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Communication and Course Evaluation Lectures and Communication

Communication
Lectures will take place in person at the Troias Building, Room
T106 (4 × 3 hours each)

You can contact me either by e-mail
(pkonstantinou.aueb@gmail.com) or by telephone (+30 210
8203197).

I have a strong preference for e-mail
(pkonstantinou.aueb@gmail.com) for the following reasons:

1 I can respond whenever I find time to do so (I commit to do so
withing two working days of the incoming message), whereas
there is no guarantee that I am in my office every day of the
week!!!

All material (slides, assignments, etc.) related to the course are or
will be posted at https://eclass.aueb.gr/courses/MISC181/
which is OPEN to access (no registration is required)
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Communication and Course Evaluation Evaluation

Course Evaluation – I

Course outline is available at:
https://eclass.aueb.gr/modules/document/file.php/MISC181/Outline
- Business Statistics 2020.pdf

Main reading:
▶ Newbold, P., Carlson, W.L. and Thorne, B. M. (2013) Statistics for

Business and Economics, 8th edition, Essex: Pearson Education

▶ Stock, J. and Watson, M. (2020) Introduction to Econometrics, 4th
Global Edition, New York: Pearson (Ch. 1 – Ch.4)

Course Assessment:
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Communication and Course Evaluation Evaluation

Course Evaluation – II

▶ Weekly Assignments (30%) 7→ pkonstantinou.aueb@gmail.com.
Anything sent to pkonstantinou@aueb.gr (my institutional e-mail
address) will be lost. The answers to the assignments will have to
be either typed or scanned (but always pdf files). DO NOT SEND
PICTURES – they are too large and might not get through.

▶ Written Examination (70%) – dates will be announced.
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Background: Descriptive Statistics
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Descriptive Statistics

Key Concepts
A population is the collection of all items of interest or under
investigation (N represents the population size)
A sample is an observed subset of the population (n represents
the sample size)
A parameter is a specific characteristic of a population
A statistic is a specific characteristic of a samplePopulation vs. Sample 

      a  b     c d  

ef   gh i  jk l   m  n 

  o  p q   rs  t  u v  w 

      x   y      z 

 

Population Sample 

Values calculated using 
population data are called 
parameters 

Values computed from 
sample data are called 
statistics 

       b     c   

     g i         n 

  o      r     u 

         y       
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Descriptive Statistics

Data Types Types of Data 

Data 

 
Categorical 

 

 
Numerical  

 

Discrete Continuous 
Examples: 

 Marital Status 
 Are you registered to 

vote? 
 Eye Color 
      (Defined categories or 

groups) 

Examples: 

 Number of Children 
 Defects per hour 
      (Counted items) 

Examples: 

 Weight 
 Voltage 
    (Measured characteristics) 
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Descriptive Statistics

Relationships Between VariablesScatter Diagram Example 

Cost per Day vs. Production Volume 
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per day 

Cost per 
day 

23 125 
26 140 
29 146 
33 160 
38 167 
42 170 
50 188 
55 195 
60 200 

Cross Table Example 

 4 x 3 Cross Table (contingency tables) for Investment 
Choices by Investor (values in $1000’s) 

Investment        Investor A          Investor B         Investor C       Total  
Category   
 

Stocks      46.5        55        27.5   129 
  
Bonds       32.0                 44        19.0           95 
 
CD       15.5                 20                 13.5            49 
  
Savings      16.0        28                   7.0            51   
 
Total      110.0       147                 67.0   324 
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Descriptive Statistics

Describing Data NumericallyDescribing Data Numerically 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall 

Arithmetic Mean 

Median 

Mode 

Describing Data Numerically 

Variance 

Standard Deviation 

Coefficient of Variation 

Range 

Interquartile Range 

Central Tendency Variation 
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Descriptive Statistics Measures of Central Tendency

Measures of Central Tendency
Measures of Central Tendency 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall 

Central Tendency 

Mean Median Mode 

n

x
x

n

1i
i∑

==

Overview 

Midpoint of 
ranked values 

Most frequently 
observed value 

Arithmetic 
average 

Ch. 2-6 

2.1 

Median position n+1
2 position in the ordered data

▶ If the number of values is odd, the median is the middle number
▶ If the number of values is even, the median is the average of the

two middle numbers
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Descriptive Statistics Measures of Central Tendency

Measures of Central Tendency
Example

House Prices
$2,000,000

500,000
300,000
100,000
100,000

Sum $3,000,000

Mean: $3,000,000/5 = $600,000
Median: middle value of ranked data =
$300,000
Mode: most frequent value = $100,000
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Descriptive Statistics Measures of Variability

Measures of VariabilityMeasures of Variability 

Same center,  
different variation 

Variation 

Variance Standard 
Deviation 

Coefficient of 
Variation 

Range Interquartile  
Range 

 Measures of variation give 
information on the spread 
or variability of the data 
values. 
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Descriptive Statistics Measures of Variability

Variance

Population Variance:
Average of squared
deviations of values from the
mean

σ2 =

∑N
i=1(Xi − µ)2

N

where
▶ µ = population mean
▶ N = population size
▶ Xi = i−th value of the

variable X

Sample Variance: Average
(approximately) of squared
deviations of values from the
sample mean:

s2 =

∑n
i=1(xi − x̄)2

n − 1

where
▶ x̄ = sample mean/average
▶ n = sample size
▶ xi = i−th value of the

variable X
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Descriptive Statistics Measures of Variability

Standard Deviation

Population Standard
Deviation: Most commonly
used measure of variation
▶ Shows variation about the

mean
▶ Has the same units as the

original data

σ =

√∑N
i=1(Xi − µ)2

N

Sample Standard Deviation:
Most commonly used
measure of variation
▶ Shows variation about the

sample mean
▶ Has the same units as the

original data

s =

√∑n
i=1(xi − x̄)2

n − 1

P. Konstantinou (AUEB) Statistics for Business – I August 30, 2023 10 / 18

Descriptive Statistics Measures of Variability

Standard Deviation
Example: Sample Standard Deviation Computation

Sample Data (xi) : 10 12 14 15 17 18 18 24
n = 8 and sample mean = x̄ = 16
So the standard deviation is

s =

√
(10 − x̄)2 + (12 − x̄)2 + (14 − x̄)2 + · · ·+ (24 − x̄)2

n − 1

=

√
(10 − 16)2 + (12 − 16)2 + (14 − 16)2 + · · ·+ (24 − 16)2

8 − 1

=

√
126

7
= 4.2426

This is a measure of the “average” scatter around the (sample)
mean.
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Descriptive Statistics Measures of Variability

Comparing Standard Deviations
Measuring variation 

Small standard deviation 

 

Large standard deviation 

The smaller the standard
deviation, the more
concentrated are the values
around the mean.

Comparing Standard Deviations 

Mean = 15.5 
  s = 3.338          11    12    13    14    15    16    17    18    19    20   21 

11    12    13    14    15    16    17    18    19    20   21 

Data B 

Data A 

Mean = 15.5 
  s = 0.926 

11    12    13    14    15    16    17    18    19    20   21 

Mean = 15.5 
  s = 4.570 

Data C 

Same mean, different
standard deviations.
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Descriptive Statistics Measures of Variability

Shape of a Distribution

Shape of a Distribution 

 Describes how data are distributed 
 Measures of shape 

 Symmetric or skewed 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall 

Mean = Median   Mean < Median  Median < Mean 

Right-Skewed Left-Skewed Symmetric 

Ch. 2-15 Describes how data are distributed
Measures of shape:
▶ Symmetric or skewed
▶ Left = Negative (mass of distr. concentrated on the right of figure);

Right = Positive (mass of distr. concentrated on the left of figure).

SK =
1
n

∑n
i=1(xi − x̄)3

[1
n

∑n
i=1(xi − x̄)2

]3/2 =
1
n

∑n
i=1(xi − x̄)3

s3
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Descriptive Statistics Measures of Variability

Coefficient of Variation
Measures relative variation and is always in percentage (%)
Shows variation relative to mean
Can be used to compare two or more sets of data measured in
different units

CV =
(sx

x̄

)
· 100%

Stock A:
▶ Avg price last year = $50
▶ Standard deviation = $5

CVA=
(

$5
$50

)
·100%=10%

Stock B:
▶ Avg. price last year = $100
▶ Standard deviation = $5

CVB=
(

$5
$100

)
·100%=5%

Both stocks have the same standard deviation, but stock B is less
variable relative to its price
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Descriptive Statistics Empirical Rule

The Empirical Rule
If the data distribution is bell-shaped, then the interval:

 If the data distribution is bell-shaped, then the 
interval: 

   contains about 68% of the values in  
 the population or the sample 

The Empirical Rule 

 1σμ ±

μ

68% 

1σμ±

µ± 1σ contains
about 68% of the
values in the
population or the
sample

   contains about 95% of the values in  
   the population or the sample 
   contains almost all (about 99.7%) of  

  the values in the population or the sample 

The Empirical Rule 

 2σμ ±

 3σμ ±

3σμ±

99.7% 95% 

2σμ±

µ± 2σ contains
about 95% of the
values in the
population or the
sample

   contains about 95% of the values in  
   the population or the sample 
   contains almost all (about 99.7%) of  

  the values in the population or the sample 

The Empirical Rule 

 2σμ ±

 3σμ ±

3σμ±

99.7% 95% 

2σμ±

µ± 3σ contains
almost all (about
99.7%) of the
values in the
population or the
sample.
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Descriptive Statistics Covariance and Correlation

Covariance
The covariance measures the strength of the linear relationship
between two variables
The population covariance:

Cov(X,Y) = σXY =

∑N
i=1(Xi − µX)(Yi − µY)

N
.

The sample covariance:

̂Cov(x, y) = sxy =

∑n
i=1(xi − x̄)(yi − ȳ)

n − 1
.

Only concerned with the strength of the relationship
No causal effect is implied
▶ Cov(x, y) > 0, x and y tend to move in the same direction
▶ Cov(x, y) < 0, x and y tend to move in opposite directions
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Descriptive Statistics Covariance and Correlation

Correlation Coefficients
The correlation coefficient measures the relative strength of the
linear relationship between two variables
The population correlation coefficient:

Corr(X,Y) = ρXY =
Cov(X,Y)

σXσY
.

The sample correlation coefficient:

̂Corr(x, y) = rxy =
̂Cov(x, y)
sxsy

.

Unit free and ranges between −1 and 1
▶ The closer to −1, the stronger the negative linear relationship
▶ The closer to 1, the stronger the positive linear relationship
▶ The closer to 0, the weaker any positive linear relationship
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Descriptive Statistics Covariance and Correlation

Correlation Coefficients
Examples

Scatter Plots of Data with Various 
Correlation Coefficients 

Y 

X 

Y 

X 

Y 

X 

Y 

X 

Y 

X 

r = -1 r = -.6 r = 0 

r = +.3 r = +1 

Y 

X 
r = 0 
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Statistics for Business
Elements of Probability Theory
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Elements of Probability Theory Sets

Important Terms in Probability – I
Random Experiment – it is a process leading to an uncertain
outcome

Basic Outcome (Si) – a possible outcome (the most basic one) of
a random experiment

Sample Space (S) – the collection of all possible (basic) outcomes
of a random experiment

Event A – is any subset of basic outcomes from the sample space
(A ⊆ S). This is our object of interest here – among other things.
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Elements of Probability Theory Sets

Important Terms in Probability – II

Important Terms 

 Intersection of Events – If A and B are two events in 
a sample space S, then the intersection, A ∩ B, is the 
set of all outcomes in S that belong to both A and B 

(continued) 

A B A∩B 

S 

Intersection of Events – If A
and B are two events in a
sample space S, then their
intersection, A ∩ B, is the set
of all outcomes in S that
belong to both A and B

Important Terms 
 A and B are Mutually Exclusive Events if they have 

no basic outcomes in common  
 i.e., the set A ∩ B is empty 

 

(continued) 

A B 

S 

We say that A and B are
Mutually Exclusive Events if
they have no basic outcomes
in common i.e., the set A ∩ B
is empty (∅)
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Elements of Probability Theory Sets

Important Terms in Probability – III

Important Terms 
 Union of Events – If A and B are two events in a 

sample space S, then the union, A U B, is the set of 
all outcomes in S that belong to either  

 A or B 

(continued) 

The entire shaded area 
represents A ∪ B 

A B 

S 
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Union of Events – If A and
B are two events in a sample
space S, then their union,
A ∪ B, is the set of all
outcomes in S that belong to
either A or B

Important Terms 

 
 The Complement of an event A is the set of all basic 

outcomes in the sample space that do not belong to 
A.  The complement is denoted  

(continued) 

A

A 
S 

A

The Complement of an
event A is the set of all basic
outcomes in the sample
space that do not belong to
A. The complement is
denoted Ā or Ac.
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Elements of Probability Theory Sets

Important Terms in Probability – IV
Events E1,E2, ...,Ek are Collectively Exhaustive events if
E1 ∪ E2 ∪ ... ∪ Ek = S, i.e., the events completely cover the
sample space.

Examples
Let the Sample Space be the collection of all possible outcomes of
rolling one die S = {1, 2, 3, 4, 5, 6}.

Examples Let the Sample Space be the collection of all 
possible outcomes of rolling one die: 

     S = [1, 2, 3, 4, 5, 6] 
 

Let A be the event “Number rolled is even” 

Let B be the event “Number rolled is at least 4”   

     Then 

       A = [2, 4, 6]    and    B = [4, 5, 6] 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-5 

Let A be the event “Number rolled is even”: A = {2, 4, 6}
Let B be the event “Number rolled is at least 4” : B = {4, 5, 6}
Mutually exclusive: A and B are not mutually exclusive. The
outcomes 4 and 6 are common to both.
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Elements of Probability Theory Sets

Important Terms in Probability – V

Examples (Continued)

Examples Let the Sample Space be the collection of all 
possible outcomes of rolling one die: 

     S = [1, 2, 3, 4, 5, 6] 
 

Let A be the event “Number rolled is even” 

Let B be the event “Number rolled is at least 4”   

     Then 

       A = [2, 4, 6]    and    B = [4, 5, 6] 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-5 

A = {2, 4, 6} B = {4, 5, 6}
Collectively exhaustive: A and B are not collectively exhaustive.
A ∪ B does not contain 1 or 3.
Complements: Ā = {1, 3, 5} and B̄ = {1, 2, 3}
Intersections: A ∩ B = {4, 6}; Ā ∩ B = {5}; A ∩ B̄ = {2};
Ā ∩ B̄ = {1, 3}.
Unions: A ∪ B = {2, 4, 5, 6}; A ∪ Ā = {1, 2, 3, 4, 5, 6} = S.
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Elements of Probability Theory Probability

Assessing Probability – I

Probability – the chance that an uncertain event A will occur is
always between 0 and 1.

0︸︷︷︸
Impossible

≤ Pr(A) ≤ 1︸︷︷︸
Certain

There are three approaches to assessing the probability of an
uncertain event:
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Elements of Probability Theory Probability

Assessing Probability – II

1 Classical Definition of Probability:

Probability of an event A =
NA

N

=
number of outcomes that satisfy the event A

total number of outcomes in the sample space S

▶ Assumes all outcomes in the sample space are equally likely to
occur.

▶ Example: Consider the experiment of tossing 2 coins. The sample
space is S = {HH,HT,TH,TT}.

▶ Event A = {one T} = {TH,HT}. Hence Pr(A) = 0.5 – assuming
that all basic outcomes are equally likely.

▶ Event B = {at least one T} = {TH,HT,TT}. So Pr(B) = 0.75.
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Elements of Probability Theory Probability

Assessing Probability – III

2 Probability as Relative Frequency:

Probability of an event A =
nA

n

=
number of events in the population that satisfy event A

total number of events in the population

▶ The limit of the proportion of times that an event A occurs in a
large number of trials, n.
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Elements of Probability Theory Probability

Assessing Probability – IV

3 Subjective Probability: an individual has opinion or belief about
the probability of occurrence of A.
▶ When economic conditions or a company’s circumstances change

rapidly, it might be inappropriate to assign probabilities based
solely on historical data

▶ We can use any data available as well as our experience and
intuition, but ultimately a probability value should express our
degree of belief that the experimental outcome will occur.
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Elements of Probability Theory Probability

Measuring Outcomes – I
Classical Definition of Probability

Basic Rule of Counting: If an experiment consists of a sequence
of k steps in which there are n1 possible results for the first step,
n2 possible results for the second step, and so on, then the total
number of experimental outcomes is given by (n1)(n2)...(nk) –
tree diagram...
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Elements of Probability Theory Probability

Measuring Outcomes – II
Classical Definition of Probability

Counting Rule for Combinations (Number of Combinations of n
Objects taken k at a time): A second useful counting rule enables
us to count the number of experimental outcomes when k objects
are to be selected from a set of n objects (the ordering does not
matter)

Cn
k =

(
n
k

)
=

n!
k!(n − k)!

,

where n! = n(n − 1)(n − 2)...(2)(1) and 0! = 1.
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Elements of Probability Theory Probability

Measuring Outcomes – III
Classical Definition of Probability

▶ Example: Suppose we flip three coins. How many are the possible
combinations with (exactly) 1 T?

C3
1 =

(
3
1

)
=

3!
1!(3 − 1)!

= 3.

▶ Example: Suppose we flip three coins. How many are the possible
combinations with at least 1T?

▶ Example: Suppose that there are two groups of questions. Group
A with 6 questions and group B with 4 questions. How many are
the possible half-a-dozens we can put together?

n = 6 + 4 = 10; C10
6 =

(
10
6

)
=

10!
6!(10 − 6)!

= 210.
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Elements of Probability Theory Probability

Measuring Outcomes – IV
Classical Definition of Probability

▶ Example: How many possible half-a-dozens we can put together,
preserving the ratio 4 : 2?

(
6
4

)
×
(

4
2

)
= 15 × 6 = 90.

▶ Probability: What is the probability of selecting a particular
half-a-dozen (with ratio 4 : 2), when we choose at random? Using
the classical definition of probability

90
210

= 0.4286
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Elements of Probability Theory Probability

Measuring Outcomes – V
Classical Definition of Probability

Counting Rule for Permutations (Number of Permutations of n
Objects taken k at a time): A third useful counting rule enables us
to count the number of experimental outcomes when k objects are
to be selected from a set of n objects, where the order of
selection is important

Pn
k =

n!
(n − k)!

.
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Elements of Probability Theory Probability

Measuring Outcomes – VI
Classical Definition of Probability

▶ Example: How many 3-digit lock combinations can we make from
the numbers 1, 2, 3, and 4?
The order of the choice is important! So

P4
3 =

4!
1!

= 4! = 4(3)(2)(1) = 24.

▶ Example: Let the characters A,B,Γ. In how many ways can we
combine them in making triads?

P3
3 =

3!
0!

= 3! = 3(2)(1) = 6.

These are: ABΓ,AΓB,BAΓ,BΓA,ΓAB,and ΓBA.
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Elements of Probability Theory Probability

Measuring Outcomes – VII
Classical Definition of Probability

▶ Example: Let the characters A,B,Γ,∆,E. In how many ways is it
possible to combine them into pairs?

∗ If the order matters, we may have

P5
2 =

5!
3!

= (5)(4) = 20.

∗ If the order does not matters, we may choose pairs

C5
2 =

(
5
2

)
=

5!
2!(5 − 2)!

=
5!

2!3!
= 10
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Elements of Probability Theory Axioms and Rules of Probability

Probability Axioms

The following Axioms hold

1 If A is any event in the sample space S, then

0 ≤ Pr(A) ≤ 1.

2 Let A be an event in S, and let Si denote the basic outcomes. Then

Pr(A) =
∑

all Si in A

Pr(Si).

3 Pr(S) = 1.
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Elements of Probability Theory Axioms and Rules of Probability

Probability Rules – I
The Complement Rule:

Pr(Ā) = 1 − Pr(A) [i.e., Pr(A) + Pr(Ā) = 1].

The Addition Rule: The probability of the union of two events is

Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)

Probabilities and joint probabilities for two events A and B are
summarized in the following table:

B B̄
A Pr(A ∩ B) Pr(A ∩ B̄) Pr(A)

Ā Pr(Ā ∩ B) Pr(Ā ∩ B̄) Pr(Ā)
Pr(B) Pr(B̄) Pr(S) = 1
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Elements of Probability Theory Axioms and Rules of Probability

Probability Rules – II
Example (Addition Rule)
Consider a standard deck of 52 cards, with four suits ♡♣♢♠. Let
event A = card is an Ace and event B = card is from a red suit.

Addition Rule Example 

Pr(Red ∪ Ace) = Pr(Red) + Pr(Ace) - Pr(Red ∩ Ace) 

                        = 26/52 + 4/52 -  2/52  =  28/52 
Don’t count 
the two red 
aces twice! 

Black 
Color 

Type Red Total 

Ace 2 2 4 

Non-Ace 24 24 48 

Total 26 26 52 

(continued) 
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Elements of Probability Theory Axioms and Rules of Probability

Conditional Probability – I

A conditional probability is the probability of one event, given
that another event has occurred:

Pr(A|B) = Pr(A ∩ B)
Pr(B)

(if Pr(B) > 0);

Pr(B|A) = Pr(A ∩ B)
Pr(A)

(if Pr(A) > 0)
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Elements of Probability Theory Axioms and Rules of Probability

Conditional Probability – II
Example (Conditional Probability)
Of the cars on a used car lot, 70% have air conditioning (AC) and 40%
have a CD player (CD). 20% of the cars have both. What is the
probability that a car has a CD player, given that it has AC?
[Pr(CD|AC) =?]

Conditional Probability Example 

No CD CD Total 

AC .2 .5 .7 

No AC .2 .1 .3 
Total .4 .6 1.0 

 Given AC, we only consider the top row (70% of the cars). Of these, 20% 
have a CD player.  20% of 70% is 28.57%. 

Pr(CD AC) .2Pr (CD|AC) .2857
Pr(AC) .7

∩
= = =

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-20 
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Elements of Probability Theory Axioms and Rules of Probability

Multiplication Rule
The Multiplication Rule for two events A and B:

Pr(A ∩ B) = Pr(A|B) Pr(B) = Pr(B|A) Pr(A)

Example (Multiplication Rule)Multiplication Rule Example 
Pr(Red ∩ Ace) = Pr(Red| Ace)Pr(Ace) 

    

Black 
Color 

Type Red Total 

Ace 2 2 4 

Non-Ace 24 24 48 

Total 26 26 52 

52
2

52
4

4
2

=












=

52
2

cards of number total
ace and red are that cards of number

==

Ch. 3-22 
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Elements of Probability Theory Independence, Joint and Marginal Probabilities

Statistical Independence – I

Two events are statistically independent if and only if:

Pr(A ∩ B) = Pr(A) Pr(B).

▶ Events A and B are independent when the probability of one event
is not affected by the other event.

▶ If A and B are independent, then

Pr(A|B) = Pr(A), if Pr(B) > 0;

Pr(B|A) = Pr(B), if Pr(A) > 0.

P. Konstantinou (AUEB) Statistics for Business – I August 28, 2023 24 / 28

Elements of Probability Theory Independence, Joint and Marginal Probabilities

Statistical Independence – II
Example (Statistical Independence)
Of the cars on a used car lot, 70% have air conditioning (AC) and 40%
have a CD player (CD). 20% of the cars have both. Are the events AC
and CD statistically independent?
Statistical Independence Example 

No CD CD Total 

AC .2 .5 .7 

No AC .2 .1 .3 
Total .4 .6 1.0 

P(AC ∩ CD) = 0.2 

P(AC) = 0.7 

P(CD) = 0.4 
P(AC)P(CD) = (0.7)(0.4) = 0.28 

P(AC ∩ CD) = 0.2 ≠   P(AC)P(CD) = 0.28 
So the two events are not statistically independent 
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Elements of Probability Theory Independence, Joint and Marginal Probabilities

Statistical Independence – III

Remark (Exclussive Events and Statistical Independence)
Let two events A and B with Pr(A) > 0 and Pr(B) > 0 which are
mutually exclusive. Are A and B independent? NO!

To see this use a Venn diagram and the formula of conditional
probability (or the multiplication rule).

If one mutually exclusive event is known to occur, the other
cannot occur; thus, the probability of the other event occurring is
reduced to zero (and they are therefore dependent).
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Elements of Probability Theory Independence, Joint and Marginal Probabilities

Examples – I
Example 1. In a certain population, 10% of the people can be
classified as being high risk for a heart attack. Three people are
randomly selected from this population. What is the probability
that exactly one of the three are high risk?

▶ Define H: high risk, and N: not high risk. Then

Pr(exactly one high risk) = Pr(HNN) + Pr(NHN) + Pr(NNH) =

= Pr(H) Pr(N) Pr(N) + Pr(N) Pr(H) Pr(N) + Pr(N) Pr(N) Pr(H)

= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1) = 3(.1)(.9)2 = .243
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Elements of Probability Theory Independence, Joint and Marginal Probabilities

Examples – II

Example 2. Suppose we have additional information in the
previous example. We know that only 49% of the population are
female. Also, of the female patients, 8% are high risk. A single
person is selected at random. What is the probability that it is a
high risk female?

▶ Define H: high risk, and F: female. From the example, Pr(F) =
.49 and Pr(H|F) = .08. Using the Multiplication Rule:

Pr(high risk female) = Pr(H ∩ F)
= Pr(F) Pr(H|F) = .49(.08) = .0392
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Random Variables and Probability Distributions Random Variables: Intro

Random Variables – I
Basics

Definition
A random variable X is a a function or rule that assigns a number to
each outcome of an experiment.

Think of this as the numerical summary of a random outcome.

Random  
Variables 

Discrete  
Random Variable 

Continuous 
Random Variable 

countable number of values any value in an interval 
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Random Variables and Probability Distributions Random Variables: Intro

Random Variables – II
Basics

Examples
X = GPA for a randomly selected student
X = number of contracts a shipping company has pending at a
randomly selected month of the year
X = number on the upper face of a randomly tossed die
X = the price of crude oil during a randomly selected month.
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Discrete Random Variables

A discrete random variable can only take on a countable number
of values

Examples
Roll a die twice. Let X be the number of times 4 comes up:
▶ then X could be 0, 1, or 2 times

Toss a coin 5 times. Let X be the number of heads:
▶ then X = 0, 1, 2, 3, 4, or 5
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Discrete Probability Distributions – I

The probability distribution for a discrete random variable X
resembles the relative frequency distributions. It is a graph, table
or formula that gives the possible values of X and the probability
P(X = x) associated with each value.
This must satisfy

1 0 ≤ P(x) ≤ 1, for all x.
2
∑

all x P(x) = 1, the individual probabilities sum to 1.

The cumulative probability function, denoted by F(x0), shows
the probability that X is less than or equal to a particular value,
x0 :

F(x0) = Pr(X ≤ x0) =
∑

x≤x0

P(x)
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Discrete Probability Distributions – II

Random Experiment: Toss 2 Coins. Let (the random variable)
X = # heads.
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Discrete Probability Distributions – III

Discrete Probability Distribution

x Value Probability 

0            1/4 = .25

1            2/4 = .50

2            1/4 = .25

Experiment:  Toss 2 Coins.    Let  X = # heads.

T

T

4 possible outcomes

T

T

H

H

H H

Probability Distribution

0      1      2         x

.50

.25

P
ro

b
ab

ili
ty

Show P(x) ,   i.e.,  P(X = x) ,  for all values of x:

4.2

Cum. Prob. 

1/4 = .25

3/4 = .75

4/4 = 1.00

Random Experiment: Let the random variable S be the number
of days it will snow in the last week of January
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Discrete Probability Distributions – IV

(cumulative) Probability distribution of S
Outcome 0 1 2 3 4 5 6 7
Probability 0.20 0.25 0.20 0.15 0.10 0.05 0.04 0.01
CDF 0.20 0.45 0.65 0.80 0.90 0.95 0.99 1.00
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Moments of Discrete Prob. Distributions – I

Expected Value (or mean) of a discrete distribution (weighted
average)

µX = E(X) =
∑

all x

x · P(x).

Variance of a discrete random variable X (weighted average...)

σ2 = Var(X) = E
[
(X − µX)

2
]
=
∑

all x

(x − µX)
2 · P(x)

Standard Deviation of a discrete random variable X

σ =
√
σ2 =

√∑

all x

(x − µ)2P(x)
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Moments of Discrete Prob. Distributions – II

Example
Consider the experiment of tossing 2 coins, and X = # of heads. Then

µ = E(X) =
∑

x
xP(x)

= (0 × 0.25) + (1 × 0.50) + (2 × 0.25) = 1

σ =

√∑
x
(x − µ)2P(x)

=
√
(0 − 1)2(.25) + (1 − 1)2(.50) + (2 − 1)2(.25)

=
√
.50 = 0.707
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Random Variables and Probability Distributions Discrete Random Variables and Distributions

Moments of Discrete Prob. Distributions – III
Example (Number of days it will snow in January)
µS = E(S) =

∑
s s · P(s) =

= 0·0.2+1·0.25+2·0.2+3·0.15+4·0.1+5·0.05+6·0.04+7·0.01 = 2.06
σ2

S = Var(S) =
∑

s(s − E(S))2 · P(s) =
= (0−2.06)2 ·0.2+(1−2.06)2 ·0.25+(2−2.06)2 ·0.2+(3−2.06)2 ·0.15
+(4 − 2.06)2 · 0.1 + (5 − 2.06)2 · 0.05 + (6 − 2.06)2 · 0.04
+(7 − 2.06)2 · 0.01 = 2.94

Remark (Rules for Moments)
Let a and b be any constants and let Y = a + bX. Then

E[a + bX] = a + bE[X] = a + bµx

Var[a + bX] = b2Var[X] = b2σ2
x ⇒ σY = |b|σx

The above imply that E[a] = a and Var[a] = 0
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Random Variables and Probability Distributions Continuous Random Variables and Densities

Prob. Density and Distribution Function – I

The probability density function (or pdf), f (x), of continuous
random variable X has the following properties

1 f (x) > 0 for all values of x (x takes a range of values, RX).

2 The area under the probability density function f (x) over all
values of the random variable X is equal to 1 (recall that∑

all x P(x) = 1 for discrete r.v.)
∫

RX

f (x)dx = 1.
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Random Variables and Probability Distributions Continuous Random Variables and Densities

Prob. Density and Distribution Function – II
3 The probability that X lies between two values is the area under

the density function graph between the two values:

Pr(a ≤ X ≤ b) = Pr(a < X < b) =
∫ b

a
f (x)dx

Probability as an Area   

a b x 

f(x) ( 

Shaded area under the curve is the probability 
that X is between  a  and  b 

P a x b ) ≤ ≤ 
a P x b ( ) < < = 

Note that the probability of any individual value is zero 
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Random Variables and Probability Distributions Continuous Random Variables and Densities

Prob. Density and Distribution Function – III

4 The cumulative density function (or distribution function) F(x0),
which expresses the probability that X does not exceed the value
of x0, is the area under the probability density function f (x) from
the minimum x value up to x0

F(x0) =

∫ x0

xmin

f (x)dx.

5 It follows that

Pr(a ≤ X ≤ b) = Pr(a < X < b) = F(b)− F(a)
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Random Variables and Probability Distributions Continuous Random Variables and Densities

Moments of Continuous Distributions – I

Expected Value (or mean) of a continuous distribution

µX = E(X) =
∫

RX

xf (x)dx.

Variance of a continuous random variable X

σ2
X = Var(X) =

∫

RX

(x − µX)
2f (x)dx

Standard Deviation of a continuous random variable X

σX =
√
σ2

X =

√∫

RX

(x − µX)2f (x)dx
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Random Variables and Probability Distributions Continuous Random Variables and Densities

Moments of Continuous Distributions – II
Remark (Rules for Moments Apply)
Let c and d be any constants and let Y = c + dX. Then

E[c + dX] = c + dE[X] = c + dµx

Var[c + dX] = d2Var[X] = d2σ2
x ⇒ σY = |d|σx

Remark (Standardized Random Variable)
An important special case of the previous results is

Z =
X − µx

σx
,

for which :
E(Z) = 0

Var(Z) = 1 .
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Random Variables and Probability/Density Distributions Specific Discrete Probability Distributions

Bernoulli Distribution
Consider only two outcomes: “success” or “failure”. Let p denote
the probability of success, and 1 − p be the probability of failure.
Define random variable X: x = 1 if success, x = 0 if failure.
Then the Bernoulli probability function is

P(X = 0) = (1 − p) and P(X = 1) = p

Moreover:

µX = E(X) =
∑

all x

x · P(x) = 0 · (1 − p) + 1 · p = p

σ2
X = Var(X) = E[(X − µX)

2] =
∑

all x

(x − µX)
2 · P(x)

= (0 − p)2(1 − p) + (1 − p)2p = p(1 − p)
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Random Variables and Probability/Density Distributions Specific Discrete Probability Distributions

Binomial Distribution – I

A fixed number of observations, n
▶ e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse

Two mutually exclusive and collectively exhaustive categories
▶ e.g., head or tail in each toss of a coin; defective or not defective

light bulb
▶ Generally called “success” and “failure”
▶ Probability of success is p, probability of failure is 1 − p

Constant probability for each observation
▶ e.g., Probability of getting a tail is the same each time we toss the

coin

Observations are independent
▶ The outcome of one observation does not affect the outcome of the

other
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Random Variables and Probability/Density Distributions Specific Discrete Probability Distributions

Binomial Distribution – II

Examples:
▶ A manufacturing plant labels items as either defective or

acceptable
▶ A firm bidding for contracts will either get a contract or not
▶ A marketing research firm receives survey responses of “yes I will

buy” or “no I will not”
▶ New job applicants either accept the offer or reject it

To calculate the probability associated with each value we use
combinatorics:

P(x) =
n!

x!(n − x)!
px(1 − p)n−x; x = 0, 1, 2, ..., n
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Random Variables and Probability/Density Distributions Specific Discrete Probability Distributions

Binomial Distribution – III
▶ P(x) = probability of x successes in n trials, with probability of

success p on each trial; x = number of ‘successes’ in sample (nr.
of trials n); n! = n · (n − 1) · (n − 2) · ... · 2 · 1

Example
What is the probability of one success in five observations if the
probability of success is 0.1?

Here x = 1, n = 5, and p = 0.1. So

P(x = 1) =
n!

x!(n − x)!
px(1 − p)n−x

=
5!

1!(5 − 1)!
(0.1)1(1 − 0.1)5−1 = 5(0.1)(0.9)4 = 0.32805
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Random Variables and Probability/Density Distributions Specific Discrete Probability Distributions

Binomial Distribution
Moments and Shape

µ = E(X) = np

σ2 = Var(X) = np(1 − p) ⇒ σ =
√

np(1 − p)

The shape of the binomial distr. depends on the values of p and n

Binomial Characteristics 

n = 5  p = 0.1 

n = 5  p = 0.5 

Mean 

 0 
.2 
.4 
.6 

0 1 2 3 4 5 
x 

P(x) 

.2 

.4 

.6 

0 1 2 3 4 5 
x 

P(x) 

0 

(5)(0.1) 0.5npµ = = =

(1 ) (5)(0.1)(1 0.1)
0.6708

np pσ = − = −

=

(5)(0.5) 2.5npµ = = =

(1 ) (5)(0.5)(1 0.5)
1.118

np pσ = − = −

=

Examples 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – I

The normal distribution is the most important of all probability
distributions. The probability density function of a normal
random variable is given by

f (x) =
1

σ
√

2π
e−

1
2(

x−µ
σ )

2

; −∞ < x < +∞,

and we usually write X ∼ N(µx, σ
2
x )

▶ The normal distribution closely approximates the probability
distributions of a wide range of random variables

▶ Distributions of sample means approach a normal distribution
given a “large” sample size

▶ Computations of probabilities are direct and elegant
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – II
The shape and location of the normal curve changes as the mean
(µ) and standard deviation (σ) change

The Normal Distribution Shape 

x 

f(x) 

μ 
=Median 
=Mode 

σ 

Changing μ shifts the 
distribution left or 
right. 

Changing σ increases or 
decreases the spread. 

 Given the mean  μ  and variance  σ  we define the normal 
distribution using the notation )σN(μ~X 2,
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – III

Normal Distribution… 
The normal distribution is described by two parameters: 
its mean     and its standard deviation      . Increasing the 
mean shifts the curve to the right… 

Normal Distribution… 
The normal distribution is described by two parameters: 
its mean     and its standard deviation      . Increasing the 
standard deviation “flattens” the curve… 

For a normal random variable X with mean µ and variance σ2,
i.e., X ∼ N(µ, σ2)), the cumulative distribution function is

F(x0) = Pr(X ≤ x0),
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – IV
while the probability for a range of values is measured by the area
under the curve

Pr(a < X < b) = F(b)− F(a)
Finding Normal Probabilities   

x b μ a 

x b μ a 

x b μ a 

Pr( ) ( ) - ( )a X b F b F a< < =

( ) Pr( )F a X a= <

( ) Pr( )F b X b= <
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – V

Any normal distribution (with any mean and variance
combination) can be transformed into the standardized normal
distribution (Z), with mean 0 and variance 1:

Z =
X − µ

σ
∼ N(0, 1)

Example: If X ∼ N(100, 502), the Z value for X = 200 is

Z =
X − µ

σ
=

200 − 100
50

= 2

This says that X = 200 is two standard deviations (2 increments
of 50 units) above the mean of 100.
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Normal Distribution – VI
Comparing  X  and  Z  units 

Z 
100 

2.0 0 
200 X 

Note that the distribution is 
the same, only the scale has 
changed.  We can express the 
problem in original units (X) 
or in standardized units (Z) 

(μ = 100, σ = 50) 
(μ = 0 , σ = 1) 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – I
Finding Normal Probabilities   

Pr( ) Pr a ba X b Z

b a

µ µ
σ σ

µ µ
σ σ

− − < < = < < 
 

− −   = Φ −Φ   
   

a b x 

f(x) 

b µ
σ
−a µ

σ
− z 

µ 
0 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – II

The total area under the curve is 1.0, and the curve is symmetric,
so half is above the mean, half is below

Probability as  
Area Under the Curve 

f(x) 

x μ 

0.5 0.5 

The total area under the curve is 1.0, and the curve is 
symmetric, so half is above the mean, half is below 

Pr( ) 1.0X−∞ < < ∞ =

Pr( ) 0.5Xµ < < ∞ =Pr( ) 0.5X µ−∞ < < =
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – III

Table with cumulative standard normal distribution: For a given
Z-value a, the table shows Φ(a) (the area under the curve from
negative infinity to a)

Appendix Table 1 
• The Standardized Normal table in the textbook (Appendix 

Table 1) shows values of the cumulative normal distribution 
function 

• For a given Z-value  a , the table shows F(a) 
 (the area under the curve from negative infinity to  a ) 

( ) Pr( )a Z aΦ = <

Z 
0 a 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – IV
Example: Suppose we are interested in Pr(Z < 2) – from the
previous example. For negative Z−values, we use the fact that the
distribution is symmetric to find the needed probability (e.g.
Pr(Z < −2)).

Example:  
P(Z < -2.00) =  
1 – 0.9772  = 0.0228 

 For negative Z-values, use the fact that the distribution 
is symmetric to find the needed probability: 

Z 0 -2.00 

Z 0 2.00 

.9772 

.0228 

.9772 
.0228 

The Standardized Normal Table 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – V

Example: Suppose X is normal with mean 8.0 and standard
deviation 5.0. Find Pr(X < 8.6).

• Suppose  X  is normal with mean 8.0 and standard 
deviation 5.0.  Find P(X < 8.6) 
 

z 0.12  0 x 8.6  8 

μ = 8 
 σ = 10 

μ = 0 
σ = 1 

( )

8.6 8.0 0.12;  
5.0

0.12   0.5478

XZ µ
σ
− −

= = =

Φ =

Pr(X < 8.6) Pr(Z < 0.12) 

Finding Normal Probabilities 
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – VI

Example (Upper Tail Probabilities): Suppose X is normal with
mean 8.0 and standard deviation 5.0. Find Pr(X > 8.6).

Pr(X > 8.6) = Pr(Z > 0.12) = 1 − Pr(Z ≤ 0.12)
= 1 − 0.5478 = 0.4522

Example (Finding X for a Known Probability) Suppose
X ∼ N(8, 52). Find a X value so that only 20% of all values are
below this X.

1 Find the Z-value for the known probability
Φ(.84) = .7995, so a 20% area in the lower tail is consistent with a
Z-value of −0.84.
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Random Variables and Probability/Density Distributions Specific Continuous Distributions: Normal

Finding Normal Probabilities – VII

2 Convert to X-units using the formula

X = µ+ Zσ

= 8 + (−.84) · 5 = 3.8.

So 20% of the values from a distribution with mean 8 and standard
deviation 5 are less than 3.80.
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Multivariate Probability Distributions Basic Definitions

Joint and Marginal Probability Distributions – I
Joint Probability Functions

Suppose that X and Y are discrete random variables. The joint
probability function is

P(x, y) = Pr(X = x ∩ Y = y),

which is simply used to express the probability that X takes the
specific value x and simultaneously Y takes the value y, as a
function of x and y. This should satisfy:

1 0 ≤ P(x, y) ≤ 1 for all x, y.
2
∑

x
∑

y P(x, y) = 1, where the sum is over all values (x, y) that are
assigned nonzero probabilities.
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Multivariate Probability Distributions Basic Definitions

Joint and Marginal Probability Distributions – II
Joint Probability Functions

For any random variables X and Y (discrete or continuous), the
joint (bivariate) distribution function F(x, y) is

F(x, y) = Pr(X ≤ x ∩ Y ≤ y).

This defines the probability that simultaneously X is less than x
and Y is less than y.
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Multivariate Probability Distributions Basic Definitions

Joint and Marginal Probability Distributions
Marginal Probability Functions

Let X and Y be jointly discrete random variables with probability
function P(x, y). Then the marginal probability functions of X
and Y , respectively, are given by

Px(x) =
∑

all y

P(x, y) Py(y) =
∑

all x

P(x, y)

Let X and Y be jointly discrete random variables with probability
function P(x, y). The cumulative marginal probability functions,
denoted Fx(x0) and Gy(y0), show the probability that X is less than
or equal to x0 and that Y is less than or equal to y0 respectively

Fx(x0) = Pr(X ≤ x0) =
∑

x≤x0

Px(x),

Gy(y0) = Pr(Y ≤ y0) =
∑

y≤y0

Py(y).
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Multivariate Probability Distributions Basic Definitions

Conditional Probability Distributions

If X and Y are jointly discrete random variables with joint
probability function P(x, y) and marginal probability functions
Px(x) and Py(y), respectively, then the conditional discrete
probability function of Y given X is

P(y|x) = Pr(Y = y|X = x) =
Pr(X = x,Y = y)

Pr(X = x)
=

P(x, y)
Px(x)

,

provided that Px(x) > 0. Similarly,

P(x|y) = P(x, y)
Py(y)

, provided that Py(x) > 0
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Multivariate Probability Distributions Independent Random Variables

Statistical Independence
Let X have distribution function Fx(x), Y have distribution
function Fy(y), and X and Y have a joint distribution function
F(x, y). Then X and Y are said to be independent if and only if

F(x, y) = Fx(x) · Fy(y),

for every pair of real numbers (x, y).
Alternatively, the two random variables X and Y are independent
if the conditional distribution of Y given X does not depend on X:

Pr(Y = y|X = x) = Pr(Y = y).

We also define Y to be mean independent of X when the
conditional mean of Y given X equals the unconditional mean of
Y:

E(Y = y|X = x) = E(Y = y).
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Multivariate Probability Distributions Conditional Moments of Joint Distributions

Conditional Moments

If X and Y are any two discrete random variables, the conditional
expectation of Y given that X = x, is defined to be

µY|X = E(Y|X = x) =
∑

all y

y · P(y|x)

If X and Y are any two discrete random variables, the conditional
variance of Y given that X = x, is defined to be

σ2
Y|X = E[(Y − µY|X)

2|X = x] =
∑

all y

(y − µY|X)
2 · P(y|x)
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Multivariate Probability Distributions Examples

Joint and Marginal Distributions – I
Examples

We are given the following data on the number of people
attending AUEB this year.

Subject of Study (Y)
Sex (X) Economics (0) Finance (1) Systems (2)
Male (0) 40 10 30
Female (1) 30 20 70

1 What is the probability of selecting an individual that studies
Finance?

2 What is the expected value of Sex?
3 What is the probability of choosing an individual that studies

economics, given that it is a female?
4 Are Sex and Subject statistically independent?
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Multivariate Probability Distributions Examples

Joint and Marginal Distributions – II
Examples

First step: Totals

Subject of Study (Y)
Sex (X) Economics (0) Finance (1) Systems (2) Total
Male (0) 40 10 30 80
Female (1) 30 20 70 120
Total 70 30 100 200

Second step: Probabilities

Subject of Study (Y)
Sex (X) Economics (0) Finance (1) Systems (2) Total
Male (0) 40/200 = 0.20 0.05 0.15 0.40
Female (1) 30/200 = 0.15 0.10 0.35 0.60
Total 70/200 = 0.35 0.15 0.50 1

P. Konstantinou (AUEB) Statistics for Business – II August 28, 2023 42 / 65



Multivariate Probability Distributions Examples

Joint and Marginal Distributions – III
Examples

Answers:
1 Pr(Y = 1) = 0.15.
2 E(X) = 0 · 0.4 + 1 · 0.6 = 0.6
3 Pr(Y = 0|X = 1) = 0.15/0.6 = 0.25
4 Pr(X = 0 ∩ Y = 0) = 0.20 ̸= Pr(X = 0) · Pr(Y = 0) =

0.4 · 0.35 = 0.14. So Sex and Subject are not statistically
independent.

▶ The conditional mean of Y given X = 0 is

E(Y|X = 0)

= Pr(Y = 0|X = 0) · 0+Pr(Y = 1|X = 0) · 1+Pr(Y = 2|X = 0) · 2

=
0.20
0.4

· 0 +
0.05
0.4

· 1 +
0.15
0.4

· 2 = 0.875
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Multivariate Probability Distributions Examples

Joint and Marginal Distributions – IV
Examples

▶ The conditional mean of Y given X = 1 is

E(Y|X = 1)

= Pr(Y = 0|X = 1) · 0+Pr(Y = 1|X = 1) · 1+Pr(Y = 2|X = 1) · 2

=
0.15
0.6

· 0 +
0.10
0.6

· 1 +
0.35
0.6

· 2 = 0.80
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Covariance, Correlation and Independence – I

Definition (Covariance)
If X and Y are random variables with means µx and µy, respectively,
the covariance of X and Y is

σXY ≡ Cov(X,Y) = E[(X − µx)(Y − µy)].

This can be found as

Cov(X,Y) =
∑

all x

∑

all y

(x − µx)(y − µy) · P(x, y),

and an equivalent expression is

Cov(X,Y) = E[XY]− µxµy =
∑

all x

∑

all y

xy · P(x, y)− µxµy.
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Covariance, Correlation and Independence – II

The covariance measures the strength of the linear relationship
between two variables.

If two random variables are statistically independent, the
covariance between them is 0. The converse is not necessarily
true.
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Covariance, Correlation and Independence – III
Definition (Correlation)
The correlation between X and Y is

ρ ≡ Corr(X,Y) =
Cov(X,Y)
σX · σY

=
σXY

σX · σY

ρ = 0 ⇒ no linear relationship between X and Y .
ρ > 0 ⇒ positive linear relationship between X and Y .
▶ when X is high (low) then Y is likely to be high (low)
▶ ρ = +1 ⇒ perfect positive linear dependency

ρ < 0 ⇒ negative linear relationship between X and Y .
▶ when X is high (low) then Y is likely to be low (high)
▶ ρ = −1 ⇒ perfect negative linear dependency
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Covariance, Correlation and Independence – IV
Scatter Plots of Data with Various 

Correlation Coefficients 

Y 
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Moments of Linear Combinations – I

Let X and Y be two random variables with means µX and µY , and
variances σ2

X and σ2
Y and covariance Cov(X,Y). Take a linear

combination of X and Y :

W = aX + bY.

Then,
E(W) = E(aX + bY) = aµX + bµY , and

Var(W) = a2σ2
X + b2σ2

Y + 2abCov(X,Y),

or using the correlation

Var(W) = a2σ2
X + b2σ2

Y + 2abCorr(X,Y)σXσY
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Moments of Linear Combinations – II

Example
If a = 1 and b = −1, W = X − Y and

E(W) = E(X − Y) = µX − µY

Var(W) = σ2
X + σ2

Y − 2Cov(X,Y)
= σ2

X + σ2
Y − 2Corr(X,Y)σXσY
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Moments of Linear Combinations
Example 1: Normally Distributed Random Variables

Two tasks must be performed by the same worker.
▶ X = minutes to complete task 1; µX = 20, σX = 5;
▶ Y = minutes to complete task 2; µY = 30, σY = 8;
▶ X and Y are normally distributed and independent...

⋆ What is the mean and standard deviation of the time to complete
both tasks?
W = X + Y (total time to complete both tasks). So

E(W) = µX + µY = 20 + 30 = 50
Var(W) = σ2

X + σ2
Y + 2Cov(X,Y)︸ ︷︷ ︸

=0, independence

= 52 + 82 = 89

⇒ σW =
√

89 ≃ 9.43
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Linear Combinations Random Variables – I
Example 2: Portfolio Value

The return per $1, 000 for two types of investments is given below

State of Economy Investment Funds
Prob Economic condition Passive X Aggressive Y
0.2 Recession −$25 −$200
0.5 Stable Economy +$50 +$60
0.3 Growing Economy +$100 +$350

Suppose 40% of the portfolio (P) is in Investment X and 60% is in
Investment Y . Calculate the portfolio return and risk.
▶ Mean return for each fund investment

E(X) = µX = (−25)(.2) + (50)(.5) + (100)(.3) = 50

E(Y) = µY = (−200)(.2) + (60)(.5) + (350)(.3) = 95
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Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Linear Combinations Random Variables – II
Example 2: Portfolio Value

▶ Standard deviations for each fund investment

σX =
√

(−25 − 50)2(.2) + (50 − 50)2(.5) + (100 − 50)2(.3)

= 43.30

σY =
√

(−200 − 95)2(.2) + (60 − 95)2(.5) + (350 − 95)2(.3)

= 193.71

▶ The covariance between the two fund investments is

Cov(X,Y) = (−25 − 50)(−200 − 95)(.2)

+(50 − 50)(60 − 95)(.5)

+(100 − 50)(350 − 95)(.3)

= 8250

P. Konstantinou (AUEB) Statistics for Business – II August 28, 2023 53 / 65

Multivariate Probability Distributions Moments of Joint Distributions and Combinations of RV

Linear Combinations Random Variables – III
Example 2: Portfolio Value

▶ So

E(P) = 0.4(50) + 0.6(95) = 77

σP =
√

(.4)2(43.30)2 + (.6)2(193.71)2 + 2(.4)(.6)8250

= 133.04
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Multivariate Probability Distributions Special Continuous Distributions

The t-Distribution – I
Let two independent random variables Z ∼ N(0, 1) and
Y ∼ χ2(n).1 If Z and Y are independent, then

W =
Z√
Y/n

∼ t(n)

▶ The PDF of t has only one parameter, n, is always positive and
symmetric around zero.

▶ Moreover it holds that

E(W) = 0 for n > 1; Var(W) =
n

n − 2
for n > 2

and for n large enough: W ∼
n→∞

N(0, 1)

1Let Z1,Z2, ...,Zn be independent r.v.s and Zi ∼ N(0, 1). Then
Υ =

∑n
i=1 Z2

i ∼ χ2(n).
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Multivariate Probability Distributions Special Continuous Distributions

The t-Distribution – II
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Appendix Normal Approximation

Annex: Normal Approximation of Binomial – I
Recall the binomial distribution, where we have n independent
trials and the probability of success on any given trial = p.
Let X be a binomial random variable (Xi = 1 if the ith trial is
“success”):

E(X) = µ = np
Var(X) = σ2 = np(1 − p)

▶ The shape of the binomial distribution is approximately normal if n
is large
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Appendix Normal Approximation

Annex: Normal Approximation of Binomial – II

▶ The normal is a good approximation to the binomial when
np(1 − p) > 5 (check that np > 5 and n(1 − p) > 5 to be on the
safe side). That is

Z =
X − E(X)√

Var(X)
=

X − np√
np(1 − p)

.

▶ For instance, let X be the number of successes from n independent
trials, each with probability of success p. Then

Pr(a < X < b) = Pr

(
a − np√
np(1 − p)

< Z <
b − np√
np(1 − p)

)
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Appendix Normal Approximation

Annex: Normal Approximation of Binomial – III
Example: 40% of all voters support ballot proposition A. What is
the probability that between 76 and 80 voters indicate support in a
sample of n = 200?

E(X) = µ = np = 200(0.40) = 80
Var(X) = np(1 − p) = 200(0.40)(1 − 0.40) = 48

So

Pr(76 < X < 80) = Pr

(
76 − 80√

48
< Z <

80 − 80√
48

)

= Pr(−0.58 < Z < 0)
= Φ(0)− Φ(−0.58)

= 0.500 − 0.2810 = 0.219
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Appendix Uniform, Chi-Squared and F Distributions

Annex: Uniform Distribution – I
The uniform distribution is a probability distribution that has
equal probabilities for all possible outcomes of the random
variable (where xmin = a and xmax = b)

f (x) =





1
b − a

if a ≤ x ≤ b

0 otherwise
; F(x)





0 x < a
x − a
b − a

if a ≤ x ≤ b

1 x ≥ b

.

The Uniform Distribution 
• The uniform distribution is a probability distribution 

that has equal probabilities for all possible outcomes 
of the random variable 

 

xmax 
b 

x 

f(x) 
Total area under the uniform 
probability density function is 1.0 

xmin 
a 
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Appendix Uniform, Chi-Squared and F Distributions

Annex: Uniform Distribution – II
Moments uniform distribution

µ =
a + b

2
; σ2 =

(b − a)2

12

Example: Uniform probability distribution over the range
2 ≤ x ≤ 6. Then

f (x) =
1

6 − 2
= 0.25 for 2 ≤ x ≤ 6

and

E(X) = µ =
a + b

2
=

2 + 6
2

= 4

Var(X) = σ2 =
(b − a)2

12
=

(6 − 2)2

12
= 1.333
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Appendix Uniform, Chi-Squared and F Distributions

Annex: The χ2 Distribution – I

Let Z1,Z2, ...,Zn be independent random variables and
Zi ∼ N(0, 1). Then

X =
n∑

i=1

Z2
i ∼ χ2(n)

▶ The PDF of χ2 has only one parameter, n, is always positive and
right asymmetric.

▶ Moreover it holds that

E(X) = n; and

Var(X) = 2n

for n ≥ 2.
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Appendix Uniform, Chi-Squared and F Distributions

Annex: The χ2 Distribution – II
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Appendix Uniform, Chi-Squared and F Distributions

Annex: The F Distribution – I

Let X and Y be two independent random variables, that are
distributed as χ2 : X ∼ χ2(n) and Y ∼ χ2(m). Then

W =
X/n
Y/m

∼ F(n,m)

▶ The PDF of F has two parameters, n and m (the degrees of
freedom of the numerator and the denominator); it is positive and
right asymmetric.

▶ Moreover it holds that if W ∼ F(n,m)

E(W) =
m

1 − m
; for m > 2.
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Appendix Uniform, Chi-Squared and F Distributions

Annex: The F Distribution – II
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Lecture Outline

Simple random sampling

Distribution of the sample average
Large sample approximation to the distribution of the sample mean
▶ Law of Large Numbers
▶ Central Limit Theorem

Estimation of the population mean
▶ Unbiasedness
▶ Consistency
▶ Efficiency

Hypothesis test concerning the population mean
Confidence intervals for the population mean
▶ Using the t-statistic when n is small

Comparing means from different populations
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Sampling and Sampling Distributions Sampling: Intro

Sampling

A population is a collection of all the elements of interest, while a
sample is a subset of the population.

The reason we select a sample is to collect data to answer a research
question about a population.

The sample results provide only estimates of the values of the
population characteristics. With proper sampling methods, the sample
results can provide “good” estimates of the population characteristics.

A random sample from an infinite population is a sample selected such
that the following conditions are satisfied:
▶ Each element selected comes from the population of interest.
▶ Each element is selected independently.
⋆ If the population is finite, then we sample with replacement...
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Sampling and Sampling Distributions Simple Random Sampling

Simple Random Sampling – I

Simple random sampling means that n objects are drawn randomly from
a population and each object is equally likely to be drawn

Let Y1,Y2, ...,Yn denote the 1st to the n th randomly drawn object. Under
simple random sampling
▶ The marginal probability distribution of Yi is the same for all i = 1, 2, ..., n

and equals the population distribution of Y .
⋆ because Y1,Y2, ...,Yn are drawn randomly from the same population.
▶ Y1 is distributed independently from Y2, ...,Yn. knowing the value of Yi

does not provide information on Yj for i ̸= j

When Y1,Y2, ...,Yn are drawn from the same population and are
independently distributed, they are said to be I.I.D. random variables
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Sampling and Sampling Distributions Simple Random Sampling

Simple Random Sampling – II

Example
Let G be the gender of an individual (G = 1 if female, G = 0 if male)

G is a Bernoulli r.v. with E(G) = µG = Pr(G = 1) = 0.5

Suppose we take the population register and randomly draw a sample of
size n
▶ The probability distribution of Gi is a Bernoulli with mean 0.5
▶ G1 is distributed independently from G2, ...,Gn

Suppose we draw a random sample of individuals entering the building
of the accounting department
▶ This is not a sample obtained by simple random sampling and

G1,G2,...,Gn are not i.i.d
▶ Men are more likely to enter the building of the accounting department!
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – I

The sample average Ȳ of a randomly drawn sample is a random variable
with a probability distribution called the sampling distribution

Ȳ =
1
n
(Y1 + Y2 + · · ·+ Yn) =

1
n

n∑

i=1

Yi

▶ The individuals in the sample are drawn at random.
▶ Thus the values of (Y1,Y2, · · · ,Yn) are random
▶ Thus functions of (Y1,Y2, · · · ,Yn), such as Ȳ , are random: had a different

sample been drawn, they would have taken on a different value
▶ The distribution of over different possible samples of size n is called the

sampling distribution of Ȳ .
▶ The mean and variance of are the mean and variance of its sampling

distribution, E(Ȳ) and Var(Ȳ).
▶ The concept of the sampling distribution underpins all of

statistics/econometrics.
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – II

Ȳ =
1
n
(Y1 + Y2 + · · ·+ Yn) =

1
n

n∑

i=1

Yi

Suppose that Y1,Y2, ...,Yn are I.I.D. and the mean & variance of the
population distribution of Y are respectively µY and σ2

Y
▶ The mean of (the sampling distribution of) Ȳ is

E(Ȳ) = E

(
1
n

n∑

i=1

Yi

)
=

1
n

n∑

i=1

E(Yi) =
1
n

nE(Y) = µY

▶ The variance of (the sampling distribution of) Ȳ is

Var(Ȳ) = Var

(
1
n

n∑

i=1

Yi

)
=

1
n2

n∑

i=1

Var(Yi) + 2
1
n2

n∑

i=1

n∑

j=1,j̸=i

Cov(Yi,Yj)

=
1
n2 nVar(Y) + 0 =

1
n

Var(Y) =
σ2

Y

n
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – III
Example

Let G be the gender of an individual (G = 1 if female, G = 0 if male)

The mean of the population distribution of G is

E(G) = µG = Pr(G = 1) = p = 0.5

The variance of the population distribution of G is

Var(G) = σ2
G = p(1 − p) = 0.5(1 − 0.5) = 0.25

The mean and variance of the average gender (proportion of women) Ḡ
in a random sample with n = 10 are

E(Ḡ) = µG = 0.5

Var(Ḡ) =
1
n
σ2

G =
1
10

0.25 = 0.025
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Finite-Sample Distribution of the Sample Average

The finite sample distribution is the sampling distribution that exactly
describes the distribution of Ȳ for any sample size n.

In general the exact sampling distribution of Ȳ is complicated and
depends on the population distribution of Y .

A special case is when Y1,Y2, ...,Yn are IID draws from the N(µY , σ
2
Y),

because in this case

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Average Gender Ḡ

Suppose G takes on 0 or 1 (a Bernoulli random variable) with the
probability distribution

Pr(G = 0) = p = 0.5, Pr(G = 1) = 1 − p = 0.5

As we discussed above:

E(G) = µG = Pr(G = 1) = p = 0.5

Var(G) = σ2
G = p(1 − p) = 0.5(1 − 0.5) = 0.25

The sampling distribution of Ḡ depends on n.

Consider n = 2. The sampling distribution of Ḡ is
▶ Pr(Ḡ = 0) = 0.52 = 0.25
▶ Pr(Ḡ = 1/2) = 2 × 0.5 × (1 − 0.5) = 0.5
▶ Pr(Ḡ = 1) = (1 − 0.5)2 = 0.25
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Finite-Sample Distribution of the Average Gender Ḡ
Suppose we draw 999 samples of n = 2:

Sample 1 Sample 1 Sample 3 · · · Sample 999
G1 G2 Ḡ G1 G2 Ḡ G1 G2 Ḡ G1 G2 Ḡ
1 0 0.5 1 1 1 0 1 0.5 0 0 0

8

The finite sample distribution of average gender G

Suppose we draw 999 samples of n = 2:

Sample 1 Sample 2 Sample 3 ..... Sample 999

G1 G2 G G1 G2 G G1 G2 G G1 G2 G
1 0 0.5 1 1 1 0 1 0.5 0 0 0
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Sampling and Sampling Distributions Asymptotic Approximations

The Asymptotic Distribution of the Sample Average Ȳ

Given that the exact sampling distribution of Ȳ is complicated and given
that we generally use large samples in statistics/econometrics we will
often use an approximation of the sample distribution that relies on the
sample being large

The asymptotic distribution or large-sample distribution is the
approximate sampling distribution of Ȳ if the sample size becomes very
large: n → ∞.

We will use two concepts to approximate the large-sample distribution of
the sample average
▶ The law of large numbers.
▶ The central limit theorem.
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Sampling and Sampling Distributions Asymptotic Approximations

The Law of Large Numbers (LLN)
Definition (Law of Large Numbers)
Suppose that

1 Yi, i = 1, ..., n are independently and identically distributed with
E(Yi) = µY ; and

2 large outliers are unlikely i.e. Var(Yi) = σ2
Y < +∞.

Then Ȳ will be near µY with very high probability when n is very large
(n → ∞)

Ȳ
p→ µY .

We also say that the sequence of random variables {Yn} converges in
probability to the µY , if for every ε > 0

lim
n→∞

Pr(|Ȳn − µY | > ε) = 0.

We also denote this by plim(Yn) = µY
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Sampling and Sampling Distributions Asymptotic Approximations

The Law of Large Numbers (LLN)
Example: Gender G ∼ Bernoulli(0.5, 0.25)
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Law of Large Numbers
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)
Definition (Central Limit Theorem)
Suppose that

1 Yi, i = 1, ..., n are independently and identically distributed with
E(Yi) = µY ; and

2 large outliers are unlikely i.e. Var(Yi) = σ2
Y with 0 < σ2

Y < +∞.

Then the distribution of the sample average Ȳ will be approximately normal
as n becomes very large (n → ∞)

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
.

The distribution of the the standardized sample average is approximately
standard normal for n → ∞

Ȳ − µY

σY/
√

n
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)
Example: Gender G ∼ Bernoulli(0.5, 0.25)

13

The Central Limit theorem
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)

How good is the large-sample approximation?

⋆ If Yi ∼ N(µY , σ
2
Y) the approximation is perfect.

⋆ If Yi is not normally distributed the quality of the approximation depends
on how close n is to infinity (how large n is)

⋆ For n ≥ 100 the normal approximation to the distribution of Ȳ is
typically very good for a wide variety of population distributions.
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Estimation Introduction

Estimators and Estimates
Definition
An estimator is a function of a sample of data to be drawn randomly from a
population.

An estimator is a random variable because of randomness in drawing the
sample. Typically used estimators

Sample Average:Ȳ =
1
n

n∑

i=1

Yi, Sample variance: S2
Y =

1
n − 1

n∑

i=1

(Yi−Ȳ)2.

Using a particular sample y1, y2, ..., yn we obtain

ȳ =
1
n

n∑

i=1

yi and s2
y =

1
n − 1

n∑

i=1

(yi − ȳ)2

which are point estimates. These are the numerical value of an estimator
when it is actually computed using a specific sample.
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Estimation Estimator Properties

Estimation of the Population Mean – I

Suppose we want to know the mean value of Y (µY ) in a population, for
example
▶ The mean wage of college graduates.
▶ The mean level of education in Greece.
▶ The mean probability of passing the statistics exam.

Suppose we draw a random sample of size n with Y1,Y2, ...,Yn being IID

Possible estimators of µY are:
▶ The sample average: Ȳ = 1

n

∑n
i=1 Yi

▶ The first observation: Y1
▶ The weighted average: Ỹ = 1

n

( 1
2 Y1 +

3
2 Y2 + ...+ 1

2 Yn−1 +
3
2 Yn
)
.

To determine which of the estimators, Ȳ , Y1 or Ỹ is the best estimator of
µY we consider 3 properties.

Let µ̂Y be an estimator of the population mean µY
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Estimation Estimator Properties

Estimation of the Population Mean – II

1 Unbiasedness: The mean of the sampling distribution of µ̂Y equals µY

E(µ̂Y) = µY .

2 Consistency: The probability that µ̂Y is within a very small interval of µY

approaches 1 if n → ∞

µ̂Y
p→ µY or Pr(|µ̂Y − µY | < ε) = 1

3 Efficiency: If the variance of the sampling distribution of µ̂Y is smaller
than that of some other estimator µ̃Y , µ̂Y is more efficient

Var(µ̂Y) ≤ Var(µ̃Y)
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Estimation Estimator Properties

Estimating Mean Wages – I

Suppose we are interested in the mean wages (pre tax) µW of individuals
with a Ph.D. in economics/finance in Europe (true mean µw = 60K). We
draw the following sample (n = 10) by simple random sampling

i 1 2 3 4 5
Wi 47281.92 70781.94 55174.46 49096.05 67424.82

i 6 7 8 9 10
Wi 39252.85 78815.33 46750.78 46587.89 25015.71

The 3 estimators give the following estimates:
▶ W̄ = 1

10

∑10
i=1 Wi = 52618.18

▶ W1 = 47281.92
▶ W̃ = 1

10

( 1
2 W1 +

3
2 W2 + ...+ 1

2 W9 +
3
2 W10

)
= 49398.82

Unbiasedness: All 3 proposed estimators are unbiased
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Estimation Estimator Properties

Estimating Mean Wages – II
Consistency:
▶ By the law of large numbers W̄

p→ µW which implies that the probability
that W̄ is within a very small interval of µW approaches 1 if n → ∞

21

Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

By the law of large numbers
W

p−→ µW

which implies that the probability that W is within a very small interval of µW

approaches 1 if n −→∞
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Estimation Estimator Properties

Estimating Mean Wages – III
▶ W̃ = 1

n

( 1
2 W1 +

3
2 W2 + ...+ 1

2 Wn−1 +
3
2 Wn

)
can also be shown to be

consistent
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Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

W̃ = 1
n

( 1
2 W1 + 3

2 W2 + ...+ 1
2 Wn−1 + 3

2 Wn
)

is also consistent
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However W1 is not a consistent estimator of µW :
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▶ However W1 is not a consistent estimator of µW .

22

Consistency
Example: mean wages of individuals with a master degree with µw = 60 000
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( 1
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0

.01

.02

.03

.04

pr
ob

ab
ili

ty

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00
11

00
00

12
00

00

first observation W1

999 samples of n=10
First observation W1 as estimator of population mean

.

0

.01

.02

.03

.04

pr
ob

ab
ili

ty

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0
70

00
0

80
00

0
90

00
0

10
00

00
11

00
00

12
00

00

first observation W1

999 samples of n=100
First observation W1 as estimator of population mean

P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 23 / 61

Estimation Estimator Properties

Estimating Mean Wages – IV

Efficiency: We have that
▶ Var(W̄) = 1

nσ
2
W

▶ Var(W1) = σ2
W

▶ Var(W̃) = 1.25 1
nσ

2
W

▶ So for any n ≥ 2, W̄ is more efficient than W1 and W̃.

In fact Ȳ is the Best Linear Unbiased Estimator (BLUE): it is the most
efficient estimator of µY among all unbiased estimators that are weighted
averages of Y1,Y2, ...,Yn

⋆ Let µ̂Y = 1
n

∑n
i=1 αiYi be an unbiased estimator of µY with αi

nonrandom constants. Then Ȳ is more efficient than µ̂Y

Var(Ȳ) ≤ Var(µ̂Y)
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests
Consider the following questions:

Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?
Is the mean level of education in Greece equal to 12 years?
Is the mean probability of passing the stats exam equal to 1?

These questions involve the population mean taking on a specific value µY,0.
Answering these questions implies using data to compare a null hypothesis (a
tentative assumption about the population mean parameter)

H0 : E(Y) = µY,0

to an alternative hypothesis (the opposite of what is stated in the H0)

H1 : E(Y) ̸= µY,0

Alternative Hypothesis as a Research Hypothesis
▶ Example: A new sales force bonus plan is developed in an attempt to

increase sales.
▶ Alternative Hypothesis: The new bonus plan increase sales.
▶ Null Hypothesis: The new bonus plan does not increase sales.
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests: Terminology

The hypothesis testing problem (for the mean): make a provisional
decision, based on the evidence at hand, whether a null hypothesis is
true, or instead that some alternative hypothesis is true. That is, test
▶ H0 : E(Y) ≤ µY,0 vs. H1 : E(Y) > µY,0 (1-sided, >)
▶ H0 : E(Y) ≥ µY,0 vs. H1 : E(Y) < µY,0 (1-sided, <)
▶ H0 : E(Y) = µY,0 vs. H1 : E(Y) ̸= µY,0 (2-sided)

p-value = probability of drawing a statistic (e.g. Ȳ) at least as adverse to
the null as the value actually computed with your data, assuming that the
null hypothesis is true.

The significance level of a test (α) is a pre-specified probability of
incorrectly rejecting the null, when the null is true. Typical values are
0.01 (1%), 0.05 (5%), or 0.10 (10%).
▶ It is selected by the researcher at the beginning, and determines the critical

value(s) of the test.
▶ If the test-statistic falls outside the non-rejection region, we reject H0.
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests
The Testing Process and Rejections

Level of Significance and the Rejection Region

H0: E(Y) ≥ μΥ,0
H1: E(Y) < μΥ,0

0

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

a

a

Represents
critical value

Left-tail test

Level of significance = α

0Right-tail test

Two-tail test
Rejection 
region is 
shaded

0

a/2a/2H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0
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Hypothesis Tests for the Population Mean p-Value Approach to Hypothesis Testing

Hypothesis Testing using p-values

The p-value is the probability, computed using the test statistic, that
measures the support (or lack of support) provided by the sample for the
null hypothesis
▶ If the p-value is less than or equal to the level of significance α, the value

of the test statistic is in the rejection region.
▶ Reject H0 if the p-value < α.
▶ See also Annex

Rules of thumb
▶ If p-value is less than .01, there is overwhelming evidence to conclude H0

is false.
▶ If p-value is between .01 and .05, there is strong evidence to conclude H0

is false.
▶ If p-value is between .05 and .10, there is weak evidence to conclude H0 is

false.
▶ If p-value is greater than .10, there is insufficient evidence to conclude H0

is false.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2
Y known – I

Decision Rules

The test statistic employed is obtained by converting the sample result
(ȳ) to a z-value

z =
ȳ − µY,0

σY/
√

n

H0 : E(Y) ≥ µY,0
H1 : E(Y) < µY,0

H0 : E(Y) ≤ µY,0
H1 : E(Y) > µY,0

H0 : E(Y) = µY,0
H1 : E(Y) ̸= µY,0

Lower-tail Upper-tail Two-tailed
Reject H0 if z < zα Reject H0 if z > zα Reject H0 if z < −zα/2

or if z > zα/2
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2
Y known – II

Decision RulesDecision Rules: (Known Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

Two-tail test:

H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0

α α/2 α/2α

-zα -zα/2zα zα/2
Reject H0 if z <–zα Reject H0 if z>zα Reject H0 if z <– zα/2

or z>zα/2

Hypothesis Tests for E(Y) 𝑧 =
#𝑌 − 𝜇!,#
𝜎$%

=
#𝑌 − 𝜇!,#
𝜎&/ 𝑛
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – I
Examples

Example 1. A phone industry manager thinks that customer monthly
cell phone bill have increased, and now average over $52 per month. The
company wishes to test this claim. Assume σ = 10$ is known and let
α = 0.10. Suppose a sample of 64 persons is taken, and it is found that
the average bill $53.1.
▶ Form the hypothesis to be tested

H0 : E(Y) ≤ 52 the mean is not over $52 per month
H1 : E(Y) > 52 the mean is over $52 per month

▶ For α = 0.10, z0.10 = 1.28, so we would reject H0 if z > 1.28.
▶ We have n = 64 and ȳ = 53.1, so the test statistic is

z =
ȳ − µY,0

σY/
√

n
=

53.1 − 52
10/

√
64

= 0.88 < z0.10 = 1.28

Hence H0 cannot be rejected.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – II
Examples

Example 2. We would like to test the claim that the true mean # of TV
sets in EU homes is equal to 3 (assuming σY = 0.8 known). For this
purpose a sample of 100 homes is selected, and the average number of
TV sets is 2.84. Test the above hypothesis using α = 0.05.
▶ Form the hypothesis to be tested

H0 : E(Y) = 3 the mean # is 3 TV sets per home
H1 : E(Y) ̸= 3 the mean is not 3 TV sets per home

▶ For α = 0.05, zα/2 = z0.025 = 1.96 and −z0.025 = −1.96, so we would
reject H0 if |z| > 1.96.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – III
Examples

▶ We have n = 100 and ȳ = 2.84, so the test statistic is

z =
ȳ − µY,0

σY/
√

n
=

2.84 − 3
0.8/

√
100

=
−0.16
0.08

= −2 < −z0.025 = −1.96

or |z| = 2 > 1.96, Hence H0 is rejected. We conclude that there is
sufficient evidence that the mean number of TVs in EU homes is not equal
to 3.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Test for the Mean with σ2
Y unknown but n → ∞

Decision Rules
Since S2

Y
p→ σ2

Y , compute the standard error of Ȳ , SE(Ȳ) = sY/
√

n and
construct a t-ratio.

Decision Rules: (Unknown Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

Two-tail test:

H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0

α α/2 α/2α

-zα -zα/2zα zα/2
Reject H0 if t < –zα Reject H0 if t > zα Reject H0 if t < – zα/2

or t > zα/2

Hypothesis Tests for E(Y) 𝑡 =
#𝑌 − 𝜇!,#
SE(#𝑌)

=
#𝑌 − 𝜇!,#
𝑠&/ 𝑛
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Test for the Mean with σ2
Y unknown but n → ∞

Example

Suppose we would like to test

H0 : E(W) = 60000, H1 : E(W) ̸= 60000,

using a sample of 250 individuals with a Ph.D. degree at the 5%
significance level.
We perform the following steps:

1 W̄ = 1
n

∑n
i=1 Wi =

1
250

∑250
i=1 Wi = 61977.12.

2 SE(W̄) = sW√
n = sW√

250
= 1334.19.

3 Compute tact =
W̄−µW,0

SE(W̄)
= 61977.12−60000

1334.19 = 1.4819.

4 Since we use a 5% significance level, we do not reject H0 because
|tact| = 1.4819 < z0.025 = 1.96.

Suppose we are interested in the alternative H1 : E(W) > 60000. The
t-stat is exactly the same: tact = 1.4819. but now needs to be compared
with z0.05 = 1.645.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2 unknown (n small)
Decision Rules

Consider a random sample of n observations from a population that is
normally distributed, AND variance σ2

Y is unknown: Yi ∼ N(µY , σ
2
Y)

Converting the sample average (ȳ) to a t-value...
Decision Rules: (Unknown Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μ0
H1: E(Y) > μ0

Two-tail test:

H0: E(Y) = μ0
H1: E(Y) ≠ μ0

α α/2 α/2α

-tn-1,α - tn-1, α/2tn-1,α tn-1, α/2
Reject H0 if t < –tn-1,α Reject H0 if t > tn-1,α Reject H0 if t < – tn-1,a/2

or t > tn-1,a/2

Hypothesis Tests for E(Y) 𝑡 =
#𝑌 − 𝜇!,#
SE(#𝑌)

=
#𝑌 − 𝜇!,#
𝑠&/ 𝑛

~𝑡'()
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2 unknown (n small)
Example

The average cost of a hotel room in New York is said to be $168 per
night. A random sample of 25 hotels resulted in ȳ = $172.50 and
sy = $15.40. Perform a test at the α = 0.05 level (assuming the
population distribution is normal).
▶ Form the hypothesis to be tested

H0 : E(Y) = 168 the mean cost is $168
H1 : E(Y) ̸= 168 the mean cost is not $168

▶ For α = 0.05, with n = 25, tn−1,α/2 = t24,0.025 = 2.0639 and
−t24,0.025 = 2.0639, so we would reject H0 if |t| > 2.0639.

▶ We have ȳ = 172.50 and sy = 15.40, so the test statistic is

t =
ȳ − µY,0

sy/
√

n
=

172.50 − 168
15.40/

√
25

= 1.46 < t24,0.025 = 2.0639

or |t| = 1.46 < 2.0639. Hence H0 cannot be rejected. We conclude that
there is not sufficient evidence that the true mean cost is different than
$168.
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – I

Suppose we would do a two-sided hypothesis test for many different
values of µ0,Y . On the basis of this we can construct a set of values
which are not rejected at 5% (α%) significance level.

If we were able to test all possible values of µ0,Y we could construct a
95% ((1 − α)%) confidence interval

Definition
A 95% ((1 − α)%) confidence interval is an interval that contains the true
value of µY in 95% ((1 − α)%) of all possible random samples.

▶ A relative frequency interpretation: From repeated samples, 95% of all the
confidence intervals that can be constructed will contain the unknown true
population mean
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – II

The general formula for all confidence intervals is

Point Estimate ± (Reliability Factor)(Standard Error)︸ ︷︷ ︸
Margin of Error

µ̂± c · SE(µ̂)

and using the sample average estimator

Ȳ ± c · SE(Ȳ)

Instead of doing infinitely many hypothesis tests we can compute the
95% ((1 − α)%) confidence interval as

Ȳ − zα/2SE(Ȳ) < µ < Ȳ + zα/2SE(Ȳ) or Ȳ ± zα/2SE(Ȳ)
︸ ︷︷ ︸

Margin of Error

P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 39 / 61

Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – III

When the sample size n is large (or when the population is normal and
σ2

Y is known):
▶ A 90% confidence interval for µY : [Ȳ ± 1.645 · SE(Ȳ)]
▶ A 95% confidence interval for µY : [Ȳ ± 1.96 · SE(Ȳ)]
▶ A 99% confidence interval for µY : [Ȳ ± 2.58 · SE(Ȳ)]

▶ with SE(Ȳ) = σY/
√

n when variance is known or SE(Ȳ) = sY/
√

n when
unknown and is estimated.
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – IV
Example
A sample of 11 circuits from a large normal population has a mean resistance
of 2.20 ohms. We know from past testing that the population standard
deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of
the population.

ȳ ± zα/2
σY√

n
= 2.20 ± 1.96(0.35/

√
11) = 2.20 ± 0.2068

1.9932 < µY < 2.4068

▶ We are 95% confident that the true mean resistance is between 1.9932 and
2.4068 ohms

▶ Although the true mean may or may not be in this interval, 95% of intervals
formed in this manner will contain the true mean
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – V
Example
Using the sample of n = 250 individuals with a Ph.D. degree discussed above
(W̄ = 61977.12, sW = 21095.37,SE(Ȳ) = sW/

√
n = 21095.37/

√
250):

▶ A 90% C.I. for µW is: [61977.12 ± 1.64 · 1334.19] = [59349.39, 64604.85].

▶ A 95% C.I. for µW is: [61977.12 ± 1.96 · 1334.19] = [59774.38, 64179.86].

▶ A 99% C.I. for µW is: [61977.12 ± 2.58 · 1334.19] = [58513.94, 65440.30].
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – VI

When the sample size n is small AND the population from which we
draw data is normal:

Ȳ − tn−1,α/2
sY√

n
< µY < Ȳ + tn−1,α/2

sY√
n

or Ȳ ± tn−1,α/2
sY√

n︸ ︷︷ ︸
Margin of Error

▶ A 90% confidence interval for µY : [Ȳ ± tn−1,0.05 · SE(Ȳ)]
▶ A 95% confidence interval for µY : [Ȳ ± tn−1,0.025 · SE(Ȳ)]
▶ A 99% confidence interval for µY : [Ȳ ± tn−1,0.005 · SE(Ȳ)]

▶ with SE(Ȳ) = sY/
√

n
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – VII

Example
A random sample of n = 25 has x̄ = 50 and s = 8. Form a 95% confidence
interval for µ.

▶ d.f . = n − 1 = 24, so t24,α/2 = t24,0.025 = 2.0639

x̄ ± tn−1,α/2
s√
n

= 50 ± 2.0639(8/
√

25) = 50 ± 3.302

46.698 < µ < 53.302
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – I
Large Samples or Known Variances from Normal Populations

Suppose we would like to test whether the mean wages of men and
women with a Ph.D. degree differ by an amount d0:

H0 : µW,M − µW,F = d0 H0 : µW,M − µW,F ̸= d0

To test the null hypothesis against the two-sided alternative we follow the
4 steps as above with some adjustments

1 Estimate (µW,M − µW,F) by (W̄M − W̄M).

▶ Because a weighted average of 2 independent normal random variables is
itself normally distributed we have (using the CLT and the fact that
Cov(W̄M, W̄F) = 0)

W̄M − W̄F ∼ N

(
µW,M − µW,F,

σ2
W,M

nM
+

σ2
W,F

nF

)
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – II
Large Samples or Known Variances from Normal Populations

2 Estimate σW,M and σW,F to obtain SE(W̄M − W̄F):

SE(W̄M − W̄F) =

√
s2

W,M

nM
+

s2
W,F

nF

3 Compute the t-statistic

tact =
(W̄M − W̄M)− d0

SE(W̄M − W̄F)

4 Reject H0 at a 5% significance level if |tact| > 1.96 or if the
p-value< 0.05.
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – III
Large Samples or Known Variances from Normal Populations

Example
Suppose we have random samples of 500 men and 500 women with a Ph.D.
degree and we would like to test that the mean wages are equal:

H0 : µW,M − µW,M = 0 H1 : µW,M − µW,M ̸= 0

We obtained W̄M = 64159.45, W̄F = 53163.41, sW,M = 18957.26, and
sW,F = 20255.89. We have:

1 W̄M − W̄F = 64159.45 − 53163.41 = 10996.04.

2 SE(W̄M − W̄F) = 1240.709.

3 tact = (W̄M−W̄F)−0
SE(W̄M−W̄F)

= 10996.04
1240.709 = 8.86.

4 Since we use a 5% significance level, we reject H0 because
|tact| = 8.86 > 1.96

P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 47 / 61

Comparing Means from Different Populations Testing for Equal Means from Different Populations

Confidence Interval for the Difference in Population Means

The method for constructing a confidence interval for 1 population mean
can be easily extended to the difference between 2 population means.

A hypothesized value of the difference in means d0 will be rejected if
|t| > 1.96 and will be in the confidence set if |t| ≤ 1.96.

Thus the 95% confidence interval for µW,M − µW,F are the values of d0
within ±1.96 standard errors of (W̄M − W̄F).

So a 95% confidence interval for µW,M − µW,F is

(W̄M − W̄M)± 1.96 · SE(W̄M − W̄M)

10996.04 ± 1.96 · 1240.709

[8561.34, 13430.73]
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences
Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

t =
(X̄ − Ȳ)− d0

SE(X̄ − Ȳ)
=

(X̄ − Ȳ)− d0√
(s2

p/nX) + (s2
p/nY)

∼ tnX+nY−2;

where s2
p =

(nX − 1)s2
X + (nY − 1)s2

Y
nX + nY − 2

The C.I. is constructed as (X̄ − Ȳ)± tnX+nY−2,α/2 · SE(X̄ − Ȳ).

Recall µX = E(X), µY = E(Y)
H0 : µX − µY ≥ d0
H1 : µX − µY < d0

H0 : µX − µY ≤ d0
H1 : µX − µY > d0

H0 : µX − µY = d0
H1 : µX − µY ̸= d0

Lower-tail Upper-tail Two-tailed
Reject H0 if t < tα Reject H0 if t > tα Reject H0 if |t| > tα/2
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences – I
Example: Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

You are a financial analyst for a brokerage firm. Is there a difference in
dividend yield between stocks listed on the NYSE & NASDAQ? You
collect the following data:

NYSE NASDAQ
Number: 21 25

Sample mean: 3.27 2.53
Sample std. dev.: 1.30 1.16

Assuming both populations are approximately normal with equal
variances, is there a difference in average yield (α = 0.05)?
▶ The hypothesis of interest is

H0 : µNYSE − µNASDAQ = 0
H1 : µNYSE − µNASDAQ ̸= 0 or

H0 : µNYSE = µNASDAQ

H1 : µNYSE ̸= µNASDAQ
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences – II
Example: Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

▶ Note that df = nX + nY − 2 = 21 + 25 − 2 = 44, so the critical value for
the test is t44,0.025 = 2.0154

▶ The pooled variance is:

s2
p =

(nX − 1)s2
X + (nY − 1)s2

Y

nX + nY − 2
=

(21 − 1)1.302 + (25 − 1)1.162

(21 − 1) + (25 − 1)
= 1.5021

▶ The test statistic is

tact =
(x̄ − ȳ)− d0√

(s2
p/nX) + (s2

p/nY)
=

(3.27 − 2.53)− 0√
1.5021

( 1
21 + 1

25

) = 2.040.

Since |tact| > t44,0.025 = 2.0154, we reject H0 at α = 0.05. We conclude
that there is evidence of a difference...

The C.I. is constructed as (X̄ − Ȳ)± tnX+nY−2,α/2 · SE(X̄ − Ȳ)
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – I
Matched or Paired Samples

Suppose we obtain a sample of n observations from two populations
which are normally distributed and we have paired or matched samples –
repeated measures (before/after).
Define, the pair difference di = Xi − Yi. We have

d̄ =
1
n

∑n

i=1
di = X̄ − Ȳ; and Sd =

√
1

n − 1

∑n

i=1
(di − d̄)2

with E(d̄) = µd = E(X)− E(Y) and SE(d̄) =
√

S2
d

n = Sd/
√

n
If the sample size is large enough (n → ∞) then

d̄ − µd

Sd/
√

n
∼ N

(
0,

S2
d

n

)
.

If the sample size is relatively small, then

d̄ − µd

Sd/
√

n
∼ tn−1.
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – II
Matched or Paired Samples

Lower-tail test:

H0: E(X)–E(Y) ³ 0
H1: E(X)–E(Y) < 0

Upper-tail test:

H0: E(X)–E(Y) ≤ 0
H1: E(X)–E(Y) > 0

Two-tail test:

H0: E(X)–E(Y) = 0
H1: E(X)–E(Y) ≠ 0

α α/2 α/2α

-zα - zα/2zα zα/2
Reject H0 if t < – zα Reject H0 if t > zα Reject H0 if t < – za/2

or t > za/2

Matched or Paired Samples 𝑡 =
𝑑 − 𝑑!
SE(𝑑) =

𝑑 − 𝑑!
𝑠"/ 𝑛

(𝑛 large)
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – III
Matched or Paired Samples

Lower-tail test:

H0: E(X)–E(Y) ³ 0
H1: E(X)–E(Y) < 0

Upper-tail test:

H0: E(X)–E(Y) ≤ 0
H1: E(X)–E(Y) > 0

Two-tail test:

H0: E(X)–E(Y) = 0
H1: E(X)–E(Y) ≠ 0

α α/2 α/2α

-tn-1,α - tn-1, α/2tn-1,α tn-1, α/2
Reject H0 if t <–tn-1,α Reject H0 if t > tn-1,α Reject H0 if t < – tn-1,a/2

or t > tn-1,a/2

Matched or Paired Samples 𝑡 =
𝑑 − 𝑑!
SE(𝑑) =

𝑑 − 𝑑!
𝑠"/ 𝑛

~𝑡#$%
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – I
Matched or Paired Samples: Example

Assume you send your salespeople to a “customer service” training
workshop. Has the training made a difference in the number of
complaints? Test at the 5% significance level. You collect the following
data:

Salesperson C.B. T.F M.H. R.K. M.O.
Complaints, Before: 6 20 3 0 4
Complaints, After: 4 6 2 0 0

Difference, di -2 -14 -1 0 -4

d̄ =
1
5

∑5

i=1
di = −4.2; sd =

√
1

5 − 1

∑5

i=1
(di − d̄)2 = 5.67

▶ The hypothesis of interest is

H0 : µX − µY = 0
H1 : µX − µY ̸= 0
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – II
Matched or Paired Samples: Example

▶ With n = 4 and α = 0.05 the critical value is tn−1,α/2 = t4,0.025 = 2.776.
▶ We have

t =
d̄ − d0

sd/
√

n
=

−4.2 − 0
5.67/

√
4
= −1.66 > −t4,0.025 = −2.776,

or |t| < t4,0.025 = 2.776. Hence, we do not reject H0. There is not a
significant change in the number of complaints.
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Annex: Employing p-values

Annex: Hypothesis Tests – I
Employing the p-value

Suppose we have a sample of n observations (they are assumed IID) and
compute the sample average Ȳ. The sample average can differ from µY,0
for two reasons

1 The population mean µY is not equal to µY,0 (H0 is not true)
2 Due to random sampling Ȳ ̸= µY = µY,0 (H0 is true)

To quantify the second reason we define the p-value. The p-value is the
probability of drawing a sample with Ȳ at least as far from µY,0 as the
value actually observed, given that the null hypothesis is true.

p-value = Pr
H0

[
|Ȳ − µY,0| >

∣∣Ȳact − µY,0
∣∣] ,

where Ȳact is the value of Ȳ actually observed
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Annex: Employing p-values

Annex: Hypothesis Tests – II
Employing the p-value

To compute the p-value, you need the to know the sampling distribution
of Ȳ , which is complicated if n is small. With large n the CLT states that

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
,

which implies that if the null hypothesis is true:

Ȳ − µY,0√
σ2

Y
n

∼ N(0, 1)

Hence

p-value = Pr
H0



∣∣∣∣∣∣
Ȳ − µY,0√

σ2
Y

n

∣∣∣∣∣∣
>

∣∣∣∣∣∣
Ȳact − µY,0√

σ2
Y

n

∣∣∣∣∣∣


 = 2Φ


−

∣∣∣∣∣∣
Ȳact − µY,0√

σ2
Y

n

∣∣∣∣∣∣
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Annex: Employing p-values

Annex: Hypothesis Tests – III
Employing the p-value

 3.2   Hypothesis Tests Concerning the Population Mean  111

This large-sample normal approximation makes it possible to compute the p-value 

without needing to know the population distribution of Y, as long as the sample size 

is large. The details of the calculation, however, depend on whether s2
 Y is known.

Calculating the p-Value When sY Is Known
The calculation of the p-value when sY is known is summarized in Figure 3.1. If the 

sample size is large, then under the null hypothesis the sampling distribution of Y is 

N1mY,0, s
2
 Y2, where s2

 Y = s2
 Y  >  n. Thus, under the null hypothesis, the standardized 

version of Y, 1Y - mY,02  >  s
  Y, has a standard normal distribution. The p-value is the 

probability of obtaining a value of Y farther from mY,0 than Y act under the null 

hypothesis or, equivalently, it is the probability of obtaining 1Y - mY,02  >  s Y greater 

than 1Y act - mY,02  >sY in absolute value. This probability is the shaded area shown 

in Figure 3.1. Written mathematically, the shaded tail probability in Figure 3.1 (that 

is, the p-value) is

p@value = PrH0
a 2 Y - mY,0

s  Y

2 7 2 Y act - mY,0

s  Y

2 b = 2Φa- 2 Y act - mY,0

s  Y

2 b , (3.6)

where Φ is the standard normal cumulative distribution function. That is, the p-value  

is the area in the tails of a standard normal distribution outside { �Y act - mY,0 � >s  Y.

The formula for the p-value in Equation (3.6) depends on the variance of the 

population distribution, s2
 Y. In practice, this variance is typically unknown. [An 

exception is when Yi is binary, so that its distribution is Bernoulli, in which case the 

variance is determined by the null hypothesis; see Equation (2.7) and Exercise 3.2.] 

Because in general s2
 Y must be estimated before the p-value can be computed, we 

now turn to the problem of estimating s2
 Y.

FIGURE 3.1  Calculating a p-value

The p-value is the 
probability of drawing a 
value of Y  that differs from 
mY,0 by at least as much 
as Yact. In large samples,  
Y  is distributed N1mY,0, s2

Y2 
under the null hypothesis, 
so 1Y - mY,02  >  s

 Y 
is distributed N  10, 12. 
Thus the p-value is the 
shaded standard normal 
tail probability outside 
{  � 1Yact - mY,02 >  s  Y � .

_

zY act – mY,0
–

sY–
–

Y act – mY,0
–

sY–

0

The p-value is the shaded
area in the graph

N(0, 1)

For large n, p-value = the probability that a N(0, 1) random variable falls
outside

∣∣∣ Ȳact−µY,0
σȲ

∣∣∣, where σȲ = σY/
√

n
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Annex: Employing p-values

Annex: Hypothesis Tests – I
Computing the p-value when σ2

Y is unknown

In practice σ2
Y is usually unknown and must be estimated

The sample variance S2
Y is the estimator of σ2

Y = E
[
(Y − µY)

2
]
, defined

as

S2
Y =

1
n − 1

n∑

i=1

(Yi − Ȳ)2

▶ division by n − 1 because we ‘replace’ µY by Ȳ which uses up 1 degree of
freedom

▶ if Y1,Y2, ...,Yn are IID and E(Y4) < ∞, then S2
Y

p→ σ2
Y (Law of Large

Numbers)

The sample standard deviation SY =
√

S2
Y , is the estimator of σY .
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Annex: Employing p-values

Annex: Hypothesis Tests – II
Computing the p-value when σ2

Y is unknown

The standard error SE(Ȳ) is an estimator of σȲ

SE(Ȳ) =
SY√

n

Because S2
Y is a consistent estimator of σ2

Y we can (for large n) replace
√

σ2
Y

n
by SE(Ȳ) =

SY√
n

This implies that when σ2
Y is unknown and Y1,Y2, ...,Yn are IID the

p-value is computed as

p − value = 2Φ
(
−
∣∣∣∣
Ȳact − µY,0

SE(Ȳ)

∣∣∣∣
)
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Regression Analysis

Regression: Examples
Let y be a student’s college achievement, measured by his/her
GPA. This might be a function of several variables:
▶ x1 = rank in high school class
▶ x2 = high school’s overall rating
▶ x3 = high school GPA
▶ x4 = SAT scores
▶ We want to predict y using knowledge of x1, x2, x3 and x4.

Let y be the monthly sales revenue for a company. This might be
a function of several variables:
▶ x1 = advertising expenditure
▶ x2 = time of year
▶ x3 = state of economy
▶ x4 = size of inventory
▶ We want to predict y using knowledge of x1, x2, x3 and x4.
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Regression Analysis Simple Linear Regression and LS

Regression: A Two Variable Model – I

If we want to describe the relationship between y and x for the
whole population, there are two models we can choose
▶ Deterministic Model:

y︸︷︷︸
Dependent

= β0︸︷︷︸
Intercept

+ β1︸︷︷︸
Slope

x︸︷︷︸
Independent

.

▶ Probabilistic Model:

y = Deterministic Model + Random Error

y = β0 + β1x + ε.
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Regression Analysis Simple Linear Regression and LS

Regression: A Two Variable Model – II
▶ Since the bivariate measurements that we observe do not generally

fall exactly on a straight line, we choose to use a probabilistic
model.

  

Population  
regression  
function 

For units with 𝑥𝑥 = 𝑥𝑥2, the 
average value of 𝑦𝑦 is 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥2 
 

The Simple  
Regression Model 

Points deviate from the population regression line (line of means)
by an amount ε, where ε ∼ N(0, σ2).
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Regression Analysis Simple Linear Regression and LS

Regression: A Two Variable Model – III

▶ The population of measurements is generated as y deviates from
the population line by ε.

Simple Linear Regression Model 

Random Error 
for this Xi value 

Y 

X 

Observed Value 
of Y for Xi 

Predicted Value 
of Y for Xi  

0 1i i iY Xβ β ε= + +

Xi 

Slope = β1 

Intercept = β0   

εi 
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Regression Analysis Simple Linear Regression and LS

Regression: Estimation Process
Estimation Process 

 

Regression Model 
    y = β0 + β1x +ε 
Regression Equation 
   E(y|x) = β0 + β1x 
Unknown Parameters 
 β0, β1 

Sample Data: 
x        y 
 

x1      y1 
 .       . 
 .       .  
xn     yn 

b0 and b1 
provide estimates of 
β0 and β1 

Estimated 
Regression Equation 
  
 
Sample Statistics 

 b0, b1 

𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 
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Regression Analysis Simple Linear Regression and LS

Regression Equation and LS – I
Residuals 

xi 
X 

yi  = b0+b1x y 
∧ 

Y 

yi 
∧ 

 yi 
∧ 

yi 

ei =  yi – yi 
∧ 
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Regression Analysis Simple Linear Regression and LS

Regression Equation and LS – II

b0 and b1 are obtained by finding the values of b0 and b1 that
minimize the sum of the squared differences between yi and ŷi:

min SSE = min
n∑

i=1

e2
i

= min
n∑

i=1

(yi − ŷi)
2

= min
n∑

i=1

[yi − (b0 + b1xi)]
2
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Regression Analysis Simple Linear Regression and LS

Regression Equation and LS – III

▶ Differential calculus is used to obtain the coefficient estimators b0
and b1 that minimize SSE.

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 =
̂Cov(x, y)

s2
x

= rxy
sy

sx

b0 = ȳ − b1x̄

The (sample) regression line always goes through the means x̄, ȳ.

P. Konstantinou (AUEB) Statistics for Business – IV August 28, 2023 9 / 30

Regression Analysis Interpretation of Regression Coefficients

Interpretation of the Slope and the Intercept

b0 is the estimated average value of y when the value of x is zero
(if x = 0 is in the range of observed x values)

b1 is the estimated change in the average value of y as a result of a
one-unit change in x :

∆y = b1∆x so

b1 =
∆y
∆x
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Regression Analysis Interpretation of Regression Coefficients

Simple Linear Regression – I
An Example

A real estate agent wishes to examine the relationship between the
selling price of a home and its size (measured in square feet)
A random sample of 10 houses is selected
▶ Dependent variable (Y) = house price in $1000s
▶ Independent variable (X) = square feetSample Data for  
House Price Model 

House Price 
in $1000s 

(Y) 

Square 
Feet  
(X) 

245 1400 
312 1600 
279 1700 
308 1875 
199 1100 
219 1550 
405 2350 
324 2450 
319 1425 
255 1700 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 11-17 

Graphical Presentation 

 House price model:  scatter plot 
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Regression Analysis Interpretation of Regression Coefficients

Simple Linear Regression – II
An Example

Excel Output 

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 11-21 
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Regression Analysis Interpretation of Regression Coefficients

Simple Linear Regression – III
An Example Excel Output 

Regression Statistics 

Multiple R 0.76211 

R Square 0.58082 

Adjusted R Square 0.52842 

Standard Error 41.33032 

Observations 10 

ANOVA 
  df SS MS F Significance F 

Regression 1 18934.9348 18934.9348 11.0848 0.01039 

Residual 8 13665.5652 1708.1957 

Total 9 32600.5000       

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232.07386 

Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580 

The regression equation is: 

feet) (square 0.10977 98.24833 price house +=

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall 

(continued) 

Ch. 11-22 
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Regression Analysis Interpretation of Regression Coefficients

Simple Linear Regression – IV
An Example
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Graphical Presentation 
 House price model:  scatter plot and 

regression line 

feet) (square 0.10977 98.24833 price house +=

Slope  
= 0.10977 

Intercept  
= 98.248   

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 11-23 
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Regression Analysis Interpretation of Regression Coefficients

Simple Linear Regression – V
An Example

̂house price = 98.24833 + 0.10977(square feet).

b0 is the estimated average value of Y when the value of X is zero
(if X = 0 is in the range of observed X values)
▶ Here, no houses had 0 square feet, so b0 = 98.24833 just indicates

that, for houses within the range of sizes observed, $98, 248.33 is
the portion of the house price not explained by square feet.

b1 measures the estimated change in the average value of Y as a
result of a one-unit change in X
▶ Here, b1 = .10977 tells us that the average value of a house

increases by .10977($1000) = $109.77, on average, for each
additional one square foot of size.
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Regression Analysis Goodness of Fit

Error Variance Estimation – I

An estimator for the variance of the population model error is

σ̂2 = s2
e =

∑n
i=1 e2

i

n − 2
=

SSE
n − 2

.

▶ Division by n − 2 instead of n − 1 is because the simple regression
model uses two estimated parameters, b0 and b1, instead of one

▶ The standard error of the estimate or the standard error of the
regression is simply

SER = se = σ̂ =
√

s2
e .
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Regression Analysis Goodness of Fit

Error Variance Estimation – IIExcel Output 
Regression Statistics 

Multiple R 0.76211 

R Square 0.58082 

Adjusted R Square 0.52842 

Standard Error 41.33032 

Observations 10 

ANOVA 
  df SS MS F Significance F 

Regression 1 18934.9348 18934.9348 11.0848 0.01039 

Residual 8 13665.5652 1708.1957 

Total 9 32600.5000       

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232.07386 

Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.18580 

41.33032se =
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Regression Analysis Prediction

Prediction – I

Recall from our discussion above that the fitted or predicted
value for observation i is

Yi = b0 + b1Xi.

Given that we have estimated the parameters of the model (and
assessed its statistical significance) we may want to:
▶ Estimate the average value of Y at a given value of X = X0;

▶ Predict a particular value of Y for a given value of X = X0.

In both cases the point estimate is

Ŷ0 = b0 + b1X0.
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Regression Analysis Prediction

Prediction – II
▶ Predict the price for a house with 2000 square feet:

̂house price = 98.25 + 0.1098 · (square feet)

= 98.25 + 0.1098 · (2000)

= 317.85

▶ The predicted price for a house with 2000 square feet is
317.85($1,000s) = $317,850.
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Regression Analysis Prediction

Prediction – III
When using a regression model for prediction, only predict within
the relevant range of data

Relevant Data Range 
• When using a regression model for prediction, 

only predict within the relevant range of data 

0
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Relevant data range 

Risky to try to 
extrapolate far 

beyond the range of 
observed X’s 
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Regression Analysis Prediction

Prediction – IV
Goal: Form intervals around Y to express uncertainty about the
value of Y0 for a given X0

Estimating Mean Values and Predicting 
Individual Values

Y

Xx0

y0 = b0+b1x0
Ù

Confidence 
Interval for the 
expected value
of y, given xi

Prediction Interval for 
an single observed y,
given x0

Goal:  Form intervals around y to express uncertainty about the value 
of y for a given x0

y
Ù
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Regression Analysis Prediction

Prediction – V

Confidence interval estimate for the expected value of y given a
particular x0

ŷ0 ± tn−2,α/2 · se

√
1
n
+

(x0 − x̄)2
∑n

i=1(xi − x̄)2

▶ Notice that the formula involves the term (x0 − x̄)2 so the size of
interval varies according to the distance x0 is from the mean, x̄.

▶ Technically this formula is used for infinitely large populations.
However, we can interpret our problem as attempting to determine
the average selling price of all houses, all with 1,500 square feet.
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Regression Analysis Prediction

Prediction – VI
Confidence interval estimate for an actual observed value of y
given a particular x0

ŷ0 ± tn−2,α/2 · se

√
1 +

1
n
+

(x0 − x̄)2
∑n

i=1(xi − x̄)2

▶ The extra term (1) comes in because the regression is used to
estimate the value of one value of y (at given x0)

Confidence Interval Estimate for E(Y0|X0) : Find the 95%
confidence interval for the mean price of 2,000 square-foot houses
▶ Predicted Price ŷ = 317.85($1, 000s) so

ŷ0 ± tn−2,α/2 · se

√
1
n
+

(x0 − x̄)2
∑n

i=1(xi − x̄)2 = 317.84 ± 37.15
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Regression Analysis Prediction

Prediction – VII

▶ The confidence interval endpoints are 280.66 and 354.90, or from
$280,660 to $354,900

Confidence Interval Estimate for Ŷ0 : Find the 95% confidence
interval for an individual house with 2,000 square feet
▶ Predicted Price ŷ = 317.85($1, 000s) so

ŷ0 ± tn−2,α/2 · se

√
1 +

1
n
+

(x0 − x̄)2
∑n

i=1(xi − x̄)2 = 317.84 ± 102.28

▶ The confidence interval endpoints are 215.50 and 420.07, or from
$215,500 to $420,070.
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Regression Analysis Multiple Regression

Multiple Regression
If we want to describe the relationship between one dependent
variable y and two or more independent ones x1, x2, ..., xk for the
whole population

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε.Estimation Process 
Multiple Regression Model 

y = β0+β1x1+β2x2 +...+βkxk+ε 
Multiple Regression Equation 

E(y|x) = β0+β1x1+β2x2 +...+βkxk  
Unknown parameters are 

β0, β1, β2, . . . ,βk 
 

Sample Data: 
x1  x2  . . .  xp   y 
 

.     .          .     . 

.     .          .     . 
  
 

b0, b1, b2, . . . , bk 
provide estimates of 
β0, β1, β2, . . . ,βk 
 

Estimated Multiple 
Regression Equation 

  
Sample statistics are 
 b0, b1, b2, . . . , bk  
 

𝑦𝑦 �= b0 + b1x1 + b2x2 + . . . + bkxk 
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Regression Analysis Multiple Regression

Multiple Regression: An Example – I
A distributor of frozen desert pies wants to evaluate factors
thought to influence demand
▶ Dependent variable: Pie sales (units per week)

▶ Independent variables:
Price (in$)
Advertising ($100’s)

▶ Data are collected for 15 weeksPie Sales Example 

Sales = b0 + b1 (Price)  
      + b2 (Advertising) 

Week 
Pie 

Sales 
Price 

($) 
Advertising 

($100s) 
1 350 5.50 3.3 
2 460 7.50 3.3 
3 350 8.00 3.0 
4 430 8.00 4.5 
5 350 6.80 3.0 
6 380 7.50 4.0 
7 430 4.50 3.0 
8 470 6.40 3.7 
9 450 7.00 3.5 

10 490 5.00 4.0 
11 340 7.20 3.5 
12 300 7.90 3.2 
13 440 5.90 4.0 
14 450 5.00 3.5 
15 300 7.00 2.7 

Multiple regression equation: 

Ch. 12-10 

Multiple regression equation:

Ŝales = b0 + b1(Price)+ b2(Advertising)
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Regression Analysis Multiple Regression

Multiple Regression: An Example – IIMultiple Regression Output 
Regression Statistics 

Multiple R 0.72213 

R Square 0.52148 

Adjusted R Square 0.44172 

Standard Error 47.46341 

Observations 15 

ANOVA   df SS MS F Significance F 

Regression 2 29460.027 14730.013 6.53861 0.01201 

Residual 12 27033.306 2252.776 

Total 14 56493.333       

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404 

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392 

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888 

ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales +=

Ch. 12-12 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall 
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Regression Analysis Multiple Regression

Multiple Regression: An Example – III

The estimated multiple regression equation

Ŝales = 306.526 − 24.975(Price) + 74.131(Advertising)

▶ b1 = −24.975 : sales will decrease, on average, by 24.975 pies per
week for each $1 increase in selling price, net of the effects of
changes due to advertising (assuming these do not change)

▶ b2 = 74.131 : sales will increase, on average, by 74.131 pies per
week for each $100 increase in advertising, net of the effects of
changes due to price (assuming these do not change).
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Regression Analysis Multiple Regression

Multiple Regression: Prediction – I
Let a population regression model

yi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi;

then given a new observation of a data point

x1,n+1, x2,n+1, · · · , xk,n+1

the best linear, unbiased forecast of yn+1 is

ŷi = b0 + b1x1,n+1 + b2x2,n+1 + · · ·+ bkxk,n+1

▶ It is risky to forecast for new x values outside the range of the data
used to estimate the model coefficients, because we do not have
data to support that the linear model extends beyond the observed
range.
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Regression Analysis Multiple Regression

Multiple Regression: Prediction – II

Predict sales for a week in which the selling price is $5.50 and
advertising is $350:

Ŝales = 306.526 − 24.975(Price) + 74.131(Advertising)
= 306.526 − 24.975(5.50) + 74.131(3.5)
= 428.62

▶ Note that Advertising is in $100’s, so $350 means that x2 = 3.5.

▶ Predicted sales is 428.62 pies
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