Statistics for Business

Sampling Distributions, Interval Estimation and Hypothesis Tests.

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management
Athens University of Economics and Business

First Draft: July 15, 2015. This Draft: August 28, 2023.

Sampling

- A population is a collection of all the elements of interest, while a sample is a subset of the population.
- The reason we select a sample is to collect data to answer a research question about a population.
- The sample results provide only estimates of the values of the population characteristics. With proper sampling methods, the sample results can provide "good" estimates of the population characteristics.
- A random sample from an infinite population is a sample selected such that the following conditions are satisfied:
- Each element selected comes from the population of interest.
- Each element is selected independently.
\star If the population is finite, then we sample with replacement...

Lecture Outline

- Simple random sampling
- Distribution of the sample average
- Large sample approximation to the distribution of the sample mean
- Law of Large Numbers
- Central Limit Theorem
- Estimation of the population mean
- Unbiasedness
- Consistency
- Efficiency
- Hypothesis test concerning the population mean
- Confidence intervals for the population mean
- Using the t-statistic when n is small
- Comparing means from different populations

P. Konstantinou (AUEB)	Statistics for Business - III	August 28, 2023	2/61

Simple Random Sampling - I

- Simple random sampling means that n objects are drawn randomly from a population and each object is equally likely to be drawn
- Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ denote the 1 st to the nth randomly drawn object. Under simple random sampling
- The marginal probability distribution of Y_{i} is the same for all $i=1,2, \ldots, n$ and equals the population distribution of Y.
\star because $Y_{1}, Y_{2}, \ldots, Y_{n}$ are drawn randomly from the same population.
- Y_{1} is distributed independently from Y_{2}, \ldots, Y_{n}. knowing the value of Y_{i} does not provide information on Y_{j} for $i \neq j$
- When $Y_{1}, Y_{2}, \ldots, Y_{n}$ are drawn from the same population and are independently distributed, they are said to be I.I.D. random variables

Simple Random Sampling - II

Example

- Let G be the gender of an individual ($G=1$ if female, $G=0$ if male)
- G is a Bernoulli r.v. with $\mathrm{E}(G)=\mu_{G}=\operatorname{Pr}(G=1)=0.5$
- Suppose we take the population register and randomly draw a sample of size n
- The probability distribution of G_{i} is a Bernoulli with mean 0.5
- G_{1} is distributed independently from G_{2}, \ldots, G_{n}
- Suppose we draw a random sample of individuals entering the building of the accounting department
- This is not a sample obtained by simple random sampling and $G_{1}, G_{2}, \ldots, G_{n}$ are not i.i.d
- Men are more likely to enter the building of the accounting department!

The Sampling Distribution of the Sample Average - II

$$
\bar{Y}=\frac{1}{n}\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

- Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are I.I.D. and the mean $\&$ variance of the population distribution of Y are respectively μ_{Y} and σ_{Y}^{2}
- The mean of (the sampling distribution of) \bar{Y} is

$$
\mathrm{E}(\bar{Y})=\mathrm{E}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}\left(Y_{i}\right)=\frac{1}{n} n \mathrm{E}(Y)=\mu_{Y}
$$

- The variance of (the sampling distribution of) \bar{Y} is

$$
\begin{aligned}
\operatorname{Var}(\bar{Y}) & =\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)+2 \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& =\frac{1}{n^{2}} n \operatorname{Var}(Y)+0=\frac{1}{n} \operatorname{Var}(Y)=\frac{\sigma_{Y}^{2}}{n}
\end{aligned}
$$

The Sampling Distribution of the Sample Average - I

- The sample average \bar{Y} of a randomly drawn sample is a random variable with a probability distribution called the sampling distribution

$$
\bar{Y}=\frac{1}{n}\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

- The individuals in the sample are drawn at random.
- Thus the values of $\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$ are random
- Thus functions of $\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$, such as \bar{Y}, are random: had a different sample been drawn, they would have taken on a different value
- The distribution of over different possible samples of size n is called the sampling distribution of \bar{Y}.
- The mean and variance of are the mean and variance of its sampling distribution, $\mathrm{E}(\bar{Y})$ and $\operatorname{Var}(\bar{Y})$.
- The concept of the sampling distribution underpins all of statistics/econometrics.
P. Konstantinou (AUEB)

The Sampling Distribution of the Sample Average - III

Example

- Let G be the gender of an individual ($G=1$ if female, $G=0$ if male)
- The mean of the population distribution of G is

$$
\mathrm{E}(G)=\mu_{G}=\operatorname{Pr}(G=1)=p=0.5
$$

- The variance of the population distribution of G is

$$
\operatorname{Var}(G)=\sigma_{G}^{2}=p(1-p)=0.5(1-0.5)=0.25
$$

- The mean and variance of the average gender (proportion of women) \bar{G} in a random sample with $n=10$ are

$$
\begin{aligned}
\mathrm{E}(\bar{G}) & =\mu_{G}=0.5 \\
\operatorname{Var}(\bar{G}) & =\frac{1}{n} \sigma_{G}^{2}=\frac{1}{10} 0.25=0.025
\end{aligned}
$$

The Finite-Sample Distribution of the Sample Average

- The finite sample distribution is the sampling distribution that exactly describes the distribution of \bar{Y} for any sample size n.
- In general the exact sampling distribution of \bar{Y} is complicated and depends on the population distribution of Y.
- A special case is when $Y_{1}, Y_{2}, \ldots, Y_{n}$ are IID draws from the $N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$, because in this case

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

The Sampling Distribution of the Average Gender \bar{G}

- Suppose G takes on 0 or 1 (a Bernoulli random variable) with the probability distribution

$$
\operatorname{Pr}(G=0)=p=0.5, \quad \operatorname{Pr}(G=1)=1-p=0.5
$$

- As we discussed above:

$$
\begin{aligned}
\mathrm{E}(G) & =\mu_{G}=\operatorname{Pr}(G=1)=p=0.5 \\
\operatorname{Var}(G) & =\sigma_{G}^{2}=p(1-p)=0.5(1-0.5)=0.25
\end{aligned}
$$

- The sampling distribution of \bar{G} depends on n.
- Consider $n=2$. The sampling distribution of \bar{G} is
- $\operatorname{Pr}(\bar{G}=0)=0.5^{2}=0.25$
- $\operatorname{Pr}(\bar{G}=1 / 2)=2 \times 0.5 \times(1-0.5)=0.5$
- $\operatorname{Pr}(\bar{G}=1)=(1-0.5)^{2}=0.25$
P. Konstantinou (AUEB)

The Asymptotic Distribution of the Sample Average \bar{Y}

- Given that the exact sampling distribution of \bar{Y} is complicated and given that we generally use large samples in statistics/econometrics we will often use an approximation of the sample distribution that relies on the sample being large
- The asymptotic distribution or large-sample distribution is the approximate sampling distribution of \bar{Y} if the sample size becomes very large: $n \rightarrow \infty$.
- We will use two concepts to approximate the large-sample distribution of the sample average
- The law of large numbers.
- The central limit theorem.

The Law of Large Numbers (LLN)

Definition (Law of Large Numbers)

Suppose that

(1) $Y_{i}, i=1, \ldots, n$ are independently and identically distributed with $\mathrm{E}\left(Y_{i}\right)=\mu_{Y}$; and
(2) large outliers are unlikely i.e. $\operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}<+\infty$.

Then \bar{Y} will be near μ_{Y} with very high probability when n is very large $(n \rightarrow \infty)$

$$
\bar{Y} \xrightarrow{p} \mu_{Y} .
$$

We also say that the sequence of random variables $\left\{Y_{n}\right\}$ converges in probability to the μ_{Y}, if for every $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\bar{Y}_{n}-\mu_{Y}\right|>\varepsilon\right)=0
$$

We also denote this by $\operatorname{plim}\left(Y_{n}\right)=\mu_{Y}$

P. Konstantinou (AUEB)	Statistics for Business - III	August 28, 2023	$13 / 61$

The Central Limit Theorem (CLT)

Definition (Central Limit Theorem)

Suppose that

(1) $Y_{i}, i=1, \ldots, n$ are independently and identically distributed with $\mathrm{E}\left(Y_{i}\right)=\mu_{Y}$; and
(2) large outliers are unlikely i.e. $\operatorname{Var}\left(Y_{i}\right)=\sigma_{Y}^{2}$ with $0<\sigma_{Y}^{2}<+\infty$.

Then the distribution of the sample average \bar{Y} will be approximately normal as n becomes very large $(n \rightarrow \infty)$

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

The distribution of the the standardized sample average is approximately standard normal for $n \rightarrow \infty$

$$
\frac{\bar{Y}-\mu_{Y}}{\sigma_{Y} / \sqrt{n}}
$$

The Law of Large Numbers (LLN)
Example: Gender $G \sim \operatorname{Bernoulli}(0.5,0.25)$

P. Konstantinou (AUEB)

Asymptotic Approximations
The Central Limit Theorem (CLT)
Example: Gender $G \sim \operatorname{Bernoulli}(0.5,0.25)$

Sample distribution of average gender

_- Standard normal probability densitity

Sample distribution of average gender

Finite sample distr. standardized sample average Finite sample distr. standardized sam
Standard normal probabiity densitiy onstantinou (AUEB)

\square Finite sample distr. standardized sample average

Sample distribution of average gender

Finite sample distr. standardized sample average Standard normal probability densitiy

The Central Limit Theorem (CLT)

- How good is the large-sample approximation?
\star If $Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ the approximation is perfect.
\star If Y_{i} is not normally distributed the quality of the approximation depends on how close n is to infinity (how large n is)
* For $n \geq 100$ the normal approximation to the distribution of \bar{Y} is typically very good for a wide variety of population distributions.

Estimators and Estimates

Definition

An estimator is a function of a sample of data to be drawn randomly from a population.

- An estimator is a random variable because of randomness in drawing the sample. Typically used estimators
Sample Average: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$, Sample variance: $S_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$.
Using a particular sample $y_{1}, y_{2}, \ldots, y_{n}$ we obtain

$$
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} \text { and } s_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

which are point estimates. These are the numerical value of an estimator when it is actually computed using a specific sample.

P. Konstantinou (AUEB)	Statistics for Business - III	August 28,2023	18/61

Estimation of the Population Mean - II

(1) Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_{Y}$ equals μ_{Y}

$$
\mathrm{E}\left(\hat{\mu}_{Y}\right)=\mu_{Y} .
$$

(2) Consistency: The probability that $\hat{\mu}_{Y}$ is within a very small interval of μ_{Y}
approaches 1 if $n \rightarrow \infty$

$$
\hat{\mu}_{Y} \xrightarrow{p} \mu_{Y} \text { or } \operatorname{Pr}\left(\left|\hat{\mu}_{Y}-\mu_{Y}\right|<\varepsilon\right)=1
$$

(0) Efficiency: If the variance of the sampling distribution of $\hat{\mu}_{Y}$ is smaller than that of some other estimator $\tilde{\mu}_{Y}, \hat{\mu}_{Y}$ is more efficient

$$
\operatorname{Var}\left(\hat{\mu}_{Y}\right) \leq \operatorname{Var}\left(\tilde{\mu}_{Y}\right)
$$

$\mathrm{E}\left(\hat{\mu}_{Y}\right)=\mu_{Y}$.

- To determine which of the estimators, \bar{Y}, Y_{1} or \tilde{Y} is the best estimator of μ_{Y} we consider 3 properties.
- Let $\hat{\mu}_{Y}$ be an estimator of the population mean μ_{Y}

Estimation of the Population Mean - I

- Suppose we want to know the mean value of $Y\left(\mu_{Y}\right)$ in a population, for example
- The mean wage of college graduates.
- The mean level of education in Greece.
- The mean probability of passing the statistics exam.
- Suppose we draw a random sample of size n with $Y_{1}, Y_{2}, \ldots, Y_{n}$ being IID
- Possible estimators of μ_{Y} are:
- The sample average: $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$
- The first observation: Y_{1}
- The weighted average: $\tilde{Y}=\frac{1}{n}\left(\frac{1}{2} Y_{1}+\frac{3}{2} Y_{2}+\ldots+\frac{1}{2} Y_{n-1}+\frac{3}{2} Y_{n}\right)$.

Estimating Mean Wages - I

- Suppose we are interested in the mean wages (pre tax) μ_{W} of individuals with a Ph.D. in economics/finance in Europe (true mean $\mu_{w}=60 \mathrm{~K}$). We draw the following sample $(n=10)$ by simple random sampling

i	1	2	3	4	5
W_{i}	47281.92	70781.94	55174.46	49096.05	67424.82

i	6	7	8	9	10
W_{i}	39252.85	78815.33	46750.78	46587.89	25015.71

- The 3 estimators give the following estimates:
- $\bar{W}=\frac{1}{10} \sum_{i=1}^{10} W_{i}=52618.18$
- $W_{1}=47281.92$
- $\tilde{W}=\frac{1}{10}\left(\frac{1}{2} W_{1}+\frac{3}{2} W_{2}+\ldots+\frac{1}{2} W_{9}+\frac{3}{2} W_{10}\right)=49398.82$
- Unbiasedness: All 3 proposed estimators are unbiased
 Estimator Properties

Estimating Mean Wages - III

- $\tilde{W}=\frac{1}{n}\left(\frac{1}{2} W_{1}+\frac{3}{2} W_{2}+\ldots+\frac{1}{2} W_{n-1}+\frac{3}{2} W_{n}\right)$ can also be shown to be consistent

However W_{1} is not a consistent estimator of μ_{W}.

Estimating Mean Wages - II

- Consistency:

- By the law of large numbers $\bar{W} \xrightarrow{p} \mu_{W}$ which implies that the probability that \bar{W} is within a very small interval of μ_{W} approaches 1 if $n \rightarrow \infty$

P. Konstantinou (AUEB)

Estimating Mean Wages - IV

- Efficiency: We have that
- $\operatorname{Var}(\bar{W})=\frac{1}{n} \sigma_{W}^{2}$
- $\operatorname{Var}\left(W_{1}\right)=\sigma_{W}^{2}$
- $\operatorname{Var}(\tilde{W})=1.25 \frac{1}{n} \sigma_{W}^{2}$
- So for any $n \geq 2, \bar{W}$ is more efficient than W_{1} and \tilde{W}.
- In fact \bar{Y} is the Best Linear Unbiased Estimator (BLUE): it is the most efficient estimator of μ_{Y} among all unbiased estimators that are weighted averages of $Y_{1}, Y_{2}, \ldots, Y_{n}$
\star Let $\hat{\mu}_{Y}=\frac{1}{n} \sum_{i=1}^{n} \alpha_{i} Y_{i}$ be an unbiased estimator of μ_{Y} with α_{i} nonrandom constants. Then \bar{Y} is more efficient than $\hat{\mu}_{Y}$

$$
\operatorname{Var}(\bar{Y}) \leq \operatorname{Var}\left(\hat{\mu}_{Y}\right)
$$

Hypothesis Tests

Consider the following questions:

- Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?
- Is the mean level of education in Greece equal to 12 years?
- Is the mean probability of passing the stats exam equal to 1 ?

These questions involve the population mean taking on a specific value $\mu_{Y, 0}$. Answering these questions implies using data to compare a null hypothesis (a tentative assumption about the population mean parameter)

$$
H_{0}: \mathrm{E}(Y)=\mu_{Y, 0}
$$

to an alternative hypothesis (the opposite of what is stated in the H_{0})

$$
H_{1}: \mathrm{E}(Y) \neq \mu_{Y, 0}
$$

- Alternative Hypothesis as a Research Hypothesis
- Example: A new sales force bonus plan is developed in an attempt to increase sales.
- Alternative Hypothesis: The new bonus plan increase sales.
- Null Hypothesis: The new bonus plan does not increase sales.
P. Konstantinou (AUEB) Statistics for Business - III August 28, 2023

Hypothesis Testing using p-values

- The p-value is the probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis
- If the p-value is less than or equal to the level of significance α, the value of the test statistic is in the rejection region.
- Reject H_{0} if the p-value $<\alpha$.
- See also Annex
- Rules of thumb
- If p-value is less than .01 , there is overwhelming evidence to conclude H_{0} is false.
- If p-value is between .01 and .05 , there is strong evidence to conclude H_{0} is false.
- If p-value is between .05 and .10 , there is weak evidence to conclude H_{0} is false.
- If p-value is greater than .10 , there is insufficient evidence to conclude H_{0} is false.

Hypothesis Test for the Mean with σ_{Y}^{2} known - I
Decision Rules

- The test statistic employed is obtained by converting the sample result (\bar{y}) to a z-value

$$
\left.\begin{array}{cc}
z=\frac{\bar{y}-\mu_{Y, 0}}{\sigma_{Y} / \sqrt{n}} & \\
\hline \begin{array}{c}
H_{0}: \mathrm{E}(Y) \geq \mu_{Y, 0} \\
H_{1}: \mathrm{E}(Y)<\mu_{Y, 0}
\end{array} & \begin{array}{c}
H_{0}: \mathrm{E}(Y) \leq \mu_{Y, 0} \\
H_{1}: \mathrm{E}(Y)>\mu_{Y, 0}
\end{array}
\end{array} \begin{array}{cc}
H_{0}: \mathrm{E}(Y)=\mu_{Y, 0} \\
H_{1}: \mathrm{E}(Y) \neq \mu_{Y, 0}
\end{array} \right\rvert\, \begin{array}{cc}
\text { Two-tailed } \\
\text { Lower-tail } & \text { Upper-tail }
\end{array} \begin{gathered}
\text { Reject } H_{0} \text { if } z<-z_{\alpha / 2} \\
\text { or if } z>z_{\alpha / 2}
\end{gathered}
$$

Hypothesis Test for the Mean with σ_{Y}^{2} known - II
Decision Rules

$-z_{\alpha}$
Reject H_{0} if $z<-\mathbf{Z}_{\alpha}$

z_{α}

Reject H_{0} if $z>z_{\alpha}$

Hypothesis Test for the Mean (σ^{2} known) - I

Examples

- Example 1. A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over $\$ 52$ per month. The company wishes to test this claim. Assume $\sigma=10 \$$ is known and let $\alpha=0.10$. Suppose a sample of 64 persons is taken, and it is found that the average bill $\$ 53.1$.
- Form the hypothesis to be tested

$$
\begin{aligned}
& H_{0}: \mathrm{E}(Y) \leq 52 \quad \text { the mean is not over } \$ 52 \text { per month } \\
& H_{1}: \mathrm{E}(Y)>52 \quad \text { the mean is over } \$ 52 \text { per month }
\end{aligned}
$$

- For $\alpha=0.10, z_{0.10}=1.28$, so we would reject H_{0} if $z>1.28$.
- We have $n=64$ and $\bar{y}=53.1$, so the test statistic is

$$
z=\frac{\bar{y}-\mu_{Y, 0}}{\sigma_{Y} / \sqrt{n}}=\frac{53.1-52}{10 / \sqrt{64}}=0.88<z_{0.10}=1.28
$$

Hence H_{0} cannot be rejected.

Hypothesis Test for the Mean (σ^{2} known) - III
Examples

- We have $n=100$ and $\bar{y}=2.84$, so the test statistic is

$$
z=\frac{\bar{y}-\mu_{Y, 0}}{\sigma_{Y} / \sqrt{n}}=\frac{2.84-3}{0.8 / \sqrt{100}}=\frac{-0.16}{0.08}=-2<-z_{0.025}=-1.96
$$

or $|z|=2>1.96$, Hence H_{0} is rejected. We conclude that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3 .

Test for the Mean with σ_{Y}^{2} unknown but $n \rightarrow \infty$ Example

- Suppose we would like to test

$$
H_{0}: \mathrm{E}(W)=60000, \quad H_{1}: \mathrm{E}(W) \neq 60000
$$

using a sample of 250 individuals with a Ph.D. degree at the 5% significance level.

- We perform the following steps:
(1) $\bar{W}=\frac{1}{n} \sum_{i=1}^{n} W_{i}=\frac{1}{250} \sum_{i=1}^{250} W_{i}=61977.12$.
(2) $\operatorname{SE}(\bar{W})=\frac{s_{W}}{\sqrt{n}}=\frac{s_{W}}{\sqrt{250}}=1334.19$.
(3) Compute $t^{\text {act }}=\frac{\bar{W}-\mu_{W, 0}}{S E(\bar{W})}=\frac{61977.12-60000}{1334.19}=1.4819$.
(4) Since we use a 5% significance level, we do not reject H_{0} because $\left|t^{a c t}\right|=1.4819<z_{0.025}=1.96$.
- Suppose we are interested in the alternative $H_{1}: \mathrm{E}(W)>60000$. The t-stat is exactly the same: $t^{a c t}=1.4819$. but now needs to be compared with $z_{0.05}=1.645$.

Test for the Mean with σ_{Y}^{2} unknown but $n \rightarrow \infty$
Decision Rules

- Since $S_{Y}^{2} \xrightarrow{p} \sigma_{Y}^{2}$, compute the standard error of $\bar{Y}, S E(\bar{Y})=s_{Y} / \sqrt{n}$ and construct a t-ratio.

$$
\text { Hypothesis Tests for } E(Y) t=\frac{\bar{Y}-\mu_{Y, 0}}{\operatorname{SE}(\bar{Y})}=\frac{\bar{Y}-\mu_{Y, 0}}{s_{Y} / \sqrt{n}}
$$

Lower-tail test:
$H_{0}: E(Y) \geq \mu_{0}$
$H_{1}: E(Y)<\mu_{0}$
$-z_{\alpha}$
Reject H_{0} if $t<-\mathrm{z}_{\alpha}$

P. Konstantinou (AUEB)

| Upper-tail test: |
| :---: | :---: |
| $H_{0}: E(Y) \leq \mu_{Y, 0}$ |
| $H_{1}: E(Y)>\mu_{Y, 0}$ |\quad| Two-tail test: |
| :---: |
| $H_{0}: E(Y)=\mu_{Y, 0}$ |
| $H_{1}: E(Y) \neq \mu_{Y, 0}$ |

Reject H_{0} if $t>z_{\alpha}$

August 28,2023

Hypothesis Test for the Mean with σ^{2} unknown (n small) Decision Rules

- Consider a random sample of n observations from a population that is normally distributed, $\boldsymbol{A} \boldsymbol{N D}$ variance σ_{Y}^{2} is unknown: $Y_{i} \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$
- Converting the sample average (\bar{y}) to a t-value...

$$
\text { Hypothesis Tests for } E(Y) \quad t=\frac{\bar{Y}-\mu_{Y, 0}}{\operatorname{SE}(\bar{Y})}=\frac{\bar{Y}-\mu_{Y, 0}}{s_{Y} / \sqrt{n}} \sim t_{n-1}
$$

Upper-tail test:
$H_{0}: E(Y) \leq \mu_{0}$
$H_{1}: E(Y)>\mu_{0}$

Two-tail test:
$H_{0}: E(Y)=\mu_{0}$
$H_{1}: E(Y) \neq \mu_{0}$
 or $t>t_{n-1, a / 2}$

Hypothesis Test for the Mean with σ^{2} unknown (n small) Example

- The average cost of a hotel room in New York is said to be $\$ 168$ per night. A random sample of 25 hotels resulted in $\bar{y}=\$ 172.50$ and $s_{y}=\$ 15.40$. Perform a test at the $\alpha=0.05$ level (assuming the population distribution is normal).
- Form the hypothesis to be tested

$$
\begin{aligned}
& H_{0}: \mathrm{E}(Y)=168 \quad \text { the mean cost is } \mathbf{\$ 1 6 8} \\
& H_{1}: \mathrm{E}(Y) \neq 168 \quad \text { the mean cost is not } \mathbf{\$ 1 6 8}
\end{aligned}
$$

- For $\alpha=0.05$, with $n=25, t_{n-1, \alpha / 2}=t_{24,0.025}=2.0639$ and $-t_{24,0.025}=2.0639$, so we would reject H_{0} if $|t|>2.0639$.
- We have $\bar{y}=172.50$ and $s_{y}=15.40$, so the test statistic is

$$
t=\frac{\bar{y}-\mu_{Y, 0}}{s_{y} / \sqrt{n}}=\frac{172.50-168}{15.40 / \sqrt{25}}=1.46<t_{24,0.025}=2.0639
$$

or $|t|=1.46<2.0639$. Hence H_{0} cannot be rejected. We conclude that there is not sufficient evidence that the true mean cost is different than \$168.
P. Konstantinou (AUEB)

August 28, 2023 37/61

Confidence Intervals for the Population Mean - I

- Suppose we would do a two-sided hypothesis test for many different values of $\mu_{0, Y}$. On the basis of this we can construct a set of values which are not rejected at $5 \%(\alpha \%)$ significance level.
- If we were able to test all possible values of $\mu_{0, Y}$ we could construct a $95 \%((1-\alpha) \%)$ confidence interval

Definition

A $95 \%((1-\alpha) \%)$ confidence interval is an interval that contains the true value of μ_{Y} in $95 \%((1-\alpha) \%)$ of all possible random samples.

- A relative frequency interpretation: From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true population mean

| P. Konstantinou (AUEB) | Statistics for Business - III | August 28, 2023 | $38 / 61$ |
| :--- | :--- | :--- | :--- | :--- |

Confidence Intervals for the Population Mean - III

- When the sample size n is large (or when the population is normal and σ_{Y}^{2} is known):
- A 90% confidence interval for $\mu_{Y}:[\bar{Y} \pm 1.645 \cdot \mathrm{SE}(\bar{Y})]$
- A 95% confidence interval for $\mu_{Y}:[\bar{Y} \pm 1.96 \cdot \mathrm{SE}(\bar{Y})]$
- A 99% confidence interval for $\mu_{Y}:[\bar{Y} \pm 2.58 \cdot \mathrm{SE}(\bar{Y})]$
- with $\operatorname{SE}(\bar{Y})=\sigma_{Y} / \sqrt{n}$ when variance is known or $\operatorname{SE}(\bar{Y})=s_{Y} / \sqrt{n}$ when unknown and is estimated.
- Instead of doing infinitely many hypothesis tests we can compute the $95 \%((1-\alpha) \%)$ confidence interval as

$$
\bar{Y}-z_{\alpha / 2} \mathrm{SE}(\bar{Y})<\mu<\bar{Y}+z_{\alpha / 2} \mathrm{SE}(\bar{Y}) \quad \text { or } \quad \bar{Y} \pm \underbrace{z_{\alpha / 2} \mathrm{SE}(\bar{Y})}_{\text {Margin of Error }}
$$

Confidence Intervals for the Population Mean - IV

Example

A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard
deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of the population.

$$
\begin{aligned}
\bar{y} \pm z_{\alpha / 2} \frac{\sigma_{Y}}{\sqrt{n}} & =2.20 \pm 1.96(0.35 / \sqrt{11})=2.20 \pm 0.2068 \\
1.9932 & <\mu_{Y}<2.4068
\end{aligned}
$$

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals for the Population Mean - V

Example

Using the sample of $n=250$ individuals with a Ph.D. degree discussed above $\left(\bar{W}=61977.12, s_{W}=21095.37, \mathrm{SE}(\bar{Y})=s_{W} / \sqrt{n}=21095.37 / \sqrt{250}\right)$:

- A 90% C.I. for μ_{W} is: $[61977.12 \pm 1.64 \cdot 1334.19]=[59349.39,64604.85]$.
- A 95% C.I. for μ_{W} is: $[61977.12 \pm 1.96 \cdot 1334.19]=[59774.38,64179.86]$.
- A 99\% C.I. for μ_{W} is: $[61977.12 \pm 2.58 \cdot 1334.19]=[58513.94,65440.30]$.

Confidence Intervals for the Population Mean - VI

- When the sample size n is small $\boldsymbol{A N D}$ the population from which we draw data is normal:

$$
\bar{Y}-t_{n-1, \alpha / 2} \frac{s_{Y}}{\sqrt{n}}<\mu_{Y}<\bar{Y}+t_{n-1, \alpha / 2} \frac{s_{Y}}{\sqrt{n}} \quad \text { or } \quad \bar{Y} \pm \underbrace{t_{n-1, \alpha / 2} \frac{s_{Y}}{\sqrt{n}}}_{\text {Margin of Error }}
$$

- A 90% confidence interval for $\mu_{Y}:\left[\bar{Y} \pm t_{n-1,0.05} \cdot \mathrm{SE}(\bar{Y})\right]$
- A 95% confidence interval for $\mu_{Y}:\left[\bar{Y} \pm t_{n-1,0.025} \cdot \mathrm{SE}(\bar{Y})\right]$
- A 99% confidence interval for $\mu_{Y}:\left[\bar{Y} \pm t_{n-1,0.005} \cdot \mathrm{SE}(\bar{Y})\right]$
- with $\operatorname{SE}(\bar{Y})=s_{Y} / \sqrt{n}$

Example

A random sample of $n=25$ has $\bar{x}=50$ and $s=8$. Form a 95% confidence interval for μ.

- d.f. $=n-1=24$, so $t_{24, \alpha / 2}=t_{24,0.025}=2.0639$

$$
\begin{aligned}
\bar{x} \pm t_{n-1, \alpha / 2} \frac{s}{\sqrt{n}} & =50 \pm 2.0639(8 / \sqrt{25})=50 \pm 3.302 \\
46.698 & <\mu<53.302
\end{aligned}
$$

Comparing Means from Different Populations - I

Large Samples or Known Variances from Normal Populations

- Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount d_{0} :

$$
H_{0}: \mu_{W, M}-\mu_{W, F}=d_{0} \quad H_{0}: \mu_{W, M}-\mu_{W, F} \neq d_{0}
$$

- To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments
(1) Estimate $\left(\mu_{W, M}-\mu_{W, F}\right)$ by $\left(\bar{W}_{M}-\bar{W}_{M}\right)$.
- Because a weighted average of 2 independent normal random variables is itself normally distributed we have (using the CLT and the fact that $\left.\operatorname{Cov}\left(\bar{W}_{M}, \bar{W}_{F}\right)=0\right)$

$$
\bar{W}_{M}-\bar{W}_{F} \sim N\left(\mu_{W, M}-\mu_{W, F}, \frac{\sigma_{W, M}^{2}}{n_{M}}+\frac{\sigma_{W, F}^{2}}{n_{F}}\right)
$$

P. Konstantinou (AUEB)

Comparing Means from Different Populations - III

Large Samples or Known Variances from Normal Populations

Example

Suppose we have random samples of 500 men and 500 women with a Ph.D. degree and we would like to test that the mean wages are equal:

$$
H_{0}: \mu_{W, M}-\mu_{W, M}=0 \quad H_{1}: \mu_{W, M}-\mu_{W, M} \neq 0
$$

We obtained $\bar{W}_{M}=64159.45, \bar{W}_{F}=53163.41, s_{W, M}=18957.26$, and $s_{W, F}=20255.89$. We have:
(1) $\bar{W}_{M}-\bar{W}_{F}=64159.45-53163.41=10996.04$.
(2) $\operatorname{SE}\left(\bar{W}_{M}-\bar{W}_{F}\right)=1240.709$.
(3) $t^{a c t}=\frac{\left(\bar{W}_{M}-\bar{W}_{F}\right)-0}{\operatorname{SE}\left(W_{M}-W_{F}\right)}=\frac{10996.04}{1240.709}=8.86$.

- Since we use a 5% significance level, we reject H_{0} because $\left|t^{a c t}\right|=8.86>1.96$

Comparing Means from Different Populations - II
Large Samples or Known Variances from Normal Populations
(c) Estimate $\sigma_{W, M}$ and $\sigma_{W, F}$ to obtain $\operatorname{SE}\left(\bar{W}_{M}-\bar{W}_{F}\right)$:

$$
\operatorname{SE}\left(\bar{W}_{M}-\bar{W}_{F}\right)=\sqrt{\frac{s_{W, M}^{2}}{n_{M}}+\frac{s_{W, F}^{2}}{n_{F}}}
$$

(0) Compute the t-statistic

$$
t^{a c t}=\frac{\left(\bar{W}_{M}-\bar{W}_{M}\right)-d_{0}}{\operatorname{SE}\left(\bar{W}_{M}-\bar{W}_{F}\right)}
$$

(1) Reject H_{0} at a 5% significance level if $\left|t^{a c t}\right|>1.96$ or if the p-value <0.05.
P. Konstantinou (AUEB)

Confidence Interval for the Difference in Population Means

- The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.
- A hypothesized value of the difference in means d_{0} will be rejected if $|t|>1.96$ and will be in the confidence set if $|t| \leq 1.96$.
- Thus the 95% confidence interval for $\mu_{W, M}-\mu_{W, F}$ are the values of d_{0} within ± 1.96 standard errors of $\left(\bar{W}_{M}-\bar{W}_{F}\right)$.
- So a 95% confidence interval for $\mu_{W, M}-\mu_{W, F}$ is

$$
\begin{array}{r}
\left(\bar{W}_{M}-\bar{W}_{M}\right) \pm 1.96 \cdot \mathrm{SE}\left(\bar{W}_{M}-\bar{W}_{M}\right) \\
10996.04 \pm 1.96 \cdot 1240.709
\end{array}
$$

[8561.34, 13430.73]

Testing Population Mean Differences

Normal Populations, Unknown Variances σ_{X}^{2} and σ_{Y}^{2} but Assumed Equal

$$
t=\frac{(\bar{X}-\bar{Y})-d_{0}}{\operatorname{SE}(\bar{X}-\bar{Y})}=\frac{(\bar{X}-\bar{Y})-d_{0}}{\sqrt{\left(s_{p}^{2} / n_{X}\right)+\left(s_{p}^{2} / n_{Y}\right)}} \sim t_{n_{X}+n_{Y}-2}
$$

where $s_{p}^{2}=\frac{\left(n_{X}-1\right) s_{X}^{2}+\left(n_{Y}-1\right) s_{Y}^{2}}{n_{X}+n_{Y}-2}$

- The C.I. is constructed as $(\bar{X}-\bar{Y}) \pm t_{n_{X}+n_{Y}-2, \alpha / 2} \cdot \mathrm{SE}(\bar{X}-\bar{Y})$.
- Recall $\mu_{X}=\mathrm{E}(X), \mu_{Y}=\mathrm{E}(Y)$

$H_{0}: \mu_{X}-\mu_{Y} \geq d_{0}$ $H_{1}: \mu_{X}-\mu_{Y}<d_{0}$	$H_{0}: \mu_{X}-\mu_{Y} \leq d_{0}$ $H_{1}: \mu_{X}-\mu_{Y}>d_{0}$	$H_{0}: \mu_{X}-\mu_{Y}=d_{0}$ $H_{1}: \mu_{X}-\mu_{Y} \neq d_{0}$
Lower-tail	Upper-tail	Two-tailed
Reject H_{0} if $t<t_{\alpha}$	Reject H_{0} if $t>t_{\alpha}$	Reject H_{0} if $\|t\|>t_{\alpha}$

P. Konstantinou (AUEB)

$$
\text { Reject } H_{0} \text { if } t>t_{\alpha} \quad \text { Reject } H_{0} \text { if }|t|>t_{\alpha / 2}
$$

Testing for Equal Means from Different Populations

Testing Population Mean Differences - II

Example: Normal Populations, Unknown Variances σ_{X}^{2} and σ_{Y}^{2} but Assumed Equal

- Note that $d f=n_{X}+n_{Y}-2=21+25-2=44$, so the critical value for the test is $t_{44,0.025}=2.0154$
- The pooled variance is:

$$
\begin{aligned}
s_{p}^{2} & =\frac{\left(n_{X}-1\right) s_{X}^{2}+\left(n_{Y}-1\right) s_{Y}^{2}}{n_{X}+n_{Y}-2}=\frac{(21-1) 1.30^{2}+(25-1) 1.16^{2}}{(21-1)+(25-1)} \\
& =1.5021
\end{aligned}
$$

- The test statistic is

$$
t^{a c t}=\frac{(\bar{x}-\bar{y})-d_{0}}{\sqrt{\left(s_{p}^{2} / n_{X}\right)+\left(s_{p}^{2} / n_{Y}\right)}}=\frac{(3.27-2.53)-0}{\sqrt{1.5021\left(\frac{1}{21}+\frac{1}{25}\right)}}=2.040
$$

Since $\left|t^{a c t}\right|>t_{44,0.025}=2.0154$, we reject H_{0} at $\alpha=0.05$. We conclude that there is evidence of a difference...

- The C.I. is constructed as $(\bar{X}-\bar{Y}) \pm t_{n_{X}+n_{Y}-2, \alpha / 2} \cdot \mathrm{SE}(\bar{X}-\bar{Y})$

Testing Population Mean Differences - I

Example: Normal Populations, Unknown Variances σ_{X}^{2} and σ_{Y}^{2} but Assumed Equal

- You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE \& NASDAQ? You collect the following data:

	NYSE	NASDAQ
Number:	21	25
Sample mean:	3.27	2.53
Sample std. dev.:	1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in average yield $(\alpha=0.05)$?

- The hypothesis of interest is

$$
\begin{array}{|l}
\hline H_{0}: \mu_{N Y S E}-\mu_{N A S D A Q}=0 \\
H_{1}: \mu_{N Y S E}-\mu_{N A S D A Q} \neq 0
\end{array} \quad \text { or } \quad \begin{aligned}
& H_{0}: \mu_{N Y S E}=\mu_{N A S D A Q} \\
& H_{1}: \mu_{N Y S E} \neq \mu_{N A S D A Q} \\
& \hline
\end{aligned}
$$

Testing Population Mean Differences - I

Matched or Paired Samples

- Suppose we obtain a sample of n observations from two populations which are normally distributed and we have paired or matched samples repeated measures (before/after).
- Define, the pair difference $d_{i}=X_{i}-Y_{i}$. We have

$$
\bar{d}=\frac{1}{n} \sum_{i=1}^{n} d_{i}=\bar{X}-\bar{Y} ; \quad \text { and } S_{d}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(d_{i}-\bar{d}\right)^{2}}
$$

with $\mathrm{E}(\bar{d})=\mu_{d}=\mathrm{E}(X)-\mathrm{E}(Y)$ and $\mathrm{SE}(\bar{d})=\sqrt{\frac{S_{d}^{2}}{n}}=S_{d} / \sqrt{n}$

- If the sample size is large enough $(n \rightarrow \infty)$ then

$$
\frac{\bar{d}-\mu_{d}}{S_{d} / \sqrt{n}} \sim N\left(0, \frac{S_{d}^{2}}{n}\right)
$$

If the sample size is relatively small, then

$$
\frac{\bar{d}-\mu_{d}}{S_{d} / \sqrt{n}} \sim t_{n-1}
$$

Testing Population Mean Differences - II
Matched or Paired Samples

$$
\text { Matched or Paired Samples } \quad t=\frac{\bar{d}-d_{0}}{\operatorname{SE}(d)}=\frac{\bar{d}-d_{0}}{s_{d} / \sqrt{n}}(n \text { large })
$$

P. Konstantinou (AUEB)

Testing Population Mean Differences - I

Matched or Paired Samples: Example

- Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of complaints? Test at the 5% significance level. You collect the following data:

$$
\begin{array}{cccccc}
\hline \hline \text { Salesperson } & \text { C.B. } & \text { T.F } & \text { M.H. } & \text { R.K. } & \text { M.O. } \\
\hline \text { Complaints, Before: } & 6 & 20 & 3 & 0 & 4 \\
\text { Complaints, After: } & 4 & 6 & 2 & 0 & 0 \\
\cline { 2 - 6 } \text { Difference, } d_{i} & -2 & -14 & -1 & 0 & -4 \\
\bar{d}=\frac{1}{5} \sum_{i=1}^{5} d_{i}=-4.2 ; s_{d}=\sqrt{\frac{1}{5-1} \sum_{i=1}^{5}\left(d_{i}-\bar{d}\right)^{2}}
\end{array}
$$

- The hypothesis of interest is

$$
\begin{aligned}
& H_{0}: \mu_{X}-\mu_{Y}=0 \\
& H_{1}: \mu_{X}-\mu_{Y} \neq 0
\end{aligned}
$$

Testing Population Mean Differences - III
Matched or Paired Samples

$$
\text { Matched or Paired Samples } \quad t=\frac{\bar{d}-d_{0}}{\operatorname{SE}(d)}=\frac{\bar{d}-d_{0}}{s_{d} / \sqrt{n}} \sim t_{n-1}
$$

Testing Population Mean Differences - II

Matched or Paired Samples: Example

- With $n=4$ and $\alpha=0.05$ the critical value is $t_{n-1, \alpha / 2}=t_{4,0.025}=2.776$.
- We have

$$
t=\frac{\bar{d}-d_{0}}{s_{d} / \sqrt{n}}=\frac{-4.2-0}{5.67 / \sqrt{4}}=-1.66>-t_{4,0.025}=-2.776
$$

or $|t|<t_{4,0.025}=2.776$. Hence, we do not reject H_{0}. There is not a significant change in the number of complaints.

Annex: Hypothesis Tests - I

Employing the p-value

- Suppose we have a sample of n observations (they are assumed IID) and compute the sample average \bar{Y}. The sample average can differ from $\mu_{Y, 0}$ for two reasons
(1) The population mean μ_{Y} is not equal to $\mu_{Y, 0}$ (H_{0} is not true)
(2) Due to random sampling $\bar{Y} \neq \mu_{Y}=\mu_{Y, 0}$ (H_{0} is true)
- To quantify the second reason we define the p-value. The p-value is the probability of drawing a sample with \bar{Y} at least as far from $\mu_{Y, 0}$ as the value actually observed, given that the null hypothesis is true.

$$
p \text {-value }=\operatorname{Pr}_{H_{0}}\left[\left|\bar{Y}-\mu_{Y, 0}\right|>\left|\bar{Y}^{a c t}-\mu_{Y, 0}\right|\right],
$$

where $\bar{Y}^{\text {act }}$ is the value of \bar{Y} actually observed

Annex: Hypothesis Tests - III

Employing the p-value

- For large n, p-value $=$ the probability that a $N(0,1)$ random variable falls outside $\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\sigma_{\bar{Y}}}\right|$, where $\sigma_{\bar{Y}}=\sigma_{Y} / \sqrt{n}$

Annex: Hypothesis Tests - II

Employing the p-value

- To compute the p-value, you need the to know the sampling distribution of \bar{Y}, which is complicated if n is small. With large n the CLT states that

$$
\bar{Y} \sim N\left(\mu_{Y}, \frac{\sigma_{Y}^{2}}{n}\right)
$$

which implies that if the null hypothesis is true:

$$
\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}} \sim N(0,1)
$$

- Hence
p-value $=\operatorname{Pr}_{H_{0}}\left[\left|\frac{\bar{Y}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|>\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|\right]=2 \Phi\left(-\left|\frac{\bar{Y}^{\text {act }}-\mu_{Y, 0}}{\sqrt{\frac{\sigma_{Y}^{2}}{n}}}\right|\right)$
P. Konstantinou (AUEB)

Annex: Hypothesis Tests - I

Computing the p-value when σ_{Y}^{2} is unknown

- In practice σ_{Y}^{2} is usually unknown and must be estimated
- The sample variance S_{Y}^{2} is the estimator of $\sigma_{Y}^{2}=\mathrm{E}\left[\left(Y-\mu_{Y}\right)^{2}\right]$, defined as

$$
S_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

- division by $n-1$ because we 'replace' μ_{Y} by \bar{Y} which uses up 1 degree of freedom
- if $Y_{1}, Y_{2}, \ldots, Y_{n}$ are IID and $\mathrm{E}\left(Y^{4}\right)<\infty$, then $S_{Y}^{2} \xrightarrow{p} \sigma_{Y}^{2}$ (Law of Large Numbers)
- The sample standard deviation $S_{Y}=\sqrt{S_{Y}^{2}}$, is the estimator of σ_{Y}.

Annex: Hypothesis Tests - II

Computing the p-value when σ_{Y}^{2} is unknown

- The standard error $S E(\bar{Y})$ is an estimator of $\sigma_{\bar{Y}}$

$$
S E(\bar{Y})=\frac{S_{Y}}{\sqrt{n}}
$$

- Because S_{Y}^{2} is a consistent estimator of σ_{Y}^{2} we can (for large n) replace

$$
\sqrt{\frac{\sigma_{Y}^{2}}{n}} \text { by } S E(\bar{Y})=\frac{S_{Y}}{\sqrt{n}}
$$

- This implies that when σ_{Y}^{2} is unknown and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are IID the p-value is computed as

$$
p-\text { value }=2 \Phi\left(-\left|\frac{\bar{Y}^{a c t}-\mu_{Y, 0}}{S E(\bar{Y})}\right|\right)
$$

