			Lecture Outline		
S Sampling Distributio Pa MSc in Intern Athen First Draft : Jul	tatistics for Busine ons, Interval Estimation anagiotis Th. Konstantin national Shipping, Finance and s University of Economics and y 15, 2015. This Draft	ess and Hypothesis Tests. nou I Management, Business : August 28, 2023.	 Simple random sam Distribution of the s Large sample approx Law of Large N Central Limit The Estimation of the portion of the	npling sample average oximation to the distribution fumbers heorem opulation mean cerning the population mean is for the population mean distic when <i>n</i> is small from different populations	on of the sample mean ean
P. Konstantinou (AUEB)	Statistics for Business – III	 ・ ・ (一) ・ (一) ・ (三) ・ (P. Konstantinou (AUEB)	Statistics for Business – III	 ・ (日) (日) (日) (日) (日) (日) (日) (日) (日) (日)
 Sampling A <i>population</i> is a col <i>sample</i> is a subset of 	lection of all the elemer the population.	nts of interest, while a	 Simple Random Sa Simple random same a population and ea 	Impling – I <i>npling</i> means that <i>n</i> object ch object is equally likely	ets are drawn randomly from
 The reason we select a sample is to collect data to answer a research question about a population. The sample results provide only estimates of the values of the population characteristics. With <i>proper sampling methods</i>, the sample results can provide "good" estimates of the population characteristics. A <i>random sample</i> from an infinite population is a sample selected such that the following conditions are satisfied: 			 Let Y₁, Y₂,, Y_n denote the 1st to the <i>n</i> th randomly drawn object. Under simple random sampling The marginal probability distribution of Y_i is the same for all i = 1, 2,, n and equals the population distribution of Y. ★ because Y₁, Y₂,, Y_n are drawn randomly from the same population. Y₁ is distributed independently from Y₂,, Y_n. knowing the value of Y_i does not provide information on Y_j for i ≠ j 		
 Each element sele Each element is set If the population i 	ected comes from the popule elected <i>independently</i> . s finite, then we sample w	ilation of interest. with replacement	• When $Y_1, Y_2,, Y_n$ independently distribution	are drawn from the same ibuted, they are said to be	population and are <i>I.I.D. random variables</i>

ons Simple Random Sampling

Simple Random Sampling - II

Example

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- G is a Bernoulli r.v. with $E(G) = \mu_G = Pr(G = 1) = 0.5$
- Suppose we take the population register and randomly draw a sample of size *n*
 - The probability distribution of G_i is a Bernoulli with mean 0.5
 - G_1 is distributed independently from $G_2, ..., G_n$
- Suppose we draw a random sample of individuals entering the building of the accounting department
 - This is not a sample obtained by simple random sampling and $G_1, G_2, ..., G_n$ are not i.i.d
 - Men are more likely to enter the building of the accounting department!

The Sampling Distribution of the Sample Average – I

• The *sample average* \bar{Y} of a randomly drawn sample is a random variable with a probability distribution called the *sampling distribution*

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

- The individuals in the sample are drawn at random.
- Thus the values of (Y_1, Y_2, \cdots, Y_n) are random
- Thus functions of (Y_1, Y_2, \dots, Y_n) , such as \overline{Y} , are random: had a different sample been drawn, they would have taken on a different value
- The distribution of over different possible samples of size *n* is called the *sampling distribution* of \overline{Y} .
- The mean and variance of are the mean and variance of its sampling distribution, $E(\bar{Y})$ and $Var(\bar{Y})$.
- The concept of the sampling distribution underpins all of statistics/econometrics.

ampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – II

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

- Suppose that $Y_1, Y_2, ..., Y_n$ are *I.I.D.* and the mean & variance of the population distribution of *Y* are respectively μ_Y and σ_Y^2
 - The mean of (the sampling distribution of) \overline{Y} is

$$E(\bar{Y}) = E\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}E(Y_{i}) = \frac{1}{n}nE(Y) = \mu_{Y}$$

• The variance of (the sampling distribution of) \overline{Y} is

$$Var(\bar{Y}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(Y_{i}) + 2\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n}Cov(Y_{i}, Y_{j})$$
$$= \frac{1}{n^{2}}nVar(Y) + 0 = \frac{1}{n}Var(Y) = \frac{\sigma_{Y}^{2}}{n}$$

The Sampling Distribution of the Sample Average – III

Example

P. Konstantinou (AUEB)

5/61

7/61

- Let G be the gender of an individual (G = 1 if female, G = 0 if male)
- The mean of the population distribution of G is

$$E(G) = \mu_G = Pr(G = 1) = p = 0.5$$

• The variance of the population distribution of G is

$$Var(G) = \sigma_G^2 = p(1-p) = 0.5(1-0.5) = 0.25$$

• The mean and variance of the average gender (proportion of women) \overline{G} in a random sample with n = 10 are

$$E(\bar{G}) = \mu_G = 0.5$$

Var $(\bar{G}) = \frac{1}{n}\sigma_G^2 = \frac{1}{10}0.25 = 0.025$

P. Konstantinou (AUEB)

P. Konstantinou (AUEB)

III August 28, 2023

023 8/61

Sampling Distribution of the Sample Average

Sampling and Sampling Distributions Sampling Distribution of the Sample Average	Sampling and Sampling Distributions Sampling Distribution of the Sample Average
The Finite-Sample Distribution of the Sample Average	The Sampling Distribution of the Average Gender \overline{G}
 The <i>finite sample distribution</i> is the sampling distribution that exactly describes the distribution of <i>Y</i> for any sample size <i>n</i>. In general the exact sampling distribution of <i>Y</i> is complicated and depends on the population distribution of <i>Y</i>. A special case is when <i>Y</i>₁, <i>Y</i>₂,, <i>Y_n</i> are <i>IID</i> draws from the <i>N</i>(μ_Y, σ_Y²), because in this case <i>Ȳ</i> ~ <i>N</i> (μ_Y, σ_Y²) 	 Suppose G takes on 0 or 1 (a Bernoulli random variable) with the probability distribution Pr(G = 0) = p = 0.5, Pr(G = 1) = 1 − p = 0.5 As we discussed above: E(G) = µ_G = Pr(G = 1) = p = 0.5 Var(G) = σ²_G = p(1 − p) = 0.5(1 − 0.5) = 0.25 The sampling distribution of G depends on n. Consider n = 2. The sampling distribution of G is Pr(G = 0) = 0.5² = 0.25 Pr(G = 1/2) = 2 × 0.5 × (1 − 0.5) = 0.5 Pr(G = 1) = (1 − 0.5)² = 0.25
 < 由 > < 급 > < 분 > < 분 > 9 Q Q < 10 202 -	 (비미) (비미) (비) (비미) (비미) (비) (비미) (비) (비미)
P. KORStantinou (AUEB) Staustics for Business – III August 28, 2025 97/61	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 10/61
The Finite-Sample Distribution of the Average Gender \overline{G} • Suppose we draw 999 samples of $n = 2$: $\overline{\underbrace{Sample 1} \underbrace{Sample 1}_{G_2 \overline{G}} \underbrace{G_1 G_2 \overline{G}}_{G_1 G_2 \overline{G}} \underbrace{G_1 G_2 G_2 \overline{G}}_{G_1 G_2 \overline{G}} \underbrace{G_1 G_2 G_2 \overline{G}} \underbrace{G_1 G_2 G_2 \overline{G}}_{G_1 G_2 \overline{G}} \underbrace{G_1 G_2 G_2 \overline{G}} \underbrace{G_1 G_2 G_2 G_2 G_2 \overline{G}} G_1 G_2 G_2$	<text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text>

Asymptotic Approximations

The Law of Large Numbers (LLN)

Definition (Law of Large Numbers)

Suppose that

- $Y_i, i = 1, ..., n$ are independently and identically distributed with $E(Y_i) = \mu_Y$; and
- (a) large outliers are unlikely i.e. $Var(Y_i) = \sigma_Y^2 < +\infty$.

Then \overline{Y} will be near μ_Y with very high probability when *n* is very large $(n \to \infty)$

$$\bar{Y} \xrightarrow{p} \mu_Y.$$

We also say that the sequence of random variables $\{Y_n\}$ converges in probability to the μ_Y , if for every $\varepsilon > 0$

$$\lim_{n\to\infty}\Pr(|\bar{Y}_n-\mu_Y|>\varepsilon)=0.$$

Asymptotic Approximations

August 28, 2023

August 28, 2023

13/61

15/61

We also denote this by $plim(Y_n) = \mu_Y$

The Central Limit Theorem (CLT)

Definition (Central Limit Theorem)

Suppose that

P. Konstantinou (AUEB)

- $Y_i, i = 1, ..., n$ are independently and identically distributed with $E(Y_i) = \mu_Y$; and
- 2 large outliers are unlikely i.e. $Var(Y_i) = \sigma_Y^2$ with $0 < \sigma_Y^2 < +\infty$.

Then the distribution of the sample average \bar{Y} will be approximately normal as *n* becomes very large $(n \to \infty)$

$$\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right)$$

The distribution of the the standardized sample average is approximately standard normal for $n \to \infty$ _____

$$\frac{\bar{Y} - \mu_Y}{\sigma_Y / \sqrt{n}}$$

The Law of Large Numbers (LLN)

The Central Limit Theorem (CLT)	Estimators and Estimates
	Definition An <i>estimator</i> is a function of a sample of data to be drawn randomly from a population.
 How good is the large-sample approximation? ★ If Y_i ~ N(μ_Y, σ_Y²) the approximation is perfect. ★ If Y_i is not normally distributed the quality of the approximation depends on how close n is to infinity (how large n is) ★ For n ≥ 100 the normal approximation to the distribution of Ȳ is typically very good for a wide variety of population distributions. 	• An estimator is a random variable because of randomness in drawing the sample. Typically used estimators Sample Average: $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, Sample variance: $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$ Using a particular sample $y_1, y_2,, y_n$ we obtain $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 17/61	which are <i>point estimates</i> . These are the numerical value of an estimator when it is actually computed using a specific sample. P. Konstantinou (AUEB) Statistics for Business – III
Estimation Estimator Properties	Estimation Estimator Properties
Estimation of the Population Mean – I	Estimation of the Population Mean – II
• Suppose we want to know the mean value of $Y(\mu_Y)$ in a population, for example	• Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. 	• Unbiasedness: The mean of the sampling distribution of $\hat{\mu}_Y$ equals μ_Y $E(\hat{\mu}_Y) = \mu_Y$.
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size n with Y₁, Y₂,, Y_n being <i>IID</i> 	 O Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size <i>n</i> with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: 	 Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y → μ_Y or Pr(μ̂_Y - μ_Y < ε) = 1
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size n with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: The sample average: \$\tilde{Y} = \frac{1}{n} \sum_{i=1}^n Y_i\$ The first observation: Y₁ The weighted average: \$\tilde{Y} = \frac{1}{n} (\frac{1}{2}Y_1 + \frac{3}{2}Y_2 + + \frac{1}{2}Y_{n-1} + \frac{3}{2}Y_n). 	 Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y → μ̂_Y or Pr(μ̂_Y - μ_Y < ε) = 1 Efficiency: If the variance of the sampling distribution of μ̂_Y is smaller than that of some other estimator μ̂_Y, μ̂_Y is more efficient
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size <i>n</i> with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: The sample average: \$\tilde{Y} = \frac{1}{n} \sum_{i=1}^n Y_i\$ The first observation: Y₁ The weighted average: \$\tilde{Y} = \frac{1}{n} (\frac{1}{2}Y_1 + \frac{3}{2}Y_2 + + \frac{1}{2}Y_{n-1} + \frac{3}{2}Y_n)\$. To determine which of the estimators, \$\tilde{Y}\$, Y₁ or \$\tilde{Y}\$ is the best estimator of μ_Y we consider 3 properties. 	 Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y → μ_Y or Pr(μ̂_Y - μ_Y < ε) = 1 Efficiency: If the variance of the sampling distribution of μ̂_Y is smaller than that of some other estimator μ̂_Y, μ̂_Y is more efficient Var(μ̂_Y) ≤ Var(μ̂_Y)
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size <i>n</i> with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: The sample average: Y ⁿ = 1/n ∑_{i=1}ⁿ Y_i The first observation: Y₁ The weighted average: Y ⁱ = 1/n (1/2Y₁ + 3/2Y₂ + + 1/2Y_{n-1} + 3/2Y_n). To determine which of the estimators, Y Y, Y₁ or Y is the best estimator of μ_Y we consider 3 properties. 	 Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y → μ̂_Y or Pr(μ̂_Y - μ_Y < ε) = 1 Efficiency: If the variance of the sampling distribution of μ̂_Y is smaller than that of some other estimator μ̂_Y, μ̂_Y is more efficient Var(μ̂_Y) ≤ Var(μ̂_Y)
 Suppose we want to know the mean value of Y (μ_Y) in a population, for example The mean wage of college graduates. The mean level of education in Greece. The mean probability of passing the statistics exam. Suppose we draw a random sample of size <i>n</i> with Y₁, Y₂,, Y_n being <i>IID</i> Possible estimators of μ_Y are: The sample average: Y ⁿ/_n Σⁿ_{i=1} Y_i The first observation: Y₁ The weighted average: Y ⁿ/_n (¹/₂Y₁ + ³/₂Y₂ + + ¹/₂Y_{n-1} + ³/₂Y_n). To determine which of the estimators, Y ^Y, Y₁ or Y ^Y is the best estimator of μ_Y we consider 3 properties. 	 Unbiasedness: The mean of the sampling distribution of μ̂_Y equals μ_Y E(μ̂_Y) = μ_Y. Consistency: The probability that μ̂_Y is within a very small interval of μ_Y approaches 1 if n → ∞ μ̂_Y → μ_Y or Pr(μ̂_Y - μ_Y < ε) = 1 Efficiency: If the variance of the sampling distribution of μ̂_Y is smaller than that of some other estimator μ̂_Y, μ̂_Y is more efficient Var(μ̂_Y) ≤ Var(μ̂_Y)

esis Tests for the Population Mean Basics

Hypothesis Tests

Consider the following questions:

- Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?
- Is the mean level of education in Greece equal to 12 years?
- Is the mean probability of passing the stats exam equal to 1?

These questions involve the population mean taking on a specific value $\mu_{Y,0}$. Answering these questions implies using data to compare a *null hypothesis* (a tentative assumption about the population mean parameter)

$$H_0: \mathcal{E}(Y) = \mu_{Y,0}$$

to an *alternative hypothesis* (the opposite of what is stated in the H_0)

 $H_1: \mathbf{E}(Y) \neq \mu_{Y,0}$

- Alternative Hypothesis as a Research Hypothesis
 - Example: A new sales force bonus plan is developed in an attempt to increase sales.

Basics

August 28, 2023

25/61

- Alternative Hypothesis: The new bonus plan increase sales.
- Null Hypothesis: The new bonus plan does not increase sales.

Hypothesis Tests

P. Konstantinou (AUEB)

The Testing Process and Rejections

Hypothesis Tests: Terminology

- The **hypothesis testing problem** (for the mean): make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true. That is, test
 - $H_0: E(Y) \le \mu_{Y,0}$ vs. $H_1: E(Y) > \mu_{Y,0}$ (1-sided, >)
 - $H_0: E(Y) \ge \mu_{Y,0}$ vs. $H_1: E(Y) < \mu_{Y,0}$ (1-sided, <)
 - $H_0: E(Y) = \mu_{Y,0}$ vs. $H_1: E(Y) \neq \mu_{Y,0}$ (2-sided)
- *p*-value = probability of drawing a statistic (e.g. \overline{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.
- The significance level of a test (α) is a pre-specified probability of incorrectly rejecting the null, when the null is true. Typical values are 0.01 (1%), 0.05 (5%), or 0.10 (10%).
 - It is selected by the researcher at the beginning, and determines the *critical value(s)* of the test.

p-Value Approach to Hypothesis Testing

・ ロマ ・ 西マ ・ 日マ

• If the test-statistic falls outside the non-rejection region, we reject H_0 .

Hypothesis Testing using *p*-values

- The <u>*p*-value</u> is the probability, computed using the test statistic, that measures the support (or lack of support) provided by the sample for the null hypothesis
 - If the <u>*p*-value</u> is less than or equal to the level of significance α , the value of the test statistic is in the rejection region.
 - Reject H_0 if the *p*-value $< \alpha$.
 - See also Annex
- Rules of thumb

P. Konstantinou (AUEB)

P. Konstantinou (AUEB

- If *p*-value is less than .01, there is overwhelming evidence to conclude H₀ is false.
- If *p*-value is between .01 and .05, there is strong evidence to conclude H_0 is false.
- ▶ If *p*-value is between .05 and .10, there is weak evidence to conclude *H*⁰ is false.
- If *p*-value is greater than .10, there is insufficient evidence to conclude H_0 is false.

28/61

August 28, 2023

26/61

Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean	Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean (σ^2 known) – III Examples	Test for the Mean with σ_Y^2 unknown but $n \to \infty$ Decision Rules • Since $S_Y^2 \xrightarrow{p} \sigma_Y^2$, compute the standard error of \overline{Y} , $SE(\overline{Y}) = s_Y/\sqrt{n}$ and construct a <i>t</i> -ratio.
• We have $n = 100$ and $\overline{y} = 2.84$, so the test statistic is	Hypothesis Tests for $E(Y)$ $t = \frac{\overline{Y} - \mu_{Y,0}}{SE(\overline{Y})} = \frac{\overline{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}}$
$z = \frac{\overline{y} - \mu_{Y,0}}{\sigma_Y / \sqrt{n}} = \frac{2.84 - 3}{0.8 / \sqrt{100}} = \frac{-0.16}{0.08} = -2 < -z_{0.025} = -1.96$ or $ z = 2 > 1.96$, Hence H_0 is rejected. We conclude that there is sufficient evidence that the mean number of TVs in EU homes is not equal to 3	Lower-tail test:Upper-tail test:Two-tail test: $H_0: E(Y) \ge \mu_0$ $H_0: E(Y) \le \mu_{Y,0}$ $H_0: E(Y) = \mu_{Y,0}$ $H_1: E(Y) < \mu_0$ $H_1: E(Y) > \mu_{Y,0}$ $H_1: E(Y) \ne \mu_{Y,0}$
10 5.	$\begin{array}{ c c c c c c } \hline a \\ \hline \hline$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 33/61	P Konstantinou (AUER) Statistics for Business – III August 28 2023 34/61
	Tradustes for Dustress in Tradust 20, 2025 54701
Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean	Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean
Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean Test for the Mean with σ_Y^2 unknown but $n \to \infty$ Example Suppose we would like to test $H_0: E(W) = 60000,$ $H_1: E(W) \neq 60000,$	Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean Hypothesis Tests for the Mean with σ^2 unknown (n small) Decision Rules • Consider a random sample of n observations from a population that is normally distributed, AND variance σ_Y^2 is unknown: $Y_i \sim N(\mu_Y, \sigma_Y^2)$ • Converting the sample average (\bar{y}) to a t-value
Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean Test for the Mean with σ_Y^2 unknown but $n \to \infty$ Example Suppose we would like to test $H_0: E(W) = 60000, H_1: E(W) \neq 60000,$ using a sample of 250 individuals with a Ph.D. degree at the 5% significance level.	Total Hypothesis Tests for the Population MeanHypothesis Tests for the Mean with σ^2 unknown (n small)Decision Rules• Consider a random sample of n observations from a population that is normally distributed, AND variance σ_Y^2 is unknown: $Y_i \sim N(\mu_Y, \sigma_Y^2)$ • Converting the sample average (\bar{y}) to a t-valueHypothesis Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{\bar{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$
Hypothesis Tests for the Population MeanHypothesis Tests for the Population MeanTest for the Mean with σ_Y^2 unknown but $n \to \infty$ Example• Suppose we would like to test $H_0: E(W) = 60000, H_1: E(W) \neq 60000,$ using a sample of 250 individuals with a Ph.D. degree at the 5% significance level.• We perform the following steps: $\overline{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = \frac{1}{250} \sum_{i=1}^{250} W_i = 61977.12.$ $\overline{SE}(\overline{W}) = \frac{s_W}{\sqrt{n}} = \frac{s_W}{\sqrt{250}} = 1334.19.$ \overline{C} Compute $t^{act} = \frac{\overline{W} - \mu_{W,0}}{SE(W)} = \frac{61977.12 - 60000}{1334.19} = 1.4819.$	Interference of the control of the
Hypothesis Tests for the Population MeanTest for the Mean with σ_Y^2 unknown but $n \to \infty$ Example• Suppose we would like to test $H_0: E(W) = 60000, H_1: E(W) \neq 60000,$ using a sample of 250 individuals with a Ph.D. degree at the 5%significance level.• We perform the following steps: $\bar{W} = \frac{1}{n} \sum_{i=1}^{n} W_i = \frac{1}{250} \sum_{i=1}^{250} W_i = 61977.12.$ • $SE(\bar{W}) = \frac{s_W}{\sqrt{n}} = \frac{s_W}{\sqrt{250}} = 1334.19.$ • Compute $t^{act} = \frac{\bar{W} - \mu_{W,0}}{SE(W)} = \frac{61977.12 - 60000}{1334.19} = 1.4819.$ • Since we use a 5% significance level, we do not reject H_0 because $ t^{act} = 1.4819 < z_{0.025} = 1.96.$ • Suppose we are interested in the alternative $H_1 : E(W) > 60000.$ The t -stat is exactly the same: $t^{act} = 1.4819.$ but now needs to be compared with $\tau_0 \propto t = 1.645$	Register for the Mean with σ^2 unknown (n small)Decision Rules• Consider a random sample of n observations from a population that is normally distributed, AND variance σ_Y^2 is unknown: $Y_i \sim N(\mu_Y, \sigma_Y^2)$ • Converting the sample average (\bar{y}) to a t -valueHypothesis Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{\bar{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$ • Converting the sample average (\bar{y}) to a t -valueHypothesis Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{\bar{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$ • Converting the sample average (\bar{y}) to a t -valueHypothesis Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{\bar{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$ • Converting the sample average (\bar{y}) to a t -valueHypothesis Tests for $E(Y)$ $t = \frac{\bar{Y} - \mu_{Y,0}}{SE(\bar{Y})} = \frac{\bar{Y} - \mu_{Y,0}}{s_Y/\sqrt{n}} \sim t_{n-1}$ • Converting the sample average (\bar{y}) to a t -valueImage: the sample average (\bar{y}) to a t -value• Converting the sample average (\bar{y}) to a t -value• Lower-tail test: H_0 : $E(Y) \geq \mu_0$ H_1 : $E(Y) < \mu_0$ • d_1 : $E(Y) < \mu_0$ • d_2 • d_1 : $E(Y) < \mu_0$ • d_2 • d_1 : d_2 • d_2 • d_1 • d_2 • d_2 • d_1 • d_2 • d_2 • d_2 • d_1 • d_2 </td

Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean	Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean		
Hypothesis Test for the Mean with σ^2 unknown (<i>n</i> small) Example	Confidence Intervals for the Population Mean – I		
 The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in y = \$172.50 and sy = \$15.40. Perform a test at the α = 0.05 level (assuming the population distribution is normal). Form the hypothesis to be tested H₀: E(Y) = 168 the mean cost is \$168 H₁: E(Y) ≠ 168 the mean cost is not \$168 For α = 0.05, with n = 25, t_{n-1,α/2} = t_{24,0.025} = 2.0639 and the mean cost H if t ≥ 2.0639. 	 Suppose we would do a two-sided hypothesis test for many different values of μ_{0,Y}. On the basis of this we can construct a set of values which are not rejected at 5% (α%) significance level. If we were able to test all possible values of μ_{0,Y} we could construct a 95% ((1 – α)%) confidence interval Definition A 95% ((1 – α)%) confidence interval is an interval that contains the true value of μ _Y in 95% ((1 – α)%) of all possible random samples.		
• We have $\bar{y} = 172.50$ and $s_y = 15.40$, so the test statistic is			
$t = \frac{\bar{y} - \mu_{Y,0}}{s_y / \sqrt{n}} = \frac{172.50 - 168}{15.40 / \sqrt{25}} = 1.46 < t_{24,0.025} = 2.0639$	A relative frequency interpretation: From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true population mean		
there is not sufficient evidence that the true mean cost is different than $h = 1.40 < 2.0039$. There H_0 cannot be rejected. We conclude that			
\$168. <=> <=> <=> <=> <=> <=> <=> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <<>> <=> <=	<ロ> <長> <長> <長> <長> <長> <長		
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 37/61	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 38/61		
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 37/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 38/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean		
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 37/61 Hypothesis Tests Tests Tests Tests For the Population Mean Confidence Intervals for the Population Mean – II	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 38/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean – III		
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 37/61 Hypothesis Tests Tor the Population Mean Confidence Intervals for the Population Mean – II Confidence Intervals for the Population Mean intervals is For the general formula for all confidence intervals is	P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 38/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean – III Confidence Intervals for the Population Mean Mean – III III		
P. Konstantinou (AUEB) Statistics for Business - III Augus 28, 2023 37/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean – II • The general formula for all confidence intervals is Point Estimate \pm (Reliability Factor)(Standard Error) Margin of Error $\hat{\mu} \pm c \cdot SE(\hat{\mu})$ and using the sample average estimator $\bar{Y} \pm c \cdot SE(\bar{Y})$ • Instead of doing infinitely many hypothesis tests we can compute the 95% ($(1 - \alpha)$ %) confidence interval as $\bar{Y} - z_{\alpha/2}SE(\bar{Y}) < \mu < \bar{Y} + z_{\alpha/2}SE(\bar{Y})$ or $\bar{Y} \pm z_{\alpha/2}SE(\bar{Y})$ or	P. Konstantinou (AUEB) Statistics for Business - III August 28, 2023 38/61 Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean Confidence Intervals for the Population Mean — III • When the sample size n is large (or when the population is normal and σ_Y^2 is known): • A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.645 \cdot SE(\bar{Y})]$ • A 90% confidence interval for μ_Y : $[\bar{Y} \pm 1.96 \cdot SE(\bar{Y})]$ • A 99% confidence interval for μ_Y : $[\bar{Y} \pm 2.58 \cdot SE(\bar{Y})]$ • with $SE(\bar{Y}) = \sigma_Y / \sqrt{n}$ when variance is known or $SE(\bar{Y}) = s_Y / \sqrt{n}$ when unknown and is estimated.		

Testing for Equal Means from Different Populations

Comparing Means from Different Populations – I Large Samples or Known Variances from Normal Populations

• Suppose we would like to test whether the mean wages of men and women with a Ph.D. degree differ by an amount *d*₀:

$$H_0: \mu_{W,M} - \mu_{W,F} = d_0 \quad H_0: \mu_{W,M} - \mu_{W,F} \neq d_0$$

- To test the null hypothesis against the two-sided alternative we follow the 4 steps as above with some adjustments
- Estimate $(\mu_{W,M} \mu_{W,F})$ by $(\overline{W}_M \overline{W}_M)$.
 - Because a weighted average of 2 independent normal random variables is itself normally distributed we have (using the CLT and the fact that $\text{Cov}(\bar{W}_M, \bar{W}_F) = 0$)

$$\bar{W}_M - \bar{W}_F \sim N\left(\mu_{W,M} - \mu_{W,F}, \frac{\sigma_{W,M}^2}{n_M} + \frac{\sigma_{W,F}^2}{n_F}\right)$$

Testing for Equal Means from Different Population

August 28, 2023

47/61

P. Konstantinou (AUEB)

Comparing Means from Different Populations - III

Large Samples or Known Variances from Normal Populations

Example

Suppose we have random samples of 500 men and 500 women with a Ph.D. degree and we would like to test that the mean wages are equal:

$$H_0: \mu_{W,M} - \mu_{W,M} = 0 \quad H_1: \mu_{W,M} - \mu_{W,M} \neq 0$$

We obtained $\bar{W}_M = 64159.45$, $\bar{W}_F = 53163.41$, $s_{W,M} = 18957.26$, and $s_{W,F} = 20255.89$. We have:

- $\bar{W}_M \bar{W}_F = 64159.45 53163.41 = 10996.04.$
- **2** SE $(\bar{W}_M \bar{W}_F) = 1240.709.$
- $t^{act} = \frac{(\bar{W}_M \bar{W}_F) 0}{\text{SE}(\bar{W}_M \bar{W}_F)} = \frac{10996.04}{1240.709} = 8.86.$
- Since we use a 5% significance level, we reject H_0 because $|t^{act}| = 8.86 > 1.96$

2 Estimate $\sigma_{W,M}$ and $\sigma_{W,F}$ to obtain SE $(\overline{W}_M - \overline{W}_F)$:

$$SE(\bar{W}_M - \bar{W}_F) = \sqrt{\frac{s_{W,M}^2}{n_M} + \frac{s_{W,F}^2}{n_F}}$$

Sompute the *t*-statistic

P. Konstantinou (AUEB)

45/61

$$t^{act} = \frac{(\bar{W}_M - \bar{W}_M) - d_0}{\mathrm{SE}(\bar{W}_M - \bar{W}_F)}$$

• Reject H_0 at a 5% significance level if $|t^{act}| > 1.96$ or if the *p*-value< 0.05.

Confidence Interval for the Difference in Population Means

- The method for constructing a confidence interval for 1 population mean can be easily extended to the difference between 2 population means.
- A hypothesized value of the difference in means d_0 will be rejected if |t| > 1.96 and will be in the confidence set if $|t| \le 1.96$.
- Thus the 95% confidence interval for $\mu_{W,M} \mu_{W,F}$ are the values of d_0 within ± 1.96 standard errors of $(\bar{W}_M \bar{W}_F)$.
- So a 95% confidence interval for $\mu_{W,M} \mu_{W,F}$ is

 $(\bar{W}_M - \bar{W}_M) \pm 1.96 \cdot \text{SE}(\bar{W}_M - \bar{W}_M)$ 10996.04 ± 1.96 \cdot 1240.709 [8561.34, 13430.73]

August 28, 2023

48/61

Testing for Equal Means from Different Population

Annex: Hypothesis Tests – I Annex: Hypothesis Tests – II Employing the *p*-value Employing the *p*-value • To compute the *p*-value, you need the to know the sampling distribution of \overline{Y} , which is complicated if n is small. With large n the CLT states that • Suppose we have a sample of *n* observations (they are assumed *IID*) and compute the sample average \bar{Y} . The sample average can differ from $\mu_{Y,0}$ $\bar{Y} \sim N\left(\mu_Y, \frac{\sigma_Y^2}{n}\right),$ for two reasons 1 The population mean μ_Y is not equal to $\mu_{Y,0}$ (H_0 is not true) 2 Due to random sampling $\bar{Y} \neq \mu_Y = \mu_{Y,0}$ (H₀ is true) which implies that if the null hypothesis is true: • To quantify the second reason we define the *p*-value. The *p*-value is the $\frac{Y - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{\tau}}} \sim N(0,1)$ probability of drawing a sample with \overline{Y} at least as far from $\mu_{Y,0}$ as the value actually observed, given that the null hypothesis is true. p-value = $\Pr_{H_0} \left[|\bar{Y} - \mu_{Y,0}| > |\bar{Y}^{act} - \mu_{Y,0}| \right],$ • Hence $p\text{-value} = \Pr_{H_0} \left| \left| \frac{\bar{Y} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{r}}} \right| > \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{r}}} \right| \right| = 2\Phi \left(- \left| \frac{\bar{Y}^{act} - \mu_{Y,0}}{\sqrt{\frac{\sigma_Y^2}{r}}} \right| \right)$ where \overline{Y}^{act} is the value of \overline{Y} actually observed 57/61 P. Konstantinou (AUEB) August 28, 2023 58/61 P. Konstantinou (AUEB) Annex: Hypothesis Tests – III Annex: Hypothesis Tests – I Computing the *p*-value when σ_Y^2 is unknown Employing the *p*-value • In practice σ_v^2 is usually unknown and must be estimated The *p*-value is the shaded • The sample variance S_Y^2 is the estimator of $\sigma_Y^2 = E[(Y - \mu_Y)^2]$, defined area in the graph as $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$ N(0, 1) • division by n-1 because we 'replace' μ_Y by \overline{Y} which uses up 1 degree of 0 $\overline{Y}^{act} - \mu_{Y,0}$ $\overline{Y}^{act} - \mu_{Y,0}$ freedom • if $Y_1, Y_2, ..., Y_n$ are *IID* and $E(Y^4) < \infty$, then $S_Y^2 \xrightarrow{p} \sigma_Y^2$ (Law of Large Numbers) • For large *n*, *p*-value = the probability that a N(0, 1) random variable falls • The sample standard deviation $S_Y = \sqrt{S_Y^2}$, is the estimator of σ_Y . outside $\left|\frac{Y^{act}-\mu_{Y,0}}{\sigma_{\bar{Y}}}\right|$, where $\sigma_{\bar{Y}} = \sigma_Y/\sqrt{n}$

August 28, 2023

P. Konstantinou (AUEB)

59/61

P. Konstantinou (AUEB)

August 28, 2023

60/61

nnex: Employing *p*-values

Annex: Hypothesis Tests - II

Computing the *p*-value when σ_Y^2 is unknown

• The standard error $SE(\bar{Y})$ is an estimator of $\sigma_{\bar{Y}}$

$$SE(\bar{Y}) = \frac{S_Y}{\sqrt{n}}$$

• Because S_Y^2 is a consistent estimator of σ_Y^2 we can (for large *n*) replace

$$\sqrt{\frac{\sigma_Y^2}{n}}$$
 by $SE(\bar{Y}) = \frac{S_Y}{\sqrt{n}}$

• This implies that when σ_Y^2 is unknown and $Y_1, Y_2, ..., Y_n$ are *IID* the *p*-value is computed as

$$p - \text{value} = 2\Phi\left(-\left|\frac{\bar{Y}^{act} - \mu_{Y,0}}{SE(\bar{Y})}\right|\right)$$
P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 61/61