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4
Least Squares
The global positioning system (GPS) is a satellite-based
location technology that provides accurate position-
ing at any time, from any point on earth. In just a few
years, GPS has gone from a special-purpose navigation
technology used by pilots, ship captains, and hikers to
everyday use in automobiles, cellphones, and PDAs.

The system consists of 24 satellites following pre-
cisely regulated orbits, emitting synchronized signals.

An earth-based receiver picks up the satellite signals,
finds its distance from all visible satellites, and uses the
data to triangulate its position.

Reality Check 4 on page 238 shows the
use of equation solvers and least squares calculations
to do the location estimation.

The concept of least squares dates from the pioneering work of Gauss and Legendre in
the early 19th century. Its use permeates modern statistics and mathematical modeling.

The key techniques of regression and parameter estimation have become fundamental tools
in the sciences and engineering.

In this chapter, the normal equations are introduced and applied to a variety of data-
fitting problems. Later, a more sophisticated approach, using the QR factorization, is
explored, followed by a discussion of nonlinear least squares problems.

4.1 LEAST SQUARES AND THE NORMAL EQUATIONS

The need for least squares methods comes from two different directions, one each from
our studies of Chapters 2 and 3. In Chapter 2, we learned how to find the solution of
Ax = b when a solution exists. In this chapter, we find out what to do when there is no
solution. When the equations are inconsistent, which is likely if the number of equations
exceeds the number of unknowns, the answer is to find the next best thing: the least squares
approximation.
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Chapter 3 addressed finding polynomials that exactly fit data points. However, if the
data points are numerous, or the data points are collected only within some margin of error,
fitting a high-degree polynomial exactly is rarely the best approach. In such cases, it is more
reasonable to fit a simpler model that may only approximate the data points. Both problems,
solving inconsistent systems of equations and fitting data approximately, are driving forces
behind least squares.

4.1.1 Inconsistent systems of equations

It is not hard to write down a system of equations that has no solutions. Consider the
following three equations in two unknowns:

x1 + x2 = 2

x1 − x2 = 1

x1 + x2 = 3. (4.1)

Any solution must satisfy the first and third equations, which cannot both be true. A system
of equations with no solution is called inconsistent.

What is the meaning of a system with no solutions? Perhaps the coefficients are slightly
inaccurate. In many cases, the number of equations is greater than the number of unknown
variables, making it unlikely that a solution can satisfy all the equations. In fact, m equations
in n unknowns typically have no solution when m > n. Even though Gaussian elimination
will not give us a solution to an inconsistent system Ax = b, we should not completely give
up. An alternative in this situation is to find a vector x that comes the closest to being a
solution.

If we choose this “closeness’’ to mean close in Euclidean distance, there is a straight-
forward algorithm for finding the closest x. This special x will be called the least squares
solution.

We can get a better picture of the failure of system (4.1) to have a solution by writing
it in a different way. The matrix form of the system is Ax = b, or

⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

x1
x2

]
=

⎡

⎣
2
1
3

⎤

⎦ . (4.2)

The alternative view of matrix/vector multiplication is to write the equivalent equation

x1

⎡

⎣
1
1
1

⎤

⎦ + x2

⎡

⎣
1

−1
1

⎤

⎦ =

⎡

⎣
2
1
3

⎤

⎦ . (4.3)

In fact, any m × n system Ax = b can be viewed as a vector equation

x1v1 + x2v2 + ·· · + xnvn = b, (4.4)

which expresses b as a linear combination of the columns vi of A, with coefficients
x1, . . . ,xn. In our case, we are trying to hit the target vector b as a linear combination
of two other three-dimensional vectors. Since the combinations of two three-dimensional
vectors form a plane inside R3, equation (4.3) has a solution only if the vector b lies in
that plane. This will always be the situation when we are trying to solve m equations in
n unknowns, with m > n. Too many equations make the problem overspecified and the
equations inconsistent.

Figure 4.1(b) shows a direction for us to go when a solution does not exist. There is no
pair x1,x2 that solves (4.1), but there is a point in the plane Ax of all possible candidates that
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(a)

b = x1v1 + x2v2
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Figure 4.1 Geometric solution of a system of three equations in two unknowns.

(a) Equation (4.3) requires that the vector b, the right-hand side of the equation, is a

linear combination of the columns vectors v1 and v2. (b) If b lies outside of the plane

defined by v1 and v2, there will be no solution. The least squares solution x makes the

combination vector Ax the one in the plane Ax that is nearest to b in the sense of

Euclidean distance.

is closest to b. This special vector Ax is distinguished by the following fact: The residual
vector b − Ax is perpendicular to the plane {Ax|x ∈ Rn}. We will exploit this fact to find
a formula for x, the least squares “solution.’’

First we establish some notation. Recall the concept of the transpose AT of the m × n

matrix A, which is the n × m matrix whose rows are the columns of A and whose columns
are the rows of A, in the same order. The transpose of the sum of two matrices is the sum of
the transposes, (A + B)T = AT + BT . The transpose of a product of two matrices is the
product of the transposes in the reverse order—that is, (AB)T = BT AT .

To work with perpendicularity, recall that two vectors are at right angles to one another
if their dot product is zero. For two m-dimensional column vectors u and v, we can write
the dot product solely in terms of matrix multiplication by

uT v = [u1, . . . ,um]

⎡

⎢⎣
v1
...

vm

⎤

⎥⎦ . (4.5)

The vectors u and v are perpendicular, or orthogonal, if uT · v = 0, using ordinary matrix
multiplication.

Now we return to our search for a formula for x. We have established that

(b − Ax) ⊥ {Ax|x ∈ Rn}.

Expressing the perpendicularity in terms of matrix multiplication, we find that

(Ax)T (b − Ax) = 0 for all x in Rn.

Using the preceding fact about transposes, we can rewrite this expression as

xT AT (b − Ax) = 0 for all x in Rn,

Orthogonality Least squares is based on orthogonality.The shortest distance from

a point to a plane is carried by a line segment orthogonal to the plane. The normal equations

are a computational way to locate the line segment, which represents the least squares error.
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meaning that the n-dimensional vector AT (b − Ax) is perpendicular to every vector x in
Rn, including itself. There is only one way for that to happen:

AT (b − Ax) = 0.

This gives a system of equations that defines the least squares solution,

AT Ax = AT b. (4.6)

The system of equations (4.6) is known as the normal equations. Its solution x is the
so-called least squares solution of the system Ax = b.

Normal equations for least squares

Given the inconsistent system

Ax = b,

solve

AT Ax = AT b

for the least squares solution x that minimizes the Euclidean length of the residual r =
b − Ax.

! EXAMPLE 4.1 Use the normal equations to find the least squares solution of the inconsistent system (4.1).

The problem in matrix form Ax = b has

A =

⎡

⎣
1 1
1 −1
1 1

⎤

⎦ , b =

⎡

⎣
2
1
3

⎤

⎦ .

The components of the normal equations are

AT A =
[

1 1 1
1 −1 1

]⎡

⎣
1 1
1 −1
1 1

⎤

⎦ =
[

3 1
1 3

]

and

AT b =
[

1 1 1
1 −1 1

]⎡

⎣
2
1
3

⎤

⎦ =
[

6
4

]
.

The normal equations
[

3 1
1 3

][
x1
x2

]
=

[
6
4

]

can now be solved by Gaussian elimination. The tableau form is
[

3 1 | 6
1 3 | 4

]
−→

[
3 1 | 6
0 8/3 | 2

]
,

which can be solved to get x = (x1,x2) = (7/4,3/4). "



192 | CHAPTER 4 Least Squares

Substituting the least squares solution into the original problem yields
⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

7
4
3
4

]

=

⎡

⎣
2.5
1
2.5

⎤

⎦ ̸=

⎡

⎣
2
1
3

⎤

⎦ .

To measure our success at fitting the data, we calculate the residual of the least squares
solution x as

r = b − Ax =

⎡

⎣
2
1
3

⎤

⎦ −

⎡

⎣
2.5
1
2.5

⎤

⎦ =

⎡

⎣
−0.5

0.0
0.5

⎤

⎦ .

If the residual is the zero vector, then we have solved the original system Ax = b exactly.
If not, the Euclidean length of the residual vector is a backward error measure of how far
x is from being a solution.

There are at least three ways to express the size of the residual. The Euclidean length
of a vector,

||r||2 =
√

r2
1 + ·· · + r2

m, (4.7)

is a norm in the sense of Chapter 2, called the 2-norm. The squared error

SE = r2
1 + ·· · + r2

m,

and the root mean squared error (the root of the mean of the squared error)

RMSE =
√

SE/m =
√(

r2
1 + ·· · + r2

m

)
/m, (4.8)

are also used to measure the error of the least squares solution. The three expressions are
closely related; namely

RMSE =
√

SE√
m

= ||r||2√
m

,

so finding the x that minimizes one, minimizes all. For Example 4.1, the SE = (.5)2 +
02 + (−.5)2 = 0.5, the 2-norm of the error is ||r||2 =

√
0.5 ≈ 0.707, and the RMSE =√

0.5/3 = 1/
√

6 ≈ 0.408.

! EXAMPLE 4.2 Solve the least squares problem

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[

x1
x2

]
=

⎡

⎣
−3
15
9

⎤

⎦ .

The normal equations AT Ax = AT b are
[

9 6
6 29

][
x1
x2

]
=

[
45
75

]
.

The solution of the normal equations are x1 = 3.8 and x2 = 1.8. The residual vector is

r = b − Ax =

⎡

⎣
−3
15

9

⎤

⎦ −

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[

3.8
1.8

]

=

⎡

⎣
−3
15

9

⎤

⎦ −

⎡

⎣
−3.4

13
11.2

⎤

⎦ =

⎡

⎣
0.4

2
−2.2

⎤

⎦ ,

which has Euclidean norm ||e||2 =
√

(0.4)2 + 22 + (−2.2)2 = 3. This problem is solved
in an alternative way in Example 4.14. "
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4.1.2 Fitting models to data

Let (t1,y1), . . . , (tm,ym) be a set of points in the plane, which we will often refer to as the
“data points.’’ Given a fixed class of models, such as all lines y = c1 + c2t , we can seek
to locate the specific instance of the model that best fits the data points in the 2-norm. The
core of the least squares idea consists of measuring the residual of the fit by the squared
errors of the model at the data points and finding the model parameters that minimize this
quantity. This criterion is displayed in Figure 4.2.

e1
e2

e3 e4
e5

(t1, y1)

(t2, y2)

(t3, y3)

(t4, y4) (t5, y5)

y

t

Figure 4.2 Least squares fitting of a line to data. The best line is the one for which

the squared error e2
1 + e2

2 + · · · + e2
5 is as small as possible among all lines y = c1 + c2t.

! EXAMPLE 4.3 Find the line that best fits the three data points (t,y) = (1,2), (−1,1), and (1,3) in
Figure 4.3.

–2 –1 1 2

1

2

3

y

x

y = t+7
4

3
4

Figure 4.3 Best line in Example 4.3. One each of the data points lies above, on, and below the

best line.

The model is y = c1 + c2t , and the goal is to find the best c1 and c2. Substitution
of the data points into the model yields

c1 + c2(1) = 2

c1 + c2(−1) = 1

c1 + c2(1) = 3,

or, in matrix form,
⎡

⎣
1 1
1 −1
1 1

⎤

⎦
[

c1
c2

]
=

⎡

⎣
2
1
3

⎤

⎦ .
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We know this system has no solution (c1,c2) for two separate reasons. First, if there is a
solution, then the y = c1 + c2t would be a line containing the three data points. However,
it is easily seen that the points are not collinear. Second, this is the system of equation (4.2)
that we discussed at the beginning of this chapter. We noticed then that the first and third
equations are inconsistent, and we found that the best solution in terms of least squares is
(c1,c2) = (7/4,3/4). Therefore, the best line is y = 7/4 + 3/4t . "

We can evaluate the fit by using the statistics defined earlier. The residuals at the data
points are

t y line error

1 2 2.5 −0.5
−1 1 1.0 0.0

1 3 2.5 0.5

and the RMSE is 1/
√

6, as seen earlier.
The previous example suggests a three-step program for solving least squares data-

fitting problems.

Fitting data by least squares

Given a set of m data points (t1,y1), . . . , (tm,ym).

STEP 1. Choose a model. Identify a parameterized model, such as y = c1 + c2t , which
will be used to fit the data.

STEP 2. Force the model to fit the data. Substitute the data points into the model. Each
data point creates an equation whose unknowns are the parameters, such as c1 and c2 in the
line model. This results in a system Ax = b, where the unknown x represents the unknown
parameters.

STEP 3. Solve the normal equations. The least squares solution for the parameters will
be found as the solution to the system of normal equations AT Ax = AT b.

These steps are demonstrated in the following example:

! EXAMPLE 4.4 Find the best line and best parabola for the four data points (−1,1), (0,0), (1,0), (2,−2)

in Figure 4.4.

In accordance with the preceding program, we will follow three steps:
(1) Choose the model y = c1 + c2t as before. (2) Forcing the model to fit the data yields

Compression Least squares is a classic example of data compression. The input

consists of a set of data points, and the output is a model that, with a relatively few parameters,

fits the data as well as possible. Usually, the reason for using least squares is to replace noisy

data with a plausible underlying model. The model is then often used for signal prediction or

classification purposes.

In Section 4.2, various models are used to fit data, including polynomials, exponentials,

and trigonometric functions. The trigonometric approach will be pursued further in Chap-

ters 10 and 11, where elementary Fourier analysis is discussed as an introduction to signal

processing.
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Figure 4.4 Least Squares Fits to Data Points in Example 4.4. (a) Best line

y = 0.2 – 0.9t. RMSE is 0.418. (b) Best parabola y = 0.45 – 0.65t – 0.25t2. RMSE is

0.335.

c1 + c2(−1) = 1

c1 + c2(0) = 0

c1 + c2(1) = 0

c1 + c2(2) = −2,

or, in matrix form,
⎡

⎢⎢⎣

1 −1
1 0
1 1
1 2

⎤

⎥⎥⎦

[
c1
c2

]
=

⎡

⎢⎢⎣

1
0
0

−2

⎤

⎥⎥⎦ .

(3) The normal equations are

[
4 2
2 6

][
c1
c2

]
=

[ −1
−5

]
.

Solving for the coefficients c1 and c2 results in the best line y = c1 + c2t = 0.2 − 0.9t .
The residuals are

t y line error

−1 1 1.1 −0.1
0 0 0.2 −0.2
1 0 −0.7 0.7
2 −2 −1.6 −0.4

The error statistics are squared error SE = (−.1)2 + (−.2)2 + (.7)2 + (−.4)2 = 0.7 and
RMSE =

√
.7

/√
4 = 0.418.

Next, we extend this example by keeping the same four data points, but changing
the model. Set y = c1 + c2t + c3t2 and substitute the data points to yield

c1 + c2(−1) + c3(−1)2 = 1

c1 + c2(0) + c3(0)2 = 0

c1 + c2(1) + c3(1)2 = 0

c1 + c2(2) + c3(2)2 = −2,
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Conditioning Since input data is assumed to be subject to errors in least squares

problems, it is especially important to reduce error magnification. We have presented the

normal equations as the most straightforward approach to solving the least squares problem,

and it is fine for small problems. However, the condition number cond(AT A) is approximately

the square of the original cond(A), which will greatly increase the possibility that the problem

is ill-conditioned. More sophisticated methods allow computing the least squares solution

directly from A without forming AT A. These methods are based on the QR-factorization,

introduced in Section 4.3, and the singular value decomposition of Chapter 12.

or, in matrix form,
⎡

⎢⎢⎣

1 −1 1
1 0 0
1 1 1
1 2 4

⎤

⎥⎥⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎢⎢⎣

1
0
0

−2

⎤

⎥⎥⎦ .

This time, the normal equations are three equations in three unknowns:
⎡

⎣
4 2 6
2 6 8
6 8 18

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
−1
−5
−7

⎤

⎦ .

Solving for the coefficients results in the best parabola y = c1 + c2t + c3t2 = 0.45 − 0.65t

− 0.25t2. The residual errors are given in the following table:

t y parabola error

−1 1 0.85 0.15
0 0 0.45 −0.45
1 0 −0.45 0.45
2 −2 −1.85 −0.15

The error statistics are squared error SE = (.15)2 + (−.45)2 + (.45)2 + (−.15)2 = 0.45
and RMSE =

√
.45

/√
4 ≈ 0.335. "

The Matlab commandspolyfit andpolyval are designed not only to interpolate
data, but also to fit data with polynomial models. For n input data points, polyfit used
with input degree n − 1 returns the coefficients of the interpolating polynomial of degree
n − 1. If the input degree is less than n − 1, polyfit will instead find the best least
squares polynomial of that degree. For example, the commands

>> x0=[-1 0 1 2];
>> y0=[1 0 0 -2];
>> c=polyfit(x0,y0,2);
>> x=-1:.01:2;
>> y=polyval(c,x);
>> plot(x0,y0,’o’,x,y)

find the coefficients of the least squares degree-two polynomial and plot it along with the
given data from Example 4.4.

Example 4.4 shows that least squares modeling need not be restricted to finding best
lines. By expanding the definition of the model, we can fit coefficients for any model as
long as the coefficients enter the model in a linear way.
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4.1.3 Conditioning of least squares

We have seen that the least squares problem reduces to solving the normal equations
AT Ax = AT b. How accurately can the least squares solution x be determined? This is
a question about the forward error of the normal equations. We carry out a double precision
numerical experiment to test this question, by solving the normal equations in a case where
the correct answer is known.

! EXAMPLE 4.5 Let x1 = 2.0,x2 = 2.2,x3 = 2.4, . . . ,x11 = 4.0 be equally spaced points in [2,4], and
set yi = 1 + xi + x2

i + x3
i + x4

i + x5
i + x6

i + x7
i for 1 ≤ i ≤ 11. Use the normal equa-

tions to find the least squares polynomial P (x) = c1 + c2x + ·· · + c8x7 fitting the
(xi,yi).

A degree 7 polynomial is being fit to 11 data points lying on the degree 7 polyno-
mial P (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7. Obviously, the correct least squares
solution is c1 = c2 = ·· · = c8 = 1. Substituting the data points into the model P (x) yields
the system Ac = b:

⎡

⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 · · · x7

1

1 x2 x2
2 · · · x7

2

...
...

...
...

1 x11 x2
11 · · · x7

11

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

c1

c2

...

c8

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

y11

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The coefficient matrix A is a Van der Monde matrix, a matrix whose j th column consists
of the elements of the second column raised to the (j − 1)st power. We use Matlab to
solve the normal equations:

>> x = (2+(0:10)/5)’;
>> y = 1+x+x.ˆ2+x.ˆ3+x.ˆ4+x.ˆ5+x.ˆ6+x.ˆ7;
>> A = [x.ˆ0 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5 x.ˆ6 x.ˆ7];
>> c = (A’*A)\(A’*y)

c=
1.5134

-0.2644
2.3211
0.2408
1.2592
0.9474
1.0059
0.9997

>> cond(A’*A)

ans=
1.4359e+019

Solving the normal equations in double precision cannot deliver an accurate value for
the least squares solution. The condition number of AT A is too large to deal with in double
precision arithmetic, and the normal equations are ill-conditioned, even though the original
least squares problem is moderately conditioned. There is clearly room for improvement in
the normal equations approach to least squares. In Example 4.15, we revisit this problem
after developing an alternative that avoids forming AT A. "
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4.1 Exercises

1. Solve the normal equations to find the least squares solution and 2-norm error for the following
inconsistent systems:

(a)

⎡

⎢⎣
1 2
0 1
2 1

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3
1
1

⎤

⎥⎦ (b)

⎡

⎢⎣
1 1
2 1
3 1

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
1
2
0

⎤

⎥⎦ (c)

⎡

⎢⎢⎢⎣

1 2
1 1
2 1
2 2

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
3
3
2

⎤

⎥⎥⎥⎦

2. Find the least squares solutions and RMSE of the following systems:

(a)

⎡

⎢⎢⎢⎣

1 1 0
0 1 1
1 2 1
1 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

2
2
3
4

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 0 1
1 0 2
1 1 1
2 1 1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

2
3
1
2

⎤

⎥⎥⎥⎦

3. Find the least squares solution of the inconsistent system

⎡

⎢⎣
1 0
1 0
1 0

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
1
5
6

⎤

⎥⎦ .

4. Let m ≥ n, let A be the m × n identity matrix (the principal submatrix of the m × m identity
matrix), and let b = [b1, . . . ,bm] be a vector. Find the least squares solution of Ax = b and the
2-norm error.

5. Prove that the 2-norm is a vector norm. You will need to use the Cauchy–Schwarz inequality
|u · v| ≤ ||u||2||v||2.

6. Let A be an n × n nonsingular matrix. (a) Prove that (AT )−1 = (A−1)T . (b) Let b be an
n-vector; then Ax = b has exactly one solution. Prove that this solution satisfies the normal
equations.

7. Find the best line through the set of data points, and find the RMSE:
(a) (−3,3), (−1,2), (0,1), (1,−1), (3,−4) (b) (1,1), (1,2), (2,2), (2,3), (4,3).

8. Find the best line through each set of data points, and find the RMSE:
(a) (0,0), (1,3), (2,3), (5,6) (b) (1,2), (3,2), (4,1), (6,3) (c) (0,5), (1,3), (2,3), (3,1).

9. Find the best parabola through each data point set in Exercise 8, and compare the RMSE with
the best-line fit.

10. Find the best degree 3 polynomial through each set in Exercise 8. Also, find the degree 3
interpolating polynomial, and compare.

11. Assume that the height of a model rocket is measured at four times, and the measured times
and heights are (t,h) = (1,135), (2,265), (3,385), (4,485), in seconds and meters. Fit the
model h = a+ bt − 4.905t2 to estimate the eventual maximum height of the object and when
it will return to earth.

12. Given data points (x,y,z) = (0,0,3), (0,1,2), (1,0,3), (1,1,5), (1,2,6), find the plane in
three dimensions (model z = c0 + c1x + c2y) that best fits the data.
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4.1 Computer Problems

1. Form the normal equations, and compute the least squares solution and 2-norm error for the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎢⎢⎣

3 −1 2
4 1 0

−3 2 1
1 1 5

−2 0 3

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

10
10
−5
15

0

⎤

⎥⎥⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎢⎢⎣

4 2 3 0
−2 3 −1 1

1 3 −4 2
1 0 1 −1
3 1 3 −2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

10
0
2
0
5

⎤

⎥⎥⎥⎥⎥⎦

2. Consider the world oil production data of Computer Problem 3.2.3. Find the best least squares
(a) line, (b) parabola, and (c) cubic curve through the 10 data points and the RMSE of the fits.
Use each to estimate the 2010 production level. Which fit best represents the data in terms of
RMSE?

3. Consider the world population data of Computer Problem 3.1.1. Find the best least squares
(a) line, (b) parabola through the data points, and the RMSE of the fit. In each case, estimate
the 1980 population. Which fit gives the best estimate?

4. Consider the carbon dioxide concentration data of Exercise 3.1.13. Find the best least squares
(a) line, (b) parabola, and (c) cubic curve through the data points and the RMSE of the fit. In
each case, estimate the 1950 CO2 concentration.

5. A company test-markets a new soft drink in 22 cities of approximately equal size. The selling
price (in dollars) and the number sold per week in the cities are listed as follows:

city price sales/week
1 0.59 3980
2 0.80 2200
3 0.95 1850
4 0.45 6100
5 0.79 2100
6 0.99 1700
7 0.90 2000
8 0.65 4200
9 0.79 2440

10 0.69 3300
11 0.79 2300

city price sales/week
12 0.49 6000
13 1.09 1190
14 0.95 1960
15 0.79 2760
16 0.65 4330
17 0.45 6960
18 0.60 4160
19 0.89 1990
20 0.79 2860
21 0.99 1920
22 0.85 2160

(a) First, the company wants to find the “demand curve’’: how many it will sell at each potential
price. Let P denote price and S denote sales per week. Find the line S = c1 + c2P that best
fits the data from the table in the sense of least squares. Find the normal equations and the
coefficients c1 and c2 of the least squares line. Plot the least squares line along with the data,
and calculate the root mean square error.

(b) After studying the results of the test marketing, the company will set a single selling price P

throughout the country. Given a manufacturing cost of $0.23 per unit, the total profit (per city,
per week) is S(P − 0.23) dollars. Use the results of the preceding least squares approximation
to find the selling price for which the company’s profit will be maximized.

6. What is the “slope’’ of the parabola y = x2 on [0,1]? Find the best least squares line that fits
the parabola at n evenly spaced points in the interval for (a) n = 10 and (b) n = 20. Plot the
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parabola and the lines. What do you expect the result to be as n → ∞? (c) Find the minimum
of the function F(c1,c2) =

∫ 1
0 (x2 − c1 − c2x)2 dx, and explain its relation to the

problem.

7. Find the least squares (a) line (b) parabola through the 13 data points of Figure 3.5 and the
RMSE of each fit.

8. Let A be the 10 × n matrix formed by the first n columns of the 10 × 10 Hilbert matrix.
Let c be the n-vector [1, . . . ,1], and set b = Ac. Use the normal equations to solve the least
squares problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares
solution x = c. How many correct decimal places can be computed? Use condition number to
explain the results. (This least squares problem is revisited in Computer
Problem 4.3.7.)

9. Let x1, . . . ,x11 be 11 evenly spaced points in [2,4] and yi = 1 + xi + x2
i + ·· · + xd

i . Use the
normal equations to compute the best degree d polynomial, where (a) d = 5 (b) d = 6
(c) d = 8. Compare with Example 4.5. How many correct decimal places of the coefficients
can be computed? Use condition number to explain the results. (This least squares problem is
revisited in Computer Problem 4.3.8.)

10. The following data, collected by US Bureau of Economic Analysis, lists the year-over-year
percent change in mean disposable personal income in the United States during 15 election
years. Also, the proportion of the U.S. electorate that voted for the incumbent party’s
presidential candidate is listed. The first line of the table says that income increased by 1.49%
from 1951 to 1952, and that 44.6% of the electorate voted for Adlai Stevenson, the incumbent
Democratic party’s candidate for president. Find the best least squares linear model for
incumbent party vote as a function of income change. Plot this line along with the 15 data
points. How many percentage points of vote can the incumbent party expect for each
additional percent of change in personal income?

year % income change % incumbent vote
1952 1.49 44.6
1956 3.03 57.8
1960 0.57 49.9
1964 5.74 61.3
1968 3.51 49.6
1972 3.73 61.8
1976 2.98 49.0
1980 −0.18 44.7
1984 6.23 59.2
1988 3.38 53.9
1992 2.15 46.5
1996 2.10 54.7
2000 3.93 50.3
2004 2.47 51.2
2008 −0.41 45.7
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4.2 A SURVEY OF MODELS

The previous linear and polynomial models illustrate the use of least squares to fit data.
The art of data modeling includes a wide variety of models, some derived from physical
principles underlying the source of the data and others based on empirical factors.

4.2.1 Periodic data

Periodic data calls for periodic models. Outside air temperatures, for example, obey cycles
on numerous timescales, including daily and yearly cycles governed by the rotation of the
earth and the revolution of the earth around the sun. As a first example, hourly temperature
data are fit to sines and cosines.

! EXAMPLE 4.6 Fit the recorded temperatures in Washington, D.C., on January 1, 2001, as listed in the
following table, to a periodic model:

time of day t temp (C)

12 mid. 0 −2.2

3 am 1
8 −2.8

6 am 1
4 −6.1

9 am 3
8 −3.9

12 noon 1
2 0.0

3 pm 5
8 1.1

6 pm 3
4 −0.6

9 pm 7
8 −1.1

We choose the model y = c1 + c2 cos2π t + c3 sin 2π t to match the fact that tem-
perature is roughly periodic with a period of 24 hours, at least in the absence of longer-term
temperature movements. The model uses this information by fixing the period to be exactly
one day, where we are using days for the t units. The variable t is listed in these units in the
table.

Substituting the data into the model results in the following overdetermined system
of linear equations:

c1 + c2 cos2π(0) + c3 sin 2π(0) = −2.2

c1 + c2 cos2π

(
1
8

)
+ c3 sin 2π

(
1
8

)
= −2.8

c1 + c2 cos2π

(
1
4

)
+ c3 sin 2π

(
1
4

)
= −6.1

c1 + c2 cos2π

(
3
8

)
+ c3 sin 2π

(
3
8

)
= −3.9

c1 + c2 cos2π

(
1
2

)
+ c3 sin 2π

(
1
2

)
= 0.0

c1 + c2 cos2π

(
5
8

)
+ c3 sin 2π

(
5
8

)
= 1.1

c1 + c2 cos2π

(
3
4

)
+ c3 sin 2π

(
3
4

)
= −0.6

c1 + c2 cos2π

(
7
8

)
+ c3 sin 2π

(
7
8

)
= −1.1
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Orthogonality The least squares problem can be simplified considerably by special

choices of basis functions. The choices in Examples 4.6 and 4.7, for instance, yield normal

equations already in diagonal form.This property of orthogonal basis functions is explored in

detail in Chapter 10. Model (4.9) is a Fourier expansion.

The corresponding inconsistent matrix equation is Ax = b, where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 cos0 sin 0

1 cos π
4 sin π

4

1 cos π
2 sin π

2

1 cos 3π
4 sin 3π

4

1 cosπ sin π

1 cos 5π
4 sin 5π

4

1 cos 3π
2 sin 3π

2

1 cos 7π
4 sin 7π

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0

1
√

2/2
√

2/2

1 0 1

1 −
√

2/2
√

2/2

1 −1 0

1 −
√

2/2 −
√

2/2

1 0 −1

1
√

2/2 −
√

2/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.2

−2.8

−6.1

−3.9

0.0

1.1

−0.6

−1.1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The normal equations AT Ac = AT b are
⎡

⎣
8 0 0
0 4 0
0 0 4

⎤

⎦

⎡

⎣
c1
c2
c3

⎤

⎦ =

⎡

⎣
−15.6

−2.9778
−10.2376

⎤

⎦ ,

which are easily solved as c1 = −1.95,c2 = −0.7445, and c3 = −2.5594. The best ver-
sion of the model, in the sense of least squares, is y = −1.9500 − 0.7445cos2π t −
2.5594sin 2π t , with RMSE ≈ 1.063. Figure 4.5(a) compares the least squares fit model
with the actual hourly recorded temperatures. "

! EXAMPLE 4.7 Fit the temperature data to the improved model

y = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t . (4.9)

Figure 4.5 Least Squares Fits to Periodic Data in Example 4.6. (a) Sinusoid model

y = – 1.95 – 0.7445 cos 2π t – 2.5594 sin 2π t shown in bold, along with recorded

temperature trace on Jan 1, 2001. (b) Improved sinusoid y = – 1.95 – 0.7445 cos 2π t

– 2.5594 sin 2π t + 1.125 cos 4π t fits the data more closely.
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The system of equations is now

c1 + c2 cos2π(0) + c3 sin 2π(0) + c4 cos4π(0) = −2.2

c1 + c2 cos2π

(
1
8

)
+ c3 sin 2π

(
1
8

)
+ c4 cos4π

(
1
8

)
= −2.8

c1 + c2 cos2π

(
1
4

)
+ c3 sin 2π

(
1
4

)
+ c4 cos4π

(
1
4

)
= −6.1

c1 + c2 cos2π

(
3
8

)
+ c3 sin 2π

(
3
8

)
+ c4 cos4π

(
3
8

)
= −3.9

c1 + c2 cos2π

(
1
2

)
+ c3 sin 2π

(
1
2

)
+ c4 cos4π

(
1
2

)
= 0.0

c1 + c2 cos2π

(
5
8

)
+ c3 sin 2π

(
5
8

)
+ c4 cos4π

(
5
8

)
= 1.1

c1 + c2 cos2π

(
3
4

)
+ c3 sin 2π

(
3
4

)
+ c4 cos4π

(
3
4

)
= −0.6

c1 + c2 cos2π

(
7
8

)
+ c3 sin 2π

(
7
8

)
+ c4 cos4π

(
7
8

)
= −1.1,

leading to the following normal equations:

⎡

⎢⎢⎣

8 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

c1
c2
c3
c4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−15.6
−2.9778

−10.2376
4.5

⎤

⎥⎥⎦ .

The solutions are c1 = −1.95, c2 = −0.7445,c3 = −2.5594, and c4 = 1.125, with
RMSE ≈ 0.705. Figure 4.5(b) shows that the extended model y = −1.95 −
0.7445cos2π t − 2.5594sin 2π t + 1.125cos4π t substantially improves the fit. "

4.2.2 Data linearization

Exponential growth of a population is implied when its rate of change is proportional to
its size. Under perfect conditions, when the growth environment is unchanging and when
the population is well below the carrying capacity of the environment, the model is a good
representation.

The exponential model

y = c1ec2t (4.10)

cannot be directly fit by least squares because c2 does not appear linearly in the model
equation. Once the data points are substituted into the model, the difficulty is clear: The set
of equations to solve for the coefficients are nonlinear and cannot be expressed as a linear
system Ax = b. Therefore, our derivation of the normal equations is irrelevant.

There are two ways to deal with the problem of nonlinear coefficients. The more
difficult way is to directly minimize the least square error, that is, solve the nonlinear least
squares problem. We return to this problem in Section 4.5. The simpler way is to change
the problem. Instead of solving the original least squares problem, we can solve a different
problem, which is related to the original, by “linearizing’’ the model.
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In the case of the exponential model (4.10), the model is linearized by applying the
natural logarithm:

ln y = ln(c1ec2t ) = ln c1 + c2t . (4.11)

Note that for an exponential model, the graph of ln y is a linear plot in t . At first glance, it
appears that we have only traded one problem for another. The c2 coefficient is now linear
in the model, but c1 no longer is. However, by renaming k = ln c1, we can write

ln y = k + c2t . (4.12)

Now both coefficients k and c2 are linear in the model. After solving the normal equations
for the best k and c2, we can find the corresponding c1 = ek if we wish.

It should be noted that our way out of the difficulty of nonlinear coefficients was
to change the problem. The original least squares problem we posed was to fit the data
to (4.10)—that is, to find c1,c2 that minimize

(c1ec2t1 − y1)2 + ·· · + (c1ec2tm − ym)2, (4.13)

the sum of squares of the residuals of the equations c1ec2ti = yi for i = 1, . . . ,m. For now,
we solve the revised problem minimizing least squares error in “log space’’—that is, by
finding c1,c2 that minimizes

(ln c1 + c2t1 − ln y1)2 + ·· · + (ln c1 + c2tm − ln ym)2, (4.14)

the sum of squares of the residuals of the equations ln c1 + c2ti = ln yi for i = 1, . . . ,m.
These are two different minimizations and have different solutions, meaning that they
generally result in different values of the coefficients c1,c2.

Which method is correct for this problem, the nonlinear least squares of (4.13) or the
model-linearized version (4.14)? The former is least squares, as we have defined it. The
latter is not. However, depending on the context of the data, either may be the more natural
choice. To answer the question, the user needs to decide which errors are most important to
minimize, the errors in the original sense or the errors in “log space.’’ In fact, the log model
is linear, and it may be argued that only after log-transforming the data to a linear relation
is it natural to evaluate the fitness of the model.

! EXAMPLE 4.8 Use model linearization to find the best least squares exponential fit y = c1ec2t to the
following world automobile supply data:

year cars (×106)

1950 53.05
1955 73.04
1960 98.31
1965 139.78
1970 193.48
1975 260.20
1980 320.39

The data describe the number of automobiles operating throughout the world in the given
year. Define the time variable t in terms of years since 1950. Solving the linear least squares
problem yields k1 ≈ 3.9896,c2 ≈ 0.06152. Since c1 ≈ e3.9896 ≈ 54.03, the model
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Figure 4.6 Exponential fit of world automobile supply data, using linearization.

The best least squares fit is y = 54.03e0.06152t . Compare with Figure 4.14.

is y = 54.03e0.06152t . The RMSE of the log-linearized model in log space is ≈ 0.0357,
while RMSE of the original exponential model is ≈ 9.56. The best model and data are
plotted in Figure 4.6. "

! EXAMPLE 4.9 The number of transistors on Intel central processing units since the early 1970s is given in
the table that follows. Fit the model y = c1ec2t to the data.

CPU year transistors

4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386 1985 275,000
486 1989 1,180,000
Pentium 1993 3,100,000
Pentium II 1997 7,500,000
Pentium III 1999 24,000,000
Pentium 4 2000 42,000,000
Itanium 2002 220,000,000
Itanium 2 2003 410,000,000

Parameters will be fit by using model linearization (4.11). Linearizing the model
gives

ln y = k + c2t .

We will let t = 0 correspond to the year 1970. Substituting the data into the linearized model
yields

k + c2(1) = ln 2250

k + c2(2) = ln 2500

k + c2(4) = ln 5000

k + c2(8) = ln 29000, (4.15)

and so forth. The matrix equation is Ax = b, where x = (k,c2),
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A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 2
1 4
1 8
...

...

1 33

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, and b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ln 2250
ln 2500
ln 5000
ln 29000

...

ln 410000000

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (4.16)

The normal equations AT Ax = AT b are
[

13 235
235 5927

][
k

c2

]
=

[
176.90

3793.23

]
,

which has solution k ≈ 7.197 and c2 ≈ 0.3546, leading to c1 = ek ≈ 1335.3. The exponen-
tial curve y = 1335.3e0.3546t is shown in Figure 4.7 along with the data. The doubling time
for the law is ln 2/c2 ≈ 1.95 years. Gordon C. Moore, cofounder of Intel, predicted in 1965
that over the ensuing decade, computing power would double every 2 years. Astoundingly,
that exponential rate has continued for 40 years. There is some evidence in Figure 4.7 that
this rate has accelerated since 2000.

1970 1980 1990 2000 2010
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x

Figure 4.7 Semilog Plot of Moore’s Law. Number of transistors on CPU chip versus year.

"

Another important example with nonlinear coefficients is the power law model
y = c1tc2 . This model also can be simplified with linearization by taking logs of both
sides:

ln y = ln c1 + c2 ln t

= k + c2 ln t . (4.17)

Substitution of data into the model will give

k + c2 ln t1 = ln y1 (4.18)
...

k + c2 ln tn = ln yn, (4.19)

resulting in the matrix form

A =

⎡

⎢⎣
1 ln t1
...

...

1 ln tn

⎤

⎥⎦ and b =

⎡

⎢⎣
ln y1

...

ln yn

⎤

⎥⎦ . (4.20)

The normal equations allow determination of k and c2, and c1 = ek .
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! EXAMPLE 4.10 Use linearization to fit the given height–weight data with a power law model.

The mean height and weight of boys ages 2–11 were collected in the U.S. National
Health and Nutrition Examination Survey by the Centers for Disease Control (CDC) in
2002, resulting in the following table:

age (yrs.) height (m) weight (kg)

2 0.9120 13.7
3 0.9860 15.9
4 1.0600 18.5
5 1.1300 21.3
6 1.1900 23.5
7 1.2600 27.2
8 1.3200 32.7
9 1.3800 36.0

10 1.4100 38.6
11 1.4900 43.7

Following the preceding strategy, the resulting power law for weight versus height is
W = 16.3H 2.42. The relationship is graphed in Figure 4.8. Since weight is a proxy for
volume, the coefficient c2 ≈ 2.42 can be viewed as the “effective dimension’’ of the human
body.
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x

Figure 4.8 Power law of weight versus height for 2–11-year-olds. The best fit formula is

W = 16.3H2.42.

"

The time course of drug concentration y in the bloodstream is well described by

y = c1tec2t , (4.21)

where t denotes time after the drug was administered. The characteristics of the model are
a quick rise as the drug enters the bloodstream, followed by slow exponential decay. The
half-life of the drug is the time from the peak concentration to the time it drops to half
that level. The model can be linearized by applying the natural logarithm to both sides,
producing

ln y = ln c1 + ln t + c2t

k + c2t = ln y − ln t,
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where we have set k = ln c1. This leads to the matrix equation Ax = b, where

A =

⎡

⎢⎣
1 t1
...

...

1 tm

⎤

⎥⎦ and b =

⎡

⎢⎣
ln y1 − ln t1

...

ln ym − ln tm

⎤

⎥⎦ . (4.22)

The normal equations are solved for k and c2, and c1 = ek .

! EXAMPLE 4.11 Fit the model (4.21) with the measured level of the drug norfluoxetine in a patient’s blood-
stream, given in the following table:

hour concentration (ng/ml)

1 8.0
2 12.3
3 15.5
4 16.8
5 17.1
6 15.8
7 15.2
8 14.0

Solving the normal equations yields k ≈ 2.28 and c2 ≈ −0.215, and c1 ≈ e2.28 ≈ 9.77.
The best version of the model is y = 9.77te−0.215t , plotted in Figure 4.9. From the model,
the timing of the peak concentration and the half-life can be estimated. (See Computer
Problem 5.)

0 4 8 12 160
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20
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x

Figure 4.9 Plot of drug concentration in blood. Model (4.21) shows exponential decay after initial

peak.
"

It is important to realize that model linearization changes the least squares problem.
The solution obtained will minimize the RMSE with respect to the linearized problem,
not necessarily the original problem, which in general will have a different set of optimal
parameters. If they enter the model nonlinearly, they cannot be computed from the normal
equations, and we need nonlinear techniques to solve the original least squares problem.
This is done in the Gauss–Newton Method in Section 4.5, where we revisit the automobile
supply data and compare fitting the exponential model in linearized and nonlinearized
forms.
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4.2 Exercises

1. Fit data to the periodic model y = F3(t) = c1 + c2 cos2π t + c3 sin 2π t . Find the 2-norm error
and the RMSE.

(a)

t y

0 1
1/4 3
1/2 2
3/4 0

(b)

t y

0 1
1/4 3
1/2 2
3/4 1

(c)

t y

0 3
1/2 1
1 3

3/2 2

2. Fit the data to the periodic models F3(t) = c1 + c2 cos2π t + c3 sin 2π t and
F4(t) = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t . Find the 2-norm errors ||e||2 and compare
the fits of F3 and F4.

(a)

t y

0 0
1/6 2
1/3 0
1/2 −1
2/3 1
5/6 1

(b)

t y

0 4
1/6 2
1/3 0
1/2 −5
2/3 −1
5/6 3

3. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points yi and the best model c1ec2ti .

(a)

t y

−2 1
0 2
1 2
2 5

(b)

t y

0 1
1 1
1 2
2 4

4. Fit data to the exponential model by using linearization. Find the 2-norm of the difference
between the data points yi and the best model c1ec2ti .

(a)

t y

−2 4
−1 2

1 1
2 1/2

(b)

t y

0 10
1 5
2 2
3 1

5. Fit data to the power law model by using linearization. Find the RMSE of the fit.

(a)

t y

1 6
2 2
3 1
4 1

(b)

t y

1 2
1 4
2 5
3 6
5 10
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6. Fit data to the drug concentration model (4.21). Find the RMSE of the fit.

(a)

t y

1 3
2 4
3 5
4 5

(b)

t y

1 2
2 4
3 3
4 2

4.2 Computer Problems

1. Fit the monthly data for Japan 2003 oil consumption, shown in the following table, with the
periodic model (4.9), and calculate the RMSE:

month oil use (106 bbl/day)

Jan 6.224
Feb 6.665
Mar 6.241
Apr 5.302
May 5.073
Jun 5.127
Jul 4.994

Aug 5.012
Sep 5.108
Oct 5.377
Nov 5.510
Dec 6.372

2. The temperature data in Example 4.6 was taken from the Weather Underground website
www.wunderground.com. Find a similar selection of hourly temperature data from a
location and date of your choice, and fit it with the two sinusoidal models of the
example.

3. Consider the world population data of Computer Problem 3.1.1. Find the best exponential fit of
the data points by using linearization. Estimate the 1980 population, and find the estimation
error.

4. Consider the carbon dioxide concentration data of Exercise 3.1.17. Find the best exponential fit
of the difference between the CO2 level and the background (279 ppm) by using linearization.
Estimate the 1950 CO2 concentration, and find the estimation error.

5. (a) Find the time at which the maximum concentration is reached in model (4.21). (b) Use an
equation solver to estimate the half-life from the model in Example 4.11.

6. The bloodstream concentration of a drug, measured hourly after administration, is given in the
accompanying table. Fit the model (4.21). Find the estimated maximum and the half-life.
Suppose that the therapeutic range for the drug is 4–15 ng/ml. Use the equation solver of your
choice to estimate the time the drug concentration stays within therapeutic
levels.
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hour concentration (ng/ml)

1 6.2
2 9.5
3 12.3
4 13.9
5 14.6
6 13.5
7 13.3
8 12.7
9 12.4

10 11.9

7. The file windmill.txt, available from the textbook website, is a list of 60 numbers which
represent the monthly megawatt-hours generated from Jan. 2005 to Dec. 2009 by a wind
turbine owned by the Minnkota Power Cooperative near Valley City, ND. The data is currently
available at http://www.minnkota.com. For reference, a typical home uses around 1 MWh per
month.
(a) Find a rough model of power output as a yearly periodic function. Fit the data to
equation (4.9),

f (t) = c1 + c2 cos2π t + c3 sin 2π t + c4 cos4π t

where the units of t are years, that is 0 ≤ t ≤ 5, and write down the resulting function.

(b) Plot the data and the model function for years 0 ≤ t ≤ 5. What features of the data are
captured by the model?

8. The file scrippsy.txt, available from the textbook website, is a list of 50 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded at Mauna Loa, Hawaii, each May 15 of the years 1961 to 2010. The data is part
of a data collection effort initiated by Charles Keeling of the Scripps Oceanographic Institute
(Keeling et al. [2001]). Subtract the background level 279 ppm as in Computer Problem 4, and
fit the data to an exponential model. Plot the data along with the best fit exponential function,
and report the RMSE.

9. The file scrippsm.txt, available from the textbook website, is a list of 180 numbers which
represent the concentration of atmospheric carbon dioxide, in parts per million by volume
(ppv), recorded monthly at Mauna Loa from Jan. 1996 to Dec. 2010, taken from the same
Scripps study as Computer Problem 8.
(a) Carry out a least squares fit of the CO2 data using the model

f (t) = c1 + c2t + c3 cos2π t + c4 sin 2π t

where t is measured in months. Report the best fit coefficients ci and the RMSE of the fit. Plot
the continuous curve from Jan. 1989 to the end of this year, including the 180 data points in the
plot.

(b) Use your model to predict the CO2 concentration in May 2004, Sept. 2004, May 2005, and
Sept. 2005. These months tend to contain the yearly maxima and minima of the CO2 cycle.
The actual recorded values are 380.63, 374.06, 382.45, and 376.73 ppv, respectively. Report
the model error at these four points.

(c) Add the extra term c5 cos4π t and redo parts (a) and (b). Compare the new RMSE and four
model errors.
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(d) Repeat part (c) using the extra term c5t2. Which term leads to more improvement in the
model, part (c) or (d)?

(e) Add both terms from (c) and (d) and redo parts (a) and (b). Prepare a table summarizing
your results from all parts of the problem, and try to provide an explanation for the results.

See the website http://scrippsco2.ucsd.edu for much more data and analysis of the
Scripps carbon dioxide study.

4.3 QR FACTORIZATION

In Chapter 2, the LU factorization was used to solve matrix equations. The factorization is
useful because it encodes the steps of Gaussian elimination. In this section, we develop the
QR factorization as a way to solve least squares calculations that is superior to the normal
equations.

After introducing the factorization by way of Gram–Schmidt orthogonalization, we
return to Example 4.5, for which the normal equations turned out to be inadequate. Later in
this section, Householder reflections are introduced as a more efficient method of computing
Q and R.

4.3.1 Gram–Schmidt orthogonalization and least squares

The Gram–Schmidt method orthogonalizes a set of vectors. Given an input set of
m-dimensional vectors, the goal is to find an orthogonal coordinate system for the sub-
space spanned by the set. More precisely, given n linearly independent input vectors, it
computes n mutually perpendicular unit vectors spanning the same subspace as the input
vectors. The unit length is with respect to the Euclidean or 2-norm (4.7), which is used
throughout Chapter 4.

Let A1, . . . ,An be linearly independent vectors from Rm. Thus n ≤ m. The Gram–
Schmidt method begins by dividing A1 by its length to make it a unit vector. Define

y1 = A1 and q1 = y1

||y1||2
. (4.23)

To find the second unit vector, subtract away the projection of A2 in the direction of
q1, and normalize the result:

y2 = A2 − q1(q T
1 A2), and q2 = y2

||y2||2
. (4.24)

Then q T
1 y2 = q T

1 (A2 − q1(q T
1 A2)) = q T

1 A2 − q T
1 A2 = 0, so q1 and q2 are pairwise orthog-

onal, as shown in Figure 4.10.
At the j th step, define

yj = Aj − q1(q T
1 Aj ) − q2(q T

2 Aj ) − . . . − qj−1(q T
j−1Aj ) and qj = yj

||yj ||2
. (4.25)

It is clear that qj is orthogonal to each of the previously produced qi for i = 1, . . . , j − 1,
since (4.25) implies

q T
i yj = q T

i Aj − q T
i q1q T

1 Aj − . . . − q T
i qj−1q T

j−1Aj

= q T
i Aj − q T

i qiq
T
i Aj = 0,
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A2

A1

q1

y2

q2

0

Figure 4.10 Gram–Schmidt orthogonalization. The input vectors are A1 and A2, and

the output is the orthonormal set consisting of q1 and q2. The second orthogonal

vector q2 is formed by subtracting the projection of A2 in the direction of q1 from A2,

followed by normalizing.

where by induction hypothesis, the qi are pairwise orthogonal for i < j . Geometri-
cally, (4.25) corresponds to subtracting from Aj the projections of Aj onto the previously
determined orthogonal vectors qi, i = 1, . . . , j − 1. What remains is orthogonal to the qi

and, after dividing by its length to become a unit vector, is used as qj . Therefore, the set
{q1, . . . ,qn} consists of mutually orthogonal vectors spanning the same subspace of Rm as
{A1, . . . ,An}.

The result of Gram–Schmidt orthogonalization can be put into matrix form by intro-
ducing new notation for the dot products in the above calculation. Define rjj = ||yj ||2 and
rij = q T

i Aj . Then (4.23) and (4.24) can be written

A1 = r11q1

A2 = r12q1 + r22q2,

and the general case (4.25) translates to

Aj = r1j q1 + ·· · + rj−1,j qj−1 + rjj qj .

Therefore, the result of Gram–Schmidt orthogonalization can be written in matrix form as

(A1| · · · |An) = (q1| · · · |qn)

⎡

⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

⎤

⎥⎥⎥⎦
, (4.26)

or A = QR, where we consider A to be the matrix consisting of the columns Aj . We call
this the reduced QR factorization; the full version is just ahead. The assumption that the
vectors Aj are linearly independent guarantees that the main diagonal coefficients rjj are
nonzero. Conversely, if Aj lies in the span of A1, . . . ,Aj−1, then the projections onto the
latter vectors make up the entire vector, and rjj = ||yj ||2 = 0.

! EXAMPLE 4.12 Find the reduced QR factorization by applying Gram–Schmidt orthogonalization to the

columns of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.
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Set y1 = A1 =

⎡

⎣
1
2
2

⎤

⎦. Then r11 = ||y1||2 =
√

12 + 22 + 22 = 3, and the first unit

vector is

q1 = y1

||y1||2
=

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
.

To find the second unit vector, set

y2 = A2 − q1q T
1 A2 =

⎡

⎣
−4

3
2

⎤

⎦ −

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
2 =

⎡

⎢⎢⎢⎣

− 14
3
5
3
2
3

⎤

⎥⎥⎥⎦

and

q2 = y2

||y2||2
= 1

5

⎡

⎢⎢⎢⎣

− 14
3
5
3
2
3

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

− 14
15
1
3
2

15

⎤

⎥⎥⎥⎦
.

Since r12 = q T
1 A2 = 2 and r22 = ||y2||2 = 5, the result written in matrix form (4.26) is

A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
1/3 −14/15
2/3 1/3
2/3 2/15

⎤

⎦
[

3 2
0 5

]
= QR.

"

We use the term “classical’’ for this version of Gram–Schmidt, since we will provide
an upgraded, or “modified,’’ version at the end of this section.

Classical Gram–Schmidt orthogonalization

Let Aj ,j = 1, . . . ,n be linearly independent vectors.
for j = 1,2, . . . ,n

y = Aj

for i = 1,2, . . . , j − 1
rij = q T

i Aj

y = y − rij qi

end
rjj = ||y||2
qj = y/rjj

end

When the method is successful, it is customary to fill out the matrix of orthogonal unit
vectors to a complete basis of Rm, to achieve the “full’’ QR factorization. This can be done,
for example, by adding m − n extra vectors to the Aj , so that the m vectors span Rm, and
carrying out the Gram–Schmidt method. In terms of the basis of Rm formed by q1, . . . ,qm,
the original vectors can be expressed as



4.3 QR Factorization | 215

(A1| · · · |An) = (q1| · · · |qm)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

0 · · · · · · 0
...

...

0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.27)

This matrix equation is the full QR factorization of the matrix A = (A1| · · · |An), formed
by the original input vectors. Note the matrix sizes in the full QR factorization: A is m × n,
Q is a square m × m matrix, and the upper triangular matrix R is m × n, the same size
as A. The matrix Q in the full QR factorization has a special place in numerical analysis
and is given a special definition.

DEFINITION 4.1 A square matrix Q is orthogonal if QT = Q−1. ❒

Note that a square matrix is orthogonal if and only if its columns are pairwise orthog-
onal unit vectors (Exercise 9). Therefore, a full QR factorization is the equation A = QR,
where Q is an orthogonal square matrix and R is an upper triangular matrix the same
size as A.

The key property of an orthogonal matrix is that it preserves the Euclidean norm of a
vector.

LEMMA 4.2 If Q is an orthogonal m × m matrix and x is an m-dimensional vector, then
||Qx||2 = ||x||2. #

Proof. ||Qx||22 = (Qx)T Qx = xT QT Qx = xT x = ||x||22. ❒

The product of two orthogonal m × m matrices is again orthogonal (Exercise 10). The
QR factorization of an m × m matrix by the Gram–Schmidt method requires approximately
m3 multiplication/divisions, three times more than the LU factorization, plus about the same
number of additions (Exercise 11).

! EXAMPLE 4.13 Find the full QR factorization of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.

Orthogonality In Chapter 2,we found that the LU factorization is an efficient means

of encoding the information of Gaussian elimination. In the same way, the QR factorization

records the orthogonalization of a matrix, namely, the construction of an orthogonal set that

spans the space of column vectors of A. Doing calculations with orthogonal matrices is prefer-

able because (1) they are easy to invert by definition,and (2) by Lemma 4.2,they do not magnify

errors.
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In Example 4.12, we found the orthogonal unit vectors q1 =

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
and

q2 =

⎡

⎢⎢⎢⎣

− 14
15
1
3
2

15

⎤

⎥⎥⎥⎦
. Adding a third vector A3 =

⎡

⎣
1
0
0

⎤

⎦ leads to

y3 = A3 − q1q T
1 A3 − q2q T

2 A3

=

⎡

⎣
1
0
0

⎤

⎦ −

⎡

⎢⎢⎢⎣

1
3
2
3
2
3

⎤

⎥⎥⎥⎦
1
3

−

⎡

⎢⎢⎢⎣

− 14
15
1
3

− 2
15

⎤

⎥⎥⎥⎦

(
−14

15

)
= 2

225

⎡

⎣
2

10
−11

⎤

⎦

and q3 = y3/||y3|| =

⎡

⎢⎢⎣

2
15
10
15

− 11
15

⎤

⎥⎥⎦ . Putting the parts together, we obtain the full QR factorization

A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
1/3 −14/15 2/15
2/3 1/3 2/3
2/3 2/15 −11/15

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = QR.

Note that the choice of A3 was arbitrary. Any third column vector linearly independent of
the first two columns could be used. Compare this result with the reduced QR factorization
in Example 4.12. "

The Matlab command qr carries out the QR factorization on an m × n matrix. It
does not use Gram–Schmidt orthogonalization, but uses more efficient and stable methods
that will be introduced in a later subsection. The command

>> [Q,R]=qr(A,0)

returns the reduced QR factorization, and

>> [Q,R]=qr(A)

returns the full QR factorization.
There are three major applications of the QR factorization. We will describe two of them

here; the third is the QR algorithm for eigenvalue calculations, introduced in Chapter 12.
First, the QR factorization can be used to solve a system of n equations in n unknowns

Ax = b. Just factor A = QR, and the equation Ax = b becomes QRx = b and Rx = QT b.
Assuming that A is nonsingular, the diagonal entries of the upper triangular matrix R are
nonzero, so that R is nonsingular. A triangular back substitution yields the solution x. As
mentioned before, this approach is about three times more expensive in terms of complexity
when compared with the LU approach.

The second application is to least squares. Let A be an m × n matrix with m ≥ n.
To minimize ||Ax − b||2, rewrite as ||QRx − b||2 = ||Rx − QT b||2 by Lemma 4.2.
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The vector inside the Euclidean norm is

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

...

en

en+1

...

em

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1n

r22 · · · r2n

. . .
...

rnn

0 · · · · · · 0

...
...

0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

...

dn

dn+1

...

dm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.28)

where d = QT b. Assume that rii ̸= 0. Then the upper part (e1, . . . ,en) of the error vector e

can be made zero by back substitution. The choice of the xi makes no difference for the
lower part of the error vector; clearly, (en+1, . . . ,em) = (−dn+1, . . . ,−dm). Therefore, the
least squares solution is minimized by using the x from back-solving the upper part, and
the least squares error is ||e||22 = d2

n+1 + ·· · + d2
m.

Least squares by QR factorization

Given the m × n inconsistent system

Ax = b,

find the full QR factorization A = QR and set

R̂ = upper n × n submatrix of R

d̂ = upper n entries of d = QT b

Solve R̂x = d̂ for least squares solution x.

! EXAMPLE 4.14 Use the full QR factorization to solve the least squares problem

⎡

⎣
1 −4
2 3
2 2

⎤

⎦
[
x1
x2

]
=

⎡

⎣
−3
15
9

⎤

⎦.

We need to solve Rx = QT b, or
⎡

⎢⎣
3 2
0 5
0 0

⎤

⎥⎦

[
x1

x2

]

= 1
15

⎡

⎢⎣
5 10 10

−14 5 2
2 10 −11

⎤

⎥⎦

⎡

⎢⎣
−3
15
9

⎤

⎥⎦ =

⎡

⎢⎣
15
9
3

⎤

⎥⎦ .

The least squares error will be ||e||2 = ||(0,0,3)||2 = 3. Equating the upper parts yields
[

3 2
0 5

][
x1
x2

]
=

[
15
9

]
,

whose solution is x1 = 3.8,x2 = 1.8. This least squares problem was solved by the normal
equations in Example 4.2. "

Finally, we return to the problem in Example 4.5 that led to an ill-conditioned system
of normal equations.

Conditioning In Chapter 2, we found that the best way to handle ill-conditioned

problems is to avoid them. Example 4.15 is a classic case of that advice. While the normal

equations of Example 4.5 are ill-conditioned, the QR approach solves least squares without

constructing AT A.
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! EXAMPLE 4.15 Use the full QR factorization to solve the least squares problem of Example 4.5.

The normal equations were notably unsuccessful in solving this least squares prob-
lem of 11 equations in 8 variables. We use the Matlab qr command to carry out an
alternative approach:

>> x=(2+(0:10)/5)’;
>> y=1+x+x.ˆ2+x.ˆ3+x.ˆ4+x.ˆ5+x.ˆ6+x.ˆ7;
>> A=[x.ˆ0 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5 x.ˆ6 x.ˆ7];
>> [Q,R]=qr(A);
>> b=Q’*y;
>> c=R(1:8,1:8)\b(1:8)

c=
0.99999991014308
1.00000021004107
0.99999979186557
1.00000011342980
0.99999996325039
1.00000000708455
0.99999999924685
1.00000000003409

Six decimal places of the correct solution c = [1, . . . ,1] are found by using QR factor-
ization. This approach finds the least squares solution without forming the normal equations,
which have a condition number of about 1019. "

4.3.2 Modified Gram–Schmidt orthogonalization

A slight modification to Gram–Schmidt turns out to enhance its accuracy in machine cal-
culations. The new algorithm called modified Gram–Schmidt is mathematically equivalent
to the original, or “classical’’ Gram–Schmidt algorithm.

Modified Gram–Schmidt orthogonalization

Let Aj ,j = 1, . . . ,n be linearly independent vectors.

for j = 1,2, . . . ,n

y = Aj

for i = 1,2, . . . , j − 1
rij = q T

i y

y = y − rij qi

end
rjj = ||y||2
qj = y/rjj

end

The only difference from classical Gram–Schmidt is that Aj is replaced by y in the
innermost loop. Geometrically speaking, when projecting away the part of vector Aj in
the direction of q2, for example, one should subtract away the projection of the remain-
der y of Aj with the q1 part already removed, instead of the projection of Aj itself on
q2. Modified Gram–Schmidt is the version that will be used in the GMRES algorithm in
Section 4.4.
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! EXAMPLE 4.16 Compare the results of classical Gram–Schmidt and modified Gram–Schmidt, computed in
double precision, on the matrix of almost-parallel vectors

⎡

⎢⎢⎣

1 1 1
δ 0 0
0 δ 0
0 0 δ

⎤

⎥⎥⎦

where δ = 10−10.

First, we apply classical Gram–Schmidt.

y1 = A1 =

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ and q1 = 1√
1 + δ2

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ .

Note that δ2 = 10−20 is a perfectly acceptable double precision number, but 1 + δ2 = 1
after rounding. Then

y2 =

⎡

⎢⎢⎣

1
0
δ

0

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦q T
1 A2 =

⎡

⎢⎢⎣

1
0
δ

0

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
−δ

δ

0

⎤

⎥⎥⎦ and q2 =

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦

after dividing by ||y2||2 =
√

δ2 + δ2 =
√

2δ. Completing classical Gram–Schmidt,

y3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦q T
1 A3 −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
q T

2 A3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ and q3 =

⎡

⎢⎢⎢⎣

0
− 1√

2
0
1√
2

⎤

⎥⎥⎥⎦
.

Unfortunately, due to the double precision rounding done in the first step, q2 and q3 turn
out to be not orthogonal:

q T
2 q3 =

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎣

0
− 1√

2
0
1√
2

⎤

⎥⎥⎥⎦
= 1

2
.

On the other hand, modified Gram–Schmidt does much better. While q1 and q2 are
calculated the same way, q3 is found as

y1
3 =

⎡

⎢⎢⎣

1
0
0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎣

1
δ

0
0

⎤

⎥⎥⎦q T
1 A3 =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ ,

y3 = y1
3 −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
q T

2 y1
3 =

⎡

⎢⎢⎣

0
−δ

0
δ

⎤

⎥⎥⎦ −

⎡

⎢⎢⎢⎣

0
− 1√

2
1√
2

0

⎤

⎥⎥⎥⎦
δ√
2

=

⎡

⎢⎢⎣

0
− δ

2
− δ

2
δ

⎤

⎥⎥⎦ and q3 =

⎡

⎢⎢⎢⎣

0
− 1√

6
− 1√

6
2√
6

⎤

⎥⎥⎥⎦
.
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Now q T
2 q3 = 0 as desired. Note that for both classical and modified Gram–Schmidt, q T

1 q2
is on the order of δ, so even modified Gram–Schmidt leaves room for improvement. Orthog-
onalization by Householder reflectors, described in the next section, is widely considered
to be more computationally stable. "

4.3.3 Householder reflectors

Although the modified Gram–Schmidt orthogonalization method is an improved way to
calculate the QR factorization of a matrix, it is not the best way. An alternative method
using Householder reflectors requires fewer operations and is more stable, in the sense of
amplification of rounding errors. In this section, we will define the reflectors and show how
they are used to factorize a matrix.

A Householder reflector is an orthogonal matrix that reflects all m-vectors through an
m − 1 dimensional plane. This means that the length of each vector is unchanged when
multiplied by the matrix, making Householder reflectors ideal for moving vectors. Given
a vector x that we would like to relocate to a vector w of equal length, the recipe for
Householder reflectors gives a matrix H such that Hx = w.

The origin of the recipe is clear in Figure 4.11. Draw the m − 1 dimensional plane
bisecting x and w, and perpendicular to the vector connecting them. Then reflect all vectors
through the plane.

LEMMA 4.3 Assume that x and w are vectors of the same Euclidean length, ||x||2 = ||w||2. Then w − x

and w + x are perpendicular. #

Proof. (w − x)T (w + x) = wT w − xT w + wT x − xT x = ||w||2 − ||x||2 = 0. ❒

Define the vector v = w − x, and consider the projection matrix

P = vvT

vT v
. (4.29)

A projection matrix is a matrix that satisfies P 2 = P . Exercise 13 asks the reader to verify
that P in (4.29) is a symmetric projection matrix and that P v = v. Geometrically, for any
vector u, P u is the projection of u onto v. Figure 4.11 hints that if we subtract twice the
projection P x from x, we should get w. To verify this, set H = I − 2P . Then

Hx = x − 2P x

= w − v − 2vvT x

vT v

= w − v − vvT x

vT v
− vvT (w − v)

vT v

= w − vvT (w + x)

vT v
= w, (4.30)

the latter equality following from Lemma 4.3, since w + x is orthogonal to v = w − x.
The matrix H is called a Householder reflector. Note that H is a symmetric

(Exercise 14) and orthogonal matrix, since

H T H = HH = (I − 2P )(I − 2P )

= I − 4P + 4P 2

= I .
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x

w

v

Figure 4.11 Householder reflector. Given equal length vectors x and w, reflection

through the bisector of the angle between them (dotted line) exchanges them.

These facts are summarized in the following theorem:

THEOREM 4.4 Householder reflectors. Let x and w be vectors with ||x||2 = ||w||2 and define v = w − x.
Then H = I − 2vvT /vT v is a symmetric orthogonal matrix and Hx = w. #

! EXAMPLE 4.17 Let x = [3,4] and w = [5,0]. Find a Householder reflector H that satisfies Hx = w.

Set

v = w − x =
[

5
0

]
−

[
3
4

]
=

[
2

−4

]
,

and define the projection matrix

P = vvT

vT v
= 1

20

[
4 −8

−8 16

]
=

[
0.2 −0.4

−0.4 0.8

]
.

Then

H = I − 2P =
[

1 0
0 1

]
−

[
0.4 −0.8

−0.8 1.6

]
=

[
0.6 0.8
0.8 −0.6

]
.

Check that H moves x to w and vice versa:

Hx =
[

0.6 0.8
0.8 −0.6

][
3
4

]
=

[
5
0

]
= w

and

Hw =
[

0.6 0.8
0.8 −0.6

][
5
0

]
=

[
3
4

]
= x. "

As a first application of Householder reflectors, we will develop a new way to do the
QR factorization. In Chapter 12, we apply Householder to the eigenvalue problem, to put
matrices into upper Hessenberg form. In both applications, we will use reflectors for a single
purpose: to move a column vector x to a coordinate axis as a way of putting zeros into a
matrix.
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We start with a matrix A that we want to write in the form A = QR. Let x1 be the
first column of A. Let w = ± (||x1||2,0, . . . ,0) be a vector along the first coordinate axis of
identical Euclidean length. (Either sign works in theory. For numerical stability, the sign is
often chosen to be the opposite of the sign of the first component of x to avoid the possibility
of subtracting nearly equal numbers when forming v.) Create the Householder reflector H1
such that H1x = w. In the 4 × 3 case, multiplying H1 by A results in

H1A = H1

⎡

⎢⎢⎣

× × ×
× × ×
× × ×
× × ×

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

× × ×
0 × ×
0 × ×
0 × ×

⎤

⎥⎥⎦ .

We have introduced some zeros into A. We want to continue in this way until A becomes
upper triangular; then we will have R of the QR factorization. Find the Householder reflector
Ĥ2 that moves the (m − 1)-vector x2 consisting of the lower m − 1 entries in column 2 of
H1A to ± (||x2||2,0, . . . ,0). Since Ĥ2 is an (m − 1) × (m − 1)-matrix, define H2 to be the
m × m matrix formed by putting Ĥ2 into the lower part of the identity matrix. Then

⎛

⎜⎜⎜⎝

1 0 0 0

0
0
0

Ĥ2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 × ×
0 × ×

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×

⎞

⎟⎟⎟⎠

The result H2H1A is one step from upper triangularity. One more step gives
⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0

0 0 Ĥ3

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 ×

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

× × ×
0 × ×
0 0 ×
0 0 0

⎞

⎟⎟⎟⎠

and the result

H3H2H1A = R,

an upper triangular matrix. Multiplying on the left by the inverses of the Householder
reflectors allows us to rewrite the result as

A = H1H2H3R = QR,

where Q = H1H2H3. Note that H−1
i = Hi since Hi is symmetric orthogonal. Computer

Problem 3 asks the reader to write code for the factorization via Householder reflectors.

! EXAMPLE 4.18 Use Householder reflectors to find the QR factorization of

A =
[

3 1
4 3

]
.

We need to find a Householder reflector that moves the first column [3,4] onto the
x-axis. We found such a reflector H1 in Example 4.17, and

H1A =
[

0.6 0.8
0.8 −0.6

][
3 1
4 3

]
=

[
5 3
0 −1

]
.

Multiplying both sides on the left by H−1
1 = H1 yields

A =
[

3 1
4 3

]
=

[
0.6 0.8
0.8 −0.6

][
5 3
0 −1

]
= QR,

where Q = H T
1 = H1. "
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! EXAMPLE 4.19 Use Householder reflectors to find the QR factorization of A =

⎡

⎣
1 −4
2 3
2 2

⎤

⎦.

We need to find a Householder reflector that moves the first column x = [1,2,2] to
the vector w = [||x||2,0,0] . Set v = w − x = [3,0,0] − [1,2,2] = [2,−2,−2]. Referring
to Theorem 4.4, we have

H1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ − 2
12

⎡

⎣
4 −4 −4

−4 4 4
−4 4 4

⎤

⎦ =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

and

H1A =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
3 2
0 −3
0 −4

⎤

⎦ .

The remaining step is to move the vector x̂ = [−3,−4] to ŵ = [5,0]. Calculating Ĥ2 from
Theorem 4.4 yields

[−0.6 −0.8
−0.8 0.6

][−3
−4

]
=

[
5
0

]
,

leading to

H2H1A =

⎡

⎣
1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤

⎦

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ =

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = R.

Multiplying both sides on the left by H−1
1 H−1

2 = H1H2 yields the QR factorization:

⎡

⎣
1 −4
2 3
2 2

⎤

⎦ = H1H2R =

⎡

⎢⎢⎢⎣

1
3

2
3

2
3

2
3

1
3 − 2

3
2
3 − 2

3
1
3

⎤

⎥⎥⎥⎦

⎡

⎣
1 0 0
0 −0.6 −0.8
0 −0.8 0.6

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦

=

⎡

⎣
1/3 −14/15 − 2/15
2/3 1/3 −2/3
2/3 2/15 11/15

⎤

⎦

⎡

⎣
3 2
0 5
0 0

⎤

⎦ = QR.

Compare this result with the factorization from Gram–Schmidt orthogonalization in
Example 4.13. "

The QR factorization is not unique for a given m × n matrix A. For example, define
D = diag(d1, . . . ,dm), where each di is either +1 or −1. Then A = QR = QDDR, and we
check that QD is orthogonal and DR is upper triangular.

Exercise 12 asks for an operation count of QR factorization by Householder reflections,
which comes out to (2/3)m3 multiplications and the same number of additions—lower
complexity than Gram–Schmidt orthogonalization. Moreover, the Householder method is
known to deliver better orthogonality in the unit vectors and has lower memory require-
ments. For these reasons, it is the method of choice for factoring typical matrices into QR.
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4.3 Exercises

1. Apply classical Gram–Schmidt orthogonalization to find the full QR factorization of the
following matrices:

(a)

[
4 0
3 1

]

(b)

[
1 2
1 1

]

(c)

⎡

⎢⎣
2 1
1 −1
2 1

⎤

⎥⎦ (d)

⎡

⎢⎣
4 8 1
0 2 −2
3 6 7

⎤

⎥⎦

2. Apply classical Gram–Schmidt orthogonalization to find the full QR factorization of the
following matrices:

(a)

⎡

⎢⎣
2 3

−2 −6
1 0

⎤

⎥⎦ (b)

⎡

⎢⎣
−4 −4
−2 7

4 −5

⎤

⎥⎦

3. Apply modified Gram–Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 1.

4. Apply modified Gram–Schmidt orthogonalization to find the full QR factorization of the
matrices in Exercise 2.

5. Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 1.

6. Apply Householder reflectors to find the full QR factorization of the matrices in Exercise 2.

7. Use the QR factorization from Exercise 2, 4, or 6 to solve the least squares problem.

(a)

⎡

⎢⎣
2 3

−2 −6
1 0

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3

−3
6

⎤

⎥⎦ (b)

⎡

⎢⎣
−4 −4
−2 7

4 −5

⎤

⎥⎦

[
x1

x2

]

=

⎡

⎢⎣
3
9
0

⎤

⎥⎦

8. Find the QR factorization and use it to solve the least squares problem.

(a)

⎡

⎢⎢⎢⎣

1 4
−1 1

1 1
1 0

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
1
1

−3

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

2 4
0 −1
2 −1
1 3

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

−1
3
2
1

⎤

⎥⎥⎥⎦

9. Prove that a square matrix is orthogonal if and only if its columns are pairwise orthogonal unit
vectors.

10. Prove that the product of two orthogonal m × m matrices is again orthogonal.

11. Show that the Gram–Schmidt orthogonalization of an m × m matrix requires approximately
m3 multiplications and m3 additions.

12. Show that the Householder reflector method for the QR factorization requires approximately
(2/3)m3 multiplications and (2/3)m3 additions.

13. Let P be the matrix defined in (4.29). Show (a) P 2 = P (b) P is symmetric (c) P v = v.

14. Prove that Householder reflectors are symmetric matrices.

15. Verify that classical and modified Gram–Schmidt are mathematically identical (in exact
arithmetic).
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4.3 Computer Problems

1. Write a Matlab program that implements classical Gram–Schmidt to find the reduced QR
factorization. Check your work by comparing factorizations of the matrices in Exercise 1 with
the Matlab qr(A,0) command or equivalent. The factorization is unique up to signs of the
entries of Q and R.

2. Repeat Computer Problem 1, but implement modified Gram–Schmidt.

3. Repeat Computer Problem 1, but implement Householder reflections.

4. Write a Matlab program that implements (a) classical and (b) modified Gram–Schmidt to find
the full QR factorization. Check your work by comparing factorizations of the matrices in
Exercise 1 with the Matlab qr(A) command or equivalent.

5. Use the Matlab QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎣

1 1
2 1
1 2
0 3

⎤

⎥⎥⎥⎦

[
x1

x2

]

=

⎡

⎢⎢⎢⎣

3
5
5
5

⎤

⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎣

1 2 2
2 −1 2
3 1 1
1 1 −1

⎤

⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

10
5

10
3

⎤

⎥⎥⎥⎦

6. Use the Matlab QR factorization to find the least squares solutions and 2-norm error of the
following inconsistent systems:

(a)

⎡

⎢⎢⎢⎢⎢⎣

3 −1 2
4 1 0

−3 2 1
1 1 5

−2 0 3

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
x1

x2

x3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎣

10
10
−5
15

0

⎤

⎥⎥⎥⎥⎥⎦
(b)

⎡

⎢⎢⎢⎢⎢⎣

4 2 3 0
−2 3 −1 1

1 3 −4 2
1 0 1 −1
3 1 3 −2

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

10
0
2
0
5

⎤

⎥⎥⎥⎥⎥⎦

7. Let A be the 10 × n matrix formed by the first n columns of the 10 × 10 Hilbert matrix. Let c

be the n-vector [1, . . . ,1], and set b = Ac. Use the QR factorization to solve the least squares
problem Ax = b for (a) n = 6 (b) n = 8, and compare with the correct least squares solution
x = c. How many correct decimal places can be computed? See Computer Problem 4.1.8,
where the normal equations are used.

8. Let x1, . . . ,x11 be 11 evenly spaced points in [2,4] and yi = 1 + xi + x2
i + ·· · + xd

i . Use the
QR factorization to compute the best degree d polynomial, where (a) d = 5 (b) d = 6
(c) d = 8. Compare with Example 4.5 and Computer Problem 4.1.9. How many correct
decimal places of the coefficients can be computed?

4.4 Generalized Minimum Residual (GMRES) Method

In Chapter 2, we saw that the Conjugate Gradient Method can be viewed as an iterative
method specially designed to solve the matrix system Ax = b for a symmetric square
matrix A. If A is not symmetric, the conjugate gradient theory fails. However, there are
several alternatives that work for the nonsymmetric problem. One of the most popular is
the Generalized Minimum Residual Method, or GMRES for short. This method is a good
choice for the solution of large, sparse, nonsymmetric linear systems Ax = b.

At first sight, it might seem strange to be discussing a method for solving linear systems
in the chapter on least squares. Why should orthogonality matter to a problem that has


