Linear Algebra Methods for Data Mining

Saara Hyvönen, Saara. Hyvonen@cs.helsinki.fi

Spring 2007

The Singular Value Decomposition (SVD)

Matrix decompositions

 We wish to decompose the matrix A by writing it as a product of two or more matrices:

$$\mathbf{A}_{m \times n} = \mathbf{B}_{m \times k} \mathbf{C}_{k \times n}, \quad \mathbf{A}_{m \times n} = \mathbf{B}_{m \times k} \mathbf{C}_{k \times r} \mathbf{D}_{r \times n}$$

- ullet This is done in such a way that the right side of the equation yields some useful information or insight to the nature of the data matrix ${\bf A}$.
- Or is in other ways useful for solving the problem at hand.

Example (SVD):

customer \ day	Wed	Thu	Fri	Sat	Sun
ABC Inc.	1	1	1	0	0
CDE Co.	2	2	2	0	0
FGH Ltd.	1	1	1	0	0
NOP Inc.	5	5	5	0	0
Smith	0	0	0	2	2
Brown	0	0	0	3	3
Johnson	0	0	0	1	1

$$\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{pmatrix} = \begin{pmatrix}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{pmatrix} \times \begin{pmatrix}
9.64 & 0 \\
0 & 5.29
\end{pmatrix} \times \begin{pmatrix}
9.64 & 0 \\
0 & 5.29
\end{pmatrix} \times \begin{pmatrix}
0.58 & 0.58 & 0.58 & 0 & 0 \\
0 & 0 & 0 & 0.71 & 0.71
\end{pmatrix}$$

The Singular Value Decomposition

• Any $m \times n$ matrix **A**, with $m \ge n$, can be factorized

$$\mathbf{A} = \mathbf{U} egin{pmatrix} \mathbf{\Sigma} \\ \mathbf{0} \end{pmatrix} \mathbf{V}^T,$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal, and $\mathbf{\Sigma} \in \mathbb{R}^{n \times n}$ is diagonal:

$$\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n), \quad \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0.$$

• "Skinny version": $\mathbf{A} = \mathbf{U}_1 \mathbf{\Sigma} \mathbf{V}^T$, $\mathbf{U}_1 \in \mathbb{R}^{m \times n}$.

Singular values and singular vectors

- The diagonal elements σ_j of Σ are the **singular values** of the matrix \mathbf{A} .
- The columns of U and V are the left singular vectors and right singular vectors respectively.
- Equivalent form of SVD:

$$\mathbf{A}\mathbf{v}_j = \sigma_j \mathbf{u}_j,$$

$$\mathbf{A}^T \mathbf{u}_i = \sigma_j \mathbf{v}_j.$$

Outer product form:

Start from skinny version of SVD:

$$\mathbf{A} = \mathbf{U}_{1} \mathbf{\Sigma} \mathbf{V}^{T} = (\mathbf{u}_{1} \ \mathbf{u}_{2} \dots \mathbf{u}_{n}) \begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \vdots \\ \sigma_{n} \mathbf{v}_{n}^{T} \end{pmatrix}$$

$$= (\mathbf{u}_{1} \ \mathbf{u}_{2} \dots \mathbf{u}_{n}) \begin{pmatrix} \sigma_{1} \mathbf{v}_{1}^{T} \\ \sigma_{2} \mathbf{v}_{2}^{T} \\ \vdots \\ \sigma_{n} \mathbf{v}_{n}^{T} \end{pmatrix} = \sum_{i=1}^{n} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \dots$$

to get the outer product form

$$\mathbf{A} = \sum_{i=1}^{n} \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

This is a sum of rank one matrices!! (Each term $\sigma_i \mathbf{u}_i \mathbf{v}_i^T$ in the sum is a rank one matrix).

Example

0

0

[U,S,V] = svd(A,0)

$$S = 5.7794 \qquad 0 \\ 0 \qquad 0.7738$$

Rank deficient case

```
%A is not of full rank
%i.e. the columns of A are not linearly independent
A(:,3)=A(:,1)+A(:,2)*0.5
A=
     1.0000
               1.0000
                         1.5000
     1.0000
               2.0000
                         2.0000
      1.0000 3.0000 2.5000
      1.0000 4.0000
                         3.0000
[U,S,V] = svd(A,0)
    -0.2612
              -0.7948 0.0985
IJ=
    -0.4032 \quad -0.3708
                         0.2703
    -0.5451 0.0533 -0.8360
    -0.6871 0.4774
                         0.4672
```

Matrix approximation

Theorem. Let $\mathbf{U}_k = (\mathbf{u}_1 \ \mathbf{u}_2 \ ... \ \mathbf{u}_k)$, $\mathbf{V}_k = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_k)$ and $\mathbf{\Sigma}_k = \mathsf{diag}(\sigma_1, \sigma_2, ..., \sigma_k)$, and define

$$\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T.$$

Then

$$\min_{\mathsf{rank}(\mathbf{B}) \le k} \|\mathbf{A} - \mathbf{B}\|_2 = \|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}.$$

What does this mean?

ullet It means, that the best approximation of rank k for the matrix ${f A}$ is

$$\mathbf{A}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T.$$

- Useful for
 - compression
 - noise reduction
- It also means, that we can estimate the "correct" rank by looking at the singular values...

Example: noise reduction

Assume **A** is a low rank matrix plus noise: $\mathbf{A} = \mathbf{A}_k + \mathbf{N}$. Then typically singular values of **A** have the following behaviour:

SVD is useful for:

- compression
- noise reduction
- finding "concepts" or "topics" (text mining/LSI)
- data exploration and visualizing data (e.g. spatial data/PCA)
- classification (of e.g. handwritten digits)

SVD appears under different names:

- Principal Component Analysis (PCA)
- Latent Semantic Indexing (LSI)/Latent Semantic Analysis (LSA)
- Karhunen-Loeve expansion/Hotelling transform (in image processing)

Example: Classification of handwritten digits

Digitized images, 28×28 , grayscale. Task: classify unknown digits.

Digitized images, 28×28 , grayscale.

The image can also be considered as a function of two variables: c=c(x,y), where c is the intensity of the color.

- The image of one digit is a matrix (of size 28×28).
- Stacking all the columns of each image matrix above each other gives a vector (of size 784×1).
- The image vectors can then be collected into a data matrix (of size $784 \times N$, where N is the number of images).
- Distance between images: Euclidean distance in \mathbb{R}^{784} or cosine distance.

Naive method

Given a data base of handwritten digits (training set), compute the mean (centroid) of all digits of one kind. Centroid of threes:

Naive method

- Given a data base of handwritten digits (training set), compute the mean (centroid) of all digits of one kind.
- Compare an unknown digit (from the test set) with all means, and classify as the digit that is closest (using e.g. euclidean or cosine distance).
- Good results for well-written digits, worse for bad digits.
- does not use any information about the variation of the digits of one kind.

Results using the naive method

- Success rate around 75%. Good... but not good enough!
- For the homework set (training set=4000, test set size = 2000) the number of misclassifications per digit look like this:

```
digit 0 1 2 3 4 5 6 7 8 9 missed 25 9 82 51 42 51 47 49 76 49 total 175 234 219 207 217 179 178 205 192 194
```

Some digits are easier to recognize than others.

SVD

ullet Any matrix ${\bf A}$ can be written as a sum of rank 1 matrices:

$$\mathbf{A} = \sum_{i=1}^{n} \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

- Consider a data matrix \mathbf{A} , where each column of \mathbf{A} is one image of a digit. Column j: $\mathbf{a}_j = \sum_{i=1}^n (\sigma_i v_{ij}) \mathbf{u}_i$.
- \bullet \mathbf{u}_j is the same size as \mathbf{a}_j . We can fold it back to get an image.
- ullet We can think of the left singular vectors ${f u}_j$ as "singular images".

Compute the SVD of the matrix fo one digit (=3), (392 images). Singular values and right singular vectors \mathbf{v}_i :

Left singular vectors or "singular images" \mathbf{u}_j :

Classification

Let z be and unknown digit, and consider the least squares problem (for some predetermined k):

$$\min_{\alpha_j} \|\mathbf{z} - \sum_{j=1}^k \alpha_j \mathbf{u}_j\|.$$

Then, if z is the same digit as that represented by the u_j , then the residual should be small. I.e. z should be well approximated by some linear combination of the u_j .

Principal components (SVD) regression

Assume

- Each digit is well characterize by a few of the first "singular images" of its own kind.
- Each digit is NOT characterized very well by a few of the first "singular images" of some other digit.

We can use this to classify unknown digits:

Algorithm

Training:

• For the training set of digits, compute the SVD of each set of digits of one kind. We get 10 sets of "singular images", one for each digit.

Classification:

1. Take an unknown digit z. For each set of singular images u_j , solve the least squares problem

$$\min_{\alpha_j} \|\mathbf{z} - \sum_{j=1}^k \alpha_j \mathbf{u}_j\|.$$

and compute the relative residual $\|\mathbf{r}\|/\|\mathbf{z}\|$, where \mathbf{r} is the residual.

2. Classify \mathbf{z} to be the digit corresponding to the smallest relative residual. Or: find the smallest residual \mathbf{r}_0 and the next smallest residual \mathbf{r}_1 . If $\mathbf{r}_0 \leq \tau \mathbf{r}_1$, where τ is the tolerance, then classify, else give up.

Results

To be reported by you in you homework assignment.

Performance better: success rate over 90%.

Still not up to the best (more complicated) methods.

Nice test digit 3 in basis 3

Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 3-basis:

Relative residual in least squares problem for nice test digit 3 in 3-basis:

Nice test digit 3 in basis 5

Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 5-basis:

Relative residual in least squares problem for nice test digit 3 in 5-basis:

Ugly test digit 3 in basis 3

Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 3-basis:

Relative residual in least squares problem for ugly test digit 3 in 3-basis:

Ugly test digit 3 in basis 5

Original image of digit and approximations using 1,3,5,7 and 9 basis vectors in 5-basis:

Relative residual in least squares problem for ugly test digit 3 in 5-basis:

Conclusion: do not use many terms in the basis.

The 100th singular images of all vectors.

Work

- Training: compute SVD's of 10 matrices of dimension $m^2 \times n_i$, each image of a digit is a $m \times m$ matrix; $n_i =$ number of training digits i.
- Solve 10 least squares problems; multiply test digit by 10 matrices with orthogonal columns.

Fast test phase! Suitable for real time computations!

Test results

Correct classification as a function fo the number of basis vectors for each digit vector:

number of vectors	1	2	4	6	8	10
	76	82	88	90	90	91.3

How to improve performance?

Ugly digits are difficult to handle automatically.

The Singular Value Decomposition

• Any $m \times n$ matrix **A**, with $m \ge n$, can be factorized

$$\mathbf{A} = \mathbf{U} egin{pmatrix} \mathbf{\Sigma} \\ \mathbf{0} \end{pmatrix} \mathbf{V}^T,$$

where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ are orthogonal, and $\mathbf{\Sigma} \in \mathbb{R}^{n \times n}$ is diagonal:

$$\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n), \quad \sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0.$$

• "Skinny version": $\mathbf{A} = \mathbf{U}_1 \mathbf{\Sigma} \mathbf{V}^T$, $\mathbf{U}_1 \in \mathbb{R}^{m \times n}$.

We can write

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T,$$

so we get

$$\mathbf{A}^T \mathbf{A} \mathbf{V} = \mathbf{V} \mathbf{\Sigma}^2.$$

Let \mathbf{v}_j be the j^{th} column of \mathbf{V} . Write the above column by column:

$$\mathbf{A}^T \mathbf{A} \mathbf{v}_j = \sigma_j^2 \mathbf{v}_j.$$

Equivalently, we can write $\mathbf{A}\mathbf{A}^T = ... = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$ to get (\mathbf{u}_j) is the j^{th} column of \mathbf{U})

$$\mathbf{A}\mathbf{A}^T\mathbf{u}_j = \sigma_j^2\mathbf{u}_j.$$

Singular values and vectors

- The singular values are the nonnegative square roots of the eigenvalues of $\mathbf{A}^T \mathbf{A}$, and hence uniquely determined.
- The columns of V are the eigenvectors of A^TA , arranged in the same order as the σ_j .
- The columns of ${\bf U}$ are the eigenvectors of ${\bf A}{\bf A}^T$, arranged in the same order as the σ_j .
- ullet If A is real, then V, Σ and U can be taken to be real.

Uniqueness considerations.

• Σ is unique: the eigenvalues of $\mathbf{A}^T\mathbf{A}$ are unique, the positive square roots of them = the singular values are also unique, and the ordering

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n \geq 0$$

fixes Σ .

ullet But how about ${\bf U}$ and ${\bf V}$?

Example from lecture 4 revisited:

```
"Rank deficient case: A is not of full rank.
%The columns of A are not linearly independent.
A = [1 \ 1 \ 1 \ 1; 1 \ 2 \ 3 \ 4]
      1.0000
                 1.0000
A =
      1.0000
                2.0000
      1.0000 3.0000
      1.0000 4.0000
A(:,3)=A(:,1)+A(:,2)*0.5
A =
      1.0000
                1.0000
                           1.5000
      1.0000
                2.0000
                           2,0000
      1.0000
                3.0000
                           2,5000
      1.0000
                4.0000
                           3.0000
```

```
%Matlab version 7
                                       %Matlab version 6.5
[U,S,V] = svd(A,0)
                                       [U,S,V] = svd(A,0)
     -0.2612
                -0.7948
                                            -0.2612
                                                        0.7948
U=
                            0.0985
                                      []=
                                                                   0.0236
     -0.4032
                -0.3708
                            0.2703
                                            -0.4032
                                                        0.3708
                                                                  -0.4393
     -0.5451
                 0.0533
                           -0.8360
                                            -0.5451
                                                       -0.0533
                                                                   0.8079
     -0.6871
                 0.4774
                            0.4672
                                            -0.6871
                                                       -0.4774
                                                                  -0.3921
S=
      7.3944
                       0
                                       S=
                                             7.3944
                                                              0
                                                                         0
                 0.9072
                                                        0.9072
            0
                                  0
                                                   0
            0
                            0.0000
                       0
                                                              0
V=
     -0.2565
                -0.6998
                            0.6667
                                       V=
                                            -0.2565
                                                        0.6998
                                                                  -0.6667
     -0.7372
                 0.5877
                            0.3333
                                            -0.7372
                                                       -0.5877
                                                                  -0.3333
     -0.6251
                -0.4060
                           -0.6667
                                            -0.6251
                                                        0.4060
                                                                   0.6667
```

Uniqueness of ${f U}$ and ${f V}$

- Let **A** be a $m \times n$, real valued matrix, with $m \ge n$.
- If the singular values σ_j are distinct, and $\mathbf{A} = \mathbf{U}_1 \mathbf{\Sigma} \mathbf{V}^T = \mathbf{U}_2 \mathbf{\Sigma} \mathbf{W}^T$, the following holds for the columns of \mathbf{V} and \mathbf{W} : $\mathbf{w}_j = (-1)^{k_j} \mathbf{v}_j$, $k_j \in (0,1)$.
- If m=n= rank of **A**, then, given **V**, **U** is uniquely determined.
- But if m > n, **U** is never uniquely determined! (Only the k first columns are, up to a multiplication by ± 1 , where $k = \text{rank}(\mathbf{A})$.)

Example: 1st singular images of handwritten digits

References

- [1] Lars Eldén: Matrix Methods in Data Mining and Pattern Recognition, SIAM 2007.
 - item[[2]] T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning. Data mining, Inference and Prediction, Springer Verlag, New York, 2001.
- [3] The data is from the MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist.