfactory
representation of uncertainty is through probability theory.
▶ The Bayesian receipt: Whatever is unknown and you want

to estimate call it θ, whatever is known call it y . Then use
probability theory to calculate p(θ|y).
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is a random quantity/variable and not just a number as in the
classical approach.
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Prior distribution
The prior distribution is the core of Bayesian statistics and is
considered as the main advantage of those they prefer Bayesian
estimation or the main disadvantage for the others.
▶ When we wish to estimate θ almost always we have some

knowledge or belief for its possible values.

▶ Assume for example one looks outside from the window and
sees a wooden object with green leaves.

▶ There are two possible assumptions: the object is a tree or the
object is a postman.

▶ We all think that it is a tree but let’s see how this is
translated in terms of probabilities: Let A the event that we
see the wooden object, B1 we consider as a tree and B2 we
consider as a post man.

▶ We choose B1 because intrinsically we calculate
f (A|B1) > f (A|B2). We need thus to include these intrinsic
calculations in our estimation procedure.
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Prior distribution

More intuition: In the following examples we are interested in
estimating the probability of success.

1. We ask 10 times a woman from England to guess if there is
milk in her tea and she gives 10 correct answers.

2. An experiences musician claims that he can classify a melody
if is from Mozart or Vivaldi and he gives 10 correct answers.

3. A drunk man claims that he can guess between toss or coin
and gives 10 correct answers.

In all the three cases the data suggest to estimate p̂ = 1 but do we
“trust” the data in all the three cases?
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The Bayes theorem

The main ingredient of Bayesian estimation is the Bayes theorem

P(A|B) =
P(B|A)P(A)

P(B)
.

Or more generally:

P(Ci |B) =
P(B|Ci)P(Ci)∑J

j=1 P(B|Cj)P(Cj)
,

where C1,C2, . . . ,CJ events that form a partition of a sample
space Ω.
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The Bayes theorem: Example
You are a financial analyst at an investment bank knowing that
▶ 60% of the publicly-traded companies increased their share

price by more than 5% in the last 3 years replaced their CEO.
▶ For companies that didn’t replace their CEO the proportion is

35%.
▶ Knowing that the probability that the stock prices grow by

more than 5% is 4%, find the probability that the shares of a
company that fires its CEO will increase by more than 5%.

Figure: Probability that the shares of a company that replaces its CEO
will grow by more than 5%.
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Advanced Bayesian estimation

Basic steps to estimate the unknown θ based on data y :
1. Choose a likelihood model f (y |θ)
2. Choose a prior distribution
3. From Bayes theorem find the posterior distribution f (θ|y)
4. Make statistical inference. For example

▶ Set θ̂ to be the mean of f (θ|y).
▶ Set the 2.5% and 97.5% to form a credible (analogous to

confidence) interval of α = 5%.
4.⋆

f (θ|y) = f (θ)f (y |θ)∫
f (θ)f (y |θ)dθ

θ can be either continuous or discrete and f (θ) is pdf or pmf
respectively.
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Bayesian estimation: The denominator

The denominator of Bayes theorem is an integral wrt θ and thus
for a given dataset y it does not depend on θ. Therefore, the
Bayes theorem is also useful in the for

f (θ|y) ∝ f (θ)f (y |θ),

which are the only quantities in the posterior that depend on θ.
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Choosing the prior distribution

Remark: f (θ) doesn’t depend on data.
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Bayesian predictions
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Bayesian Model Comparison
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Bayesian Model Comparison
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Bayesian Model Comparison
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Bayesian Model Comparison
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Advanced Bayesian Estimation: Example
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Example: The likelihood model
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Example: The prior
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Example: Prior Elicitation
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Example: Prior Elicitation - Non-Informative
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Example: The posterior
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Example: The posterior
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Bayesian Computation
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Bayesian Computation
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Bayesian Computation
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Bayesian Computation
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Bayesian Computation


