	Communication
	 Lectures will take place in person at the Troias Building, Room T106 (4 × 3 hours each)
Statistics for Business	• You can contact me either by e-mail
Course Stuff	(pkonstantinou.aueb@gmail.com) or by telephone (+30 210 8203197).
Panagiotis Th. Konstantinou	• I have a strong preference for e-mail (pkonstantinou.aueb@gmail.com) for the following reasons:
MSc in International Shipping, Finance and Management,	I can respond whenever I find time to do so (I commit to do so
Athens University of Economics and Business	withing two working days of the incoming message), whereas
This Draft : August 28, 2023.	there is no guarantee that I am in my office every day of the week!!!
(日》《문》《문》《王》 문 이익은 P. Konstantinou (AUER) Statistics for Busines - 0 August 28, 2023 1/4	 All material (slides, assignments, etc.) related to the course are or will be posted at https://eclass.aueb.gr/courses/MISC181/ which is OPEN to access (no registration is required) Exercising (AUER)
Communication and Course Evaluation Evaluation	Communication and Course Evaluation Evaluation
Course Evaluation – I	Course Evaluation – II
 Course outline is available at: https://eclass.aueb.gr/modules/document/file.php/MISC181/Outline Business Statistics 2020.pdf Main reading: Newbold, P., Carlson, W.L. and Thorne, B. M. (2013) <i>Statistics for Business and Economics</i>, 8th edition, Essex: Pearson Education 	 Weekly Assignments (30%) → pkonstantinou.aueb@gmail.com. Anything sent to pkonstantinou@aueb.gr (my institutional e-mail address) will be <i>lost</i>. The answers to the assignments will have to be either typed or scanned (but always pdf files). DO NOT SEND PICTURES – they are too large and might not get through. Written Examination (70%) – dates will be announced
	• Written Examination (70%) – dates will be amounced.
 Stock, J. and Watson, M. (2020) Introduction to Econometrics, 4th Global Edition, New York: Pearson (Ch. 1 – Ch.4) 	• Written Examination (70%) – dates will be amounted.
 Stock, J. and Watson, M. (2020) <i>Introduction to Econometrics</i>, 4th Global Edition, New York: Pearson (Ch. 1 – Ch.4) Course Assessment: 	• Written Examination (70%) – dates win be amounted.
 Stock, J. and Watson, M. (2020) Introduction to Econometrics, 4th Global Edition, New York: Pearson (Ch. 1 – Ch.4) Course Assessment: 	

Lectures and Communication

sample mean:

where

deviations of values from the

 $s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$

 \blacktriangleright \bar{x} = sample mean/average

9/18

500

11/18

n =sample size

variable X

 \blacktriangleright $x_i = i$ —th value of the

August 30, 2023

• Population Standard **Deviation:** Most commonly used measure of variation

- Shows variation about the mean
- ► Has the same units as the original data

 $\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$

- Sample Standard Deviation: Most commonly used measure of variation
 - Shows variation about the sample mean
 - ► Has the same units as the original data

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

10/18

(ロト (過) (日) (日) P. Konstantinou (AUEB) Measures of Variability

Standard Deviation

Average of squared

mean

where

deviations of values from the

 $\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$

 \blacktriangleright μ = population mean

 \triangleright N = population size

variable X

 \blacktriangleright $X_i = i$ —th value of the

Example: Sample Standard Deviation Computation

- Sample Data (x_i) : 10 12 14 15 17 18 18 24
- n = 8 and sample mean $= \bar{x} = 16$
- So the standard deviation is

$$s = \sqrt{\frac{(10 - \bar{x})^2 + (12 - \bar{x})^2 + (14 - \bar{x})^2 + \dots + (24 - \bar{x})^2}{n - 1}}$$

= $\sqrt{\frac{(10 - 16)^2 + (12 - 16)^2 + (14 - 16)^2 + \dots + (24 - 16)^2}{8 - 1}}$
= $\sqrt{\frac{126}{7}} = 4.2426$

• This is a measure of the "average" scatter around the (sample) mean.

Comparing Standard Deviations

P. Konstantinou (AUEB)

• The smaller the standard deviation, the more concentrated are the values around the mean.

• Same mean, different standard deviations.

Measures of Variability

Measures of Variability

P. Konstantinou (AUEB)

Statistics for Business - I

Measures of Variability

Statistics Covariance and Correlation

Correlation Coefficients

- The correlation coefficient measures the relative strength of the linear relationship between **two variables**
- The *population correlation coefficient*:

$$\operatorname{Corr}(X, Y) = \rho_{XY} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

• The sample correlation coefficient:

$$\widehat{\operatorname{Corr}(x, y)} = r_{xy} = \frac{\widehat{\operatorname{Cov}(x, y)}}{s_x s_y}$$

- Unit free and ranges between -1 and 1
 - The closer to -1, the stronger the negative linear relationship

August 30, 2023

17/18

1/28

- ▶ The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker any positive linear relationship

Statistics for Business Elements of Probability Theory

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management, Athens University of Economics and Business

First Draft: July 15, 2015. This Draft: August 28, 2023.

Correlation Coefficients

Examples

Important Terms in Probability – I

- *Random Experiment* it is a process leading to an uncertain outcome
- *Basic Outcome* (*S_i*) a possible outcome (the most basic one) of a random experiment
- *Sample Space* (*S*) the collection of all possible (basic) outcomes of a random experiment
- *Event* A is any subset of basic outcomes from the sample space $(A \subseteq S)$. This is our object of interest here among other things.

P. Konstantinou (AUEB)

Statistics for Du

Important Terms in Probability – II

• Intersection of Events – If A and *B* are two events in a sample space *S*, then their intersection, $A \cap B$, is the set of all outcomes in S that belong to **both** A and B

• We say that *A* and *B* are Mutually Exclusive Events if they have no basic outcomes in common i.e., the set $A \cap B$ is empty (\emptyset)

Important Terms in Probability – III

• Union of Events – If A and *B* are two events in a sample space *S*, then their union, $A \cup B$, is the set of all outcomes in S that belong to either A or B

• The *Complement* of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted \overline{A} or A^c .

		미 🛛 🖉 🕨 🖉 🖢 🖉 👘 🖓	E nac			▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	E nac
P. Konstantinou (AUEB)	Statistics for Business – I	August 28, 2023	3/28	P. Konstantinou (AUEB)	Statistics for Business – I	August 28, 2023	4/28
Elements of Probability Theory Sets				Elemen	tts of Probability Theory Sets		
Important Terms in Probability – IV				Important Term	s in Probability	– V	
• Events $E_1, E_2,, E_k$ are <i>Collectively Exhaustive</i> events if $E_1 \cup E_2 \cup \cup E_k = S$, i.e., the events completely cover the sample space.			Examples (Continu	ued)			

Examples

Let the *Sample Space* be the collection of all possible outcomes of rolling one die $S = \{1, 2, 3, 4, 5, 6\}.$

• • • • • • • •

- Let *A* be the event "Number rolled is even": $A = \{2, 4, 6\}$
- Let **B** be the event "Number rolled is at least 4" : $B = \{4, 5, 6\}$
- *Mutually exclusive*: A and B are **not** mutually exclusive. The outcomes 4 and 6 are common to both.

|--|

- $A = \{2, 4, 6\}$ $B = \{4, 5, 6\}$
 - *Collectively exhaustive*: A and B are **not** collectively exhaustive. $A \cup B$ does not contain 1 or 3.
 - *Complements*: $\bar{A} = \{1, 3, 5\}$ and $\bar{B} = \{1, 2, 3\}$
 - *Intersections*: $A \cap B = \{4, 6\}; \overline{A} \cap B = \{5\}; A \cap \overline{B} = \{2\};$ $\bar{A} \cap \bar{B} = \{1, 3\}.$

• Unions:
$$A \cup B = \{2, 4, 5, 6\}; A \cup \overline{A} = \{1, 2, 3, 4, 5, 6\} = S.$$

August 28, 2023

5/28

Elements of Probability Theory Probability	Elements of Probability Theory Probability		
Assessing Probability – I	Assessing Probability – II		
 <i>Probability</i> – the chance that an uncertain event A will occur is always between 0 and 1. 	 Assessing Probability - 11 Classical Definition of Probability: Probability of an event A = NA/N = number of outcomes that satisfy the event A total number of outcomes in the sample space S Assumes all outcomes in the sample space are equally likely to occur. Example: Consider the experiment of tossing 2 coins. The sample space is S = {HH, HT, TH, TT}. Event A = {one T} = {TH, HT}. Hence Pr(A) = 0.5 - assuming that all basic outcomes are equally likely. Event B = {at least one T} = {TH, HT, TT}. So Pr(B) = 0.75. 		
(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日 > < 日		
P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 7/28	P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 8/28		
Elements of Perhability Theory Deshability	Elaments of Deskehility Theory Deskehility		
Elements of Probability Theory Probability Assessing Probability – III	Elements of Probability Theory Probability Assessing Probability – IV		
Probability Theory Probability Assessing Probability – III Probability as Relative Frequency: Probability of an event $A = \frac{n_A}{n}$ $=$ number of events in the population that satisfy event A total number of events in the population The limit of the proportion of times that an event A occurs in a large number of trials, n.	 Element of Probability Theory Assessing Probability – IV Subjective Probability: an individual has opinion or belief about the probability of occurrence of A. When economic conditions or a company's circumstances change rapidly, it might be inappropriate to assign probabilities based solely on historical data We can use any data available as well as our experience and intuition, but ultimately a probability value should express our degree of belief that the experimental outcome will occur. 		

Theory Probability

Measuring Outcomes – I

Classical Definition of Probability

• *Basic Rule of Counting*: If an experiment consists of a sequence of *k* steps in which there are n_1 possible results for the first step, n_2 possible results for the second step, and so on, then the total number of experimental outcomes is given by $(n_1)(n_2)...(n_k)$ – tree diagram...

Measuring Outcomes - II

Classical Definition of Probability

• *Counting Rule for Combinations* (Number of Combinations of *n* Objects taken *k* at a time): A second useful counting rule enables us to count the number of experimental outcomes when *k* objects are to be selected from a set of *n* objects (the ordering does not matter)

Probabilit

$$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

where n! = n(n-1)(n-2)...(2)(1) and 0! = 1.

Measuring Outcomes – III

Classical Definition of Probability

P. Konstantinou (AUEB)

• *Example*: Suppose we flip three coins. How many are the possible combinations with (exactly) 1 *T*?

Probability

$$C_1^3 = \begin{pmatrix} 3\\1 \end{pmatrix} = \frac{3!}{1!(3-1)!} = 3$$

- *Example*: Suppose we flip three coins. How many are the possible combinations with *at least* 1*T*?
- *Example*: Suppose that there are two groups of questions. Group A with 6 questions and group B with 4 questions. How many are the possible half-a-dozens we can put together?

$$n = 6 + 4 = 10; \ C_6^{10} = {10 \choose 6} = {10! \over 6!(10-6)!} = 210.$$

Measuring Outcomes - IV

Classical Definition of Probability

P. Konstantinou (AUEB)

11/28

13/28

Example: How many possible half-a-dozens we can put together, preserving the ratio 4 : 2?

Probability

$$\binom{6}{4} \times \binom{4}{2} = 15 \times 6 = 90.$$

Probability: What is the probability of selecting a particular half-a-dozen (with ratio 4 : 2), when we choose at random? Using the classical definition of probability

$$\frac{90}{210} = 0.4286$$

usiness – I

P. Konstantinou (AUEB)

r Business – I Augus

Measuring Outcomes - V

Classical Definition of Probability

• *Counting Rule for Permutations* (Number of Permutations of *n* Objects taken *k* at a time): A third useful counting rule enables us to count the number of experimental outcomes when *k* objects are to be selected from a set of *n* objects, where the order of selection is important

 $P_k^n = \frac{n!}{(n-k)!}.$

Probability

Measuring Outcomes - VI

Classical Definition of Probability

Example: How many 3-digit lock combinations can we make from the numbers 1, 2, 3, and 4? The order of the choice is important! So

Probability

$$P_3^4 = \frac{4!}{1!} = 4! = 4(3)(2)(1) = 24.$$

Example: Let the characters A, B, Γ . In how many ways can we combine them in making triads?

$$P_3^3 = \frac{3!}{0!} = 3! = 3(2)(1) = 6.$$

These are: $AB\Gamma$, $A\Gamma B$, $BA\Gamma$, $B\Gamma A$, ΓAB , and ΓBA .

< □ > < □ > < □ > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >	ク へ ロ ト ・ (国 ト ・ (の) の の の の の の の の の の の の の		
P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023	15/28 P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 16/28		
Elements of Probability Theory Probability	Elements of Probability Theory Axioms and Rules of Probability		
Measuring Outcomes – VII Classical Definition of Probability	Probability Axioms		
<i>Example</i> : Let the characters A, B, Γ, Δ, E. In how many ways is possible to combine them into pairs?	 The following <i>Axioms</i> hold If <i>A</i> is any event in the sample space <i>S</i>, then 		
* If the order matters, we may have	$0 \leq \Pr(A) \leq 1.$		
$P_2^5 = \frac{5!}{3!} = (5)(4) = 20.$	2 Let A be an event in S, and let S_i denote the basic outcomes. Then		
* If the order does not matters, we may choose pairs	$\Pr(A) = \sum_{\text{all } S_i \text{ in } A} \Pr(S_i).$		
$C_2^5 = \binom{5}{2} = \frac{5!}{2!(5-2)!} = \frac{5!}{2!3!} = 10$	3 $\Pr(S) = 1.$		
· · · · · · · · · · · · · · · · · · ·	 つへぐ イロトイラトイミト ミ つへぐ 17/28 P. Konstantinou (AUEB) Statistics for Business - I August 28, 2023 18/28 		

Axioms and Rules of Probability

Axioms and Rules of Probability

Probability Rules – I

• The *Complement Rule*:

 $Pr(\bar{A}) = 1 - Pr(A)$ [i.e., $Pr(A) + Pr(\bar{A}) = 1$].

• The *Addition Rule*: The probability of the union of two events is

 $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$

• Probabilities and joint probabilities for two events A and B are summarized in the following table:

		ŀ	3	\bar{B}		
	A	F	$\Pr(A \cap B)$	$\Pr(A \cap \overline{B})$	$\Pr(A)$	
	Ā	F	$\Pr(\bar{A} \cap B)$	$\Pr(\bar{A} \cap \bar{B})$	$\Pr(ar{A})$	
			$\Pr(B)$	$\Pr(\bar{B})$	$\Pr(S) = 1$. =
JEB)			Statistics	s for Business – I	August 2	28, 2023

Conditional Probability – I

P. Konstantinou (A

P. Konstantinou (AUEB)

• A *conditional probability* is the probability of one event, given that another event has occurred:

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$
 (if $\Pr(B) > 0$);

$$\Pr(B|A) = \frac{\Pr(A \cap B)}{\Pr(A)} \text{ (if } \Pr(A) > 0)$$

Probability Rules – II

Example (Addition Rule)

Consider a standard deck of 52 cards, with four suits \heartsuit \clubsuit \diamondsuit . Let event A = card is an Ace and event B = card is from a red suit. $Pr(Red \cup Ace) = Pr(Red) + Pr(Ace) - Pr(Red \cap Ace)$

Elements of Probability Theory Axioms and Rules of Probability	Elements of Probability Theory Independence, Joint and Marginal Probabilities	
 Multiplication Rule The <i>Multiplication Rule</i> for two events A and B: 	Statistical Independence – I	
$Pr(A \cap B) = Pr(A B) Pr(B) = Pr(B A) Pr(A)$ Example (Multiplication Rule) $Pr(\text{Red} \cap \text{Ace}) = Pr(\text{Red} \text{Ace})Pr(\text{Ace})$ $= \begin{pmatrix} 2\\ 4 \end{pmatrix} \begin{pmatrix} 4\\ 52 \end{pmatrix} = \frac{2}{52}$ $= \frac{\text{number of cards that are red and ace}}{\text{total number of cards}} = \frac{2}{52}$ $\overline{\text{Type}} \overline{\text{Red}} \overline{\text{Black}} \overline{\text{Total}}$ $Ace 2 2 4$ $\overline{\text{Non-Ace}} 24 24 48$ $\overline{\text{Total}} 26 26 52$	 Two events are <i>statistically independent</i> if and only if: Pr(A ∩ B) = Pr(A) Pr(B). Events A and B are independent when the probability of one event is not affected by the other event. If A and B are independent, then Pr(A B) = Pr(A), if Pr(B) > 0; Pr(B A) = Pr(B), if Pr(A) > 0. 	
P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 23/28	P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 24/28	
Elements of Probability Theory Independence, Joint and Marginal Probabilities Statistical Independence – II Example (Statistical Independence)	Elements of Probability Theory Independence, Joint and Marginal Probabilities Statistical Independence – III	
$\begin{tabular}{l c c c c c c c c c c c c c c c c c c c$	Independence, Joint and Marginal Probabilities Statistical Independence – III Remark (Exclussive Events and Statistical Independence) Let two events A and B with $Pr(A) > 0$ and $Pr(B) > 0$ which are mutually exclusive. Are A and B independent? NO! To see this use a Venn diagram and the formula of conditional probability (or the multiplication rule). • If one mutually exclusive event is known to occur, the other cannot occur; thus, the probability of the other event occurring is reduced to zero (and they are therefore dependent).	

Theory Independence, Joint and Marginal Probabilities

Examples – I

- Example 1. In a certain population, 10% of the people can be classified as being high risk for a heart attack. Three people are randomly selected from this population. What is the probability that exactly one of the three are high risk?
- ▶ Define *H*: high risk, and *N*: not high risk. Then

Pr(exactly one high risk) = Pr(HNN) + Pr(NHN) + Pr(NNH) == Pr(H) Pr(N) Pr(N) + Pr(N) Pr(H) Pr(N) + Pr(N) Pr(N) Pr(H) $= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)^2 = .243$

Examples – II

- Example 2. Suppose we have additional information in the previous example. We know that only 49% of the population are female. Also, of the female patients, 8% are high risk. A single person is selected at random. What is the probability that it is a high risk female?
- ▶ Define *H*: high risk, and *F*: female. From the example, Pr(F) = .49 and Pr(H|F) = .08. Using the Multiplication Rule:

 $Pr(high risk female) = Pr(H \cap F)$ = Pr(F) Pr(H|F) = .49(.08) = .0392

Kandoni variabies and Flogability Distributions Kandoni variables. Into	Random Variables and Probability Distributions Discrete Random Variables and Distributions
Random Variables – II Basics	Discrete Random Variables
 Examples X = GPA for a randomly selected student X = number of contracts a shipping company has pending at a randomly selected month of the year X = number on the upper face of a randomly tossed die X = the price of crude oil during a randomly selected month. 	 A <i>discrete random variable</i> can only take on a countable number of values Examples Roll a die twice. Let <i>X</i> be the number of times 4 comes up: then <i>X</i> could be 0, 1, or 2 times Toss a coin 5 times. Let <i>X</i> be the number of heads: then <i>X</i> = 0, 1, 2, 3, 4, or 5
Image: Probability Distributions Statistics for Business – II August 28, 2023 3/65 Random Variables and Probability Distributions Discrete Random Variables and Distributions	P. Konstantinou (AUEB) Statistics for Business – II August 28, 2023 4/65 Random Variables and Probability Distributions Discrete Random Variables and Distributions
Discrete Probability Distributions – I	Discrete Probability Distributions – II
 Discrete Probability Distributions – I The <i>probability distribution</i> for a <i>discrete random variable X</i> resembles the relative frequency distributions. It is a graph, table or formula that gives the possible values of X and the probability P(X = x) associated with each value. This must satisfy 0 ≤ P(x) ≤ 1, for all x. ∑_{all x} P(x) = 1, the individual probabilities sum to 1. The <i>cumulative probability function</i>, denoted by F(x₀), shows the probability that X is less than or equal to a particular value, x₀: F(x₀) = Pr(X ≤ x₀) = ∑_{x≤x₀} P(x) 	• Random Experiment : Toss 2 Coins. Let (the random variable) X = # heads.

Continuous Random Variables and Densities

Moments of Continuous Distributions - I

• *Expected Value* (or *mean*) of a continuous distribution

$$\mu_X = \mathrm{E}(X) = \int_{\mathbb{R}_X} x f(x) dx.$$

• *Variance* of a continuous random variable *X*

$$\sigma_X^2 = \operatorname{Var}(X) = \int_{\mathbb{R}_X} (x - \mu_X)^2 f(x) dx$$

• *Standard Deviation* of a continuous random variable *X*

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{\int_{\mathbb{R}_X} (x - \mu_X)^2 f(x) dx}$$

Specific Discrete Probability Distribution

Random Variables and Probab

P. Konstantinou (AUEB)

Bernoulli Distribution

- Consider only two outcomes: "*success*" or "*failure*". Let *p* denote the probability of success, and 1 p be the probability of failure.
- Define random variable X: x = 1 if success, x = 0 if failure.
- Then the Bernoulli probability function is

$$P(X = 0) = (1 - p)$$
 and $P(X = 1) = p$

• Moreover:

$$\mu_X = E(X) = \sum_{\text{all } x} x \cdot P(x) = 0 \cdot (1-p) + 1 \cdot p = p$$

$$\sigma_X^2 = \text{Var}(X) = E[(X - \mu_X)^2] = \sum_{\text{all } x} (x - \mu_X)^2 \cdot P(x)$$

$$= (0-p)^2 (1-p) + (1-p)^2 p = p(1-p)$$

Moments of Continuous Distributions - II

Remark (Rules for Moments Apply) Let c and d be any constants and let Y = c + dX. Then

$$E[c + dX] = c + dE[X] = c + d\mu_x$$

$$Var[c + dX] = d^2 Var[X] = d^2 \sigma_x^2 \Rightarrow \sigma_Y = |d|\sigma_x$$

Continuous Random Variables and Densities

Remark (Standardized Random Variable) An important special case of the previous results is

$$Z = \frac{X - \mu_x}{\sigma_x},$$

which : $E(Z) = 0$
 $Var(Z) =$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Binomial Distribution – I

• A fixed number of observations, *n*

for

• e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse

Specific Discrete Probability Distribution

- Two mutually exclusive and collectively exhaustive categories
 - e.g., head or tail in each toss of a coin; defective or not defective light bulb
 - ► Generally called "*success*" and "*failure*"
 - Probability of success is p, probability of failure is 1 p
- Constant probability for each observation
 - e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
 - The outcome of one observation does not affect the outcome of the other

17/65

15/65

es for Business – II

.023 18/6

200

Specific Discrete Probability Distributions

Specific Discrete Probability Distributions

Specific Continuous Distributions: Norm

Binomial Distribution – II

- Examples:
 - A manufacturing plant labels items as either defective or acceptable
 - A firm bidding for contracts will either get a contract or not
 - A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
 - New job applicants either accept the offer or reject it
- To calculate the probability associated with each value we use combinatorics:

$$P(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}; \ x = 0, 1, 2, ..., n$$

Specific Discrete Probability Distribution

Binomial Distribution – III

P(x) = probability of x successes in n trials, with probability of success p on each trial; x = number of 'successes' in sample (nr. of trials n); n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ ... ⋅ 2 ⋅ 1

Example

つへで 19/65 What is the probability of one success in five observations if the probability of success is 0.1?

• Here x = 1, n = 5, and p = 0.1. So

$$P(x = 1) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

= $\frac{5!}{1!(5-1)!} (0.1)^{1} (1-0.1)^{5-1} = 5(0.1)(0.9)^{4} = 0.32805$

dom Variables and Probability/Density I

Binomial Distribution

Moments and Shape

P. Konstantinou (AUEB)

$$\mu = \mathbf{E}(X) = np \sigma^2 = \operatorname{Var}(X) = np(1-p) \Rightarrow \sigma = \sqrt{np(1-p)}$$

• The shape of the binomial distr. depends on the values of p and n

Normal Distribution – I

P. Konstantinou (AUEB)

• The *normal distribution* is the most important of all probability distributions. The probability density function of a **normal random variable** is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; \quad -\infty < x < +\infty,$$

and we usually write $X \sim N(\mu_x, \sigma_x^2)$

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant

0 1 2 3 4		E		4		E 996
Statistics for Business – II	August 28, 2023	21/65	P. Konstantinou (AUEB)	Statistics for Business – II	August 28, 2023	22/65

Finding Normal Probabilities – V Finding Normal Probabilities – IV • **Example**: Suppose we are interested in Pr(Z < 2) – from the • **Example**: Suppose X is normal with mean 8.0 and standard previous example. For negative Z-values, we use the fact that the deviation 5.0. Find Pr(X < 8.6). distribution is symmetric to find the needed probability (e.g. $\Pr(Z < -2)).$ $Z = \frac{X - \mu}{\sigma} = \frac{8.6 - 8.0}{5.0} = 0.12;$.9772 $\Phi(0.12) = 0.5478$.0228 $\mu = \mathbf{0}$ $\mu = 8$ $\sigma = 10$ $\sigma = 1$ 2.00 0 .9772 8 8.6 0 0.12 .0228 х Pr(X < 8.6)Pr(Z < 0.12)0 -2.00 31/65 P. Konstantinou (AUEB) P. Konstantinou (AUEB Specific Continuous Distributions: Norma Specific Continuous Distributions: Normal Finding Normal Probabilities – VI Finding Normal Probabilities – VII • **Example (Upper Tail Probabilities)**: Suppose X is normal with mean 8.0 and standard deviation 5.0. Find Pr(X > 8.6). Onvert to X-units using the formula $\Pr(X > 8.6) = \Pr(Z > 0.12) = 1 - \Pr(Z < 0.12)$ $X = \mu + Z\sigma$ = 1 - 0.5478 = 0.4522 $= 8 + (-.84) \cdot 5 = 3.8.$ • **Example (Finding X for a Known Probability)** Suppose So 20% of the values from a distribution with mean 8 and standard $X \sim N(8, 5^2)$. Find a X value so that only 20% of all values are deviation 5 are less than 3.80. below this X. • Find the Z-value for the known probability $\Phi(.84) = .7995$, so a 20% area in the lower tail is consistent with a Z-value of -0.84.

August 28, 2023 33/65

Specific Continuous Distributions: Norma

P. Konstantinou (AUEB)

Statistics for Pusin

Specific Continuous Distributions: Normal

P. Konstantinou (AUEB)

Multivariate Probability Distributions Basic Definitions	Multivariate Probability Distributions Basic Definitions		
Joint and Marginal Probability Distributions – I Joint Probability Functions	Joint and Marginal Probability Distributions – II Joint Probability Functions		
 Suppose that X and Y are discrete random variables. The <i>joint probability function</i> is P(x, y) = Pr(X = x ∩ Y = y), which is simply used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y. This should satisfy: 0 ≤ P(x, y) ≤ 1 for all x, y. ∑_x ∑_y P(x, y) = 1, where the sum is over all values (x, y) that are assigned nonzero probabilities. 	 For any random variables X and Y (discrete or continuous), the <i>joint (bivariate) distribution function</i> F(x, y) is F(x, y) = Pr(X ≤ x ∩ Y ≤ y). This defines the probability that simultaneously X is less than x and Y is less than y. 		
A Line A Li	 ・ (日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・		
Multivariate Probability Distributions Basic Definitions	Multivariate Probability Distributions Basic Definitions		
Joint and Marginal Probability Distributions	Conditional Probability Distributions		
• Let X and Y be jointly discrete random variables with probability function $P(x, y)$. Then the <i>marginal probability functions</i> of X and Y, respectively, are given by $P_x(x) = \sum_{\text{all } y} P(x, y) \qquad P_y(y) = \sum_{\text{all } x} P(x, y)$	• If X and Y are jointly discrete random variables with joint probability function $P(x, y)$ and marginal probability functions $P_x(x)$ and $P_y(y)$, respectively, then the conditional discrete probability function of Y given X is		
• Let <i>X</i> and <i>Y</i> be jointly discrete random variables with probability function $P(x, y)$. The <i>cumulative marginal probability functions</i> , denoted $F_x(x_0)$ and $G_y(y_0)$, show the probability that <i>X</i> is less than	$P(y x) = \Pr(Y = y X = x) = \frac{\Pr(X = x, Y = y)}{\Pr(X = x)} = \frac{P(x, y)}{P_x(x)},$ provided that $P_x(x) > 0$. Similarly,		

or equal to x_0 and that Y is less than or equal to y_0 respectively

August 28, 2023

∃ のへの

37/65

$$F_x(x_0) = \Pr(X \le x_0) = \sum_{x \le x_0} P_x(x),$$

$$G_y(y_0) = \Pr(Y \le y_0) = \sum_{y \le y_0} P_y(y).$$

 $P(x|y) = \frac{P(x,y)}{P_y(y)}$, provided that $P_y(x) > 0$

Statistical Independence

Let X have distribution function F_x(x), Y have distribution function F_y(y), and X and Y have a joint distribution function F(x, y). Then X and Y are said to be *independent* if and only if

 $F(x, y) = F_x(x) \cdot F_y(y),$

Independent Random Variables

for every pair of real numbers (x, y).

• Alternatively, the two random variables *X* and *Y* are independent if the conditional distribution of *Y* given *X* does not depend on *X*:

$$\Pr(Y = y | X = x) = \Pr(Y = y).$$

• We also define *Y* to be **mean independent** of *X* when the conditional mean of *Y* given *X* equals the unconditional mean of *Y*:

$$\mathbf{E}(Y = y | X = x) = \mathbf{E}(Y = y).$$

Examples

Joint and Marginal Distributions – I

Examples

P. Konstantinou (AUEB)

P. Konstantinou (AUEB)

• We are given the following data on the number of people attending AUEB this year.

	Subject of Study (Y)							
Sex (X)	Economics (0)	Finance (1)	Systems (2)					
<i>Male</i> (0)	40	10	30					
<i>Female</i> (1)	30	20	70					

- What is the probability of selecting an individual that studies Finance?
- **2** What is the expected value of *Sex*?
- What is the probability of choosing an individual that studies economics, given that it is a female?
- Are *Sex* and *Subject* statistically independent?

Conditional Moments

• If *X* and *Y* are any two discrete random variables, the *conditional expectation* of *Y* given that *X* = *x*, is defined to be

Conditional Moments of Joint Distribution

$$\mu_{Y|X} = \mathcal{E}(Y|X=x) = \sum_{\text{all } y} y \cdot P(y|x)$$

• If *X* and *Y* are any two discrete random variables, the *conditional variance* of *Y* given that *X* = *x*, is defined to be

$$\sigma_{Y|X}^{2} = \mathbb{E}[(Y - \mu_{Y|X})^{2} | X = x] = \sum_{\text{all } y} (y - \mu_{Y|X})^{2} \cdot P(y|x)$$

Examples

Joint and Marginal Distributions – II

Examples

୬ ୯.୯ 39/65

500

41/65

• First step: Totals

P. Konstantinou (AUEB)

	Subj	ect of Study (<i>Y</i>)	
Sex (X)	Economics (0)	Finance (1)	Systems (2)	Total
<i>Male</i> (0)	40	10	30	80
<i>Female</i> (1)	30	20	70	120
Total	70	30	100	200

• Second step: Probabilities

		Subj	ect of Study ((Y)		
	$\mathbf{Sex}(X)$	Economics (0)	Finance (1)	Systems (2)	То	tal
	<i>Male</i> (0)	40/200 = 0.20	0.05	0.15	0.4	40
	<i>Female</i> (1)	30/200 = 0.15	0.10	0.35	0.	60
	Total	70/200 = 0.35	0.15	0.50	1	 مور
P.	Konstantinou (AUEB)	Statistics for E	Susiness – II	August 28, 2023		42/65

Multivariate Probability Distributions Examples	Multivariate Probability Distributions Examples
Joint and Marginal Distributions – III Examples	Joint and Marginal Distributions – IV Examples
 Answers: Pr(Y = 1) = 0.15. E(X) = 0 ⋅ 0.4 + 1 ⋅ 0.6 = 0.6 Pr(Y = 0 X = 1) = 0.15/0.6 = 0.25 Pr(X = 0 ∩ Y = 0) = 0.20 ≠ Pr(X = 0) ⋅ Pr(Y = 0) = 0.4 ⋅ 0.35 = 0.14. So Sex and Subject are not statistically independent. The conditional mean of Y given X = 0 is E(Y X = 0) 	• The conditional mean of Y given $X = 1$ is $E(Y X = 1)$ $= \Pr(Y = 0 X = 1) \cdot 0 + \Pr(Y = 1 X = 1) \cdot 1 + \Pr(Y = 2 X = 1) \cdot 2$ $= \frac{0.15}{0.6} \cdot 0 + \frac{0.10}{0.6} \cdot 1 + \frac{0.35}{0.6} \cdot 2 = 0.80$
$= \Pr(Y = 0 X = 0) \cdot 0 + \Pr(Y = 1 X = 0) \cdot 1 + \Pr(Y = 2 X = 0) \cdot 2$ $= \frac{0.20}{0.4} \cdot 0 + \frac{0.05}{0.4} \cdot 1 + \frac{0.15}{0.4} \cdot 2 = 0.875$ $= 0.875$ P. Konstantinou (AUEB) Statistics for Business - II August 28, 2023 43/65	P. Konstantinou (AUEB) Statistics for Business – II August 28, 2023 44/65
Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV	Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV
Covariance, Correlation and Independence – I	Covariance, Correlation and Independence – II
Covariance, Correlation and Independence – I Definition (Covariance) If X and Y are random variables with means μ_x and μ_y , respectively, the <i>covariance</i> of X and Y is $\sigma_{XY} \equiv \text{Cov}(X, Y) = \text{E}[(X - \mu_x)(Y - \mu_y)].$	 Covariance, Correlation and Independence – II The <i>covariance</i> measures the strength of the linear relationship between two variables. If two random variables are statistically independent, the
Covariance, Correlation and Independence – I Definition (Covariance) If X and Y are random variables with means μ_x and μ_y , respectively, the <i>covariance</i> of X and Y is $\sigma_{XY} \equiv \text{Cov}(X, Y) = \text{E}[(X - \mu_x)(Y - \mu_y)].$ • This can be found as $\text{Cov}(X, Y) = \sum_{\text{all } x} \sum_{\text{all } y} (x - \mu_x)(y - \mu_y) \cdot P(x, y),$	 Covariance, Correlation and Independence – II The <i>covariance</i> measures the strength of the linear relationship between two variables. If two random variables are statistically independent, the covariance between them is 0. The converse is not necessarily true.
Covariance, Correlation and Independence – I Definition (Covariance) If X and Y are random variables with means μ_x and μ_y , respectively, the <i>covariance</i> of X and Y is $\sigma_{XY} \equiv \text{Cov}(X, Y) = \text{E}[(X - \mu_x)(Y - \mu_y)].$ • This can be found as $\text{Cov}(X, Y) = \sum_{\text{all } x} \sum_{\text{all } y} (x - \mu_x)(y - \mu_y) \cdot P(x, y),$ and an equivalent expression is	 Covariance, Correlation and Independence – II The <i>covariance</i> measures the strength of the linear relationship between two variables. If two random variables are statistically independent, the covariance between them is 0. The converse is not necessarily true.
Covariance, Correlation and Independence – I Definition (Covariance) If X and Y are random variables with means μ_x and μ_y , respectively, the <i>covariance</i> of X and Y is $\sigma_{XY} \equiv \text{Cov}(X, Y) = \text{E}[(X - \mu_x)(Y - \mu_y)].$ • This can be found as $\text{Cov}(X, Y) = \sum_{\text{all } x} \sum_{\text{all } y} (x - \mu_x)(y - \mu_y) \cdot P(x, y),$ and an equivalent expression is $\text{Cov}(X, Y) = \text{E}[XY] - \mu_x \mu_y = \sum_{\text{all } x} \sum_{\text{all } y} xy \cdot P(x, y) - \mu_x \mu_y.$	<section-header><list-item><list-item><list-item></list-item></list-item></list-item></section-header>

Special Continuous Distributions

• Let two independent random variables $Z \sim N(0, 1)$ and $Y \sim \chi^2(n)$.¹ If Z and Y are independent, then

$$W = \frac{Z}{\sqrt{Y/n}} \sim t(n)$$

- The PDF of t has only one parameter, n, is always positive and symmetric around zero.
- Moreover it holds that

E(W) = 0 for n > 1; $Var(W) = \frac{n}{n-2}$ for n > 2

and for *n* large enough: $W \underset{n \to \infty}{\sim} N(0, 1)$

Annex: Normal Approximation of Binomial - I

- Recall the binomial distribution, where we have *n* independent *trials* and the probability of success on any given trial = *p*.
- Let *X* be a binomial random variable (*X_i* = 1 if the *i*th trial is "success"):

$$E(X) = \mu = np$$

Var(X) = $\sigma^2 = np(1-p)$

The shape of the binomial distribution is approximately normal if n is large

The *t*-Distribution – II

Annex: Normal Approximation of Binomial – II

► The normal is a good approximation to the binomial when np(1-p) > 5 (check that np > 5 and n(1-p) > 5 to be on the safe side). That is

$$Z = \frac{X - E(X)}{\sqrt{\operatorname{Var}(X)}} = \frac{X - np}{\sqrt{np(1 - p)}}$$

For instance, let X be the number of successes from n independent trials, each with probability of success p. Then

$$\Pr(a < X < b) = \Pr\left(\frac{a - np}{\sqrt{np(1 - p)}} < Z < \frac{b - np}{\sqrt{np(1 - p)}}\right)$$

|--|

55/65

500

57/65

Statist

500

Lecture Outline

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
 - Law of Large Numbers
 - Central Limit Theorem
- Estimation of the population mean
 - Unbiasedness
 - Consistency
 - Efficiency

P. Konstantinou (AUEB)

- Hypothesis test concerning the population mean
- Confidence intervals for the population mean
 - Using the *t*-statistic when *n* is small
- Comparing means from different populations

Sampling

• A *population* is a collection of all the elements of interest, while a *sample* is a subset of the population.

Sampling: Intro

- The reason we select a sample is to collect data to answer a research question about a population.
- The sample results provide only **estimates** of the values of the population characteristics. With *proper sampling methods*, the sample results can provide "good" estimates of the population characteristics.
- A *random sample* from an infinite population is a sample selected such that the following conditions are satisfied:

August 28, 2023

5/61

- Each element selected comes from the population of interest.
- Each element is selected *independently*.
- ★ If the population is finite, then we sample with replacement...

P. Konstantinou (AUEB)	✓ □ Statistics for Business – III	□ ▶ < ⊕ ▶ < ≧ ▶ < ≧ ▶ August 28, 2023	シュペ 2/61	P. Konstantinou (AUEB)	Statistics for Business – III	イロト イ 部 ト イ 注 ト イ 注 ト 三 August 28, 2023	3/61
Sampling and Samp	ling Distributions Simple Random Samplin	ng		Sampling and	d Sampling Distributions Simple Random Sa	ampling	
Simple Random Samp	oling – I			Simple Random Sa	ampling – II		
 Simple random sampli a population and each of Let Y₁, Y₂,, Y_n denote simple random samplin The marginal probat and equals the popu because Y₁, Y₂,, Y Y₁ is distributed ind does not provide inf When Y₁, Y₂,, Y_n are independently distribute 	<i>ng</i> means that <i>n</i> objects an object is equally likely to be the 1st to the <i>n</i> th random generation distribution of Y_i is the lation distribution of <i>Y</i> . <i>'n</i> are drawn randomly from ependently from $Y_2,, Y_n$. Formation on Y_j for $i \neq j$ drawn from the same poped, they are said to be <i>I.I.</i>	re drawn randomly i be drawn mly drawn object. U e same for all $i = 1, 2$ the same population. knowing the value of i pulation and are D. random variable	from Inder ,, <i>n</i> <i>Y_i</i>	 Let G be the gender G is a Bernoulli r.v. Suppose we take the size n The probability G₁ is distributed Suppose we draw a of the accounting d This is not a sar G₁, G₂,, G_n ar Men are more lite 	r of an individual ($G = 1$ if . with $E(G) = \mu_G = Pr(G)$ e population register and r distribution of G_i is a Bernord independently from $G_2,,$ random sample of individ epartment mple obtained by simple rand re not i.i.d ikely to enter the building of	f female, $G = 0$ if male F = 1 = 0.5 randomly draw a sampluli with mean 0.5 G_n wals entering the build lom sampling and the accounting department	e of ing nt!
	< c		596			< □ > < @ > < ≥ > < ≥ > < ≥	: nac

4/61

P. Konstantinou (AUEB)

August 28, 2023

The Sampling Distribution of the Sample Average – I	The Sampling Distribution of the Sample Average – II
• The <i>sample average</i> \overline{Y} of a randomly drawn sample is a random variable with a probability distribution called the <i>sampling distribution</i>	$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$
 <i>X̄</i> = 1/<i>n</i>(<i>Y</i>₁ + <i>Y</i>₂ + + <i>Y_n</i>) = 1/<i>n</i> ∑_{i=1}ⁿ <i>Y_i</i> The individuals in the sample are drawn at random. Thus the values of (<i>Y</i>₁, <i>Y</i>₂,, <i>Y_n</i>) are random Thus functions of (<i>Y</i>₁, <i>Y</i>₂,, <i>Y_n</i>), such as <i>X̄</i>, are random: had a different sample been drawn, they would have taken on a different value The distribution of over different possible samples of size <i>n</i> is called the <i>sampling distribution</i> of <i>Ȳ</i>. The mean and variance of are the mean and variance of its sampling distribution, E(<i>Ȳ</i>) and Var(<i>Ȳ</i>). The concept of the sampling distribution underpins all of statistics/econometrics. 	• Suppose that $Y_1, Y_2,, Y_n$ are <i>I.I.D.</i> and the mean & variance of the population distribution of Y are respectively μ_Y and σ_Y^2 • The mean of (the sampling distribution of) \bar{Y} is $E(\bar{Y}) = E\left(\frac{1}{n}\sum_{i=1}^n Y_i\right) = \frac{1}{n}\sum_{i=1}^n E(Y_i) = \frac{1}{n}nE(Y) = \mu_Y$ • The variance of (the sampling distribution of) \bar{Y} is $Var(\bar{Y}) = Var\left(\frac{1}{n}\sum_{i=1}^n Y_i\right) = \frac{1}{n^2}\sum_{i=1}^n Var(Y_i) + 2\frac{1}{n^2}\sum_{i=1}^n \sum_{j=1, j\neq i}^n Cov(Y_i, Y_j)$ $= \frac{1}{n^2}nVar(Y) + 0 = \frac{1}{n}Var(Y) = \frac{\sigma_Y^2}{n}$
·	
Violation (ALIAR) Violation for Rusiness III August 78 7007 6761	V KONSTONTINOU (ALLERA) VIOLETAS TOP RUSSINGES III AUGUST // NUMER // 15
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 6761	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2025 // 61
P Konstantinou (AUEB) Statistics for Business - III August 28, 2023 6761 Sampling and Sampling Distributions Sampling Distributions Sampling Distribution of the Sample Average The Sampling Distribution of the Sample Average – III	Sampling and Sampling Distributions Sampling Distribution of the Sample Average The Finite-Sample Distribution of the Sample Average
P Konstantinou (AUEB) Statistics for Business – III August 28, 2023 6761 Sampling and Sampling Distributions Sampling Distribution of the Sample Average The Sampling Distribution of the Sample Average – III Example	Sampling and Sampling Distributions Sampling Distribution of the Sample Average The Finite-Sample Distribution of the Sample Average
P Konstantinou (AUEB) Statistics for Business - III August 28, 2023 6761 Sampling Distribution Sampling Distribution of the Sample Average The Sampling Distribution of the Sample Average – III Example • Let G be the gender of an individual (G = 1 if female, G = 0 if male) • The mean of the population distribution of G is $E(G) = \mu_G = \Pr(G = 1) = p = 0.5$ • The variance of the population distribution of G is $Var(G) = \sigma_G^2 = p(1 - p) = 0.5(1 - 0.5) = 0.25$ • The mean and variance of the average gender (proportion of women) \overline{G} in a random sample with $n = 10$ are $E(\overline{G}) = \mu_G = \mu_G = 0.5$	The Finite-Sample distribution Sampling Distribution of the Sample Average The Finite-Sample distribution is the sampling distribution that exactly describes the distribution of \bar{Y} for any sample size <i>n</i> . In general the exact sampling distribution of \bar{Y} is complicated and depends on the population distribution of <i>Y</i> . A special case is when $Y_1, Y_2,, Y_n$ are <i>IID</i> draws from the $N(\mu_Y, \sigma_Y^2)$, because in this case $\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$

P. Konstantinou (AUEB)

Statistics for Business - III

Sampling Distribution of the Sample Average

P. Konstantinou (AUEB)

August 28, 2023

Statistics for Business – III

August 28, 2023 9/61

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Sampling Distribution of the Sample Average

Sampling Distribution of the Sample Average

The Sampling Distribution of the Average Gender \overline{G}

• Suppose *G* takes on 0 or 1 (a Bernoulli random variable) with the probability distribution

$$\Pr(G=0) = p = 0.5, \ \Pr(G=1) = 1 - p = 0.5$$

• As we discussed above:

P. Konstantinou (AUEB)

$$\begin{split} \mathrm{E}(G) &= \ \mu_G = \Pr(G=1) = p = 0.5\\ \mathrm{Var}(G) &= \ \sigma_G^2 = p(1-p) = 0.5(1-0.5) = 0.25 \end{split}$$

- The sampling distribution of \overline{G} depends on n.
- Consider n = 2. The sampling distribution of \overline{G} is
 - ▶ $\Pr(\bar{G}=0) = 0.5^2 = 0.25$

•
$$\Pr(\bar{G} = 1/2) = 2 \times 0.5 \times (1 - 0.5) = 0.5$$

•
$$\Pr(\bar{G}=1) = (1-0.5)^2 = 0.25$$

The Asymptotic Distribution of the Sample Average \bar{Y}

• Given that the exact sampling distribution of \overline{Y} is complicated and given that we generally use large samples in statistics/econometrics we will often use an approximation of the sample distribution that relies on the sample being large

Asymptotic Approximations

- The *asymptotic distribution* or *large-sample distribution* is the approximate sampling distribution of *Y* if the sample size becomes very large: *n* → ∞.
- We will use two concepts to approximate the large-sample distribution of the sample average
 - ► The law of large numbers.
 - ► The central limit theorem.

P. Konstantinou (AUEB)

The Law of Large Numbers (LLN)

Definition (Law of Large Numbers)

Suppose that

500

10/61

12/61

• Y_i , i = 1, ..., n are independently and identically distributed with $E(Y_i) = \mu_Y$; and

2 large outliers are unlikely i.e. $\operatorname{Var}(Y_i) = \sigma_Y^2 < +\infty$.

Then \overline{Y} will be near μ_Y with very high probability when *n* is very large $(n \to \infty)$

$$\bar{Y} \xrightarrow{p} \mu_Y.$$

We also say that the sequence of random variables $\{Y_n\}$ converges in probability to the μ_Y , if for every $\varepsilon > 0$

$$\lim_{n\to\infty}\Pr(|\bar{Y}_n-\mu_Y|>\varepsilon)=0.$$

We also denote this by $plim(Y_n) = \mu_Y$

P. Konstantinou (AUEB)

▲ □ ► ▲ = ► ▲ = ► = August 28, 2023

Statistics for Business – III

The Finite-Sample Distribution of the Average Gender \bar{G}

• Suppose we draw 999 samples of n = 2:

S	ample	e 1	Sa	mple	1	S	ample	e 3	•••	Sar	nple 9	99
G_1	G_2	\bar{G}	G_1	G_2	\bar{G}	G_1	G_2	\bar{G}		G_1	G_2	\bar{G}
1	0	0.5	1	1	1	0	1	0.5		0	0	0

Asymptotic Approximations

Asymptotic Approximations

The Law of Large Numbers (LLN)

P. Konstantinou (AUEB

August 28, 2023

16/61

P. Konstantinou (AUEB)

The Central Limit Theorem (CLT)

Definition (Central Limit Theorem)

• Y_i , i = 1, ..., n are independently and identically distributed with

Asymptotic Approximations

2 large outliers are unlikely i.e. $Var(Y_i) = \sigma_V^2$ with $0 < \sigma_V^2 < +\infty$.

Then the distribution of the sample average \overline{Y} will be approximately normal as *n* becomes very large $(n \to \infty)$

$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right).$$

The distribution of the the standardized sample average is approximately standard normal for $n \to \infty$

 $\bar{Y} - \mu_Y$ σ_Y/\sqrt{n}

Asymptotic Approximations

The Central Limit Theorem (CLT)

- How good is the large-sample approximation?
- * If $Y_i \sim N(\mu_Y, \sigma_Y^2)$ the approximation is perfect.
- \star If Y_i is not normally distributed the quality of the approximation depends on how close *n* is to infinity (how large *n* is)
- * For n > 100 the normal approximation to the distribution of \overline{Y} is typically very good for a wide variety of population distributions.

(日)
 (日)

August 28, 2023

15/61

August 28, 2023 17/61

Estimation Introduction	Estimation Estimator Properties
Estimators and Estimates	Estimation of the Population Mean – I
Definition	
An <i>estimator</i> is a function of a sample of data to be drawn randomly from a population.	 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates
• An estimator is a random variable because of randomness in drawing the sample. Typically used estimators	 The mean level of education in Greece. The mean probability of passing the statistics exam.
Sample Average: $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, Sample variance: $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$.	 Suppose we draw a random sample of size <i>n</i> with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: The sample average: \$\overline{Y}\$ = \frac{1}{n} \sum_{i=1}^n Y_i\$
Using a particular sample $y_1, y_2,, y_n$ we obtain	The first observation: Y_1 The weighted average: $\tilde{Y} = \frac{1}{2} \left(\frac{1}{2} Y_1 + \frac{3}{2} Y_2 + \dots + \frac{1}{2} Y_n + \frac{3}{2} Y_n \right)$
$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$	• To determine which of the estimators, \overline{Y} , Y_1 or \widetilde{Y} is the best estimator of μ_Y we consider 3 properties.
which are <i>point estimates</i> . These are the numerical value of an estimator when it is actually computed using a specific sample	• Let $\hat{\mu}_Y$ be an estimator of the population mean μ_Y
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 18/61	4 □ ▷ < 클 ▷ < 클 ▷ < 클 ▷ < 클 ▷ < 클 ▷ < 클 ○ Q Q P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 19/61
Beingting Patients Description	
Estimator Properties	Estimation Estimator Properties
Estimation of the Population Mean – II	Estimation Estimator Properties Estimating Mean Wages – I
Estimation of the Population Mean – II • Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y $E(\hat{\mu}_Y) = \mu_Y.$	Estimation Estimator Properties Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\frac{1}{i} + \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{5}{5}$
 Estimation of the Population Mean – II Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ 	Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\overline{\frac{i \ 1 \ 2 \ 3 \ 4 \ 5}{W_i \ 47281.92 \ 70781.94 \ 55174.46 \ 49096.05 \ 67424.82}}$
Extinction of the Population Mean – II • Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y $E(\hat{\mu}_Y) = \mu_Y.$ • Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \to \infty$ $\hat{\mu}_Y \xrightarrow{p} \mu_Y$ or $\Pr(\hat{\mu}_Y - \mu_Y < \varepsilon) = 1$	Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\boxed{\frac{i}{W_i} \frac{1}{47281.92}} = 2 \frac{3}{70781.94} \frac{4}{55174.46} \frac{5}{49096.05} \frac{67424.82}{67424.82}$ $\boxed{\frac{i}{W_i} \frac{6}{39252.85}} = 78815.33 \frac{46750.78}{46587.89} \frac{46587.89}{25015.71}$
 Estimation of the Population Mean – II Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y ^P→ μ_Y or Pr(μ̂_Y – μ_Y < ε) = 1 Efficiency: If the variance of the sampling distribution of μ̂_Y is smaller than that of some other estimator μ̃_Y, μ̂_Y is more efficient 	Extinuity Estimator Properties Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\frac{\overline{i \ 1 \ 2 \ 3 \ 4 \ 5}}{W_i \ 47281.92 \ 70781.94 \ 55174.46 \ 49096.05 \ 67424.82}}$ $\overline{\frac{i \ 6 \ 7 \ 8 \ 9 \ 10}{W_i \ 39252.85 \ 78815.33 \ 46750.78 \ 46587.89 \ 25015.71}}$ • The 3 estimators give the following estimates:
Estimation of the Population Mean – II • Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals $\mu_Y = E(\hat{\mu}_Y) = \mu_Y$. • Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \to \infty$ $\hat{\mu}_Y \xrightarrow{P} \mu_Y$ or $\Pr(\hat{\mu}_Y - \mu_Y < \varepsilon) = 1$ • Efficiency: If the variance of the sampling distribution of $\hat{\mu}_Y$ is smaller than that of some other estimator $\tilde{\mu}_Y$, $\hat{\mu}_Y$ is more efficient $Var(\hat{\mu}_Y) \leq Var(\tilde{\mu}_Y)$	Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_W = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\boxed{\frac{i}{1} \ 1} \ 2} \ 3 \ 4 \ 5 \ W_i \ 47281.92 \ 70781.94 \ 55174.46 \ 49096.05 \ 67424.82}$ $\boxed{\frac{i}{1} \ 6 \ 7 \ 8 \ 9 \ 10} \ W_i \ 39252.85 \ 78815.33 \ 46750.78 \ 46587.89 \ 25015.71}$ • The 3 estimators give the following estimates: $\boxed{W} = \frac{1}{10} \sum_{i=1}^{10} W_i = 52618.18$ $\boxed{W}_1 = 47281.92$ $\boxed{W} = \frac{1}{10} \left(\frac{1}{2}W_1 + \frac{3}{2}W_2 + + \frac{1}{2}W_9 + \frac{3}{2}W_{10}\right) = 49398.82$
Estimation of the Population Mean – II • Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals $\mu_Y = E(\hat{\mu}_Y) = \mu_Y$. • Consistency: The probability that $\hat{\mu}_Y$ is within a very small interval of μ_Y approaches 1 if $n \to \infty$ $\hat{\mu}_Y \xrightarrow{P} \mu_Y$ or $\Pr(\hat{\mu}_Y - \mu_Y < \varepsilon) = 1$ • Efficiency: If the variance of the sampling distribution of $\hat{\mu}_Y$ is smaller than that of some other estimator $\tilde{\mu}_Y$, $\hat{\mu}_Y$ is more efficient $Var(\hat{\mu}_Y) \leq Var(\tilde{\mu}_Y)$	Estimating Mean Wages – I • Suppose we are interested in the mean wages (pre tax) μ_W of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_w = 60K$). We draw the following sample ($n = 10$) by simple random sampling $\boxed{\frac{i}{1} \ 1} \ 2} \ 3 \ 4} \ 5 \ 100 \ 55174.46 \ 49096.05 \ 67424.82}$ $\boxed{\frac{i}{W_i} \ 47281.92 \ 70781.94 \ 55174.46 \ 49096.05 \ 67424.82}}$ • The 3 estimators give the following estimates: $\boxed{W_i \ 39252.85 \ 78815.33 \ 46750.78 \ 46587.89 \ 25015.71}}$ • The 3 estimators give the following estimates: $\boxed{W_i \ 47281.92 \ W_i = 52618.18}$ $\boxed{W_1 = 47281.92}$ $\boxed{W_1 = 47281.92}$ • $\widetilde{W} = \frac{1}{10} (\frac{1}{2}W_1 + \frac{3}{2}W_2 + + \frac{1}{2}W_9 + \frac{3}{2}W_{10}) = 49398.82$ • Unbiasedness: All 3 proposed estimators are unbiased

	•		= 040				=
P. Konstantinou (AUEB)	Statistics for Business – III	August 28, 2023	20/61	P. Konstantinou (AUEB)	Statistics for Business – III	August 28, 2023	21/61

is Tests for the Population Mean Basics

Hypothesis Tests: Terminology

- The **hypothesis testing problem** (for the mean): make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true. That is, test
 - $H_0: E(Y) \le \mu_{Y,0}$ vs. $H_1: E(Y) > \mu_{Y,0}$ (1-sided, >)
 - $H_0: E(Y) \ge \mu_{Y,0}$ vs. $H_1: E(Y) < \mu_{Y,0}$ (1-sided, <)
 - $H_0: E(Y) = \mu_{Y,0}$ vs. $H_1: E(Y) \neq \mu_{Y,0}$ (2-sided)
- *p*-value = probability of drawing a statistic (e.g. \overline{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.
- The significance level of a test (α) is a pre-specified probability of incorrectly rejecting the null, when the null is true. Typical values are 0.01 (1%), 0.05 (5%), or 0.10 (10%).
 - It is selected by the researcher at the beginning, and determines the *critical value(s)* of the test.
 - If the test-statistic falls outside the non-rejection region, we reject H_0 .

thesis Tests for the Population Mean p-Value Approach to Hypothesis Testing

Hypothesis Testing using *p*-values

- The <u>p-value</u> is the probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis
 - If the <u>p-value</u> is less than or equal to the level of significance α , the value of the test statistic is in the rejection region.
 - Reject H_0 if the *p*-value $< \alpha$.
 - See also Annex
- Rules of thumb

P. Konstantinou (AUEB)

- If *p*-value is less than .01, there is overwhelming evidence to conclude H₀ is false.
- If *p*-value is between .01 and .05, there is strong evidence to conclude H_0 is false.
- If *p*-value is between .05 and .10, there is weak evidence to conclude H_0 is false.
- If *p*-value is greater than .10, there is insufficient evidence to conclude H_0 is false.

Hypothesis Test for the Mean with σ_Y^2 known – I Decision Rules

• The test statistic employed is obtained by converting the sample result (\bar{y}) to a *z*-value

$$z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}}$$

28/61

August 28, 2023

26/61

・ロット 白田 マイロマイロマ

Hypothesis Tests

The Testing Process and Rejections

 $H_0: E(Y) = \mu_{Y,0} \ a/2$

Two-tail test

Right-tail test

Left-tail test

а

 $H_1: E(Y) \neq \mu_{Y,0}$

 $H_0: E(Y) \leq \mu_{Y0}$

 $H_1: E(Y) > \mu_{Y,0}$

 $H_0: E(Y) \ge \mu_{Y,0}$

 $H_1: E(Y) < \mu_{Y,0}$

P. Konstantinou (AUEB)

Level of significance = α

Represents

Hypothesis Tests for the Population Mean

a/2

Rejection

region is

August 28, 2023

27/61

500

29/61

shaded

Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean	Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean with σ_Y^2 known – II Decision Rules	Hypothesis Test for the Mean (σ^2 known) – I Examples
Hypothesis Tests for $E(Y)$ $z = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{\overline{Y}}} = \frac{\overline{Y} - \mu_{Y,0}}{\sigma_{Y}/\sqrt{n}}$	• Example 1. A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. Assume $\sigma = 10$ \$ is known and let
Lower-tail test:Upper-tail test:Two-tail test: $H_0: E(Y) \ge \mu_0$ $H_0: E(Y) \le \mu_{Y,0}$ $H_0: E(Y) = \mu_{Y,0}$ $H \mapsto E(Y) \le \mu$ $H \mapsto E(Y) \ge \mu$ $H \mapsto E(Y) \ne \mu$	 α = 0.10. Suppose a sample of 64 persons is taken, and it is found that the average bill \$53.1. ▶ Form the hypothesis to be tested
$\alpha \qquad \qquad$	$H_0: E(Y) \le 52$ the <i>mean</i> is not over \$52 per month $H_1: E(Y) > 52$ the <i>mean</i> is over \$52 per month
$-Z_{\alpha} \qquad \qquad Z_{\alpha} \qquad -Z_{\alpha/2} \qquad Z_{\alpha/2}$	For $\alpha = 0.10$, $z_{0.10} = 1.28$, so we would reject H_0 if $z > 1.28$. We have $n = 64$ and $\bar{y} = 53.1$, so the test statistic is
Reject H_0 if $z < -z_{\alpha}$ Reject H_0 if $z > z_{\alpha}$ Reject H_0 if $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$	$z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} = \frac{53.1 - 52}{10 / \sqrt{64}} = 0.88 < z_{0.10} = 1.28$
Yes Yes <thyes< th=""> <thyes< th=""> <thyes< th=""></thyes<></thyes<></thyes<>	Hence H_0 cannot be rejected.P. Konstantinou (AUEB)Statistics for Business – IIIAugust 28, 202331/61
Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean	Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean
Hypothesis Tests for the Population MeanHypothesis Tests for the Population MeanHypothesis Test for the Mean (σ^2 known) – IIExamples	Hypothesis Tests for the Population MeanHypothesis Tests for the Population MeanHypothesis Test for the Mean (σ^2 known) – IIIExamples
 Hypothesis Tests for the Population Mean (σ² known) – Π Examples Example 2. We would like to test the claim that the true mean # of TV sets in EU homes is equal to 3 (assuming σ_Y = 0.8 known). For this purpose a sample of 100 homes is selected, and the average number of TV sets is 2.84. Test the above hypothesis using α = 0.05. Form the hypothesis to be tested 	Hypothesis Tests for the Population MeanHypothesis Tests for the Population MeanHypothesis Test for the Mean $(\sigma^2 \text{ known}) - \text{III}$ Examples• We have $n = 100$ and $\bar{y} = 2.84$, so the test statistic is $z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}} = \frac{2.84 - 3}{0.8/\sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$
Example 2. We would like to test the claim that the true mean # of TV sets in EU homes is equal to 3 (assuming $\sigma_Y = 0.8$ known). For this purpose a sample of 100 homes is selected, and the average number of TV sets is 2.84. Test the above hypothesis using $\alpha = 0.05$. Form the hypothesis to be tested $H_0: E(Y) = 3$ the mean # is 3 TV sets per home $H_1: E(Y) \neq 3$ the mean is not 3 TV sets per home	Hypothesis Tests for the Population MeanHypothesis Tests for the Population MeanHypothesis Test for the Mean $(\sigma^2 \text{ known}) - \text{III}$ Examples• We have $n = 100$ and $\bar{y} = 2.84$, so the test statistic is $z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}} = \frac{2.84 - 3}{0.8/\sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$ or $ z = 2 > 1.96$, Hence H_0 is rejected. We conclude that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3.
Example 2. We would like to test the claim that the true mean # of TV sets in EU homes is equal to 3 (assuming $\sigma_Y = 0.8$ known). For this purpose a sample of 100 homes is selected, and the average number of TV sets is 2.84. Test the above hypothesis using $\alpha = 0.05$. • Form the hypothesis to be tested $H_0 : E(Y) = 3$ the mean # is 3 TV sets per home $H_1 : E(Y) \neq 3$ the mean is not 3 TV sets per home $H_1 : E(Y) = 1.96$ and $-z_{0.025} = -1.96$, so we would reject H_0 if $ z > 1.96$.	Hypothesis Tests for the Population Mean (σ^2 known) – III Examples We have $n = 100$ and $\bar{y} = 2.84$, so the test statistic is $z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}} = \frac{2.84 - 3}{0.8/\sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$ or $ z = 2 > 1.96$, Hence H_0 is rejected. We conclude that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3.
Hypothesis Tests for the Population Mean Hypothesis Tests for the Mean (σ^2 known) – II Examples • Example 2. We would like to test the claim that the true mean # of TV sets in EU homes is equal to 3 (assuming $\sigma_Y = 0.8$ known). For this purpose a sample of 100 homes is selected, and the average number of TV sets is 2.84. Test the above hypothesis using $\alpha = 0.05$. • Form the hypothesis to be tested $H_0 : E(Y) = 3$ the mean # is 3 TV sets per home $H_1 : E(Y) \neq 3$ the mean is not 3 TV sets per home • For $\alpha = 0.05$, $z_{\alpha/2} = z_{0.025} = 1.96$ and $-z_{0.025} = -1.96$, so we would reject H_0 if $ z > 1.96$.	Hypothesis Tests for the Population Mean Hypothesis Tests for the Mean (σ^2 known) – III Examples We have $n = 100$ and $\bar{y} = 2.84$, so the test statistic is $z = \frac{\bar{y} - \mu_{Y,0}}{\sigma_Y/\sqrt{n}} = \frac{2.84 - 3}{0.8/\sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$ or $ z = 2 > 1.96$, Hence H_0 is rejected. We conclude that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3.

Hypothesis Tests for t	he Population Mean Hypothesis Tests for	or the Population Mean	Hypothesis Tests for th	e Population Mean Hypothesis Tests	for the Population Mean
Test for the Mean with Decision Rules • Since $S_Y^2 \xrightarrow{p} \sigma_Y^2$, compositive to a <i>t</i> -ratio.	th σ_Y^2 unknown but ute the standard error of	at $n \to \infty$ f \overline{Y} , $SE(\overline{Y}) = s_Y / \sqrt{n}$ and	Test for the Mean with Example • Suppose we would like	h σ_Y^2 unknown be to test	put $n \to \infty$
Hypothesis Lower-tail test: $H_0: E(Y) \ge \mu_0$ $H_1: E(Y) < \mu_0$ a $-Z_\alpha$ Reject H_0 if $t < -Z_\alpha$	Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y}}{SE(\bar{Y})}$ Upper-tail test: $H_0: E(Y) \le \mu_{Y,0}$ $H_1: E(Y) > \mu_{Y,0}$ z_{α} Reject H_0 if $t > z_{\alpha}$	$\frac{\overline{Y}, 0}{D} = \frac{\overline{Y} - \mu_{Y,0}}{s_Y / \sqrt{n}}$ Two-tail test: $H_0: E(Y) = \mu_{Y,0}$ $H_1: E(Y) \neq \mu_{Y,0}$ $\frac{\alpha/2}{-z_{\alpha/2}} \qquad \frac{\alpha/2}{z_{\alpha/2}}$ Reject H_0 if $t < -z_{\alpha/2}$ or $t > z_{\alpha/2}$	$H_0 : E(W)$ using a sample of 250 significance level. • We perform the follow • $\overline{W} = \frac{1}{n} \sum_{i=1}^{n} W_i =$ • $SE(\overline{W}) = \frac{s_W}{\sqrt{n}} = \frac{s}{\sqrt{2}}$ • Compute $t^{act} = \frac{\overline{W}-1}{SE}$ • Since we use a 5% $ t^{act} = 1.4819 < z$ • Suppose we are interest <i>t</i> -stat is exactly the sam with $z_{0.05} = 1.645$.	$H_{1} : H_{1}$ individuals with a Ph.I ing steps: $\frac{1}{250} \sum_{i=1}^{250} W_{i} = 61977.1$ $\frac{W_{W}}{250} = 1334.19.$ significance level, we do 0.025 = 1.96. sted in the alternative <i>H</i> me: $t^{act} = 1.4819$. but	$E(W) \neq 60000,$ D. degree at the 5% 2. 1.4819. to not reject H_0 because $H_1 : E(W) > 60000.$ The now needs to be compared
D Vonstantinou (AUED)	NTOTIOTION TON MILCINOOD III		F. NOUSIAIUUIOU (AUED)	Statistics for Dusiness – III	August 26, 2025 55701
P. Konstantinou (AUEB)	Statistics for Business – III	or the Population Mean	Hypothesis Tests for th	e Population Mean Hypothesis Taste	for the Population Mean
P. Konstantinou (AUEB) Hypothesis Tests for t Decision Rules Consider a random sation normally distributed, A Converting the sample Hypothesis Test	The Population Mean Hypothesis Tests for the Mean with σ^2 using the model of n observations for AND variance σ_Y^2 is unker the average (\bar{y}) to a t -value test for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{\text{SE}(\bar{Y})} = \frac{\bar{Y}}{2}$	arrive representation M_{en} arrive representation M_{en} arrive representation M_{en} arrive representation M_{en} from a population that is arrown: $Y_i \sim N(\mu_Y, \sigma_Y^2)$ e $\overline{Y} - \mu_{Y,0} \sim t_{n-1}$	Hypothesis Test for the Example • The average cost of a hand sample $s_y = \$15.40$. Perform population distribution by Form the hypothesis	Population Mean Hypothesis Tests The Mean with σ^2 motel room in New Yor le of 25 hotels resulted a test at the $\alpha = 0.05$ hotels is normal). s to be tested	for the Population Mean unknown (<i>n</i> small) the standard state of the second stat
P. Konstantinou (AUEB) Hypothesis Test for t Decision Rules • Consider a random sation normally distributed, <i>A</i> • Converting the sample Hypothesis Test Hypothesis Test Lower-tail test: $H_0: E(Y) \ge \mu_0$ $H_1: E(Y) < \mu_0$ $I_1: E(Y) < \mu_0$ Reject H_0 if $t < -t_{n-1,\alpha}$	The Population Mean Hypothesis Tests for the Mean with σ^2 the Mean with σ^2 the Mean with σ^2 the matrix of the matrix	Two-tail test: $H_{0}: E(Y) = \mu_{0}$ $H_{1}: E(Y) \neq \mu_{0}$ $\frac{\alpha/2}{-t_{n-1}, \alpha/2} = t_{n-1, \alpha/2}$ Reject H_{0} if $t < -t_{n-1, \alpha/2}$ $E = cos c$	Hypothesis Test for the Example • The average cost of a hangh. A random samp $s_y = \$15.40$. Perform population distribution • Form the hypothesis $H_0:$ $H_1:$ • For $\alpha = 0.05$, with $-t_{24,0.025} = 2.0639$ • We have $\bar{y} = 172.5$ $t = \frac{\bar{y} - \mu_Y}{s_y/\sqrt{n}}$ or $ t = 1.46 < 2.0$ there is not sufficie \$168.	Population Mean With σ^2 notel room in New Yor le of 25 hotels resulted a test at the $\alpha = 0.05$ H is normal). s to be tested E(Y) = 168 the mean $n = 25, t_{n-1,\alpha/2} = t_{24,0}$ 0, so we would reject H_0 0 and $s_y = 15.40$, so the $\frac{0}{2} = \frac{172.50 - 168}{15.40/\sqrt{25}} = 1$. 639. Hence H_0 cannot hent evidence that the true	for the Population Mean unknown (<i>n</i> small) the is said to be \$168 per d in $\bar{y} = \$172.50$ and level (assuming the an cost is \$168 cost is not \$168 $a_{025} = 2.0639$ and if $ t > 2.0639$. test statistic is $a_{46} < t_{24,0.025} = 2.0639$ be rejected. We conclude that mean cost is different than

Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean
Confidence Intervals for the Population Mean – I	Confidence Intervals for the Population Mean – II
 Suppose we would do a two-sided hypothesis test for many different values of μ_{0,Y}. On the basis of this we can construct a set of values which are not rejected at 5% (α%) significance level. If we were able to test all possible values of μ_{0,Y} we could construct a 95% ((1 − α)%) confidence interval Definition A 95% ((1 − α)%) confidence interval is an interval that contains the true value of μ_Y in 95% ((1 − α)%) of all possible random samples. A relative frequency interpretation: From repeated samples, 95% of all the	 The general formula for all confidence intervals is Point Estimate ± (Reliability Factor)(Standard Error) Margin of Error
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 38/61	$\bar{Y} - z_{\alpha/2} SE(\bar{Y}) < \mu < \bar{Y} + z_{\alpha/2} SE(\bar{Y}) \text{or} \bar{Y} \pm \underbrace{z_{\alpha/2} SE(\bar{Y})}_{\text{Margin of Error}}$ P. Konstantinon (ALEB) Statistics for Business – III August 28, 2023 39(6)
	The statistics for Dashess III The statistics of
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean – III III	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean Image: Example A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard
• When the sample size <i>n</i> is large (or when the population is normal and σ_Y^2 is known): • A 90% confidence interval for μ_Y : $[\bar{Y} + 1.645 \cdot SE(\bar{Y})]$	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean Image: Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean Image: Confidence Intervals for the Population Mean A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of the population.
• When the sample size <i>n</i> is large (or when the population is normal and σ_Y^2 is known): • A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.645 \cdot SE(\bar{Y})]$	Hypothesis Tests for the Population MeanConfidence Intervals for the Population MeanExampleA sample of 11 circuits from a large normal population has a mean resistanceof 2.20 ohms. We know from past testing that the population standarddeviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance ofthe population. $\bar{y} \pm z_{\alpha/2} \frac{\sigma_Y}{\sqrt{n}} = 2.20 \pm 1.96(0.35/\sqrt{11}) = 2.20 \pm 0.2068$
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean – III • When the sample size n is large (or when the population is normal and σ_Y^2 is known): • A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.645 \cdot SE(\bar{Y})]$ • A 95% confidence interval for μ_Y : $[\bar{Y} \pm 1.96 \cdot SE(\bar{Y})]$ • A 99% confidence interval for μ_Y : $[\bar{Y} \pm 2.58 \cdot SE(\bar{Y})]$	Hypothesis Tests for the Population MeanConfidence Intervals for the Population MeanConfidence Intervals for the Population MeanConfidence Intervals for the Population Mean — IVExampleA sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of the population. $\bar{y} \pm z_{\alpha/2} \frac{\sigma_Y}{\sqrt{n}} = 2.20 \pm 1.96(0.35/\sqrt{11}) = 2.20 \pm 0.2068$ $1.9932 < \mu_Y < 2.4068$
Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean – III When the sample size <i>n</i> is large (or when the population is normal and σ_Y^2 is known): A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.645 \cdot \text{SE}(\bar{Y})]$ A 95% confidence interval for μ_Y : $[\bar{Y} \pm 1.96 \cdot \text{SE}(\bar{Y})]$ A 99% confidence interval for μ_Y : $[\bar{Y} \pm 2.58 \cdot \text{SE}(\bar{Y})]$ With $\text{SE}(\bar{Y}) = \sigma_Y / \sqrt{n}$ when variance is known or $\text{SE}(\bar{Y}) = s_Y / \sqrt{n}$ when unknown and is estimated.	Input of the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean — IV Example A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of the population. $\bar{y} \pm z_{\alpha/2} \frac{\sigma_Y}{\sqrt{n}} = 2.20 \pm 1.96(0.35/\sqrt{11}) = 2.20 \pm 0.2068$ 1.9932 $\mu_Y < 2.4068$ \bullet We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms \bullet Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

40/61

P. Konstantinou (AUEB)

August 28, 2023

P. Konstantinou (AUEB)

41/61

August 28, 2023

Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean
Confidence Intervals for the Population Mean – V Example	Confidence Intervals for the Population Mean – VI
Using the sample of $n = 250$ individuals with a Ph.D. degree discussed above $(\bar{W} = 61977.12, s_W = 21095.37, SE(\bar{Y}) = s_W/\sqrt{n} = 21095.37/\sqrt{250})$: A 90% C L for u_W is: $[61977.12 \pm 1.64 \pm 1334.19] = [59349.39, 64604.85]$	• When the sample size <i>n</i> is small <i>AND</i> the population from which we draw data is normal:
A 95% C.I. for μ_W is: [61977.12 \pm 1.96 \cdot 1334.19] = [59774.38, 64179.86].	$\bar{Y} - t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}} < \mu_Y < \bar{Y} + t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}} \text{or} \bar{Y} \pm t_{n-1,\alpha/2} \frac{s_Y}{\sqrt{n}}$
• A 99% C.I. for μ_W is: [61977.12 ± 2.58 · 1334.19] = [58513.94, 65440.30].	Margin of Error
	 A 90% confidence interval for µ_Y: [\$\overline{Y} ± t_{n-1,0.05} · SE(\$\overline{Y})\$] A 95% confidence interval for µ_Y: [\$\overline{Y} ± t_{n-1,0.025} · SE(\$\overline{Y})\$] A 99% confidence interval for µ_Y: [\$\overline{Y} ± t_{n-1,0.005} · SE(\$\overline{Y})\$] with SE(\$\overline{Y}\$) = s_Y/\$\sqrt{n}\$
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 42/61	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 43/61
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean	Comparing Means from Different Populations Testing for Equal Means from Different Populations
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean – VII VII	Comparing Means from Different Populations Testing for Equal Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean – VII Example Example	Comparing Means from Different Populations Testing for Equal Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations • Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 :
Hypothesis Tests for the Population MeanConfidence Intervals for the Population Mean – VIIExampleA random sample of $n = 25$ has $\bar{x} = 50$ and $s = 8$. Form a 95% confidenceinterval for u	Comparing Means from Different Populations Testing for Equal Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations • Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 : $H_0: \mu_{W,M} - \mu_{W,F} = d_0$ $H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$
Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean – VII Example A random sample of $n = 25$ has $\bar{x} = 50$ and $s = 8$. Form a 95% confidence interval for μ . $\blacktriangleright d.f. = n - 1 = 24$, so $t_{24,\alpha/2} = t_{24,0.025} = 2.0639$	Comparing Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations • Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 : $H_0: \mu_{W,M} - \mu_{W,F} = d_0$ $H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$ • To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments
Image: Description of the population MeanConfidence Intervals for the Population Mean – VIIExampleA random sample of $n = 25$ has $\bar{x} = 50$ and $s = 8$. Form a 95% confidenceinterval for μ . $\blacktriangleright d.f. = n - 1 = 24$, so $t_{24,\alpha/2} = t_{24,0.025} = 2.0639$ $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = 50 \pm 2.0639(8/\sqrt{25}) = 50 \pm 3.302$	Testing for Equal Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations • Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 : $H_0: \mu_{W,M} - \mu_{W,F} = d_0$ $H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$ • To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments • Estimate $(\mu_{W,M} - \mu_{W,F})$ by $(\bar{W}_M - \bar{W}_M)$.
Example A random sample of $n = 25$ has $\bar{x} = 50$ and $s = 8$. Form a 95% confidence interval for μ . \mathbf{b} $d.f. = n - 1 = 24$, so $t_{24,\alpha/2} = t_{24,0.025} = 2.0639$ $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = 50 \pm 2.0639(8/\sqrt{25}) = 50 \pm 3.302$ $46.698 < \mu < 53.302$	Testing for Equal Means from Different PopulationsComparing Means from Different Populations – ILarge Samples or Known Variances from Normal Populations• Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 : $H_0: \mu_{W,M} - \mu_{W,F} = d_0$ Ho : $\mu_{W,M} - \mu_{W,F} = d_0$ • To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments• Estimate $(\mu_{W,M} - \mu_{W,F})$ by $(\bar{W}_M - \bar{W}_M)$.• Because a weighted average of 2 independent normal random variables is itself normally distributed we have (using the CLT and the fact that $Cov(\bar{W}_M, \bar{W}_F) = 0$)
Example A random sample of $n = 25$ has $\bar{x} = 50$ and $s = 8$. Form a 95% confidence interval for μ . • $d_s f_* = n - 1 = 24$, so $t_{24,\alpha/2} = t_{24,0.025} = 2.0639$ $\bar{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = 50 \pm 2.0639(8/\sqrt{25}) = 50 \pm 3.302$ $46.698 < \mu < 53.302$	Testing for Equal Means from Different Populations Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations • Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_0 : $H_0: \mu_{W,M} - \mu_{W,F} = d_0$ $H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$ • To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments • Estimate $(\mu_{W,M} - \mu_{W,F})$ by $(\bar{W}_M - \bar{W}_M)$. • Because a weighted average of 2 independent normal random variables is itself normally distributed we have (using the CLT and the fact that $Cov(\bar{W}_M, \bar{W}_F) = 0$) $\bar{W}_M - \bar{W}_F \sim N\left(\mu_{W,M} - \mu_{W,F}, \frac{\sigma_{W,M}^2}{n_M} + \frac{\sigma_{W,F}^2}{n_F}\right)$

Comparing means non Directine reparations	Company mans non Direction Copanicous
Comparing Means from Different Populations – II	Comparing Means from Different Populations – III
Large Samples or Known Variances from Normal Deputations	Large Semples or Known Verignees from Normal Deputations
Large Samples of Known variances from Normal Populations	Even plo
	Example
Set 2 Estimate $\sigma_{W,M}$ and $\sigma_{W,F}$ to obtain SE $(\bar{W}_M - \bar{W}_F)$:	Suppose we have random samples of 500 men and 500 women with a Ph.D.
	degree and we would like to test that the mean wages are equal:
$\sqrt{s^2_{22} + s^2_{22}}$	
$\operatorname{SE}(\bar{W}_M - \bar{W}_F) = \sqrt{\frac{s_{W,M}}{s_{W,M}} + \frac{s_{W,F}}{s_{W,F}}}$	$H_0: \mu_{W,M} - \mu_{W,M} = 0$ $H_1: \mu_{W,M} - \mu_{W,M} \neq 0$
$\bigvee n_M n_F$	$W_{1} = 1 - \frac{1}{2} \overline{W}_{1} = -\frac{1}{2} \sqrt{1} - \frac{1}{2} \sqrt{1} + $
Compute the t statistic	we obtained $W_M = 64159.45$, $W_F = 53163.41$, $s_{W,M} = 18957.26$, and
	$s_{W,F} = 20255.89$. We have:
$(\bar{W}_M - \bar{W}_M) - d_0$	$ \overline{W}_M - \overline{W}_F = 64159.45 - 53163.41 = 10996.04. $
$t^{act} = \frac{1}{SE(\bar{W}_M - \bar{W}_E)}$	• SE $(\bar{W}_M - \bar{W}_E) = 1240\ 709$
	$(\overline{n}, \overline{n}) = 0$
Solution Reject H_0 at a 5% significance level if $ t^{act} > 1.96$ or if the	$ t^{act} = \frac{(W_M - W_F) - 0}{\text{SE}(\bar{W}_M - \bar{W}_F)} = \frac{10996.04}{1240.709} = 8.86. $
p-value < 0.05 .	• Since we use a 5% significance level, we reject H_0 because
	$ t^{act} = 8.86 > 1.96$
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 46/6	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 47/61
Comparing Means from Different Populations Testing for Equal Means from Different Populations	Comparing Means from Different Populations Testing for Equal Means from Different Populations
Comparing Means from Different Populations Testing for Equal Means from Different Populations	Comparing Means from Different Populations Testing for Equal Means from Different Populations
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means	Comparing Means from Different Populations Testing for Equal Means from Different Populations Testing Population Mean Differences Testing Population Mean Differences
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means	Comparing Means from Different Populations Testing for Equal Means from Different Populations Testing Population Mean Differences Normal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means • The method for constructing a confidence interval for 1 population mean	Testing for Equal Means from Different Populations Testing Population Mean Differences Normal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.	Comparing Means from Different Populations Testing for Equal Means from Different Populations Testing Population Mean Differences Normal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $(\bar{\mathbf{X}} - \bar{\mathbf{X}})$ $(\bar{\mathbf{X}} - \bar{\mathbf{X}})$
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means • The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.	Comparing Means from Different PopulationsTesting for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{CE(\bar{X} - \bar{X})} = \frac{(\bar{X} - \bar{Y}) - d_0}{CE(\bar{X} - \bar{X})}$
Comparing Means from Different Populations Testing for Equal Means from Different Populations Confidence Interval for the Difference in Population Means • The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. • A hypothesized value of the difference in means d_0 will be rejected if	Comparing Means from Different PopulationsTesting for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. 	Testing for Equal Means from Different PopulationsTesting for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. 	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{1 - 2s_X^2}$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for µ_{W,M} - µ_{W,F} are the values of d₀ 	Testing for Equal Means from Different PopulationsTesting for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for μ_{W,M} - μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M - W _F). 	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for μ_{W,M} - μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M - W _F). 	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2} \propto SE(\bar{X} - \bar{Y}).$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for μ_{W,M} - μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M - W _F). So a 95% confidence interval for μ_{W,M} - μ_{W,F} is 	Testing for Equal Means from Different PopulationsTesting for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot SE(\bar{X} - \bar{Y}).$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for μ_{W,M} - μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M - W _F). So a 95% confidence interval for μ_{W,M} - μ_{W,F} is (W _M - W _M) ± 1.96 · SE(W _M - W _M) 	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = (\bar{X} - \bar{Y}) - d_0$ $SE(\bar{X} - \bar{Y}) = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot SE(\bar{X} - \bar{Y}).$ • Recall $\mu_X = E(X), \mu_Y = E(Y)$
 Comparing Means from Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for μ_{W,M} - μ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M - W _F). So a 95% confidence interval for μ_{W,M} - μ_{W,F} is (W _M - W _M) ± 1.96 · SE(W _M - W _M) 10996 04 ± 1 96 · 1240 709 	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_x^2 and σ_y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2}, \propto SE(\bar{X} - \bar{Y}).$ • Recall $\mu_X = E(X), \mu_Y = E(Y)$ $H_0: \mu_X - \mu_Y \ge d_0$ $H_0: \mu_X - \mu_Y \ge d_0$
Comparing Means from Different Populations Confidence Interval for the Difference in Population Means • The method for constructing a confidence interval for 1 population means can be easily extended to the difference between 2 population means. • A hypothesized value of the difference in means d_0 will be rejected if $ t > 1.96$ and will be in the confidence set if $ t \le 1.96$. • Thus the 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ are the values of d_0 within ± 1.96 standard errors of $(\bar{W}_M - \bar{W}_F)$. • So a 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ is $(\bar{W}_M - \bar{W}_M) \pm 1.96 \cdot \text{SE}(\bar{W}_M - \bar{W}_M)$ $10996.04 \pm 1.96 \cdot 1240.709$	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_x^2 and σ_y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot SE(\bar{X} - \bar{Y}).$ • Recall $\mu_X = E(X), \mu_Y = E(Y)$ $H_0: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y > d_0$ $H_1: \mu_X - \mu_Y > d_0$
Testing for Equal Means from Different PopulationsComparing Means from Different PopulationConfidence Interval for the Difference in Population Means• The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.• A hypothesized value of the difference in means d_0 will be rejected if $ t > 1.96$ and will be in the confidence set if $ t \le 1.96$.• Thus the 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ are the values of d_0 within ± 1.96 standard errors of $(\bar{W}_M - \bar{W}_F)$.• So a 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ is $(\bar{W}_M - \bar{W}_M) \pm 1.96 \cdot SE(\bar{W}_M - \bar{W}_M)$ $10996.04 \pm 1.96 \cdot 1240.709$ $[8561.34, 13430.73]$	Testing for Equal Means from Different PopulationsTesting Population Mean DifferencesNormal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal $t = \frac{(\bar{X} - \bar{Y}) - d_0}{SE(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X+n_Y-2};$ where $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$ • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X+n_Y-2,\alpha/2} \cdot SE(\bar{X} - \bar{Y}).$ • Recall $\mu_X = E(X), \mu_Y = E(Y)$ $H_0: \mu_X - \mu_Y \ge d_0$ $H_1: \mu_X - \mu_Y < d_0$ Lower-tailUpper-tail
Testing for Equal Means from Different PopulationsConfidence Interval for the Difference in Population Means• The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.• A hypothesized value of the difference in means d_0 will be rejected if $ t > 1.96$ and will be in the confidence set if $ t \le 1.96$.• Thus the 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ are the values of d_0 within ± 1.96 standard errors of $(\bar{W}_M - \bar{W}_F)$.• So a 95% confidence interval for $\mu_{W,M} - \mu_{W,F}$ is $(\bar{W}_M - \bar{W}_M) \pm 1.96 \cdot SE(\bar{W}_M - \bar{W}_M)$ $10996.04 \pm 1.96 \cdot 1240.709$ $[8561.34, 13430.73]$	$\begin{array}{c} \hline \text{Comparing Means from Different Populations} \\ \hline \text{Testing Population Mean Differences} \\ \hline \text{Normal Populations, Unknown Variances } \sigma_x^2 \text{ and } \sigma_y^2 \text{ but Assumed Equal} \\ \hline t &= \frac{(\bar{X} - \bar{Y}) - d_0}{\mathrm{SE}(\bar{X} - \bar{Y})} = \frac{(\bar{X} - \bar{Y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} \sim t_{n_X + n_Y - 2}; \\ \hline \text{where } s_p^2 &= \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2} \\ \hline \text{o The C.I. is constructed as } (\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot \mathrm{SE}(\bar{X} - \bar{Y}). \\ \hline \text{e Recall } \mu_X = \mathrm{E}(X), \mu_Y = \mathrm{E}(Y) \\ \hline H_0 : \mu_X - \mu_Y \ge d_0 \\ H_1 : \mu_X - \mu_Y < d_0 \\ \hline \mathrm{Lower-tail} & \mathrm{Upper-tail} \\ \hline \text{Reject } H_0 \text{ if } t < t_{\alpha} \\ \hline \text{Reject } H_0 \text{ if } t > t_{\alpha/2} \\ \hline \end{array}$
 Comparison Different Populations Confidence Interval for the Difference in Population Means The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means. A hypothesized value of the difference in means d₀ will be rejected if t > 1.96 and will be in the confidence set if t ≤ 1.96. Thus the 95% confidence interval for µ_{W,M} – µ_{W,F} are the values of d₀ within ±1.96 standard errors of (W _M – W _K, and the value of the difference interval for µ_{W,M} = µ_{W,F} and the values of d₀ within ±1.96 standard errors of (W _M – W _K, and the value of the difference interval for µ_{W,M} = µ_{W,F} and the values of d₀ within ±1.96 standard errors of (W _M – W _K, and the value of the difference interval for µ_{W,M} = µ_{W,F} and the values of d₀ within ±1.96 standard errors of (W _M – W _K, and the value of the difference interval for µ_{W,M} = µ_{W,F} is (W _M – W _M) ± 1.96 · SE(W _M – W _M) (10996.04 ± 1.96 · 1240.709 [8561.34, 13430.73] 	$\begin{array}{c c} \hline \label{eq:comparison} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} \begin{tabular}{lllllllllllllllllllllllllllllllllll$

from Different Deputations Testing for Equal Magne from Different Deputations

Comparing Many from Different Domistions Testing for Found Many from Different Domistions

Testing for Equal Means from Different Populations Testing for Equal Means from Different Populations Testing Population Mean Differences – I Testing Population Mean Differences – II **Example:** Normal Populations, Unknown Variances σ_X^2 and σ_Y^2 but Assumed Equal **Example:** Normal Populations, **Unknown Variances** σ_X^2 and σ_Y^2 but Assumed **Equal** Note that $df = n_X + n_Y - 2 = 21 + 25 - 2 = 44$, so the critical value for • You are a financial analyst for a brokerage firm. Is there a difference in the test is $t_{44,0.025} = 2.0154$ ► The pooled variance is: dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data: $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2} = \frac{(21 - 1)1.30^2 + (25 - 1)1.16^2}{(21 - 1) + (25 - 1)}$ NYSE NASDAQ Number: 21 25 $= 1.502^{\circ}$ Sample mean: 3.27 2.53 The test statistic is Sample std. dev.: 1.30 1.16 Assuming both populations are approximately normal with equal $t^{act} = \frac{(\bar{x} - \bar{y}) - d_0}{\sqrt{(s_p^2/n_X) + (s_p^2/n_Y)}} = \frac{(3.27 - 2.53) - 0}{\sqrt{1.5021\left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040.$ variances, is there a difference in average yield ($\alpha = 0.05$)? ► The hypothesis of interest is Since $|t^{act}| > t_{44,0.025} = 2.0154$, we reject H_0 at $\alpha = 0.05$. We conclude that there is evidence of a difference... • The C.I. is constructed as $(\bar{X} - \bar{Y}) \pm t_{n_X + n_Y - 2, \alpha/2} \cdot \text{SE}(\bar{X} - \bar{Y})$ 50/61 P. Konstantinou (AUEB) 51/61 Testing for Equal Means: Matched Samples Testing for Equal Means: Matched Samples Testing Population Mean Differences – I Testing Population Mean Differences – II **Matched or Paired Samples Matched or Paired Samples** • Suppose we obtain a sample of *n* observations from two populations which are normally distributed and we have paired or matched samples -Matched or Paired Samples $t = \frac{\bar{d} - d_0}{SE(d)} = \frac{\bar{d} - d_0}{s \sqrt{2n}}$ (*n* large) repeated measures (before/after). • Define, the pair difference $d_i = X_i - Y_i$. We have $\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \bar{X} - \bar{Y}; \text{ and } S_d = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2}$ Lower-tail test: Two-tail test: Upper-tail test: $H_0: E(X) \rightarrow E(Y) \ge 0$ $H_0: E(X) \rightarrow E(Y) \leq 0$ $H_0: E(X) - E(Y) = 0$ with $E(\overline{d}) = \mu_d = E(X) - E(Y)$ and $SE(\overline{d}) = \sqrt{\frac{S_d^2}{n}} = S_d/\sqrt{n}$ $H_1: E(X) - E(Y) > 0$ $H_1: E(X) - E(Y) < 0$ $H_1: E(X) \rightarrow E(Y) \neq 0$ • If the sample size is large enough $(n \to \infty)$ then $\alpha/2$ $\alpha/2$ $\frac{d-\mu_d}{S_d/\sqrt{n}} \sim N\left(0, \frac{S_d^2}{n}\right).$ $-Z_{\alpha}$ Z_{α} $- Z_{\alpha/2}$ $Z_{\alpha/2}$ If the sample size is relatively small, then Reject H_0 if $t < -z_{a/2}$ Reject H_0 if $t < -z_a$ Reject H_0 if $t > z_{\alpha}$ $\frac{d-\mu_d}{S_{1/2}/n} \sim t_{n-1}.$ or $t > Z_{a/2}$

500

52/61

53/61

August 28, 2023

Annex: Hypothesis Tests – II

Employing the *p*-value

• To compute the *p*-value, you need the to know the sampling distribution of \bar{Y} , which is complicated if *n* is small. With large *n* the CLT states that

$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right),$$

which implies that if the null hypothesis is true:

$$rac{ar{Y}-\mu_{Y,0}}{\sqrt{rac{\sigma_Y^2}{n}}}\sim N(0,1)$$

• Hence

$$p-\text{value} = \Pr_{H_0} \left[\left| \frac{\bar{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| > \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right] = 2\Phi \left(- \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{n}}} \right| \right)$$

$$(AUEB) \qquad \text{Statistics for Business - III} \qquad August 28, 2023 \qquad 58/61$$

Annex: Hypothesis Tests – I

Computing the *p*-value when σ_Y^2 is unknown

- In practice σ_Y^2 is usually unknown and must be estimated
- The sample variance S_Y^2 is the estimator of $\sigma_Y^2 = E[(Y \mu_Y)^2]$, defined as

$$S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

- division by n 1 because we 'replace' μ_Y by \overline{Y} which uses up 1 degree of freedom
- if $Y_1, Y_2, ..., Y_n$ are *IID* and $E(Y^4) < \infty$, then $S_Y^2 \xrightarrow{p} \sigma_Y^2$ (Law of Large Numbers)
- The sample standard deviation $S_Y = \sqrt{S_Y^2}$, is the estimator of σ_Y .

Annex: Hypothesis Tests – II Computing the *p*-value when σ_Y^2 is unknown

P. Konstantinou (AUEB)

Annex: Hypothesis Tests – III

Employing the *p*-value

• The standard error $SE(\bar{Y})$ is an estimator of $\sigma_{\bar{Y}}$

 $-\left|\frac{\bar{Y}^{act}-\mu_{Y,0}}{\sigma_{\bar{Y}}}\right|$

outside $\left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sigma_{\bar{Y}}} \right|$, where $\sigma_{\bar{Y}} = \sigma_Y / \sqrt{n}$

$$SE(\bar{Y}) = \frac{S_Y}{\sqrt{n}}$$

• For large *n*, *p*-value = the probability that a N(0, 1) random variable falls

• Because S_Y^2 is a consistent estimator of σ_Y^2 we can (for large *n*) replace

$$\sqrt{\frac{\sigma_Y^2}{n}}$$
 by $SE(\bar{Y}) = \frac{S_Y}{\sqrt{n}}$

• This implies that when σ_Y^2 is unknown and $Y_1, Y_2, ..., Y_n$ are *IID* the *p*-value is computed as

$$p - \text{value} = 2\Phi \left(- \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{SE(\bar{Y})} \right| \right)$$

D V + + i	(ALTED)
P KONSIANIINOILI	
1. Itonstantinou	(10 DD)

60/61

ess – III Augu

The *p*-value is the shaded area in the graph

N(0, 1)

 $\overline{Y}^{act} - \mu_{Y,0}$

 $\sigma_{\overline{Y}}$

ist 28, 2023 61/61

Regression Equation and LS – III • Differential calculus is used to obtain the coefficient estimators b_1 b_1 that minimize SSE. $b_1 = \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \sum_{i=1}^{n} \frac{y_i}{y_i} = \sum_{i=1}^{n$	Regression Analysis Simple Linear Regression and LS	Regression Analysis Interpretation of Regression Coefficients			
• Differential calculus is used to obtain the coefficient estimators b_{1} and b_{1} that minimize SSE. $b_{1} = \sum_{i=1}^{d} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \widehat{Cov(x, y)}}_{\sum_{i=1}^{d} (x_{i} - \bar{x})^{2}} = \widehat{Cov(x, y)}_{\frac{x_{i}}{2}} = r_{x_{i}} \frac{s_{y}}{s_{x}}}_{\frac{x_{i}}{2}}$ $b_{1} = \bar{y} - b_{1}\bar{x}$ • The (sample) regression line always goes through the means \bar{x}, \bar{y} . • The (sample) regression line always goes through the means \bar{x}, \bar{y} . • The (sample) regression line always goes through the means \bar{x}, \bar{y} . • A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet) • A readestate agent variable (X) = square feet • Dependent variable (X) = square feet • Independent variable (X)	Regression Equation and LS – III	Interpretation of the Slope and the Intercept			
<text>2 Notation 1 Not 1 Not 2 N</text>	 Differential calculus is used to obtain the coefficient estimators b₀ and b₁ that minimize SSE. b₁ = \$\frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}\$ = \$\frac{\cov(x, y)}{s_x^2}\$ = \$r_{xy}\frac{s_y}{s_x}\$ b₀ = \$\overline{y} - b_1 \overline{x}\$ The (sample) regression line always goes through the means \$\overline{x}\$, \$\overline{y}\$. 	 b₀ is the estimated average value of y when the value of x is zero (if x = 0 is in the range of observed x values) b₁ is the estimated change in the average value of y as a result of a one-unit change in x : Δy = b₁Δx so b₁ = Δy/Δx 			
$\frac{1}{10000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{1000000} \frac{1}{1000000} \frac{1}{10000000} \frac{1}{10000000} \frac{1}{10000000} \frac{1}{100000000} \frac{1}{100000000} \frac{1}{100000000} \frac{1}{1000000000} \frac{1}{10000000000000000000000000000000000$	<ロト < 置 > < 注 > 注 のへで	 < 미> < 图> < 흔> < 흔 > · 흔 · 이익 () 			
Since the set of th	P: Konstantinou (AUEB) Statistics for Business – IV August 28, 2023 9730	P. Konstantinou (AUEB) Statistics for Business – IV August 28, 2023 10730 Regression Analysis Interpretation of Regression Coefficients			
• A real estate agent wishes to examine the relationiship between the selling price of a home and its size (measured in square feet) • A random sample of 10 houses is selected • Dependent variable (Y) = house price in \$1000s • Independent variable (X) = square feet $\frac{House Price}{(Y)} \frac{8quare}{(X)} \frac{1}{200} \frac{400}{900} \frac{9}{900} 9$	Simple Linear Regression – I An Example	Simple Linear Regression – II An Example			
Setting price of a none and its size (incastred in square feet) • A random sample of 10 houses is selected • Dependent variable $(Y) =$ house price in \$1000s • Independent variable $(X) =$ square feet • House Price Square $(Y) = house price in $1000s$ • Independent variable $(X) =$ square feet • House Price Square $(Y) = house price in $1000s$ • Independent variable $(X) =$ square feet • House Price $Square (Y) = house price in $1000s$ • Independent variable $(X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet • House Price Square (Y) = house price in $1000s • Independent variable (X) = square feet (X) = 0.0000000000000000000000000000000000$	• A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)	A B C D E F G			
	• A random sample of 10 houses is selected • Dependent variable (Y) = house price in \$1000s • Independent variable (X) = square feet $\frac{1}{1000} \frac{1}{100} 1$	2 Regression Statistics Image: constant is a constant is constant is a consta constant is a constant is a constan			
P Konstantinou (AUER) Statistics for Rusiness – IV August 28, 2023 11/30 P. Konstantinou (AUER) Statistics for Rusiness – IV August 29, 2023	P. Konstantinou (AIIFR) Statistics for BusinessIV August 28, 2022 11/20	Report antinove (AUER) Statistics for Brienese - IV: Annuet 29, 2022 12, 22			

 $SER = s_e = \hat{\sigma} = \sqrt{s_e^2}.$

increases by .10977(\$1000) = \$109.77, on average, for each

additional one square foot of size.

P. Konstantinou (AUEB)

- 32

P. Konstantinou (AUEB)	Statistics for Business – IV	August 28, 2023	19/30	P. Konstantinou (AUEB)	Statistics for Business – IV	August 28, 2023	
			≡ nar		4		

Square Feet

20/30

Prediction

Prediction – IV

• Goal: Form intervals around Y to express uncertainty about the value of Y_0 for a given X_0

Prediction – VI

• Confidence interval estimate for an actual observed value of *y* given a particular x_0

$$\hat{y}_0 \pm t_{n-2,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

- ▶ The extra term (1) comes in because the regression is used to estimate the value of **one value** of y (at given x_0)
- Confidence Interval Estimate for $E(Y_0|X_0)$: Find the 95% confidence interval for the mean price of 2,000 square-foot houses
 - Predicted Price $\hat{y} = 317.85(\$1,000s)$ so

$$\hat{y}_0 \pm t_{n-2,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} = 317.84 \pm 37.15$$

Prediction – V

• Confidence interval estimate for the expected value of y given a particular x_0

$$\hat{y}_0 \pm t_{n-2,\alpha/2} \cdot s_e \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}}$$

Prediction

- ▶ Notice that the formula involves the term $(x_0 \bar{x})^2$ so the size of interval varies according to the distance x_0 is from the mean, \bar{x} .
- Technically this formula is used for infinitely large populations. However, we can interpret our problem as attempting to determine the average selling price of **all** houses, all with 1,500 square feet.

Prediction

Prediction – VII

P. Konstantinou (AUEB)

- ▶ The confidence interval endpoints are 280.66 and 354.90, or from \$280,660 to \$354,900
- Confidence Interval Estimate for \hat{Y}_0 : Find the 95% confidence interval for an individual house with 2,000 square feet
 - ▶ Predicted Price $\hat{y} = 317.85(\$1,000s)$ so

$$\hat{y}_0 \pm t_{n-2,\alpha/2} \cdot s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}} = 317.84 \pm 102.28$$

▶ The confidence interval endpoints are 215.50 and 420.07, or from \$215,500 to \$420,070.

P. Konstantinou (AUEB)

August 28, 2023

23/30

- 32

24/30

ヘロト ヘヨト ヘヨト

22/30

Regression Analysis Multiple Regression	Regression Analysis Multiple Regression		
• If we want to describe the relationship between one dependent variable y and two or more independent ones $x_1, x_2,, x_k$ for the whole population $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon.$ Multiple Regression Model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon.$ Sample Data: Multiple Regression Equation	 Multiple Regression: An Example – I A distributor of frozen desert pies wants to evaluate factors thought to influence demand Dependent variable: Pie sales (units per week) Independent variables: Price (in\$) Advertising (\$100's) Data are collected for 15 weeks 		
$E(y x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$ Unknown parameters are $\beta_0, \beta_1, \beta_2, \dots, \beta_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, \beta_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation $\widehat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$ Sample statistics are $b_0, b_1, b_2, \dots, b_k$ Estimated Multiple Regression Equation	1 330 530 5.3 2 460 750 3.3 3 350 8.00 45 5 350 6.40 3.7 6 380 7.50 4.0 7 430 4.50 3.0 8 470 6.40 3.7 9 450 7.00 3.5 10 490 5.00 4.0 11 340 7.20 3.5 12 300 7.90 3.2 13 440 5.90 4.0 14 450 5.00 3.5 15 300 7.00 2.7 P. Konstantinou (AUEB) Statistics for Business – IV		
Regression Analysis Multiple Regression	Regression Analysis Multiple Regression		
Multiple Regression: An Example – II	Multiple Regression: An Example – III		
Regression Statistics Multiple R 0.72213 R Square 0.52148 Adjusted R Square 0.44172 Standard Error 47.46341 Observations 15	• The estimated multiple regression equation $\widehat{Sales} = 306.526 - 24.975(Price) + 74.131(Advertising)$		
ANOVA df SS MS F Significance F Regression 2 29460.027 14730.013 6.53861 0.01201 Residual 12 27033.306 2252.776 14730.013 14 Total 14 56493.333 14 14 14	 b₁ = -24.975 : sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising (assuming these do not change) b₂ = 74 131 : sales will increase on average, by 74 131 pies per 		
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404 Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392 Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888	$b_2 = 74.131$: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price (assuming these do not change).		

Regression Analysis Multiple Regres	sion			Regression Analysis Multiple Regression		
• Let a population regression model	ı — I		Multiple Regression: Prediction – II			
 Let a population regression model y_i = β₀ + β₁x_{1i} + β₂x_{2i} + ··· + β_kx_{ki} + ε_i; then given a new observation of a data point x_{1,n+1}, x_{2,n+1}, ··· , x_{k,n+1} the best linear, unbiased forecast of y_{n+1} is ŷ_i = b₀ + b₁x_{1,n+1} + b₂x_{2,n+1} + ··· + b_kx_{k,n+1} It is risky to forecast for new x values outside the range of the data used to estimate the model coefficients, because we do not have 			 Predict sales for advertising is a solution of the selection of t	or a week in which the sellin \$350: 306.526 - 24.975(Price) + 306.526 - 24.975(5.50) + 428.62 Advertising is in \$100's, so \$33 sales is 428.62 pies	ng price is \$5.50 a 74.131(Advertisi 74.131(3.5) 50 means that $x_2 =$	ng) 3.5.
range.	- 	≣ ୬୯୯			<日 > < 國 > < 国 > < 国 >	∃ 𝒫𝔅
P. Konstantinou (AUEB) Statistics for Business – IV	August 28, 2023	29/30	P. Konstantinou (AUEB)	Statistics for Business – IV	August 28, 2023	30/30