Statistics for Business

Random Variables and Probability Distributions, Special Discrete and Continuous Probability Distributions

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management,
Athens University of Economics and Business
First Draft: July 15, 2045. This Draft: August 28, 2023.

Random Variables - I

Basics

Definition

A random variable X is a a function or rule that assigns a number to each outcome of an experiment.

Think of this as the numerical summary of a random outcome.

Random Variables - II

Basics

Examples

- $X=$ GPA for a randomly selected student
- $X=$ number of contracts a shipping company has pending at a randomly selected month of the year
- $X=$ number on the upper face of a randomly tossed die
- $X=$ the price of crude oil during a randomly selected month.

Discrete Random Variables

- A discrete random variable can only take on a countable number of values

Examples

- Roll a die twice. Let X be the number of times 4 comes up:
- then X could be 0,1 , or 2 times
- Toss a coin 5 times. Let X be the number of heads:
- then $X=0,1,2,3,4$, or 5

Discrete Probability Distributions - I

- The probability distribution for a discrete random variable X resembles the relative frequency distributions. It is a graph, table or formula that gives the possible values of X and the probability $P(X=x)$ associated with each value.
- This must satisfy
(1) $0 \leq P(x) \leq 1$, for all x.
(2) $\sum_{\text {all } x} P(x)=1$, the individual probabilities sum to 1 .
- The cumulative probability function, denoted by $F\left(x_{0}\right)$, shows the probability that X is less than or equal to a particular value, x_{0} :

$$
F\left(x_{0}\right)=\operatorname{Pr}\left(X \leq x_{0}\right)=\sum_{x \leq x_{0}} P(x)
$$

Discrete Probability Distributions - II

- Random Experiment: Toss 2 Coins. Let (the random variable) $X=\#$ heads.

Discrete Probability Distributions - III

4 possible outcomes Probability Distribution

- Random Experiment: Let the random variable S be the number of days it will snow in the last week of January

Discrete Probability Distributions - IV

(cumulative) Probability distribution of S

Outcome	0	1	2	3	4	5	6	7
Probability	0.20	0.25	0.20	0.15	0.10	0.05	0.04	0.01
CDF	0.20	0.45	0.65	0.80	0.90	0.95	0.99	1.00

Moments of Discrete Prob. Distributions - I

- Expected Value (or mean) of a discrete distribution (weighted average)

$$
\mu_{X}=\mathrm{E}(X)=\sum_{\operatorname{all} x} x \cdot P(x)
$$

- Variance of a discrete random variable X (weighted average...)

$$
\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\sum_{\text {all } x}\left(x-\mu_{X}\right)^{2} \cdot P(x)
$$

- Standard Deviation of a discrete random variable X

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{\text {all } x}(x-\mu)^{2} P(x)}
$$

Moments of Discrete Prob. Distributions - II

Example

Consider the experiment of tossing 2 coins, and $X=\#$ of heads. Then

$$
\begin{aligned}
\mu & =\mathrm{E}(X)=\sum_{x} x P(x) \\
& =(0 \times 0.25)+(1 \times 0.50)+(2 \times 0.25)=1 \\
\sigma & =\sqrt{\sum_{x}(x-\mu)^{2} P(x)} \\
& =\sqrt{(0-1)^{2}(.25)+(1-1)^{2}(.50)+(2-1)^{2}(.25)} \\
& =\sqrt{.50}=0.707
\end{aligned}
$$

Moments of Discrete Prob. Distributions - III

Example (Number of days it will snow in January)

$$
\begin{aligned}
& \mu_{S}=\mathrm{E}(S)=\sum_{s} s \cdot P(s)= \\
& =0 \cdot 0.2+1 \cdot 0.25+2 \cdot 0.2+3 \cdot 0.15+4 \cdot 0.1+5 \cdot 0.05+6 \cdot 0.04+7 \cdot 0.01=2.06 \\
& \sigma_{S}^{2}=\operatorname{Var}(S)=\sum_{s}(s-\mathrm{E}(S))^{2} \cdot P(s)= \\
& =(0-2.06)^{2} \cdot 0.2+(1-2.06)^{2} \cdot 0.25+(2-2.06)^{2} \cdot 0.2+(3-2.06)^{2} \cdot 0.15 \\
& +(4-2.06)^{2} \cdot 0.1+(5-2.06)^{2} \cdot 0.05+(6-2.06)^{2} \cdot 0.04 \\
& +(7-2.06)^{2} \cdot 0.01=2.94
\end{aligned}
$$

Remark (Rules for Moments)

Let a and b be any constants and let $Y=a+b X$. Then

$$
\begin{aligned}
\mathrm{E}[a+b X] & =a+b \mathrm{E}[X]=a+b \mu_{x} \\
\operatorname{Var}[a+b X] & =b^{2} \operatorname{Var}[X]=b^{2} \sigma_{x}^{2} \Rightarrow \sigma_{Y}=|b| \sigma_{x}
\end{aligned}
$$

- The above imply that $\mathrm{E}[a]=a$ and $\operatorname{Var}[a]=0$

Prob. Density and Distribution Function - I

- The probability density function (or $p d f$), $f(x)$, of continuous random variable X has the following properties
(1) $f(x)>0$ for all values of $x\left(x\right.$ takes a range of values, $\left.\mathbb{R}_{X}\right)$.
(2) The area under the probability density function $f(x)$ over all values of the random variable X is equal to 1 (recall that $\sum_{\text {all } x} P(x)=1$ for discrete r.v.)

$$
\int_{\mathbb{R}_{X}} f(x) d x=1
$$

Prob. Density and Distribution Function - II

(0) The probability that X lies between two values is the area under the density function graph between the two values:

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(a<X<b)=\int_{a}^{b} f(x) d x
$$

Note that the probability of any individual value is zero

Prob. Density and Distribution Function - III

(9) The cumulative density function (or distribution function) $F\left(x_{0}\right)$, which expresses the probability that X does not exceed the value of x_{0}, is the area under the probability density function $f(x)$ from the minimum x value up to x_{0}

$$
F\left(x_{0}\right)=\int_{x_{\min }}^{x_{0}} f(x) d x
$$

(3) It follows that

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(a<X<b)=F(b)-F(a)
$$

Moments of Continuous Distributions - I

- Expected Value (or mean) of a continuous distribution

$$
\mu_{X}=\mathrm{E}(X)=\int_{\mathbb{R}_{X}} x f(x) d x .
$$

- Variance of a continuous random variable X

$$
\sigma_{X}^{2}=\operatorname{Var}(X)=\int_{\mathbb{R}_{X}}\left(x-\mu_{X}\right)^{2} f(x) d x
$$

- Standard Deviation of a continuous random variable X

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}=\sqrt{\int_{\mathbb{R}_{X}}\left(x-\mu_{X}\right)^{2} f(x) d x}
$$

Moments of Continuous Distributions - II

Remark (Rules for Moments Apply)

Let c and d be any constants and let $Y=c+d X$. Then

$$
\begin{aligned}
\mathrm{E}[c+d X] & =c+d \mathrm{E}[X]=c+d \mu_{x} \\
\operatorname{Var}[c+d X] & =d^{2} \operatorname{Var}[X]=d^{2} \sigma_{x}^{2} \Rightarrow \sigma_{Y}=|d| \sigma_{x}
\end{aligned}
$$

Remark (Standardized Random Variable)

An important special case of the previous results is

$$
\begin{aligned}
& Z=\frac{X-\mu_{x}}{\sigma_{x}}, \\
& \text { for } \text { which }: \quad \mathrm{E}(Z)=0 \\
& \operatorname{Var}(Z)=1 .
\end{aligned}
$$

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure". Let p denote the probability of success, and $1-p$ be the probability of failure.
- Define random variable X : $x=1$ if success, $x=0$ if failure.
- Then the Bernoulli probability function is

$$
P(X=0)=(1-p) \text { and } P(X=1)=p
$$

- Moreover:

$$
\begin{aligned}
\mu_{X} & =\mathrm{E}(X)=\sum_{\text {all } x} x \cdot P(x)=0 \cdot(1-p)+1 \cdot p=p \\
\sigma_{X}^{2} & =\operatorname{Var}(X)=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\sum_{\text {all } x}\left(x-\mu_{X}\right)^{2} \cdot P(x) \\
& =(0-p)^{2}(1-p)+(1-p)^{2} p=p(1-p)
\end{aligned}
$$

Binomial Distribution - I

- A fixed number of observations, n
- e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
- e.g., head or tail in each toss of a coin; defective or not defective light bulb
- Generally called "success" and "failure"
- Probability of success is p, probability of failure is $1-p$
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
- The outcome of one observation does not affect the outcome of the other

Binomial Distribution - II

- Examples:
- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it
- To calculate the probability associated with each value we use combinatorics:

$$
P(x)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} ; x=0,1,2, \ldots, n
$$

Binomial Distribution - III

- $P(x)=$ probability of x successes in n trials, with probability of success p on each trial; $x=$ number of 'successes' in sample (nr. of trials $n) ; n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1$

Example

What is the probability of one success in five observations if the probability of success is 0.1 ?

- Here $x=1, n=5$, and $p=0.1$. So

$$
\begin{aligned}
P(x & =1)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} \\
& =\frac{5!}{1!(5-1)!}(0.1)^{1}(1-0.1)^{5-1}=5(0.1)(0.9)^{4}=0.32805
\end{aligned}
$$

Binomial Distribution

Moments and Shape

$$
\begin{aligned}
\mu & =\mathrm{E}(X)=n p \\
\sigma^{2} & =\operatorname{Var}(X)=n p(1-p) \Rightarrow \sigma=\sqrt{n p(1-p)}
\end{aligned}
$$

- The shape of the binomial distr. depends on the values of p and n

$$
\begin{aligned}
& \mu=n p=(5)(0.1)=0.5 \\
& \sigma=\sqrt{n p(1-p)}=\sqrt{(5)(0.1)(1-0.1)} \\
& =0.6708
\end{aligned}
$$

$$
\begin{aligned}
\mu=n p & =(5)(0.5)=2.5 \\
\sigma=\sqrt{n p(1-p)} & =\sqrt{(5)(0.5)(1-0.5)} \\
& =1.118
\end{aligned} \quad \begin{array}{|c|ccccc}
\hline \boldsymbol{P}(x) & n=5 & p=0.5 \\
\hline .4 & & & & & \\
\hline .2 & - & & & & \\
0 & & & & & \\
\hline
\end{array}
$$

Normal Distribution - I

- The normal distribution is the most important of all probability distributions. The probability density function of a normal random variable is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} ;-\infty<x<+\infty
$$

and we usually write $X \sim N\left(\mu_{x}, \sigma_{x}^{2}\right)$

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant

Normal Distribution - II

- The shape and location of the normal curve changes as the mean (μ) and standard deviation (σ) change

Normal Distribution - III

Same variance, different means

Same mean, different standard deviations

- For a normal random variable X with mean μ and variance σ^{2}, i.e., $X \sim N\left(\mu, \sigma^{2}\right)$), the cumulative distribution function is

$$
F\left(x_{0}\right)=\operatorname{Pr}\left(X \leq x_{0}\right)
$$

Normal Distribution - IV

while the probability for a range of values is measured by the area under the curve

$$
\operatorname{Pr}(a<X<b)=F(b)-F(a)
$$

Normal Distribution - V

- Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (Z), with mean 0 and variance 1 :

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

- Example: If $X \sim N\left(100,50^{2}\right)$, the Z value for $X=200$ is

$$
Z=\frac{X-\mu}{\sigma}=\frac{200-100}{50}=2
$$

This says that $X=200$ is two standard deviations (2 increments of 50 units) above the mean of 100 .

Normal Distribution - VI

Finding Normal Probabilities - I

Finding Normal Probabilities - II

- The total area under the curve is 1.0 , and the curve is symmetric, so half is above the mean, half is below

Finding Normal Probabilities - III

- Table with cumulative standard normal distribution: For a given Z-value a, the table shows $\Phi(a)$ (the area under the curve from negative infinity to a)

Finding Normal Probabilities - IV

- Example: Suppose we are interested in $\operatorname{Pr}(Z<2)$ - from the previous example. For negative Z-values, we use the fact that the distribution is symmetric to find the needed probability (e.g. $\operatorname{Pr}(Z<-2)$).

Finding Normal Probabilities - V

- Example: Suppose X is normal with mean 8.0 and standard deviation 5.0. Find $\operatorname{Pr}(X<8.6)$.

Finding Normal Probabilities - VI

- Example (Upper Tail Probabilities): Suppose X is normal with mean 8.0 and standard deviation 5.0. Find $\operatorname{Pr}(X>8.6)$.

$$
\begin{aligned}
\operatorname{Pr}(X & >8.6)=\operatorname{Pr}(Z>0.12)=1-\operatorname{Pr}(Z \leq 0.12) \\
& =1-0.5478=0.4522
\end{aligned}
$$

- Example (Finding X for a Known Probability) Suppose $X \sim N\left(8,5^{2}\right)$. Find a X value so that only 20% of all values are below this X.
(1) Find the Z-value for the known probability $\Phi(.84)=.7995$, so a 20% area in the lower tail is consistent with a Z-value of -0.84 .

Finding Normal Probabilities - VII

(2) Convert to X-units using the formula

$$
\begin{aligned}
X & =\mu+Z \sigma \\
& =8+(-.84) \cdot 5=3.8
\end{aligned}
$$

So 20% of the values from a distribution with mean 8 and standard deviation 5 are less than 3.80.

Joint and Marginal Probability Distributions - I

 Joint Probability Functions- Suppose that X and Y are discrete random variables. The joint probability function is

$$
P(x, y)=\operatorname{Pr}(X=x \cap Y=y)
$$

which is simply used to express the probability that X takes the specific value x and simultaneously Y takes the value y, as a function of x and y. This should satisfy:
(1) $0 \leq P(x, y) \leq 1$ for all x, y.
(2) $\sum_{x} \sum_{y} P(x, y)=1$, where the sum is over all values (x, y) that are assigned nonzero probabilities.

Joint and Marginal Probability Distributions - II

 Joint Probability Functions- For any random variables X and Y (discrete or continuous), the joint (bivariate) distribution function $F(x, y)$ is

$$
F(x, y)=\operatorname{Pr}(X \leq x \cap Y \leq y)
$$

This defines the probability that simultaneously X is less than x and Y is less than y.

Joint and Marginal Probability Distributions

Marginal Probability Functions

- Let X and Y be jointly discrete random variables with probability function $P(x, y)$. Then the marginal probability functions of X and Y, respectively, are given by

$$
P_{x}(x)=\sum_{\text {all } y} P(x, y) \quad P_{y}(y)=\sum_{\text {all } x} P(x, y)
$$

- Let X and Y be jointly discrete random variables with probability function $P(x, y)$. The cumulative marginal probability functions, denoted $F_{x}\left(x_{0}\right)$ and $G_{y}\left(y_{0}\right)$, show the probability that X is less than or equal to x_{0} and that Y is less than or equal to y_{0} respectively

$$
\begin{aligned}
& F_{x}\left(x_{0}\right)=\operatorname{Pr}\left(X \leq x_{0}\right)=\sum_{x \leq x_{0}} P_{x}(x) \\
& G_{y}\left(y_{0}\right)=\operatorname{Pr}\left(Y \leq y_{0}\right)=\sum_{y \leq y_{0}} P_{y}(y)
\end{aligned}
$$

Conditional Probability Distributions

- If X and Y are jointly discrete random variables with joint probability function $P(x, y)$ and marginal probability functions $P_{x}(x)$ and $P_{y}(y)$, respectively, then the conditional discrete probability function of Y given X is

$$
P(y \mid x)=\operatorname{Pr}(Y=y \mid X=x)=\frac{\operatorname{Pr}(X=x, Y=y)}{\operatorname{Pr}(X=x)}=\frac{P(x, y)}{P_{x}(x)},
$$

provided that $P_{x}(x)>0$. Similarly,

$$
P(x \mid y)=\frac{P(x, y)}{P_{y}(y)}, \text { provided that } P_{y}(x)>0
$$

Statistical Independence

- Let X have distribution function $F_{x}(x), Y$ have distribution function $F_{y}(y)$, and X and Y have a joint distribution function $F(x, y)$. Then X and Y are said to be independent if and only if

$$
F(x, y)=F_{x}(x) \cdot F_{y}(y)
$$

for every pair of real numbers (x, y).

- Alternatively, the two random variables X and Y are independent if the conditional distribution of Y given X does not depend on X :

$$
\operatorname{Pr}(Y=y \mid X=x)=\operatorname{Pr}(Y=y)
$$

- We also define Y to be mean independent of X when the conditional mean of Y given X equals the unconditional mean of Y :

$$
\mathrm{E}(Y=y \mid X=x)=\mathrm{E}(Y=y)
$$

Conditional Moments

- If X and Y are any two discrete random variables, the conditional expectation of Y given that $X=x$, is defined to be

$$
\mu_{Y \mid X}=\mathrm{E}(Y \mid X=x)=\sum_{\text {all } y} y \cdot P(y \mid x)
$$

- If X and Y are any two discrete random variables, the conditional variance of Y given that $X=x$, is defined to be

$$
\sigma_{Y \mid X}^{2}=\mathrm{E}\left[\left(Y-\mu_{Y \mid X}\right)^{2} \mid X=x\right]=\sum_{\text {all } y}\left(y-\mu_{Y \mid X}\right)^{2} \cdot P(y \mid x)
$$

Joint and Marginal Distributions - I

Examples

- We are given the following data on the number of people attending AUEB this year.

	Subject of Study (Y)		
Sex (X)	Economics (0)	Finance (1)	Systems (2)
Male (0)	40	10	30
Female (1)	30	20	70

(1) What is the probability of selecting an individual that studies Finance?
(2) What is the expected value of Sex?
(3) What is the probability of choosing an individual that studies economics, given that it is a female?
(4) Are Sex and Subject statistically independent?

Joint and Marginal Distributions - II

Examples

- First step: Totals

Subject of Study (Y)

	Subject of Study (Y)			
Sex (X)	Economics (0)	Finance (1)	Systems (2)	Total
Male (0)	40	10	30	$\mathbf{8 0}$
Female (1)	30	20	70	$\mathbf{1 2 0}$
Total	$\mathbf{7 0}$	$\mathbf{3 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$

- Second step: Probabilities

	Subject of Study (Y)			
Sex (X)	Economics (0)	Finance (1)	Systems (2)	Total
Male (0)	$40 / 200=0.20$	0.05	0.15	$\mathbf{0 . 4 0}$
Female (1)	$30 / 200=0.15$	0.10	0.35	$\mathbf{0 . 6 0}$
Total	$\mathbf{7 0} / \mathbf{2 0 0}=\mathbf{0 . 3 5}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 5 0}$	$\mathbf{1}$

Joint and Marginal Distributions - III

Examples

- Answers:
(1) $\operatorname{Pr}(Y=1)=0.15$.
(2) $\mathrm{E}(X)=0 \cdot 0.4+1 \cdot 0.6=0.6$
(3) $\operatorname{Pr}(Y=0 \mid X=1)=0.15 / 0.6=0.25$
(9) $\operatorname{Pr}(X=0 \cap Y=0)=0.20 \neq \operatorname{Pr}(X=0) \cdot \operatorname{Pr}(Y=0)=$ $0.4 \cdot 0.35=0.14$. So Sex and Subject are not statistically independent.
- The conditional mean of Y given $X=0$ is

$$
\begin{gathered}
\mathrm{E}(Y \mid X=0) \\
=\operatorname{Pr}(Y=0 \mid X=0) \cdot 0+\operatorname{Pr}(Y=1 \mid X=0) \cdot 1+\operatorname{Pr}(Y=2 \mid X=0) \cdot 2 \\
=\frac{0.20}{0.4} \cdot 0+\frac{0.05}{0.4} \cdot 1+\frac{0.15}{0.4} \cdot 2=0.875
\end{gathered}
$$

Joint and Marginal Distributions - IV

Examples

- The conditional mean of Y given $X=1$ is

$$
\begin{gathered}
\mathrm{E}(Y \mid X=1) \\
=\operatorname{Pr}(Y=0 \mid X=1) \cdot 0+\operatorname{Pr}(Y=1 \mid X=1) \cdot 1+\operatorname{Pr}(Y=2 \mid X=1) \cdot 2 \\
=\frac{0.15}{0.6} \cdot 0+\frac{0.10}{0.6} \cdot 1+\frac{0.35}{0.6} \cdot 2=0.80
\end{gathered}
$$

Covariance, Correlation and Independence - I

Definition (Covariance)

If X and Y are random variables with means μ_{x} and μ_{y}, respectively, the covariance of X and Y is

$$
\sigma_{X Y} \equiv \operatorname{Cov}(X, Y)=\mathrm{E}\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] .
$$

- This can be found as

$$
\operatorname{Cov}(X, Y)=\sum_{\text {all } x \text { all } y} \sum_{\text {a }}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) \cdot P(x, y),
$$

and an equivalent expression is

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[X Y]-\mu_{x} \mu_{y}=\sum_{\text {all } x} \sum_{\text {all } y} x y \cdot P(x, y)-\mu_{x} \mu_{y} .
$$

Covariance, Correlation and Independence - II

- The covariance measures the strength of the linear relationship between two variables.
- If two random variables are statistically independent, the covariance between them is 0 . The converse is not necessarily true.

Covariance, Correlation and Independence - III

Definition (Correlation)

The correlation between X and Y is

$$
\rho \equiv \operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \cdot \sigma_{Y}}=\frac{\sigma_{X Y}}{\sigma_{X} \cdot \sigma_{Y}}
$$

- $\rho=0 \Rightarrow$ no linear relationship between X and Y.
- $\rho>0 \Rightarrow$ positive linear relationship between X and Y.
- when X is high (low) then Y is likely to be high (low)
- $\rho=+1 \Rightarrow$ perfect positive linear dependency
- $\rho<0 \Rightarrow$ negative linear relationship between X and Y.
- when X is high (low) then Y is likely to be low (high)
- $\rho=-1 \Rightarrow$ perfect negative linear dependency

Covariance, Correlation and Independence - IV

Moments of Linear Combinations - I

- Let X and Y be two random variables with means μ_{X} and μ_{Y}, and variances σ_{X}^{2} and σ_{Y}^{2} and covariance $\operatorname{Cov}(X, Y)$. Take a linear combination of X and Y :

$$
W=a X+b Y
$$

Then,

$$
\begin{gathered}
\mathrm{E}(W)=\mathrm{E}(a X+b Y)=a \mu_{X}+b \mu_{Y}, \text { and } \\
\operatorname{Var}(W)=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \operatorname{Cov}(X, Y),
\end{gathered}
$$

or using the correlation

$$
\operatorname{Var}(W)=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \operatorname{Corr}(X, Y) \sigma_{X} \sigma_{Y}
$$

Moments of Linear Combinations - II

Example

If $a=1$ and $b=-1, W=X-Y$ and

$$
\begin{aligned}
\mathrm{E}(W) & =\mathrm{E}(X-Y)=\mu_{X}-\mu_{Y} \\
\operatorname{Var}(W) & =\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \operatorname{Cov}(X, Y) \\
& =\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \operatorname{Corr}(X, Y) \sigma_{X} \sigma_{Y}
\end{aligned}
$$

Moments of Linear Combinations

Example 1: Normally Distributed Random Variables

- Two tasks must be performed by the same worker.
- $X=$ minutes to complete task $1 ; \mu_{X}=20, \sigma_{X}=5$;
- $Y=$ minutes to complete task $2 ; \mu_{Y}=30, \sigma_{Y}=8$;
- X and Y are normally distributed and independent...
\star What is the mean and standard deviation of the time to complete both tasks?
- $W=X+Y$ (total time to complete both tasks). So

$$
\begin{aligned}
\mathrm{E}(W) & =\mu_{X}+\mu_{Y}=20+30=50 \\
\operatorname{Var}(W) & =\sigma_{X}^{2}+\sigma_{Y}^{2}+\underbrace{2 \operatorname{Cov}(X, Y)}_{=0, \text { independence }}=5^{2}+8^{2}=89 \\
& \Rightarrow \sigma_{W}=\sqrt{89} \simeq 9.43
\end{aligned}
$$

Linear Combinations Random Variables - I

Example 2: Portfolio Value

- The return per $\$ 1,000$ for two types of investments is given below

| State of Economy | | Investment Funds | |
| :--- | :--- | :---: | :---: | :---: |
| Prob | Economic condition | Passive X | Aggressive Y |
| 0.2 | Recession | $-\$ 25$ | $-\$ 200$ |
| 0.5 | Stable Economy | $+\$ 50$ | $+\$ 60$ |
| 0.3 | Growing Economy | $+\$ 100$ | $+\$ 350$ |

- Suppose 40% of the portfolio (P) is in Investment X and 60% is in Investment Y. Calculate the portfolio return and risk.
- Mean return for each fund investment

$$
\begin{aligned}
& \mathrm{E}(X)=\mu_{X}=(-25)(.2)+(50)(.5)+(100)(.3)=50 \\
& \mathrm{E}(Y)=\mu_{Y}=(-200)(.2)+(60)(.5)+(350)(.3)=95
\end{aligned}
$$

Linear Combinations Random Variables - II

Example 2: Portfolio Value

- Standard deviations for each fund investment

$$
\begin{aligned}
\sigma_{X} & =\sqrt{(-25-50)^{2}(.2)+(50-50)^{2}(.5)+(100-50)^{2}(.3)} \\
& =43.30 \\
\sigma_{Y} & =\sqrt{(-200-95)^{2}(.2)+(60-95)^{2}(.5)+(350-95)^{2}(.3)} \\
& =193.71
\end{aligned}
$$

- The covariance between the two fund investments is

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & (-25-50)(-200-95)(.2) \\
& +(50-50)(60-95)(.5) \\
& +(100-50)(350-95)(.3) \\
= & 8250
\end{aligned}
$$

Linear Combinations Random Variables - III

Example 2: Portfolio Value

- So

$$
\begin{aligned}
\mathrm{E}(P) & =0.4(50)+0.6(95)=77 \\
\sigma_{P} & =\sqrt{(.4)^{2}(43.30)^{2}+(.6)^{2}(193.71)^{2}+2(.4)(.6) 8250} \\
& =133.04
\end{aligned}
$$

The t-Distribution - I

- Let two independent random variables $Z \sim N(0,1)$ and $Y \sim \chi^{2}(n) .{ }^{1}$ If Z and Y are independent, then

$$
W=\frac{Z}{\sqrt{Y / n}} \sim t(n)
$$

- The PDF of t has only one parameter, n, is always positive and symmetric around zero.
- Moreover it holds that

$$
\mathrm{E}(W)=0 \text { for } n>1 ; \quad \operatorname{Var}(W)=\frac{n}{n-2} \text { for } n>2
$$

and for n large enough: $W \underset{n \rightarrow \infty}{\sim} N(0,1)$

[^0]
The t-Distribution - II

Annex: Normal Approximation of Binomial - I

- Recall the binomial distribution, where we have n independent trials and the probability of success on any given trial $=p$.
- Let X be a binomial random variable ($X_{i}=1$ if the i th trial is "success"):

$$
\begin{aligned}
\mathrm{E}(X) & =\mu=n p \\
\operatorname{Var}(X) & =\sigma^{2}=n p(1-p)
\end{aligned}
$$

- The shape of the binomial distribution is approximately normal if n is large

Annex: Normal Approximation of Binomial - II

- The normal is a good approximation to the binomial when $n p(1-p)>5$ (check that $n p>5$ and $n(1-p)>5$ to be on the safe side). That is

$$
Z=\frac{X-\mathrm{E}(X)}{\sqrt{\operatorname{Var}(X)}}=\frac{X-n p}{\sqrt{n p(1-p)}}
$$

- For instance, let X be the number of successes from n independent trials, each with probability of success p. Then

$$
\operatorname{Pr}(a<X<b)=\operatorname{Pr}\left(\frac{a-n p}{\sqrt{n p(1-p)}}<Z<\frac{b-n p}{\sqrt{n p(1-p)}}\right)
$$

Annex: Normal Approximation of Binomial - III

- Example: 40% of all voters support ballot proposition A. What is the probability that between 76 and 80 voters indicate support in a sample of $\mathrm{n}=200$?

$$
\begin{aligned}
\mathrm{E}(X) & =\mu=n p=200(0.40)=80 \\
\operatorname{Var}(X) & =n p(1-p)=200(0.40)(1-0.40)=48
\end{aligned}
$$

So

$$
\begin{gathered}
\operatorname{Pr}(76<X<80)=\operatorname{Pr}\left(\frac{76-80}{\sqrt{48}}<Z<\frac{80-80}{\sqrt{48}}\right) \\
=\operatorname{Pr}(-0.58<Z<0) \\
=\Phi(0)-\Phi(-0.58) \\
=0.500-0.2810=0.219
\end{gathered}
$$

Annex: Uniform Distribution - I

- The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable (where $x_{\text {min }}=a$ and $x_{\text {max }}=b$)

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } a \leq x \leq b \\
0 & \text { otherwise }
\end{array} ; F(x)\left\{\begin{array}{cc}
0 & x<a \\
\frac{x-a}{b-a} & \text { if } a \leq x \leq b \\
1 & x \geq b
\end{array}\right.\right.
$$

Annex: Uniform Distribution - II

- Moments uniform distribution

$$
\mu=\frac{a+b}{2} ; \quad \sigma^{2}=\frac{(b-a)^{2}}{12}
$$

- Example: Uniform probability distribution over the range $2 \leq x \leq 6$. Then

$$
f(x)=\frac{1}{6-2}=0.25 \text { for } 2 \leq x \leq 6
$$

and

$$
\begin{aligned}
\mathrm{E}(X) & =\mu=\frac{a+b}{2}=\frac{2+6}{2}=4 \\
\operatorname{Var}(X) & =\sigma^{2}=\frac{(b-a)^{2}}{12}=\frac{(6-2)^{2}}{12}=1.333
\end{aligned}
$$

Annex: The χ^{2} Distribution - I

- Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent random variables and $Z_{i} \sim N(0,1)$. Then

$$
X=\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n)
$$

- The PDF of χ^{2} has only one parameter, n, is always positive and right asymmetric.
- Moreover it holds that

$$
\begin{aligned}
\mathrm{E}(X) & =n ; \text { and } \\
\operatorname{Var}(X) & =2 n
\end{aligned}
$$

for $n \geq 2$.

Annex: The χ^{2} Distribution - II

Annex: The F Distribution - I

- Let X and Y be two independent random variables, that are distributed as $\chi^{2}: X \sim \chi^{2}(n)$ and $Y \sim \chi^{2}(m)$. Then

$$
W=\frac{X / n}{Y / m} \sim F(n, m)
$$

- The PDF of F has two parameters, n and m (the degrees of freedom of the numerator and the denominator); it is positive and right asymmetric.
- Moreover it holds that if $W \sim F(n, m)$

$$
\mathrm{E}(W)=\frac{m}{1-m} ; \text { for } m>2
$$

Annex: The F Distribution - II

[^0]: ${ }^{1}$ Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be independent r.v.s and $Z_{i} \sim N(0,1)$. Then $\Upsilon=\sum_{i=1}^{n} Z_{i}^{2} \sim \chi^{2}(n)$.

