Statistics for Business

Correlation and Regression

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management,
Athens University of Economics and Business

First Draft: August 20, 2016. This Draft: August 28, 2023.

Regression: A Two Variable Model - I

- If we want to describe the relationship between y and x for the whole population, there are two models we can choose
- Deterministic Model:

- Probabilistic Model:

$$
\begin{aligned}
& y=\text { Deterministic Model }+ \text { Random Error } \\
& y=\beta_{0}+\beta_{1} x+\varepsilon
\end{aligned}
$$

Regression: Examples

- Let y be a student's college achievement, measured by his/her GPA. This might be a function of several variables:
- $x_{1}=$ rank in high school class
- $x_{2}=$ high school's overall rating
- $x_{3}=$ high school GPA
- $x_{4}=$ SAT scores
- We want to predict y using knowledge of x_{1}, x_{2}, x_{3} and x_{4}.
- Let y be the monthly sales revenue for a company. This might be a function of several variables:
- $x_{1}=$ advertising expenditure
- $x_{2}=$ time of year
- $x_{3}=$ state of economy
- $x_{4}=$ size of inventory
- We want to predict y using knowledge of x_{1}, x_{2}, x_{3} and x_{4}.
P. Konstantinou (AUEB)

August 28, 2023 Simple Linear Regression and LS

Regression: A Two Variable Model - II

- Since the bivariate measurements that we observe do not generally fall exactly on a straight line, we choose to use a probabilistic model.

- Points deviate from the population regression line (line of means) by an amount ε, where $\varepsilon \sim N\left(0, \sigma^{2}\right)$.

Regression: A Two Variable Model - III

- The population of measurements is generated as y deviates from the population line by ε.

Regression Equation and LS - I

Regression: Estimation Process

Regression Equation and LS - II

b_{0} and b_{1} are obtained by finding the values of b_{0} and b_{1} that minimize the sum of the squared differences between y_{i} and \hat{y}_{i} :

$$
\begin{aligned}
\min S S E & =\min \sum_{i=1}^{n} e_{i}^{2} \\
& =\min \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
& =\min \sum_{i=1}^{n}\left[y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right]^{2}
\end{aligned}
$$

Regression Equation and LS - III

- Differential calculus is used to obtain the coefficient estimators b_{0} and b_{1} that minimize SSE.

$$
\begin{aligned}
b_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\widehat{\operatorname{Cov}(x, y)}}{s_{x}^{2}}=r_{x y} \frac{s_{y}}{s_{x}} \\
b_{0} & =\bar{y}-b_{1} \bar{x}
\end{aligned}
$$

- The (sample) regression line always goes through the means \bar{x}, \bar{y}.

Simple Linear Regression - I

An Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(Y)=$ house price in $\$ 1000$ s
- Independent variable $(X)=$ square feet

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression - III

An Example

Simple Linear Regression - V

An Example

$$
\text { house price }=98.24833+0.10977 \text { (square feet }) .
$$

- b_{0} is the estimated average value of Y when the value of X is zero (if $X=0$ is in the range of observed X values)
- Here, no houses had 0 square feet, so $b_{0}=98.24833$ just indicates that, for houses within the range of sizes observed, $\$ 98,248.33$ is the portion of the house price not explained by square feet.
- b_{1} measures the estimated change in the average value of Y as a result of a one-unit change in X
- Here, $b_{1}=.10977$ tells us that the average value of a house increases by $.10977(\$ 1000)=\$ 109.77$, on average, for each additional one square foot of size.

Simple Linear Regression - IV

An Example

house price $=98.24833+0.10977$ (square feet)
P. Konstantinou (AUEB)

Error Variance Estimation - I

- An estimator for the variance of the population model error is

$$
\hat{\sigma}^{2}=s_{e}^{2}=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}=\frac{S S E}{n-2} .
$$

- Division by $n-2$ instead of $n-1$ is because the simple regression model uses two estimated parameters, b_{0} and b_{1}, instead of one
- The standard error of the estimate or the standard error of the regression is simply

$$
S E R=s_{e}=\hat{\sigma}=\sqrt{s_{e}^{2}} .
$$

Error Variance Estimation - II

| ANOVA | | | | | |
| :--- | ---: | :---: | :---: | :---: | ---: | ---: |
| | df | | MS | F | Significance F |
| Regression | 1 | 18934.9348 | 18934.9348 | 11.0848 | 0.01039 |
| Residual | 8 | 13665.5652 | 1708.1957 | | |
| Total | 9 | 32600.5000 | | | |

	Coefficients	Standard Error	Stat	P-value	Lower 95\%	Upper 95\%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Prediction - I

- Recall from our discussion above that the fitted or predicted value for observation i is

$$
Y_{i}=b_{0}+b_{1} X_{i} .
$$

- Given that we have estimated the parameters of the model (and assessed its statistical significance) we may want to:
- Estimate the average value of Y at a given value of $X=X_{0}$;
- Predict a particular value of Y for a given value of $X=X_{0}$.
- In both cases the point estimate is

$$
\hat{Y}_{0}=b_{0}+b_{1} X_{0} .
$$

P. Konstantinou (AUEB)

Prediction

Prediction - III

- When using a regression model for prediction, only predict within the relevant range of data

Prediction - IV

- Goal: Form intervals around Y to express uncertainty about the value of Y_{0} for a given X_{0}

P. Konstantinou (AUEB)

Prediction

Prediction - VI

- Confidence interval estimate for an actual observed value of y given a particular x_{0}

$$
\hat{y}_{0} \pm t_{n-2, \alpha / 2} \cdot s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

- The extra term (1) comes in because the regression is used to estimate the value of one value of y (at given x_{0})
- Confidence Interval Estimate for $\mathrm{E}\left(Y_{0} \mid X_{0}\right)$: Find the 95%
confidence interval for the mean price of 2,000 square-foot houses
- Predicted Price $\hat{y}=317.85(\$ 1,000$ s $)$ so

$$
\hat{y}_{0} \pm t_{n-2, \alpha / 2} \cdot s_{e} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=317.84 \pm 37.15
$$

Prediction - V

- Confidence interval estimate for the expected value of y given a particular x_{0}

$$
\hat{y}_{0} \pm t_{n-2, \alpha / 2} \cdot s_{e} \sqrt{\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}
$$

- Notice that the formula involves the term $\left(x_{0}-\bar{x}\right)^{2}$ so the size of interval varies according to the distance x_{0} is from the mean, \bar{x}.
- Technically this formula is used for infinitely large populations. However, we can interpret our problem as attempting to determine the average selling price of all houses, all with 1,500 square feet.
P. Konstantinou (AUEB) August 28, 2023

Prediction - VII

- The confidence interval endpoints are 280.66 and 354.90 , or from \$280,660 to \$354,900
- Confidence Interval Estimate for \hat{Y}_{0} : Find the 95% confidence interval for an individual house with 2,000 square feet
- Predicted Price $\hat{y}=317.85(\$ 1,000$ s $)$ so

$$
\hat{y}_{0} \pm t_{n-2, \alpha / 2} \cdot s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}=317.84 \pm 102.28
$$

- The confidence interval endpoints are 215.50 and 420.07, or from $\$ 215,500$ to $\$ 420,070$.

Multiple Regression

- If we want to describe the relationship between one dependent variable y and two or more independent ones $x_{1}, x_{2}, \ldots, x_{k}$ for the whole population

Multiple Regression: An Example - II

Regression Statistics						
Multiple R	0.72213					
R Square	0.52148					
Adjusted R Square	0.44172	$\widehat{\text { Sales }}=306.526-24.975$ (Price) +74.131 (Advertising)				
Standard Error	47.46341					
Observations	15	,				
ANOVA	df	ss	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95\%	Upper 95\%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Multiple Regression: An Example - I

- A distributor of frozen desert pies wants to evaluate factors thought to influence demand
- Dependent variable: Pie sales (units per week)
- Independent variables: Price (in\$)

Advertising (\$100's)

- Data are collected for 15 weeks

Week	$\begin{gathered} \text { pie } \\ \text { Sales } \end{gathered}$	$\begin{array}{\|c} \text { Price } \\ \text { (s) } \end{array}$	$\begin{aligned} & \text { Advertising } \\ & (\$ 100 \mathrm{~s}) \end{aligned}$
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

- Multiple regression equation:

$$
\widehat{\text { Sales }}=b_{0}+b_{1}(\text { Price })+b_{2}(\text { Advertising })
$$

Multiple Regression: An Example - III

- The estimated multiple regression equation

$$
\widehat{\text { Sales }}=306.526-24.975 \text { (Price) }+74.131 \text { (Advertising) }
$$

- $b_{1}=-24.975$: sales will decrease, on average, by 24.975 pies per week for each $\$ 1$ increase in selling price, net of the effects of changes due to advertising (assuming these do not change)
- $b_{2}=74.131$: sales will increase, on average, by 74.131 pies per week for each $\$ 100$ increase in advertising, net of the effects of changes due to price (assuming these do not change).

	Multiple Regression

Multiple Regression: Prediction - I

- Let a population regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\cdots+\beta_{k} x_{k i}+\varepsilon_{i}
$$

then given a new observation of a data point

$$
x_{1, n+1}, x_{2, n+1}, \cdots, x_{k, n+1}
$$

the best linear, unbiased forecast of y_{n+1} is

$$
\hat{y}_{i}=b_{0}+b_{1} x_{1, n+1}+b_{2} x_{2, n+1}+\cdots+b_{k} x_{k, n+1}
$$

- It is risky to forecast for new x values outside the range of the data used to estimate the model coefficients, because we do not have data to support that the linear model extends beyond the observed range.

Multiple Regression: Prediction - II

- Predict sales for a week in which the selling price is $\$ 5.50$ and advertising is $\$ 350$:

$$
\begin{aligned}
\widehat{\text { Sales }} & =306.526-24.975(\text { Price })+74.131 \text { (Advertising) } \\
& =306.526-24.975(5.50)+74.131(3.5) \\
& =428.62
\end{aligned}
$$

- Note that Advertising is in $\$ 100$'s, so $\$ 350$ means that $x_{2}=3.5$.
- Predicted sales is 428.62 pies

