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Lecture Outline

Simple random sampling

Distribution of the sample average
Large sample approximation to the distribution of the sample mean
▶ Law of Large Numbers
▶ Central Limit Theorem

Estimation of the population mean
▶ Unbiasedness
▶ Consistency
▶ Efficiency

Hypothesis test concerning the population mean
Confidence intervals for the population mean
▶ Using the t-statistic when n is small

Comparing means from different populations
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Sampling and Sampling Distributions Sampling: Intro

Sampling

A population is a collection of all the elements of interest, while a
sample is a subset of the population.

The reason we select a sample is to collect data to answer a research
question about a population.

The sample results provide only estimates of the values of the
population characteristics. With proper sampling methods, the sample
results can provide “good” estimates of the population characteristics.

A random sample from an infinite population is a sample selected such
that the following conditions are satisfied:
▶ Each element selected comes from the population of interest.
▶ Each element is selected independently.
⋆ If the population is finite, then we sample with replacement...
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Sampling and Sampling Distributions Simple Random Sampling

Simple Random Sampling – I

Simple random sampling means that n objects are drawn randomly from
a population and each object is equally likely to be drawn

Let Y1,Y2, ...,Yn denote the 1st to the n th randomly drawn object. Under
simple random sampling
▶ The marginal probability distribution of Yi is the same for all i = 1, 2, ..., n

and equals the population distribution of Y .
⋆ because Y1,Y2, ...,Yn are drawn randomly from the same population.
▶ Y1 is distributed independently from Y2, ...,Yn. knowing the value of Yi

does not provide information on Yj for i ̸= j

When Y1,Y2, ...,Yn are drawn from the same population and are
independently distributed, they are said to be I.I.D. random variables
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Sampling and Sampling Distributions Simple Random Sampling

Simple Random Sampling – II

Example
Let G be the gender of an individual (G = 1 if female, G = 0 if male)

G is a Bernoulli r.v. with E(G) = µG = Pr(G = 1) = 0.5

Suppose we take the population register and randomly draw a sample of
size n
▶ The probability distribution of Gi is a Bernoulli with mean 0.5
▶ G1 is distributed independently from G2, ...,Gn

Suppose we draw a random sample of individuals entering the building
of the accounting department
▶ This is not a sample obtained by simple random sampling and

G1,G2,...,Gn are not i.i.d
▶ Men are more likely to enter the building of the accounting department!
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – I

The sample average Ȳ of a randomly drawn sample is a random variable
with a probability distribution called the sampling distribution

Ȳ =
1
n
(Y1 + Y2 + · · ·+ Yn) =

1
n

n∑

i=1

Yi

▶ The individuals in the sample are drawn at random.
▶ Thus the values of (Y1,Y2, · · · ,Yn) are random
▶ Thus functions of (Y1,Y2, · · · ,Yn), such as Ȳ , are random: had a different

sample been drawn, they would have taken on a different value
▶ The distribution of over different possible samples of size n is called the

sampling distribution of Ȳ .
▶ The mean and variance of are the mean and variance of its sampling

distribution, E(Ȳ) and Var(Ȳ).
▶ The concept of the sampling distribution underpins all of

statistics/econometrics.

P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 6 / 61

Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – II

Ȳ =
1
n
(Y1 + Y2 + · · ·+ Yn) =

1
n

n∑

i=1

Yi

Suppose that Y1,Y2, ...,Yn are I.I.D. and the mean & variance of the
population distribution of Y are respectively µY and σ2

Y
▶ The mean of (the sampling distribution of) Ȳ is

E(Ȳ) = E

(
1
n

n∑

i=1

Yi

)
=

1
n

n∑

i=1

E(Yi) =
1
n

nE(Y) = µY

▶ The variance of (the sampling distribution of) Ȳ is

Var(Ȳ) = Var

(
1
n

n∑

i=1

Yi

)
=

1
n2

n∑

i=1

Var(Yi) + 2
1
n2

n∑

i=1

n∑

j=1,j̸=i

Cov(Yi,Yj)

=
1
n2 nVar(Y) + 0 =

1
n

Var(Y) =
σ2

Y

n
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Sample Average – III
Example

Let G be the gender of an individual (G = 1 if female, G = 0 if male)

The mean of the population distribution of G is

E(G) = µG = Pr(G = 1) = p = 0.5

The variance of the population distribution of G is

Var(G) = σ2
G = p(1 − p) = 0.5(1 − 0.5) = 0.25

The mean and variance of the average gender (proportion of women) Ḡ
in a random sample with n = 10 are

E(Ḡ) = µG = 0.5

Var(Ḡ) =
1
n
σ2

G =
1
10

0.25 = 0.025
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Finite-Sample Distribution of the Sample Average

The finite sample distribution is the sampling distribution that exactly
describes the distribution of Ȳ for any sample size n.

In general the exact sampling distribution of Ȳ is complicated and
depends on the population distribution of Y .

A special case is when Y1,Y2, ...,Yn are IID draws from the N(µY , σ
2
Y),

because in this case

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Sampling Distribution of the Average Gender Ḡ

Suppose G takes on 0 or 1 (a Bernoulli random variable) with the
probability distribution

Pr(G = 0) = p = 0.5, Pr(G = 1) = 1 − p = 0.5

As we discussed above:

E(G) = µG = Pr(G = 1) = p = 0.5

Var(G) = σ2
G = p(1 − p) = 0.5(1 − 0.5) = 0.25

The sampling distribution of Ḡ depends on n.

Consider n = 2. The sampling distribution of Ḡ is
▶ Pr(Ḡ = 0) = 0.52 = 0.25
▶ Pr(Ḡ = 1/2) = 2 × 0.5 × (1 − 0.5) = 0.5
▶ Pr(Ḡ = 1) = (1 − 0.5)2 = 0.25
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Sampling and Sampling Distributions Sampling Distribution of the Sample Average

The Finite-Sample Distribution of the Average Gender Ḡ
Suppose we draw 999 samples of n = 2:

Sample 1 Sample 1 Sample 3 · · · Sample 999
G1 G2 Ḡ G1 G2 Ḡ G1 G2 Ḡ G1 G2 Ḡ
1 0 0.5 1 1 1 0 1 0.5 0 0 0

8

The finite sample distribution of average gender G

Suppose we draw 999 samples of n = 2:

Sample 1 Sample 2 Sample 3 ..... Sample 999

G1 G2 G G1 G2 G G1 G2 G G1 G2 G
1 0 0.5 1 1 1 0 1 0.5 0 0 0
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Sampling and Sampling Distributions Asymptotic Approximations

The Asymptotic Distribution of the Sample Average Ȳ

Given that the exact sampling distribution of Ȳ is complicated and given
that we generally use large samples in statistics/econometrics we will
often use an approximation of the sample distribution that relies on the
sample being large

The asymptotic distribution or large-sample distribution is the
approximate sampling distribution of Ȳ if the sample size becomes very
large: n → ∞.

We will use two concepts to approximate the large-sample distribution of
the sample average
▶ The law of large numbers.
▶ The central limit theorem.
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Sampling and Sampling Distributions Asymptotic Approximations

The Law of Large Numbers (LLN)
Definition (Law of Large Numbers)
Suppose that

1 Yi, i = 1, ..., n are independently and identically distributed with
E(Yi) = µY ; and

2 large outliers are unlikely i.e. Var(Yi) = σ2
Y < +∞.

Then Ȳ will be near µY with very high probability when n is very large
(n → ∞)

Ȳ
p→ µY .

We also say that the sequence of random variables {Yn} converges in
probability to the µY , if for every ε > 0

lim
n→∞

Pr(|Ȳn − µY | > ε) = 0.

We also denote this by plim(Yn) = µY
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Sampling and Sampling Distributions Asymptotic Approximations

The Law of Large Numbers (LLN)
Example: Gender G ∼ Bernoulli(0.5, 0.25)
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Law of Large Numbers
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)
Definition (Central Limit Theorem)
Suppose that

1 Yi, i = 1, ..., n are independently and identically distributed with
E(Yi) = µY ; and

2 large outliers are unlikely i.e. Var(Yi) = σ2
Y with 0 < σ2

Y < +∞.

Then the distribution of the sample average Ȳ will be approximately normal
as n becomes very large (n → ∞)

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
.

The distribution of the the standardized sample average is approximately
standard normal for n → ∞

Ȳ − µY

σY/
√

n
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)
Example: Gender G ∼ Bernoulli(0.5, 0.25)
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The Central Limit theorem
Example: Gender G ∼ Bernouilli (0.5, 0.25)
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Sampling and Sampling Distributions Asymptotic Approximations

The Central Limit Theorem (CLT)

How good is the large-sample approximation?

⋆ If Yi ∼ N(µY , σ
2
Y) the approximation is perfect.

⋆ If Yi is not normally distributed the quality of the approximation depends
on how close n is to infinity (how large n is)

⋆ For n ≥ 100 the normal approximation to the distribution of Ȳ is
typically very good for a wide variety of population distributions.
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Estimation Introduction

Estimators and Estimates
Definition
An estimator is a function of a sample of data to be drawn randomly from a
population.

An estimator is a random variable because of randomness in drawing the
sample. Typically used estimators

Sample Average:Ȳ =
1
n

n∑

i=1

Yi, Sample variance: S2
Y =

1
n − 1

n∑

i=1

(Yi−Ȳ)2.

Using a particular sample y1, y2, ..., yn we obtain

ȳ =
1
n

n∑

i=1

yi and s2
y =

1
n − 1

n∑

i=1

(yi − ȳ)2

which are point estimates. These are the numerical value of an estimator
when it is actually computed using a specific sample.
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Estimation Estimator Properties

Estimation of the Population Mean – I

Suppose we want to know the mean value of Y (µY ) in a population, for
example
▶ The mean wage of college graduates.
▶ The mean level of education in Greece.
▶ The mean probability of passing the statistics exam.

Suppose we draw a random sample of size n with Y1,Y2, ...,Yn being IID

Possible estimators of µY are:
▶ The sample average: Ȳ = 1

n

∑n
i=1 Yi

▶ The first observation: Y1
▶ The weighted average: Ỹ = 1

n

( 1
2 Y1 +

3
2 Y2 + ...+ 1

2 Yn−1 +
3
2 Yn
)
.

To determine which of the estimators, Ȳ , Y1 or Ỹ is the best estimator of
µY we consider 3 properties.

Let µ̂Y be an estimator of the population mean µY
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Estimation Estimator Properties

Estimation of the Population Mean – II

1 Unbiasedness: The mean of the sampling distribution of µ̂Y equals µY

E(µ̂Y) = µY .

2 Consistency: The probability that µ̂Y is within a very small interval of µY

approaches 1 if n → ∞

µ̂Y
p→ µY or Pr(|µ̂Y − µY | < ε) = 1

3 Efficiency: If the variance of the sampling distribution of µ̂Y is smaller
than that of some other estimator µ̃Y , µ̂Y is more efficient

Var(µ̂Y) ≤ Var(µ̃Y)
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Estimation Estimator Properties

Estimating Mean Wages – I

Suppose we are interested in the mean wages (pre tax) µW of individuals
with a Ph.D. in economics/finance in Europe (true mean µw = 60K). We
draw the following sample (n = 10) by simple random sampling

i 1 2 3 4 5
Wi 47281.92 70781.94 55174.46 49096.05 67424.82

i 6 7 8 9 10
Wi 39252.85 78815.33 46750.78 46587.89 25015.71

The 3 estimators give the following estimates:
▶ W̄ = 1

10

∑10
i=1 Wi = 52618.18

▶ W1 = 47281.92
▶ W̃ = 1

10

( 1
2 W1 +

3
2 W2 + ...+ 1

2 W9 +
3
2 W10

)
= 49398.82

Unbiasedness: All 3 proposed estimators are unbiased
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Estimation Estimator Properties

Estimating Mean Wages – II
Consistency:
▶ By the law of large numbers W̄

p→ µW which implies that the probability
that W̄ is within a very small interval of µW approaches 1 if n → ∞

21

Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

By the law of large numbers
W

p−→ µW

which implies that the probability that W is within a very small interval of µW

approaches 1 if n −→∞
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Estimation Estimator Properties

Estimating Mean Wages – III
▶ W̃ = 1

n

( 1
2 W1 +

3
2 W2 + ...+ 1

2 Wn−1 +
3
2 Wn

)
can also be shown to be

consistent
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Consistency
Example: mean wages of individuals with a master degree with µw = 60 000

W̃ = 1
n

( 1
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)
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However W1 is not a consistent estimator of µW :
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▶ However W1 is not a consistent estimator of µW .
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Consistency
Example: mean wages of individuals with a master degree with µw = 60 000
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However W1 is not a consistent estimator of µW :
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Estimation Estimator Properties

Estimating Mean Wages – IV

Efficiency: We have that
▶ Var(W̄) = 1

nσ
2
W

▶ Var(W1) = σ2
W

▶ Var(W̃) = 1.25 1
nσ

2
W

▶ So for any n ≥ 2, W̄ is more efficient than W1 and W̃.

In fact Ȳ is the Best Linear Unbiased Estimator (BLUE): it is the most
efficient estimator of µY among all unbiased estimators that are weighted
averages of Y1,Y2, ...,Yn

⋆ Let µ̂Y = 1
n

∑n
i=1 αiYi be an unbiased estimator of µY with αi

nonrandom constants. Then Ȳ is more efficient than µ̂Y

Var(Ȳ) ≤ Var(µ̂Y)
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests
Consider the following questions:

Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?
Is the mean level of education in Greece equal to 12 years?
Is the mean probability of passing the stats exam equal to 1?

These questions involve the population mean taking on a specific value µY,0.
Answering these questions implies using data to compare a null hypothesis (a
tentative assumption about the population mean parameter)

H0 : E(Y) = µY,0

to an alternative hypothesis (the opposite of what is stated in the H0)

H1 : E(Y) ̸= µY,0

Alternative Hypothesis as a Research Hypothesis
▶ Example: A new sales force bonus plan is developed in an attempt to

increase sales.
▶ Alternative Hypothesis: The new bonus plan increase sales.
▶ Null Hypothesis: The new bonus plan does not increase sales.
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests: Terminology

The hypothesis testing problem (for the mean): make a provisional
decision, based on the evidence at hand, whether a null hypothesis is
true, or instead that some alternative hypothesis is true. That is, test
▶ H0 : E(Y) ≤ µY,0 vs. H1 : E(Y) > µY,0 (1-sided, >)
▶ H0 : E(Y) ≥ µY,0 vs. H1 : E(Y) < µY,0 (1-sided, <)
▶ H0 : E(Y) = µY,0 vs. H1 : E(Y) ̸= µY,0 (2-sided)

p-value = probability of drawing a statistic (e.g. Ȳ) at least as adverse to
the null as the value actually computed with your data, assuming that the
null hypothesis is true.

The significance level of a test (α) is a pre-specified probability of
incorrectly rejecting the null, when the null is true. Typical values are
0.01 (1%), 0.05 (5%), or 0.10 (10%).
▶ It is selected by the researcher at the beginning, and determines the critical

value(s) of the test.
▶ If the test-statistic falls outside the non-rejection region, we reject H0.
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Hypothesis Tests for the Population Mean Basics

Hypothesis Tests
The Testing Process and Rejections

Level of Significance and the Rejection Region

H0: E(Y) ≥ μΥ,0
H1: E(Y) < μΥ,0

0

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

a

a

Represents
critical value

Left-tail test

Level of significance = α

0Right-tail test

Two-tail test
Rejection 
region is 
shaded

0

a/2a/2H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0
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Hypothesis Tests for the Population Mean p-Value Approach to Hypothesis Testing

Hypothesis Testing using p-values

The p-value is the probability, computed using the test statistic, that
measures the support (or lack of support) provided by the sample for the
null hypothesis
▶ If the p-value is less than or equal to the level of significance α, the value

of the test statistic is in the rejection region.
▶ Reject H0 if the p-value < α.
▶ See also Annex

Rules of thumb
▶ If p-value is less than .01, there is overwhelming evidence to conclude H0

is false.
▶ If p-value is between .01 and .05, there is strong evidence to conclude H0

is false.
▶ If p-value is between .05 and .10, there is weak evidence to conclude H0 is

false.
▶ If p-value is greater than .10, there is insufficient evidence to conclude H0

is false.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2
Y known – I

Decision Rules

The test statistic employed is obtained by converting the sample result
(ȳ) to a z-value

z =
ȳ − µY,0

σY/
√

n

H0 : E(Y) ≥ µY,0
H1 : E(Y) < µY,0

H0 : E(Y) ≤ µY,0
H1 : E(Y) > µY,0

H0 : E(Y) = µY,0
H1 : E(Y) ̸= µY,0

Lower-tail Upper-tail Two-tailed
Reject H0 if z < zα Reject H0 if z > zα Reject H0 if z < −zα/2

or if z > zα/2
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2
Y known – II

Decision RulesDecision Rules: (Known Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

Two-tail test:

H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0

α α/2 α/2α

-zα -zα/2zα zα/2
Reject H0 if z <–zα Reject H0 if z>zα Reject H0 if z <– zα/2

or z>zα/2

Hypothesis Tests for E(Y) 𝑧 =
#𝑌 − 𝜇!,#
𝜎$%

=
#𝑌 − 𝜇!,#
𝜎&/ 𝑛
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – I
Examples

Example 1. A phone industry manager thinks that customer monthly
cell phone bill have increased, and now average over $52 per month. The
company wishes to test this claim. Assume σ = 10$ is known and let
α = 0.10. Suppose a sample of 64 persons is taken, and it is found that
the average bill $53.1.
▶ Form the hypothesis to be tested

H0 : E(Y) ≤ 52 the mean is not over $52 per month
H1 : E(Y) > 52 the mean is over $52 per month

▶ For α = 0.10, z0.10 = 1.28, so we would reject H0 if z > 1.28.
▶ We have n = 64 and ȳ = 53.1, so the test statistic is

z =
ȳ − µY,0

σY/
√

n
=

53.1 − 52
10/

√
64

= 0.88 < z0.10 = 1.28

Hence H0 cannot be rejected.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – II
Examples

Example 2. We would like to test the claim that the true mean # of TV
sets in EU homes is equal to 3 (assuming σY = 0.8 known). For this
purpose a sample of 100 homes is selected, and the average number of
TV sets is 2.84. Test the above hypothesis using α = 0.05.
▶ Form the hypothesis to be tested

H0 : E(Y) = 3 the mean # is 3 TV sets per home
H1 : E(Y) ̸= 3 the mean is not 3 TV sets per home

▶ For α = 0.05, zα/2 = z0.025 = 1.96 and −z0.025 = −1.96, so we would
reject H0 if |z| > 1.96.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean (σ2 known) – III
Examples

▶ We have n = 100 and ȳ = 2.84, so the test statistic is

z =
ȳ − µY,0

σY/
√

n
=

2.84 − 3
0.8/

√
100

=
−0.16
0.08

= −2 < −z0.025 = −1.96

or |z| = 2 > 1.96, Hence H0 is rejected. We conclude that there is
sufficient evidence that the mean number of TVs in EU homes is not equal
to 3.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Test for the Mean with σ2
Y unknown but n → ∞

Decision Rules
Since S2

Y
p→ σ2

Y , compute the standard error of Ȳ , SE(Ȳ) = sY/
√

n and
construct a t-ratio.

Decision Rules: (Unknown Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μΥ,0
H1: E(Y) > μΥ,0

Two-tail test:

H0: E(Y) = μΥ,0
H1: E(Y) ≠ μΥ,0

α α/2 α/2α

-zα -zα/2zα zα/2
Reject H0 if t < –zα Reject H0 if t > zα Reject H0 if t < – zα/2

or t > zα/2

Hypothesis Tests for E(Y) 𝑡 =
#𝑌 − 𝜇!,#
SE(#𝑌)

=
#𝑌 − 𝜇!,#
𝑠&/ 𝑛
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Test for the Mean with σ2
Y unknown but n → ∞

Example

Suppose we would like to test

H0 : E(W) = 60000, H1 : E(W) ̸= 60000,

using a sample of 250 individuals with a Ph.D. degree at the 5%
significance level.
We perform the following steps:

1 W̄ = 1
n

∑n
i=1 Wi =

1
250

∑250
i=1 Wi = 61977.12.

2 SE(W̄) = sW√
n = sW√

250
= 1334.19.

3 Compute tact =
W̄−µW,0

SE(W̄)
= 61977.12−60000

1334.19 = 1.4819.

4 Since we use a 5% significance level, we do not reject H0 because
|tact| = 1.4819 < z0.025 = 1.96.

Suppose we are interested in the alternative H1 : E(W) > 60000. The
t-stat is exactly the same: tact = 1.4819. but now needs to be compared
with z0.05 = 1.645.
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2 unknown (n small)
Decision Rules

Consider a random sample of n observations from a population that is
normally distributed, AND variance σ2

Y is unknown: Yi ∼ N(µY , σ
2
Y)

Converting the sample average (ȳ) to a t-value...
Decision Rules: (Unknown Variance)

Lower-tail test:

H0: E(Y) ³ μ0
H1: E(Y) < μ0

Upper-tail test:

H0: E(Y) ≤ μ0
H1: E(Y) > μ0

Two-tail test:

H0: E(Y) = μ0
H1: E(Y) ≠ μ0

α α/2 α/2α

-tn-1,α - tn-1, α/2tn-1,α tn-1, α/2
Reject H0 if t < –tn-1,α Reject H0 if t > tn-1,α Reject H0 if t < – tn-1,a/2

or t > tn-1,a/2

Hypothesis Tests for E(Y) 𝑡 =
#𝑌 − 𝜇!,#
SE(#𝑌)

=
#𝑌 − 𝜇!,#
𝑠&/ 𝑛

~𝑡'()
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Hypothesis Tests for the Population Mean Hypothesis Tests for the Population Mean

Hypothesis Test for the Mean with σ2 unknown (n small)
Example

The average cost of a hotel room in New York is said to be $168 per
night. A random sample of 25 hotels resulted in ȳ = $172.50 and
sy = $15.40. Perform a test at the α = 0.05 level (assuming the
population distribution is normal).
▶ Form the hypothesis to be tested

H0 : E(Y) = 168 the mean cost is $168
H1 : E(Y) ̸= 168 the mean cost is not $168

▶ For α = 0.05, with n = 25, tn−1,α/2 = t24,0.025 = 2.0639 and
−t24,0.025 = 2.0639, so we would reject H0 if |t| > 2.0639.

▶ We have ȳ = 172.50 and sy = 15.40, so the test statistic is

t =
ȳ − µY,0

sy/
√

n
=

172.50 − 168
15.40/

√
25

= 1.46 < t24,0.025 = 2.0639

or |t| = 1.46 < 2.0639. Hence H0 cannot be rejected. We conclude that
there is not sufficient evidence that the true mean cost is different than
$168.
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – I

Suppose we would do a two-sided hypothesis test for many different
values of µ0,Y . On the basis of this we can construct a set of values
which are not rejected at 5% (α%) significance level.

If we were able to test all possible values of µ0,Y we could construct a
95% ((1 − α)%) confidence interval

Definition
A 95% ((1 − α)%) confidence interval is an interval that contains the true
value of µY in 95% ((1 − α)%) of all possible random samples.

▶ A relative frequency interpretation: From repeated samples, 95% of all the
confidence intervals that can be constructed will contain the unknown true
population mean
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – II

The general formula for all confidence intervals is

Point Estimate ± (Reliability Factor)(Standard Error)︸ ︷︷ ︸
Margin of Error

µ̂± c · SE(µ̂)

and using the sample average estimator

Ȳ ± c · SE(Ȳ)

Instead of doing infinitely many hypothesis tests we can compute the
95% ((1 − α)%) confidence interval as

Ȳ − zα/2SE(Ȳ) < µ < Ȳ + zα/2SE(Ȳ) or Ȳ ± zα/2SE(Ȳ)
︸ ︷︷ ︸

Margin of Error
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – III

When the sample size n is large (or when the population is normal and
σ2

Y is known):
▶ A 90% confidence interval for µY : [Ȳ ± 1.645 · SE(Ȳ)]
▶ A 95% confidence interval for µY : [Ȳ ± 1.96 · SE(Ȳ)]
▶ A 99% confidence interval for µY : [Ȳ ± 2.58 · SE(Ȳ)]

▶ with SE(Ȳ) = σY/
√

n when variance is known or SE(Ȳ) = sY/
√

n when
unknown and is estimated.
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – IV
Example
A sample of 11 circuits from a large normal population has a mean resistance
of 2.20 ohms. We know from past testing that the population standard
deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of
the population.

ȳ ± zα/2
σY√

n
= 2.20 ± 1.96(0.35/

√
11) = 2.20 ± 0.2068

1.9932 < µY < 2.4068

▶ We are 95% confident that the true mean resistance is between 1.9932 and
2.4068 ohms

▶ Although the true mean may or may not be in this interval, 95% of intervals
formed in this manner will contain the true mean
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – V
Example
Using the sample of n = 250 individuals with a Ph.D. degree discussed above
(W̄ = 61977.12, sW = 21095.37,SE(Ȳ) = sW/

√
n = 21095.37/

√
250):

▶ A 90% C.I. for µW is: [61977.12 ± 1.64 · 1334.19] = [59349.39, 64604.85].

▶ A 95% C.I. for µW is: [61977.12 ± 1.96 · 1334.19] = [59774.38, 64179.86].

▶ A 99% C.I. for µW is: [61977.12 ± 2.58 · 1334.19] = [58513.94, 65440.30].
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – VI

When the sample size n is small AND the population from which we
draw data is normal:

Ȳ − tn−1,α/2
sY√

n
< µY < Ȳ + tn−1,α/2

sY√
n

or Ȳ ± tn−1,α/2
sY√

n︸ ︷︷ ︸
Margin of Error

▶ A 90% confidence interval for µY : [Ȳ ± tn−1,0.05 · SE(Ȳ)]
▶ A 95% confidence interval for µY : [Ȳ ± tn−1,0.025 · SE(Ȳ)]
▶ A 99% confidence interval for µY : [Ȳ ± tn−1,0.005 · SE(Ȳ)]

▶ with SE(Ȳ) = sY/
√

n
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Hypothesis Tests for the Population Mean Confidence Intervals for the Population Mean

Confidence Intervals for the Population Mean – VII

Example
A random sample of n = 25 has x̄ = 50 and s = 8. Form a 95% confidence
interval for µ.

▶ d.f . = n − 1 = 24, so t24,α/2 = t24,0.025 = 2.0639

x̄ ± tn−1,α/2
s√
n

= 50 ± 2.0639(8/
√

25) = 50 ± 3.302

46.698 < µ < 53.302
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – I
Large Samples or Known Variances from Normal Populations

Suppose we would like to test whether the mean wages of men and
women with a Ph.D. degree differ by an amount d0:

H0 : µW,M − µW,F = d0 H0 : µW,M − µW,F ̸= d0

To test the null hypothesis against the two-sided alternative we follow the
4 steps as above with some adjustments

1 Estimate (µW,M − µW,F) by (W̄M − W̄M).

▶ Because a weighted average of 2 independent normal random variables is
itself normally distributed we have (using the CLT and the fact that
Cov(W̄M, W̄F) = 0)

W̄M − W̄F ∼ N

(
µW,M − µW,F,

σ2
W,M

nM
+

σ2
W,F

nF

)

P. Konstantinou (AUEB) Statistics for Business – III August 28, 2023 45 / 61

Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – II
Large Samples or Known Variances from Normal Populations

2 Estimate σW,M and σW,F to obtain SE(W̄M − W̄F):

SE(W̄M − W̄F) =

√
s2

W,M

nM
+

s2
W,F

nF

3 Compute the t-statistic

tact =
(W̄M − W̄M)− d0

SE(W̄M − W̄F)

4 Reject H0 at a 5% significance level if |tact| > 1.96 or if the
p-value< 0.05.
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Comparing Means from Different Populations – III
Large Samples or Known Variances from Normal Populations

Example
Suppose we have random samples of 500 men and 500 women with a Ph.D.
degree and we would like to test that the mean wages are equal:

H0 : µW,M − µW,M = 0 H1 : µW,M − µW,M ̸= 0

We obtained W̄M = 64159.45, W̄F = 53163.41, sW,M = 18957.26, and
sW,F = 20255.89. We have:

1 W̄M − W̄F = 64159.45 − 53163.41 = 10996.04.

2 SE(W̄M − W̄F) = 1240.709.

3 tact = (W̄M−W̄F)−0
SE(W̄M−W̄F)

= 10996.04
1240.709 = 8.86.

4 Since we use a 5% significance level, we reject H0 because
|tact| = 8.86 > 1.96
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Confidence Interval for the Difference in Population Means

The method for constructing a confidence interval for 1 population mean
can be easily extended to the difference between 2 population means.

A hypothesized value of the difference in means d0 will be rejected if
|t| > 1.96 and will be in the confidence set if |t| ≤ 1.96.

Thus the 95% confidence interval for µW,M − µW,F are the values of d0
within ±1.96 standard errors of (W̄M − W̄F).

So a 95% confidence interval for µW,M − µW,F is

(W̄M − W̄M)± 1.96 · SE(W̄M − W̄M)

10996.04 ± 1.96 · 1240.709

[8561.34, 13430.73]
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences
Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

t =
(X̄ − Ȳ)− d0

SE(X̄ − Ȳ)
=

(X̄ − Ȳ)− d0√
(s2

p/nX) + (s2
p/nY)

∼ tnX+nY−2;

where s2
p =

(nX − 1)s2
X + (nY − 1)s2

Y
nX + nY − 2

The C.I. is constructed as (X̄ − Ȳ)± tnX+nY−2,α/2 · SE(X̄ − Ȳ).

Recall µX = E(X), µY = E(Y)
H0 : µX − µY ≥ d0
H1 : µX − µY < d0

H0 : µX − µY ≤ d0
H1 : µX − µY > d0

H0 : µX − µY = d0
H1 : µX − µY ̸= d0

Lower-tail Upper-tail Two-tailed
Reject H0 if t < tα Reject H0 if t > tα Reject H0 if |t| > tα/2
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences – I
Example: Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

You are a financial analyst for a brokerage firm. Is there a difference in
dividend yield between stocks listed on the NYSE & NASDAQ? You
collect the following data:

NYSE NASDAQ
Number: 21 25

Sample mean: 3.27 2.53
Sample std. dev.: 1.30 1.16

Assuming both populations are approximately normal with equal
variances, is there a difference in average yield (α = 0.05)?
▶ The hypothesis of interest is

H0 : µNYSE − µNASDAQ = 0
H1 : µNYSE − µNASDAQ ̸= 0 or

H0 : µNYSE = µNASDAQ

H1 : µNYSE ̸= µNASDAQ
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Comparing Means from Different Populations Testing for Equal Means from Different Populations

Testing Population Mean Differences – II
Example: Normal Populations, Unknown Variances σ2

X and σ2
Y but Assumed Equal

▶ Note that df = nX + nY − 2 = 21 + 25 − 2 = 44, so the critical value for
the test is t44,0.025 = 2.0154

▶ The pooled variance is:

s2
p =

(nX − 1)s2
X + (nY − 1)s2

Y

nX + nY − 2
=

(21 − 1)1.302 + (25 − 1)1.162

(21 − 1) + (25 − 1)
= 1.5021

▶ The test statistic is

tact =
(x̄ − ȳ)− d0√

(s2
p/nX) + (s2

p/nY)
=

(3.27 − 2.53)− 0√
1.5021

( 1
21 + 1

25

) = 2.040.

Since |tact| > t44,0.025 = 2.0154, we reject H0 at α = 0.05. We conclude
that there is evidence of a difference...

The C.I. is constructed as (X̄ − Ȳ)± tnX+nY−2,α/2 · SE(X̄ − Ȳ)
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – I
Matched or Paired Samples

Suppose we obtain a sample of n observations from two populations
which are normally distributed and we have paired or matched samples –
repeated measures (before/after).
Define, the pair difference di = Xi − Yi. We have

d̄ =
1
n

∑n

i=1
di = X̄ − Ȳ; and Sd =

√
1

n − 1

∑n

i=1
(di − d̄)2

with E(d̄) = µd = E(X)− E(Y) and SE(d̄) =
√

S2
d

n = Sd/
√

n
If the sample size is large enough (n → ∞) then

d̄ − µd

Sd/
√

n
∼ N

(
0,

S2
d

n

)
.

If the sample size is relatively small, then

d̄ − µd

Sd/
√

n
∼ tn−1.
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – II
Matched or Paired Samples

Lower-tail test:

H0: E(X)–E(Y) ³ 0
H1: E(X)–E(Y) < 0

Upper-tail test:

H0: E(X)–E(Y) ≤ 0
H1: E(X)–E(Y) > 0

Two-tail test:

H0: E(X)–E(Y) = 0
H1: E(X)–E(Y) ≠ 0

α α/2 α/2α

-zα - zα/2zα zα/2
Reject H0 if t < – zα Reject H0 if t > zα Reject H0 if t < – za/2

or t > za/2

Matched or Paired Samples 𝑡 =
𝑑 − 𝑑!
SE(𝑑) =

𝑑 − 𝑑!
𝑠"/ 𝑛

(𝑛 large)
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – III
Matched or Paired Samples

Lower-tail test:

H0: E(X)–E(Y) ³ 0
H1: E(X)–E(Y) < 0

Upper-tail test:

H0: E(X)–E(Y) ≤ 0
H1: E(X)–E(Y) > 0

Two-tail test:

H0: E(X)–E(Y) = 0
H1: E(X)–E(Y) ≠ 0

α α/2 α/2α

-tn-1,α - tn-1, α/2tn-1,α tn-1, α/2
Reject H0 if t <–tn-1,α Reject H0 if t > tn-1,α Reject H0 if t < – tn-1,a/2

or t > tn-1,a/2

Matched or Paired Samples 𝑡 =
𝑑 − 𝑑!
SE(𝑑) =

𝑑 − 𝑑!
𝑠"/ 𝑛

~𝑡#$%
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – I
Matched or Paired Samples: Example

Assume you send your salespeople to a “customer service” training
workshop. Has the training made a difference in the number of
complaints? Test at the 5% significance level. You collect the following
data:

Salesperson C.B. T.F M.H. R.K. M.O.
Complaints, Before: 6 20 3 0 4
Complaints, After: 4 6 2 0 0

Difference, di -2 -14 -1 0 -4

d̄ =
1
5

∑5

i=1
di = −4.2; sd =

√
1

5 − 1

∑5

i=1
(di − d̄)2 = 5.67

▶ The hypothesis of interest is

H0 : µX − µY = 0
H1 : µX − µY ̸= 0
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Comparing Means from Different Populations Testing for Equal Means: Matched Samples

Testing Population Mean Differences – II
Matched or Paired Samples: Example

▶ With n = 4 and α = 0.05 the critical value is tn−1,α/2 = t4,0.025 = 2.776.
▶ We have

t =
d̄ − d0

sd/
√

n
=

−4.2 − 0
5.67/

√
4
= −1.66 > −t4,0.025 = −2.776,

or |t| < t4,0.025 = 2.776. Hence, we do not reject H0. There is not a
significant change in the number of complaints.
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Annex: Hypothesis Tests – I
Employing the p-value

Suppose we have a sample of n observations (they are assumed IID) and
compute the sample average Ȳ. The sample average can differ from µY,0
for two reasons

1 The population mean µY is not equal to µY,0 (H0 is not true)
2 Due to random sampling Ȳ ̸= µY = µY,0 (H0 is true)

To quantify the second reason we define the p-value. The p-value is the
probability of drawing a sample with Ȳ at least as far from µY,0 as the
value actually observed, given that the null hypothesis is true.

p-value = Pr
H0

[
|Ȳ − µY,0| >

∣∣Ȳact − µY,0
∣∣] ,

where Ȳact is the value of Ȳ actually observed
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Annex: Hypothesis Tests – II
Employing the p-value

To compute the p-value, you need the to know the sampling distribution
of Ȳ , which is complicated if n is small. With large n the CLT states that

Ȳ ∼ N
(
µY ,

σ2
Y

n

)
,

which implies that if the null hypothesis is true:

Ȳ − µY,0√
σ2

Y
n

∼ N(0, 1)

Hence

p-value = Pr
H0



∣∣∣∣∣∣
Ȳ − µY,0√

σ2
Y

n

∣∣∣∣∣∣
>

∣∣∣∣∣∣
Ȳact − µY,0√

σ2
Y

n

∣∣∣∣∣∣


 = 2Φ


−

∣∣∣∣∣∣
Ȳact − µY,0√

σ2
Y

n

∣∣∣∣∣∣



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Annex: Employing p-values

Annex: Hypothesis Tests – III
Employing the p-value

 3.2   Hypothesis Tests Concerning the Population Mean  111

This large-sample normal approximation makes it possible to compute the p-value 

without needing to know the population distribution of Y, as long as the sample size 

is large. The details of the calculation, however, depend on whether s2
 Y is known.

Calculating the p-Value When sY Is Known
The calculation of the p-value when sY is known is summarized in Figure 3.1. If the 

sample size is large, then under the null hypothesis the sampling distribution of Y is 

N1mY,0, s
2
 Y2, where s2

 Y = s2
 Y  >  n. Thus, under the null hypothesis, the standardized 

version of Y, 1Y - mY,02  >  s
  Y, has a standard normal distribution. The p-value is the 

probability of obtaining a value of Y farther from mY,0 than Y act under the null 

hypothesis or, equivalently, it is the probability of obtaining 1Y - mY,02  >  s Y greater 

than 1Y act - mY,02  >sY in absolute value. This probability is the shaded area shown 

in Figure 3.1. Written mathematically, the shaded tail probability in Figure 3.1 (that 

is, the p-value) is

p@value = PrH0
a 2 Y - mY,0

s  Y

2 7 2 Y act - mY,0

s  Y

2 b = 2Φa- 2 Y act - mY,0

s  Y

2 b , (3.6)

where Φ is the standard normal cumulative distribution function. That is, the p-value  

is the area in the tails of a standard normal distribution outside { �Y act - mY,0 � >s  Y.

The formula for the p-value in Equation (3.6) depends on the variance of the 

population distribution, s2
 Y. In practice, this variance is typically unknown. [An 

exception is when Yi is binary, so that its distribution is Bernoulli, in which case the 

variance is determined by the null hypothesis; see Equation (2.7) and Exercise 3.2.] 

Because in general s2
 Y must be estimated before the p-value can be computed, we 

now turn to the problem of estimating s2
 Y.

FIGURE 3.1  Calculating a p-value

The p-value is the 
probability of drawing a 
value of Y  that differs from 
mY,0 by at least as much 
as Yact. In large samples,  
Y  is distributed N1mY,0, s2

Y2 
under the null hypothesis, 
so 1Y - mY,02  >  s

 Y 
is distributed N  10, 12. 
Thus the p-value is the 
shaded standard normal 
tail probability outside 
{  � 1Yact - mY,02 >  s  Y � .

_

zY act – mY,0
–

sY–
–

Y act – mY,0
–

sY–

0

The p-value is the shaded
area in the graph

N(0, 1)

For large n, p-value = the probability that a N(0, 1) random variable falls
outside

∣∣∣ Ȳact−µY,0
σȲ

∣∣∣, where σȲ = σY/
√

n
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Annex: Hypothesis Tests – I
Computing the p-value when σ2

Y is unknown

In practice σ2
Y is usually unknown and must be estimated

The sample variance S2
Y is the estimator of σ2

Y = E
[
(Y − µY)

2
]
, defined

as

S2
Y =

1
n − 1

n∑

i=1

(Yi − Ȳ)2

▶ division by n − 1 because we ‘replace’ µY by Ȳ which uses up 1 degree of
freedom

▶ if Y1,Y2, ...,Yn are IID and E(Y4) < ∞, then S2
Y

p→ σ2
Y (Law of Large

Numbers)

The sample standard deviation SY =
√

S2
Y , is the estimator of σY .
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Annex: Hypothesis Tests – II
Computing the p-value when σ2

Y is unknown

The standard error SE(Ȳ) is an estimator of σȲ

SE(Ȳ) =
SY√

n

Because S2
Y is a consistent estimator of σ2

Y we can (for large n) replace
√

σ2
Y

n
by SE(Ȳ) =

SY√
n

This implies that when σ2
Y is unknown and Y1,Y2, ...,Yn are IID the

p-value is computed as

p − value = 2Φ
(
−
∣∣∣∣
Ȳact − µY,0

SE(Ȳ)

∣∣∣∣
)
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