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Matrix decompositions

• We wish to decompose the matrix A by writing it as a product of two

or more matrices:

Am×n = Bm×kCk×n, Am×n = Bm×kCk×rDr×n

• This is done in such a way that the right side of the equation yields

some useful information or insight to the nature of the data matrix A.

• Or is in other ways useful for solving the problem at hand.
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Example (SVD):

customer \ day Wed Thu Fri Sat Sun

ABC Inc. 1 1 1 0 0

CDE Co. 2 2 2 0 0

FGH Ltd. 1 1 1 0 0

NOP Inc. 5 5 5 0 0

Smith 0 0 0 2 2

Brown 0 0 0 3 3

Johnson 0 0 0 1 1
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

1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
0 0 0 3 3
0 0 0 1 1


=



0.18 0
0.36 0
0.18 0
0.90 0
0 0.53
0 0.80
0 0.27


×

(
9.64 0
0 5.29

)
×

(
0.58 0.58 0.58 0 0
0 0 0 0.71 0.71

)
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The Singular Value Decomposition

• Any m× n matrix A, with m ≥ n, can be factorized

A = U
(
Σ
0

)
VT ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal,

and Σ ∈ Rn×n is diagonal:

Σ = diag(σ1, σ2, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

• ”Skinny version”: A = U1ΣVT , U1 ∈ Rm×n.
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Singular values and singular vectors

• The diagonal elements σj of Σ are the singular values of the matrix

A.

• The columns of U and V are the left singular vectors and right
singular vectors respectively.

• Equivalent form of SVD:

Avj = σjuj,

ATui = σjvj.
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Outer product form:

Start from skinny version of SVD:

A = U1ΣVT = (u1 u2 ... un)


σ1

σ2
. . .

σn




vT
1

vT
2
...

vT
n



= (u1 u2 ... un)


σ1vT

1

σ2vT
2

...

σnvT
n

 =
n∑

i=1

σiuivT
i ...
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to get the outer product form

A =
n∑

i=1

σiuivT
i .

This is a sum of rank one matrices!!

(Each term σiuivT
i in the sum is a rank one matrix).
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Example

A= 1 1
1 2
1 3
1 4

[U,S,V]=svd(A)

U= -0.2195 0.8073 0.0236 0.5472
-0.3833 0.3912 -0.4393 -0.7120
-0.5472 -0.0249 0.8079 -0.2176
-0.7110 -0.4410 -0.3921 0.3824

S= 5.7794 0 V= -0.3220 0.9467
0 0.7738 -0.9467 -0.3220
0 0
0 0
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[U,S,V]=svd(A,0)

U= -0.2195 0.8073
-0.3833 0.3912
-0.5472 -0.0249
-0.7110 -0.4410

S= 5.7794 0
0 0.7738

V= -0.3220 0.9467
-0.9467 -0.3220
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Rank deficient case

%A is not of full rank
%i.e. the columns of A are not linearly independent
A(:,3)=A(:,1)+A(:,2)*0.5

A= 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

[U,S,V]=svd(A,0)

U= -0.2612 -0.7948 0.0985
-0.4032 -0.3708 0.2703
-0.5451 0.0533 -0.8360
-0.6871 0.4774 0.4672
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S= 7.3944 0 0
0 0.9072 0
0 0 0.0000

V= -0.2565 -0.6998 0.6667
-0.7372 0.5877 0.3333
-0.6251 -0.4060 -0.6667
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Matrix approximation

Theorem. Let Uk = (u1 u2 ... uk), Vk = (v1 v2 ... vk) and

Σk = diag(σ1, σ2, ..., σk), and define

Ak = UkΣkVT
k .

Then

min
rank(B)≤k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.
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What does this mean?

• It means, that the best approximation of rank k for the matrix A is

Ak = UkΣkVT
k .

• Useful for

– compression

– noise reduction

• It also means, that we can estimate the ”correct” rank by looking at

the singular values...
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Example: noise reduction

Assume A is a low rank matrix plus noise: A = Ak + N. Then

typically singular values of A have the following behaviour:
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SVD is useful for:

• compression

• noise reduction

• finding ”concepts” or ”topics” (text mining/LSI)

• data exploration and visualizing data (e.g. spatial data/PCA)

• classification (of e.g. handwritten digits)

Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 16



SVD appears under different names:

• Principal Component Analysis (PCA)

• Latent Semantic Indexing (LSI)/Latent Semantic Analysis (LSA)

• Karhunen-Loeve expansion/Hotelling transform (in image processing)
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Example: Classification of handwritten digits

Digitized images, 28× 28, grayscale. Task: classify unknown digits.
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Digitized images, 28× 28, grayscale.

The image can also be considered as a function of two variables:

c = c(x, y), where c is the intensity of the color.
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• The image of one digit is a matrix (of size 28× 28).

• Stacking all the columns of each image matrix above each other gives

a vector (of size 784× 1).

• The image vectors can then be collected into a data matrix (of size

784×N , where N is the number of images).

• Distance between images: Euclidean distance in R784 or cosine distance.
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Naive method

Given a data base of handwritten digits (training set), compute the

mean (centroid) of all digits of one kind. Centroid of threes:
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Naive method

• Given a data base of handwritten digits (training set), compute the

mean (centroid) of all digits of one kind.

• Compare an unknown digit (from the test set) with all means, and

classify as the digit that is closest (using e.g. euclidean or cosine

distance).

• Good results for well-written digits, worse for bad digits.

• does not use any information about the variation of the digits of one

kind.
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Results using the naive method

• Success rate around 75%. Good... but not good enough!

• For the homework set (training set=4000, test set size = 2000) the

number of misclassifications per digit look like this:

digit 0 1 2 3 4 5 6 7 8 9
missed 25 9 82 51 42 51 47 49 76 49
total 175 234 219 207 217 179 178 205 192 194

• Some digits are easier to recognize than others.
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SVD

• Any matrix A can be written as a sum of rank 1 matrices:

A =
n∑

i=1

σiuivT
i .

• Consider a data matrix A,where each column of A is one image of a

digit. Column j: aj =
∑n

i=1(σivij)ui.

• uj is the same size as aj. We can fold it back to get an image.

• We can think of the left singular vectors uj as ”singular images”.
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Compute the SVD of the matrix fo one digit (=3), (392 images).

Singular values and right singular vectors vj:
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Left singular vectors or ”singular images” uj:
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Classification

Let z be and unknown digit, and consider the least squares problem

(for some predetermined k):

min
αj

‖z−
k∑

j=1

αjuj‖.

Then, if z is the same digit as that represented by the uj, then the

residual should be small. I.e. z should be well approximated by some

linear combination of the uj.
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Principal components (SVD) regression

Assume

• Each digit is well characterize by a few of the first ”singular images” of

its own kind.

• Each digit is NOT characterized very well by a few of the first ”singular

images” of some other digit.

We can use this to classify unknown digits:
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Algorithm

Training:

• For the training set of digits, compute the SVD of each set of digits of

one kind. We get 10 sets of ”singular images”, one for each digit.
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Classification:

1. Take an unknown digit z. For each set of singular images uj, solve the

least squares problem

min
αj

‖z−
k∑

j=1

αjuj‖.

and compute the relative residual ‖r‖/‖z‖, where r is the residual.

2. Classify z to be the digit corresponding to the smallest relative residual.

Or: find the smallest residual r0 and the next smallest residual r1.

If r0 ≤ τr1, where τ is the tolerance, then classify, else give up.
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Results

To be reported by you in you homework assignment.

Performance better: success rate over 90%.

Still not up to the best (more complicated) methods.
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Nice test digit 3 in basis 3

Original image of digit and approximations using 1,3,5,7 and 9 basis

vectors in 3-basis:
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Relative residual in least squares problem for nice test digit 3 in 3-basis:

1 2 3 4 5 6 7 8 9 10
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Relative residual in LS problem for test digit (nice 3) in 3−basis
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Nice test digit 3 in basis 5

Original image of digit and approximations using 1,3,5,7 and 9 basis

vectors in 5-basis:

Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 34



Relative residual in least squares problem for nice test digit 3 in 5-basis:
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Ugly test digit 3 in basis 3

Original image of digit and approximations using 1,3,5,7 and 9 basis

vectors in 3-basis:
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Relative residual in least squares problem for ugly test digit 3 in 3-basis:
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Ugly test digit 3 in basis 5

Original image of digit and approximations using 1,3,5,7 and 9 basis

vectors in 5-basis:
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Relative residual in least squares problem for ugly test digit 3 in 5-basis:

1 2 3 4 5 6 7 8 9 10
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Conclusion: do not use many terms in the basis.

The 100th singular images of all vectors.
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Work

• Training: compute SVD’s of 10 matrices of dimension m2 × ni, each

image of a digit is a m×m matrix; ni = number of training digits i.

• Solve 10 least squares problems; multiply test digit by 10 matrices with

orthogonal columns.

Fast test phase! Suitable for real time computations!
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Test results

Correct classification as a function fo the number of basis vectors for

each digit vector:

number of vectors 1 2 4 6 8 10

76 82 88 90 90 91.3
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How to improve performance?

Ugly digits are difficult to handle automatically.
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The Singular Value Decomposition

• Any m× n matrix A, with m ≥ n, can be factorized

A = U
(
Σ
0

)
VT ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal,

and Σ ∈ Rn×n is diagonal:

Σ = diag(σ1, σ2, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

• ”Skinny version”: A = U1ΣVT , U1 ∈ Rm×n.
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We can write

ATA = VΣUTUΣVT = VΣ2VT ,

so we get

ATAV = VΣ2.

Let vj be the jth column of V. Write the above column by column:

ATAvj = σ2
jvj.

Equivalently, we can write AAT = ... = UΣ2UT to get (uj is the jth

column of U)

AATuj = σ2
juj.
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Singular values and vectors

• The singular values are the nonnegative square roots of the eigenvalues

of ATA, and hence uniquely determined.

• The columns of V are the eigenvectors of ATA, arranged in the same

order as the σj.

• The columns of U are the eigenvectors of AAT , arranged in the same

order as the σj.

• If A is real, then V, Σ and U can be taken to be real.
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Uniqueness considerations.

• Σ is unique: the eigenvalues of ATA are unique, the positive square

roots of them = the singular values are also unique, and the ordering

σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0

fixes Σ.

• But how about U and V?
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Example from lecture 4 revisited:

%Rank deficient case: A is not of full rank.
%The columns of A are not linearly independent.
A=[1 1 1 1;1 2 3 4]’

A= 1.0000 1.0000
1.0000 2.0000
1.0000 3.0000
1.0000 4.0000

A(:,3)=A(:,1)+A(:,2)*0.5

A= 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000
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%Matlab version 7
[U,S,V]=svd(A,0)

U= -0.2612 -0.7948 0.0985
-0.4032 -0.3708 0.2703
-0.5451 0.0533 -0.8360
-0.6871 0.4774 0.4672

S= 7.3944 0 0
0 0.9072 0
0 0 0.0000

V= -0.2565 -0.6998 0.6667
-0.7372 0.5877 0.3333
-0.6251 -0.4060 -0.6667

%Matlab version 6.5
[U,S,V]=svd(A,0)

U= -0.2612 0.7948 0.0236
-0.4032 0.3708 -0.4393
-0.5451 -0.0533 0.8079
-0.6871 -0.4774 -0.3921

S= 7.3944 0 0
0 0.9072 0
0 0 0

V= -0.2565 0.6998 -0.6667
-0.7372 -0.5877 -0.3333
-0.6251 0.4060 0.6667

Linear Algebra Methods for Data Mining, Spring 2007, University of Helsinki 49



Uniqueness of U and V

• Let A be a m× n, real valued matrix, with m ≥ n.

• If the singular values σj are distinct, and A = U1ΣVT = U2ΣWT ,

the following holds for the columns of V and W:

wj = (−1)kjvj, kj ∈ (0, 1).

• If m = n = rank of A, then, given V, U is uniquely determined.

• But if m > n, U is never uniquely determined! (Only the k first

columns are, up to a multiplication by ±1, where k = rank(A).)
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Example: 1st singular images of handwritten digits
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