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Sampling

Sampling: Intro

@ A population is a collection of all the elements of interest, while a
sample is a subset of the population.

o The reason we select a sample is to collect data to answer a research
question about a population.

@ The sample results provide only estimates of the values of the
population characteristics. With proper sampling methods, the sample
results can provide “good” estimates of the population characteristics.

@ A random sample from an infinite population is a sample selected such
that the following conditions are satisfied:
» Each element selected comes from the population of interest.

» Each element is selected independently.
% If the population is finite, then we sample with replacement...
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Lecture Outline

Simple random sampling

Distribution of the sample average

Large sample approximation to the distribution of the sample mean
» Law of Large Numbers
» Central Limit Theorem

Estimation of the population mean

» Unbiasedness
» Consistency
» Efficiency

Hypothesis test concerning the population mean
Confidence intervals for the population mean
» Using the ¢-statistic when 7 is small

Comparing means from different populations
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Simple Random Sampling — 1

Simple Random Sampling

o Simple random sampling means that n objects are drawn randomly from
a population and each object is equally likely to be drawn

e LetY,,Ys,..., Y, denote the 1st to the n th randomly drawn object. Under
simple random sampling
» The marginal probability distribution of Y; is the same foralli = 1,2, ....n
and equals the population distribution of Y.
* because Y71, Y3, ..., Y, are drawn randomly from the same population.
» Y, is distributed independently from Y3, ..., ¥;,. knowing the value of Y;
does not provide information on Y; for i # j

@ When Y, Y, ..., Y, are drawn from the same population and are
independently distributed, they are said to be I.1.D. random variables
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Simple Random Sampling — 1I

Simple Random Sampling

Example
@ Let G be the gender of an individual (G = 1 if female, G = 0 if male)
e GisaBernoullir.v. with E(G) = ug = Pr(G=1) =0.5
@ Suppose we take the population register and randomly draw a sample of
size n
» The probability distribution of G; is a Bernoulli with mean 0.5
» G, is distributed independently from Gy, ..., G,
@ Suppose we draw a random sample of individuals entering the building
of the accounting department

» This is not a sample obtained by simple random sampling and
Gi,G;,...,G, are not i.i.d
» Men are more likely to enter the building of the accounting department!
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[ sanplinguod Sanplng Dicbutions |
The Sampling Distribution of the Sample Average — 11

1 n
:ﬁ;Yi

@ Suppose that Y1, Y5, ..., Y, are I.I.D. and the mean & variance of the
population distribution of Y are respectively py and 012/
» The mean of (the sampling distribution of) Y is

_ |
—E <n ; Yi> Z E(Y,
» The variance of (the sampling distribution of) Y is

< ZY) 2ZVar +272 Z Cov(Y;, Y))

i=1 j=1,#i
! Var(Y) + 0 1Var(Y)
= —n = - =
n? n

an (Y) = uy

Var(Y) =

2
9y
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The Sampling Distribution of the Sample Average — I

Sampling Distribution of the Sample Average

@ The sample average Y of a randomly drawn sample is a random variable
with a probability distribution called the sampling distribution

1 1 —
Y:Z(Y1+Y2+”'+Y"):EZY"

The individuals in the sample are drawn at random.

Thus the values of (Y7, Y,, -+, Y,) are random

» Thus functions of (Y}, Y, -- ,Y,), such as Y, are random: had a different
sample been drawn, they would have taken on a different value

» The distribution of over different possible samples of size n is called the
sampling distribution of Y.

» The mean and variance of are the mean and variance of its sampling
distribution, E(Y) and Var(Y).

» The concept of the sampling distribution underpins all of

statistics/econometrics.

vy
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The Sampling Distribution of the Sample Average — III

Example
@ Let G be the gender of an individual (G = 1 if female, G = 0 if male)

@ The mean of the population distribution of G is

E(G)

@ The variance of the population distribution of G is

=pug=Pr(G=1)=p=0.5
Var(G) = 0% = p(1 —p) = 0.5(1 — 0.5) = 0.25

@ The mean and variance of the average gender (proportion of women) G
in a random sample with n = 10 are

E(G) = puc=0.5
_ 1 1
Var(G) = ~o b = 75025 = 0025

e
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The Finite-Sample Distribution of the Sample Average

Sampling Distribution of the Sample Average

The finite sample distribution is the sampling distribution that exactly
describes the distribution of Y for any sample size n.

In general the exact sampling distribution of Y is complicated and
depends on the population distribution of Y.

@ A special case is when Y1, Y2, ..., ¥, are IID draws from the N (uy, 03),

because in this case )
_ o
Y ~N (MY, _Y)
n

August 28, 2023
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The Finite-Sample Distribution of the Average Gender G

@ Suppose we draw 999 samples of n = 2:

Sampling Distribution of the Sample Average

Sample 1 Sample 1 Sample 3 Sample 999
G G G G G, G G G G G G G
1 0 05 1 1 1 0 1 05 0O 0 0

Sample distribution of average gender
999 samples of n=2

>
=
3
®©
Q
(]
=
(o}
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The Sampling Distribution of the Average Gender G

Sampling Distribution of the Sample Average

@ Suppose G takes on O or 1 (a Bernoulli random variable) with the
probability distribution

Pr(G=0)=p=05, Pr(G=1)=1—-p=0.5
@ As we discussed above:

E(G)
Var(G)

pug =Pr(G=1)=p=0.5
oz =p(l —p)=0.5(1 -05) =025

@ The sampling distribution of G depends on n.

@ Consider n = 2. The sampling distribution of G is
> Pr(G=0)=05*=0.25
> Pr(G=1/2)=2x05x(1-05)=05

> Pr(G=1)=(1-05)?2=025
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The Asymptotic Distribution of the Sample Average Y

Asymptotic Approximations

@ Given that the exact sampling distribution of Y is complicated and given
that we generally use large samples in statistics/econometrics we will
often use an approximation of the sample distribution that relies on the
sample being large

o The asymptotic distribution or large-sample distribution is the
approximate sampling distribution of Y if the sample size becomes very
large: n — oo.

@ We will use two concepts to approximate the large-sample distribution of
the sample average

» The law of large numbers.
» The central limit theorem.
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The Law of Large Numbers (LLN) The Law of Large Numbers (LLN)

Definition (Law of Large Numbers) Example: Gender G ~ Bernoulli(0.5,0.25)

Sample distribution of average gender Sample distribution of average gender
999 samples of n=2 999 samples of n=10
Suppose that o s
Q YV, i=1,...,n are independently and identically distributed with 4 2]
> >
E(Yi) = py; and 24 £
8 2 S 1
. . . o (%
@ large outliers are unlikely i.e. Var(Y;) = 012/ < +00. 4 051
Then Y will be near py with very high probability when 7 is very large o 5 5 — 0t ! T S a—
(I’l — OO) ’ sar'nple'avel.'age ’ ’ sar'nple.ave'rage '
v P
Y = py. o o
Sample distribution of average gender Sample distribution of average gender
. . 999 samples of n=100 999 samples of n=250
We also say that the sequence of random variables {Y,} converges in & 6]
probability to the uy, if for every € > 0 08
2 2 .04
a é .06+ %
1 — Qo | Qo
nli)rgoPI‘ﬂYn /,Lyl > 6) =0. g 04 g o2
Il
9 9 . 0 " ..|I" L. 0 .
We also denote this by plim(Y,,) = py J e e
= = - = — et sample average sample average
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The Central Limit Theorem (CLT) The Central Limit Theorem (CLT)

Definition (Central Limit Theorem) Example: Gender G ~ Bernoulli(0.5,0.25)

Sample distribution of average gender Sample distribution of average gender
999 samples of n=2 999 samples of n=10
Suppose that s 2
Q Y, i =1,...,n are independently and identically distributed with z : z 2
5. 5 15
E(Yl) = Uy, and g 2 g A
S 1 2 05 |
. . . g _ 2 . 2 0 0 >
@ large outliers are unlikely i.e. Var(Y;) = oy with 0 < o3 < +o00. ” 5 5 3 7 = 3 5 3 7
. . . = . . sample average sample average
Then the dlStrlbutlon Of the Sample average Y Wlll be apprOleately normal [ Finite sample distr. standardized sample average [ Finite sample distr. standardized sample average
as n becomes Very large (}’l - OO) —— Standard normal probability densitiy Standard normal probability densitiy
2 Sample distribution of average gender Sample distribution of average gender
Y N JY 999 samples of n=100 999 samples of n=250
~ ,UJY 9 7 A .06
> 08 >
e . : : 5 00 g
The distribution of the the standardized sample average is approximately S 4 2 o
a a’
standard normal for n — oo _ '°§ y ||"| | ||| X .
Y — py 2 o 3 4 2 o 2 4
Y sample average sample average
UY/ \/ﬁ [ Finite sample distr. standardized sample average [ Finite sample distr. standardized sample average

V.
T = — E—r Standard normal probability densitiy Standard normal probability densitiy
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The Central Limit Theorem (CLT)

Asymptotic Approximations

@ How good is the large-sample approximation?
* If ¥; ~ N(uy, 0%) the approximation is perfect.

* If Y; is not normally distributed the quality of the approximation depends
on how close 7 is to infinity (how large 7 is)

x For n > 100 the normal approximation to the distribution of Y is
typically very good for a wide variety of population distributions.
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Estimation of the Population Mean — 1

Estimator Properties

Suppose we want to know the mean value of Y (uy) in a population, for
example

» The mean wage of college graduates.
» The mean level of education in Greece.
» The mean probability of passing the statistics exam.

Suppose we draw a random sample of size n with Y1, Y, ..., Y, being IID

Possible estimators of py are:

» The sample average: ¥ = 1 3" Y,

» The first observation: Y;

> The weighted average: ¥ = 1 (1¥, + 3V, + ...+ 1Y, + 37,).
To determine which of the estimators, Y, Y| or Y is the best estimator of
1y we consider 3 properties.

@ Let iy be an estimator of the population mean py
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Estimators and Estimates

Introduction

Definition

An estimator is a function of a sample of data to be drawn randomly from a
population.

@ An estimator is a random variable because of randomness in drawing the
sample. Typically used estimators

1 _

(Yi—Y)2.

i=1

N e
Sample Average:Y = — Z Y;, Sample variance: S =
n n—1

i=1

Using a particular sample y;, ys, ..., y, we obtain

IR RN 2
y:ZZy,-andsy:
i=1

which are point estimates. These are the numerical value of an estimator
when it is actually computed using a specific sample.
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Estimation of the Population Mean — 1II

Estimator Properties

@ Unbiasedness: The mean of the sampling distribution of fiy equals uy

E(fy) = py.

@ Consistency: The probability that {1y is within a very small interval of py
approaches 1 if n — oo

fiy & py or Pr(|iiy — py| <e) =1

@ Efficiency: If the variance of the sampling distribution of fiy is smaller
than that of some other estimator fiy , fiy is more efficient

Var(fiy) < Var(fiy)
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Estimating Mean Wages — Estimating Mean Wages — 1I

' . o o Consistency:
@ Suppose we are interested in the mean wages (pre tax) pw of individuals

with a Ph.D. in economics/finance in Europe (true mean p,, = 60K). We
draw the following sample (n = 10) by simple random sampling

> By the law of large numbers W 5 11y, which implies that the probability
that W is within a very small interval of piy approaches 1 if n — oo

Sample average as estimator of population mean Sample average as estimator of population mean
999 samples of n=10 999 samples of n=100
.04 .03
i1 2 3 4 5 ..
W; 4728192 70781.94 55174.46 49096.05 67424.82 $” 2.
S ot e
0 L 0 !
i 6 7 8 9 10 i@i@i@":@":@i@f@f@i@i@i@i@e@ ?9@2@":@‘%@:6@;002Q&Zg@zooi@i@i@“c
sample average sample average
W;  39252.85 78815.33 46750.78 46587.89 25015.71
@ The 3 estimators give the following estimates:
TS| 10 o
> W=L> W =52618.18
> W, = 4728192
v — L (1 3 1 3 —
> W=15(GWi+3Wa+ ...+ 3Wo + 3 W) = 49398.82
@ Unbiasedness: All 3 proposed estimators are unbiased
P. Konstantinou (AUEB) August 28, 2023 21/61 August 28, 2023 22/61

Estimating Mean Wages — III Estimating Mean Wages — IV
> W= % (%Wl + %Wz + ...+ %Wn_l + %Wn) can also be shown to be

consistent o Efficiency: We have that

Weighted average as estimator of population mean Weighted average as estimator of population mean — 1.2

999 samples of n=10 999 samples of n=100 > Var(W) = —O’W
n
.03 X
o » Var ( W1 ) =0 2

2o g0 > Vi (W) 12‘)"/51 2

2 2 ar =1.25-0

2 8 02 n- W

S <] -~ . . =4

s ; S ot » So for any n > 2, W is more efficient than W; and W.

0 Ll 0 .
SEFSSSSSSSSSSS TESFSFSSSFSSSSSSSS _
PSS S S ES PSS S S . . . . ..
PSS f f EEEEE TP f 3“ EESEP @ In fact Y is the Best Linear Unbiased Estimator (BLUE): it is the most
weighted average weighted average . . . . .
efficient estimator of py among all unbiased estimators that are weighted
» However W) is not a consistent estimator of fuy . averages of Y1, Y5, ..., Y,
First observation W1 as estimator of population mean  First observation W1 as estimator of population mean
999 samples of n=10 999 samples of n=100 1 Zn
04 04 ~ . . .
* Let iy = = > ., ;Y; be an unbiased estimator of uy with «;
n =1 “iti i
> 03 > 03 e . A~
: : nonrandom constants. Then Y is more efficient than /iy
g 01 s 01 _
e S S F ST s Oé'é“!‘e‘ddo‘ee‘e‘e":"o" Var(Y) < Var(jiy)
first observation W1 first observation W1
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Basics

Hypothesis Tests
Consider the following questions:

@ [Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?

@ Is the mean level of education in Greece equal to 12 years?

@ [s the mean probability of passing the stats exam equal to 1?
These questions involve the population mean taking on a specific value py .
Answering these questions implies using data to compare a null hypothesis (a
tentative assumption about the population mean parameter)

H() . E(Y) = /J,Y70
to an alternative hypothesis (the opposite of what is stated in the H)
Hy :E(Y) # pyo

@ Alternative Hypothesis as a Research Hypothesis
» Example: A new sales force bonus plan is developed in an attempt to
increase sales.
> Alternative Hypothesis: The new bonus plan increase sales.
»> Null Hypothesis: The new bonus plan does not increase sales.

P. Konstantinou (AUEB)
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Basics

Hypothesis Tests
The Testing Process and Rejections
Level of significance = a Represents
critical value
Ho: E(Y)=pyo a/2 a/2
Hy: E(Y)# pyy “ A Rejection
Two-tail test v 0 v region is
shaded
Hy: E(Y) < iy a
Hy: E(Y) > pyy
A

Right-tail test 0 v

Hy: B2y >/\

Hy: E(Y) <py,

Left-tail test

<
(—}
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[ pooTews forthe Populuion Mean |
Hypothesis Tests: Terminology

Basics

@ The hypothesis testing problem (for the mean): make a provisional
decision, based on the evidence at hand, whether a null hypothesis is
true, or instead that some alternative hypothesis is true. That is, test

> H: E(Y) < pyoVvs. Hy: E(Y) > Uy,0 (1-sided, >)
> Hy:E(Y) > pyovs. H : E(Y) < py,o (1-sided, <)
> Hy: E(Y) = Hy,0 VS. H,: E(Y) 74— Hy,0 (2—51ded)

@ p-value = probability of drawing a statistic (e.g. Y) at least as adverse to
the null as the value actually computed with your data, assuming that the
null hypothesis is true.

o The significance level of a test («) is a pre-specified probability of
incorrectly rejecting the null, when the null is true. Typical values are
0.01 (1%), 0.05 (5%), or 0.10 (10%).

> It is selected by the researcher at the beginning, and determines the crifical
value(s) of the test.
> If the test-statistic falls outside the non-rejection region, we reject H.
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p-Value Approach to Hypothesis Testing

o FypoieiaTowsfor o Pgulation e |
Hypothesis Testing using p-values

@ The p-value is the probability, computed using the test statistic, that
measures the support (or lack of support) provided by the sample for the
null hypothesis

» If the p-value is less than or equal to the level of significance «, the value
of the test statistic is in the rejection region.

> Reject Hy if the p-value < a.

> See also Annex

@ Rules of thumb

» If p-value is less than .01, there is overwhelming evidence to conclude Hy
is false.

» If p-value is between .01 and .05, there is strong evidence to conclude Hy
is false.

» If p-value is between .05 and .10, there is weak evidence to conclude H is
false.

» If p-value is greater than .10, there is insufficient evidence to conclude H
is false.
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Hypothesis Test for the Mean with o3 known — 1

Decision Rules

Hypothesis Tests for the Population Mean

@ The test statistic employed is obtained by converting the sample result
(y) to a z-value
Y= My

“T oy/yn

Hy:E(Y) > pyyo
H :E(Y) < Hy,0

Hy :E(Y) < puyyo
H, :E(Y) > 1y ,0

H() . E(Y) = ,uy’()
Hy :E(Y) # pyo

Lower-tail

Upper-tail

Two-tailed

Reject Hyif z < zo, Reject Hyif z > zo Reject Hy if 2 < —z,/2

orifz >z,
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Hypothesis Test for the Mean (o> known) — I

Examples

Hypothesis Tests for the Population Mean

o Example 1. A phone industry manager thinks that customer monthly
cell phone bill have increased, and now average over $52 per month. The
company wishes to test this claim. Assume o = 10$ is known and let
o = 0.10. Suppose a sample of 64 persons is taken, and it is found that
the average bill $53.1.

» Form the hypothesis to be tested

Hy:E(Y) <52
Hy :E(Y) > 52

the mean is not over $52 per month
the mean is over $52 per month

» For o = 0.10, z9.10 = 1.28, so we would reject Hy if z > 1.28.
» We have n = 64 and y = 53.1, so the test statistic is

Y — lyo 53.1—-52
Z = =
oy/v/n  10//64

Hence H cannot be rejected.

=0.88 < zp.10 = 1.28
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Hypothesis Test for the Mean with o3 known — 11

Decision Rules

Hypothesis Tests for the Population Mean

Hypothesis Tests for £(Y) , — V—tvo _ Y=o
oy oy/\n

Two-tail test:

Hy: E(Y) = Uy
H\: E(Y) # uyy

Lower-tail test:

Hy: E(Y) 2 po
Hy: E(Y) < uo

Upper-tail test:

Hy: E(Y) < uy,

“Zg Za “Za/2 Za/2
Reject H, if z <—Z, Reject H,) if 2>z, Reject Hy if z <-z,,»
or Z>Zy)n
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Hypothesis Test for the Mean (o> known) — 11

Examples

Hypothesis Tests for the Population Mean

o Example 2. We would like to test the claim that the true mean # of TV
sets in EU homes is equal to 3 (assuming oy = 0.8 known). For this
purpose a sample of 100 homes is selected, and the average number of
TV sets is 2.84. Test the above hypothesis using e = 0.05.

» Form the hypothesis to be tested

Hy:E(Y) =3 themean #is 3 TV sets per home
H, :E(Y) # 3 the mean is not 3 TV sets per home
» For a = 005, Za/Z = Z20.005 = 1.96 and —Z20.025 — *196, so we would

> 1.96.

reject Hy if |z

P. Konstantinou (AUEB)
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Hypothesis Test for the Mean (o> known) — 1III

Examples

Hypothesis Tests for the Population Mean

> We have n = 100 and y = 2.84, so the test statistic is

Y—pyo 284-3  —0.16
Z p— p—y p—
oy/v/n  0.8/y/100  0.08
or |z| =2 > 1.96, Hence H is rejected. We conclude that there is

sufficient evidence that the mean number of TVs in EU homes is not equal
to 3.

=—-2< —z0.005 = —1.96
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Test for the Mean with o unknown but n — oo
Example

Hypothesis Tests for the Population Mean

@ Suppose we would like to test

Ho : E(W) = 60000,  Hj : E(W) # 60000,

using a sample of 250 individuals with a Ph.D. degree at the 5%
significance level.
@ We perform the following steps:

QO W=15" w=L520w, =61977.12.

@ SE(W) = % = =2 = 1334.19.
© Compute 1! = V‘;E(”V—‘V,V)” = OITLIZ-00000 — 1 4819.

© Since we use a 5% significance level, we do not reject Hy because
|17 = 1.4819 < 79,025 = 1.96.
@ Suppose we are interested in the alternative H; : E(W) > 60000. The
t-stat is exactly the same: 1*“’ = 1.4819. but now needs to be compared
with zg05 = 1.645.
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Test for the Mean with o7 unknown but n — oo
Decision Rules
o Since $3 & o2, compute the standard error of ¥, SE(Y) = sy/+/n and
construct a ¢-ratio.

Y —uyo _ Y —uyo
SE(Y) sy/Vn

Hypothesis Tests for £(Y) ¢ =

Lower-tail test:

Hy: E(Y) 2 po
Hy: E(Y) <

Two-tail test:

Hy: E(Y) = Uy
Hy: E(Y) # uyy

Upper-tail test:

Hy: E(Y) < uy,

“Za, Zq “Zo/2 Zan2
Reject H, if t < -z, Reject H, if t > z,, Reject Hy if t <—Zz,p
ort> Zyn
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Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with o> unknown (n small)
Decision Rules

@ Consider a random sample of n observations from a population that is

normally distributed, AND variance 0% is unknown: ¥; ~ N(uy, o)

@ Converting the sample average (¥) to a #-value...

7= HUy,0 Y - Hy,0
= ~th—1
SE(Y) sy/Nn

Hypothesis Tests for £(Y) ¢ =

Lower-tail test:

Hy: E(Y) 2 uo
Hy: E(Y) <uy

Upper-tail test: Two-tail test:

Hy: E(Y) <
H,: E(Y)> 1o

Hy: E(Y) = 1o
Hy: E(Y) # uy

'tn-l,a tn-l,(x
Reject Hy if t < —¢ Reject Hy ift > 1,

n-1,a

“lia2 DL an
Reject Hy if t <—1,,.1 4
ort> tn—l,a/Z
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Hypothesis Test for the Mean with o> unknown (n small)
Example
@ The average cost of a hotel room in New York is said to be $168 per
night. A random sample of 25 hotels resulted in y = $172.50 and
sy = $15.40. Perform a test at the ov = 0.05 level (assuming the
population distribution is normal).
» Form the hypothesis to be tested
Hy :E(Y) = 168
H, :E(Y) # 168
» For a = 0.05, withn = 25,1,_1 /2 = f24,0.025 = 2.0639 and
—ta0.025 = 2.0639, so we would reject Hy if |7] > 2.0639.
» We have y = 172.50 and s, = 15.40, so the test statistic is

o 5) — Ky 0 - 172.50 — 168
sy/vn 15.40/v/25

or [t] = 1.46 < 2.0639. Hence Hj, cannot be rejected. We conclude that
there is not sufficient evidence that the true mean cost is different than
$168.

P. Konstantinou (AUEB)

Hypothesis Tests for the Population Mean

the mean cost is $168
the mean cost is not $168

t =1.46 < 124,0.025 = 2.0639
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Confidence Intervals for the Population Mean — II

Confidence Intervals for the Population Mean

@ The general formula for all confidence intervals is

Point Estimate 4 (Reliability Factor)(Standard Error)

Marginzf Error
it c - SE(f)

and using the sample average estimator
Y £c¢-SE(Y)

@ Instead of doing infinitely many hypothesis tests we can compute the
95% ((1 — «)%) confidence interval as

Y — 2, pSE(Y) < u <Y +2,SE(Y)  or Y= z,,,SE(Y)
—_———

Margin of Error
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Confidence Intervals for the Population Mean — 1

Confidence Intervals for the Population Mean

@ Suppose we would do a two-sided hypothesis test for many different
values of 49, y. On the basis of this we can construct a set of values
which are not rejected at 5% (a%) significance level.

o If we were able to test all possible values of 1oy we could construct a
95% ((1 — «)%) confidence interval

Definition

A 95% ((1 — «)%) confidence interval is an interval that contains the true
value of py in 95% ((1 — &)%) of all possible random samples.

population mean

P. Konstantinou (AUEB)
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> A relative frequency interpretation: From repeated samples, 95% of all the
confidence intervals that can be constructed will contain the unknown true
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Confidence Intervals for the Population Mean

@ When the sample size n is large (or when the population is normal and
0% is known):
> A 90% confidence interval for py: [Y & 1.645 - SE(Y)]
A 95% confidence interval for py: [Y £ 1.96 - SE(Y)]

A 99% confidence interval for py: [Y £ 2.58 - SE(Y)]

>
>

)
Y)

unknown and is estimated.

P. Konstantinou (AUEB)
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with SE(Y) = oy/+/n when variance is known or SE(Y) = sy/\/n when
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Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean — IV
Example

A sample of 11 circuits from a large normal population has a mean resistance
of 2.20 ohms. We know from past testing that the population standard
deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of
the population.

5+ za/z% = 220+ 1.96(0.35/V/11) = 2.20 + 0.2068

1.9932 < py < 2.4068

> We are 95% confident that the true mean resistance is between 1.9932 and
2.4068 ohms

> Although the true mean may or may not be in this interval, 95% of intervals
formed in this manner will contain the true mean
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Confidence Intervals for the Population Mean — VI

@ When the sample size n is small AND the population from which we
draw data is normal:

S Sy o Sy o Sy
Y — tn—l,a/2% <py <Y+ tn—l,a/Z% or Y=+ tn—l,a/Z%
Margin of Error

> A 90% confidence interval for py: [¥ & 1,1 0.05 - SE(Y)]
> A 95% confidence interval for puy: [¥ 4,1 0.025 - SE(Y)]
> A 99% confidence interval for py: [¥ & 1,1 0.005 - SE(Y)]

> with SE(Y) = sy/\/n

P. Konstantinou (AUEB)

43/61

August 28, 2023

Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean — V
Example

Using the sample of n = 250 individuals with a Ph.D. degree discussed above
(W = 61977.12, sy = 21095.37, SE(Y) = sw/+/n = 21095.37 /+/250):

» A 90% C.I for py is: [61977.12 & 1.64 - 1334.19] = [59349.39, 64604.85].
> A 95% C.I for py is: [61977.12 £ 1.96 - 1334.19] = [59774.38,64179.86).

> A 99% C.I for py is: [61977.12 £+ 2.58 - 1334.19] = [58513.94, 65440.30].

W

42/
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Confidence Intervals for the Population Mean

o FypoieiaTowsfor o Pgulation e |
Confidence Intervals for the Population Mean — VII

Example
A random sample of n = 25 has x = 50 and s = 8. Form a 95% confidence
interval for p.

> df.=n—1=24s0 14,02 = 124,0.025 = 2.0639

_ S
X+ tn—l,oz/Z_

/n
46.698 < < 53.302

= 50+2.0639(8/v/25) = 50 +3.302
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Comparing Means from Different Populations — 1

Large Samples or Known Variances from Normal Populations

Testing for Equal Means from Different Populations

@ Suppose we would like to test whether the mean wages of men and
women with a Ph.D. degree differ by an amount dy:

Hy:pwm — pwr=do Ho:pwwm — pwr # do

@ To test the null hypothesis against the two-sided alternative we follow the
4 steps as above with some adjustments

@ Estimate (,uW7M — ,UJWJ:) by (V_VM — WM)

» Because a weighted average of 2 independent normal random variables is
itself normally distributed we have (using the CLT and the fact that
COV(WM, WF) = 0)

= ~ U‘%VM U‘%VF
Wy —Wp ~N | pwy — pw,r, " — 4 —
M
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Testing for Equal Means from Different Populations

Comparing Means from Different Populations — III
Large Samples or Known Variances from Normal Populations
Example

Suppose we have random samples of 500 men and 500 women with a Ph.D.
degree and we would like to test that the mean wages are equal:

Ho:pwm —pwm =0  Hy:pwm — pwm # 0

We obtained Wy, = 64159.45, Wr = 53163.41, sw.m = 18957.26, and
sw,r = 20255.89. We have:

Q@ Wy — Wp = 64159.45 — 53163.41 = 10996.04.
Q SE(Wy — Wg) = 1240.709.

act _ (Wu—Wr)—0 _ 10996.04 __
Q = SE(Wy—Wr) _ 1240709 — 8.86.

© Since we use a 5% significance level, we reject Hy because
|1%“!| = 8.86 > 1.96
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Testing for Equal Means from Different Populations

Comparing Means from Different Populations — II

Large Samples or Known Variances from Normal Populations

@ Estimate o y and ow r to obtain SE(Wy, — Wp):

= ~ S%VM S%VF
SE(WM — WF) = I’l117/1 -+ n—};

© Compute the 7-statistic

© Reject Hy at a 5% significance level if |1*“!| > 1.96 or if the
p-value< 0.05.
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Testing for Equal Means from Different Populations

Confidence Interval for the Difference in Population Means

@ The method for constructing a confidence interval for 1 population mean
can be easily extended to the difference between 2 population means.

@ A hypothesized value of the difference in means dy will be rejected if
|| > 1.96 and will be in the confidence set if 7| < 1.96.

@ Thus the 95% confidence interval for pw as — pw r are the values of dy
within £1.96 standard errors of (Wy; — Wr).

@ So a 95% confidence interval for pw p — pw r 18

(W — Way) £ 1.96 - SE(Wyy — W)
10996.04 £ 1.96 - 1240.709
[8561.34,13430.73]
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Testing Population Mean Differences

Normal Populations, Unknown Variances o and o} but Assumed Equal

Testing for Equal Means from Different Populations

X-Y)—dy  (X-Y)—dy . .
Y _ v\ ™~ Inx+ny—2,
SEX 1) (53 /m) + (53 /n0)
— 1)s% + (ny — 1)s3
here 2 — (nx X Y
where s PR—

@ The C.I.is constructed as (X — V) 41,4, —5/2 - SE(X — V).

e Recall uy = E(X), uy = E(Y)
Ho:px —py >do | | Ho:px — py < dp
Hy:px —py <do| | Hy:pux — py > dp
Lower-tail Upper-tail
Reject Hy if t < ¢, Reject Hy if t > 1,

Ho : px — py = do
Hy : px — py # do
Two-tailed
Reject Hy if [t| > 1,5
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Testing for Equal Means from Different Populations

Testing Population Mean Differences — II

Example: Normal Populations, Unknown Variances 0% and o7 but Assumed Equal

» Note that df = ny +ny —2 =21 + 25 — 2 = 44, so the critical value for
the test is 144,0.025 = 2.0154
» The pooled variance is:
o (= Dsg+ (= Dsp _
ny +ny — 2
= 1.5021

(21 — 1)1.30% 4+ (25 — 1)1.167
(21 -1)+(25—1)

» The test statistic is
x—y-d _ (327-253)-0
o3 + 3/m) 15021 ( + &)

Since [1*!| > t44,0.005 = 2.0154, we reject Hy at v = 0.05. We conclude
that there is evidence of a difference...

@ The C.I.is constructed as (X — V) 41, 1, 5 /> - SE(X — V)

act
t =

= 2.040.
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Testing Population Mean Differences — 1

Example: Normal Populations, Unknown Variances o7 and o7 but Assumed Equal

Testing for Equal Means from Different Populations

@ You are a financial analyst for a brokerage firm. Is there a difference in
dividend yield between stocks listed on the NYSE & NASDAQ? You
collect the following data:

NYSE NASDAQ

Number: 21 25
Sample mean: 3.27 2.53
Sample std. dev.: 1.30 1.16

Assuming both populations are approximately normal with equal
variances, is there a difference in average yield (v = 0.05)?
» The hypothesis of interest is

Hy : unyse = pnaspag
H\ : pnyse 7 IANASDAQ

Hy : pnyse — pinaspag = 0
H : unyse — pvaspag 7 0 | op
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Testing Population Mean Differences — I
Matched or Paired Samples
@ Suppose we obtain a sample of n observations from two populations
which are normally distributed and we have paired or matched samples —
repeated measures (before/after).
@ Define, the pair difference d; = X; — Y;. We have

- 1 n - = 1 n -
d= ’—Zzizldi:X— Y; and S; = \/njzizl(d,-—d)z

— — 2
with E(d) = j1g = E(X) — E(Y) and SE(d) = \/ 24 = S,;/y/n
o If the sample size is large enough (n — o0) then

d—pa (o S
Sa/\/n "n )’

If the sample size is relatively small, then

C_Z—MdNt |
Safvn "
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Testing Population Mean Differences — II
Matched or Paired Samples

d—do (n large)

Matched or Paired Samples ¢ = d—do _
Sa/Nmn

"~ SE(d)

Lower-tail test: Two-tail test:

Hy: EX)-E(Y) 20
H,: EX)-E(Y)<0

Upper-tail test:

Hy: E(X)-E(Y)<0
H: EX)-E(Y)>0

Hy: EX)-E(Y) =0
Hy: EQO-E(Y) 0

“Zg, Zq = Zo2 Za2
Reject Hy if t <— 2z, Reject Hy if t > z,, Reject Hy if t <—2z,,
ort> Zan
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Testing for Equal Means: Matched Samples

Testing Population Mean Differences — I
Matched or Paired Samples: Example

@ Assume you send your salespeople to a “customer service” training
workshop. Has the training made a difference in the number of
complaints? Test at the 5% significance level. You collect the following

data:
Salesperson CB. TF MH RK M.O.
Complaints, Before: 6 20 3 0 4
Complaints, After: 4 6 2 0 0
Difference, d; -2 -14 -1 0 -4

- I 1 5 -
=z = =42 sy =] —— a2
d= 5 Zi:ld’ =42 sa = \/5 1 Zizl(dl d)? =5.67

» The hypothesis of interest is

Hy:px —py =0
Hy:px —py #0

P. Konstantinou (AUEB)
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Testing Population Mean Differences — III
Matched or Paired Samples

_d—dy_d—dy
" SE(d) ~ sq/vm 7!

Matched or Paired Samples ¢

Two-tail test:

Hy: E(X)-E(Y) =0
Hy: EX)-E(Y) #0

Lower-tail test:

Hy: EX)-E(Y) =0
Hy: E(X)-E(Y) <0

Upper-tail test:

Hy: EX)-E(Y)<0
H,: EX)~E(Y)> 0

a

-t

n-1,a

Reject Hy if t <=, 1 4

n-l o2 Inel o2

Reject Hy if t <—1,.1 4
ort> tn-l,a/2

tn-l,(x B

Reject Hyif t > ¢

n-1,0
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Testing Population Mean Differences — 11
Matched or Paired Samples: Example

» Withn = 4 and a = 0.05 the critical value is 1,1 o /2 = 14,0.025 = 2.776.
> We have
—42-0

d —d,
r = - — 1.66 > —t40005 = —2.776,
sa/vn  5.67/v/4 0023

or |t < t4,0.025 = 2.776. Hence, we do not reject Hy. There is not a
significant change in the number of complaints.

56/61

P. Konstantinou (AUEB)

August 28, 2023




e e Enployingpvus |
Annex: Hypothesis Tests — [

Employing the p-value

@ Suppose we have a sample of n observations (they are assumed //D) and
compute the sample average Y. The sample average can differ from iy o
for two reasons

@ The population mean py is not equal to py o (Hp is not true)
© Due to random sampling ¥ # py = py,o (Hy is true)

@ To quantify the second reason we define the p-value. The p-value is the
probability of drawing a sample with Y at least as far from uy o as the
value actually observed, given that the null hypothesis is true.

p-value = E;r UY — pyol > ‘Yac; _ MY,OH :

where Y% is the value of Y actually observed

August 28, 2023 57/61

P. Konstantinou (AUEB)

o Ao Baployngpaies |
Annex: Hypothesis Tests — III

Employing the p-value

The p-value is the shaded
area in the graph

{7 act
Y& -y
Ty

ol

e For large n, p-value = the probability that a N(0, 1) random variable falls

Yo —py o
— 8 where oy = oy/\/n

outside )
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Annex: Hypothesis Tests — 1I

Employing the p-value
@ To compute the p-value, you need the to know the sampling distribution
of Y, which is complicated if n is small. With large n the CLT states that

2
YNN(MY,&>,
n

which implies that if the null hypothesis is true:

Y — pypo
0 N0, 1)

Iy

n

@ Hence
Y _ Yact _ Yact _
p-value = Pr Hyol o PYoll g [ — |1 HY0
Hy o7 or o7
n n n
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Computing the p-value when o7 is unknown

@ In practice 012, is usually unknown and must be estimated

e The sample variance S} is the estimator of 63 = E [(Y — py)?], defined
as

» division by n — 1 because we ‘replace’ jiy by Y which uses up 1 degree of
freedom

> if ¥}, Y, ..., Y, are IID and E(Y*) < oo, then 3 % o2 (Law of Large
Numbers)

@ The sample standard deviation Sy = 4 /S%, is the estimator of oy.
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Annex: Hypothesis Tests — II

Computing the p-value when o% is unknown

@ The standard error SE(Y) is an estimator of oy

SE(Y) = %

@ Because S is a consistent estimator of o3 we can (for large n) replace

2
oy _ Sy
\/—b SE(Y) = —

@ This implies that when a% is unknown and Y1, Y», ..., Y, are IID the
p-value is computed as
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