Statistics for Business

Random Variables and Probability Distributions, Special Discrete and Continuous Probability Distributions

Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management,

Athens University of Economics and Business

First Draft: July 15, 2045. This Draft: August 28, 2023.

Random Variables – I

Basics

Definition

A *random variable* X is a a function or rule that assigns a **number** to each outcome of an experiment.

Think of this as the numerical summary of a random outcome.

Random Variables – II

Basics

Examples

- X =GPA for a randomly selected student
- *X* = number of contracts a shipping company has pending at a randomly selected month of the year
- X = number on the upper face of a randomly tossed die
- X = the price of crude oil during a randomly selected month.

3/65

Discrete Random Variables

• A *discrete random variable* can only take on a countable number of values

Examples

- Roll a die twice. Let *X* be the number of times 4 comes up:
 - ▶ then *X* could be 0, 1, or 2 times
- Toss a coin 5 times. Let *X* be the number of heads:
 - then X = 0, 1, 2, 3, 4, or 5

4/65

Discrete Probability Distributions – I

- The *probability distribution* for a *discrete random variable* X resembles the relative frequency distributions. It is a graph, table or formula that gives the possible values of X and the probability P(X = x) associated with each value.
- This must satisfy
 - $0 \le P(x) \le 1$, for all *x*.
 - 2 $\sum_{\text{all } x} P(x) = 1$, the individual probabilities sum to 1.
- The *cumulative probability function*, denoted by $F(x_0)$, shows the probability that *X* is less than or equal to a particular value, x_0 :

$$F(x_0) = \Pr(X \le x_0) = \sum_{x \le x_0} P(x)$$

Discrete Probability Distributions - II

• **Random Experiment**: Toss 2 Coins. Let (the random variable) X = # heads.

(日)

Discrete Probability Distributions - III

4 possible outcomes Probability Distribution

• **Random Experiment**: Let the random variable *S* be the number of days it will snow in the last week of January

P. Konstantinou (AUEB)

< □ > < 凸 →

-∢ ≣⇒

Discrete Probability Distributions - IV

(cumulative) Probability distribution of S								
Outcome	0	1	2	3	4	5	6	7
Probability	0.20	0.25	0.20	0.15	0.10	0.05	0.04	0.01
CDF	0.20	0.45	0.65	0.80	0.90	0.95	0.99	1.00

イロト イポト イヨト イヨト

Moments of Discrete Prob. Distributions - I

• *Expected Value* (or *mean*) of a discrete distribution (*weighted average*)

$$\mu_X = \mathcal{E}(X) = \sum_{\text{all } x} x \cdot P(x).$$

• *Variance* of a discrete random variable *X* (*weighted average...*)

$$\sigma^{2} = \operatorname{Var}(X) = \operatorname{E}\left[(X - \mu_{X})^{2} \right] = \sum_{\text{all } x} (x - \mu_{X})^{2} \cdot P(x)$$

• *Standard Deviation* of a discrete random variable *X*

$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{\text{all } x} (x - \mu)^2 P(x)}$$

Moments of Discrete Prob. Distributions - II

Example

Consider the experiment of tossing 2 coins, and X = # of heads. Then

$$\mu = E(X) = \sum_{x} xP(x)$$

= (0 × 0.25) + (1 × 0.50) + (2 × 0.25) = 1

$$\sigma = \sqrt{\sum_{x} (x - \mu)^2 P(x)}$$

= $\sqrt{(0 - 1)^2 (.25) + (1 - 1)^2 (.50) + (2 - 1)^2 (.25)}$
= $\sqrt{.50} = 0.707$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moments of Discrete Prob. Distributions – III
Example (Number of days it will snow in January)

$$\mu_S = E(S) = \sum_s s \cdot P(s) =$$

 $= 0.0.2 + 1.0.25 + 2.0.2 + 3.0.15 + 4.0.1 + 5.0.05 + 6.0.04 + 7.0.01 = 2.06$
 $\sigma_S^2 = Var(S) = \sum_s (s - E(S))^2 \cdot P(s) =$
 $= (0 - 2.06)^2 \cdot 0.2 + (1 - 2.06)^2 \cdot 0.25 + (2 - 2.06)^2 \cdot 0.2 + (3 - 2.06)^2 \cdot 0.15$
 $+ (4 - 2.06)^2 \cdot 0.1 + (5 - 2.06)^2 \cdot 0.05 + (6 - 2.06)^2 \cdot 0.04$
 $+ (7 - 2.06)^2 \cdot 0.01 = 2.94$

Remark (Rules for Moments)

Let a and b be any constants and let Y = a + bX. Then

$$E[a + bX] = a + bE[X] = a + b\mu_x$$

$$Var[a + bX] = b^2 Var[X] = b^2 \sigma_x^2 \Rightarrow \sigma_Y = |b|\sigma_x$$

• The above imply that E[a] = a and Var[a] = 0

э

Prob. Density and Distribution Function – I

- The *probability density function* (or pdf), f(x), of continuous random variable X has the following properties
- f(x) > 0 for all values of *x* (*x* takes a range of values, \mathbb{R}_X).
- The area under the probability density function f(x) over all values of the random variable X is equal to 1 (recall that $\sum_{\text{all } x} P(x) = 1$ for discrete r.v.)

$$\int_{\mathbb{R}_X} f(x) dx = 1.$$

Prob. Density and Distribution Function – II

• The probability that *X* lies between two values is the area under the density function graph between the two values:

$$\Pr(a \le X \le b) = \Pr(a < X < b) = \int_a^b f(x) dx$$

P.	Konstantinou	(AUEB)

Prob. Density and Distribution Function – III

• The *cumulative density function* (or *distribution function*) $F(x_0)$, which expresses the probability that *X* does not exceed the value of x_0 , is the area under the probability density function f(x) from the minimum *x* value up to x_0

$$F(x_0) = \int_{x_{\min}}^{x_0} f(x) dx.$$

It follows that

 $\Pr(a \le X \le b) = \Pr(a < X < b) = F(b) - F(a)$

Moments of Continuous Distributions - I

• *Expected Value* (or *mean*) of a continuous distribution

$$\mu_X = \mathrm{E}(X) = \int_{\mathbb{R}_X} x f(x) dx.$$

• *Variance* of a continuous random variable *X*

$$\sigma_X^2 = \operatorname{Var}(X) = \int_{\mathbb{R}_X} (x - \mu_X)^2 f(x) dx$$

• *Standard Deviation* of a continuous random variable *X*

$$\sigma_X = \sqrt{\sigma_X^2} = \sqrt{\int_{\mathbb{R}_X} (x - \mu_X)^2 f(x) dx}$$

Moments of Continuous Distributions – II Remark (Rules for Moments Apply) Let c and d be any constants and let Y = c + dX. Then

$$E[c + dX] = c + dE[X] = c + d\mu_x$$

Var[c + dX] = d^2 Var[X] = $d^2\sigma_x^2 \Rightarrow \sigma_Y = |d|\sigma_x$

Remark (Standardized Random Variable) An important special case of the previous results is

$$Z = \frac{X - \mu_x}{\sigma_x},$$

for which : $E(Z) = 0$
 $Var(Z) = 1$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure". Let p denote the probability of success, and 1 p be the probability of failure.
- Define random variable X: x = 1 if success, x = 0 if failure.
- Then the Bernoulli probability function is

$$P(X = 0) = (1 - p)$$
 and $P(X = 1) = p$

• Moreover:

$$\mu_X = E(X) = \sum_{\text{all } x} x \cdot P(x) = 0 \cdot (1-p) + 1 \cdot p = p$$

$$\sigma_X^2 = Var(X) = E[(X - \mu_X)^2] = \sum_{\text{all } x} (x - \mu_X)^2 \cdot P(x)$$

$$= (0-p)^2 (1-p) + (1-p)^2 p = p(1-p)$$

Binomial Distribution – I

- A fixed number of observations, *n*
 - e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
 - e.g., head or tail in each toss of a coin; defective or not defective light bulb
 - ► Generally called "*success*" and "*failure*"
 - Probability of success is p, probability of failure is 1 p
- Constant probability for each observation
 - e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
 - The outcome of one observation does not affect the outcome of the other

• □ ▶ • @ ▶ • E ▶ • E ▶ · ·

Binomial Distribution – II

- Examples:
 - A manufacturing plant labels items as either defective or acceptable
 - A firm bidding for contracts will either get a contract or not
 - A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
 - New job applicants either accept the offer or reject it
- To calculate the probability associated with each value we use combinatorics:

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}; \ x = 0, 1, 2, ..., n$$

Binomial Distribution – III

P(x) = probability of x successes in n trials, with probability of success p on each trial; x = number of 'successes' in sample (nr. of trials n); n! = n ⋅ (n − 1) ⋅ (n − 2) ⋅ ... ⋅ 2 ⋅ 1

Example

What is the probability of one success in five observations if the probability of success is 0.1?

• Here
$$x = 1, n = 5$$
, and $p = 0.1$. So

$$P(x = 1) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

= $\frac{5!}{1!(5-1)!} (0.1)^{1} (1-0.1)^{5-1} = 5(0.1)(0.9)^{4} = 0.32805$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Binomial Distribution

Moments and Shape

$$\mu = E(X) = np$$

$$\sigma^{2} = Var(X) = np(1-p) \Rightarrow \sigma = \sqrt{np(1-p)}$$

• The shape of the binomial distr. depends on the values of p and n

 $\mu = np = (5)(0.1) = 0.5$ P(x)n = 5 p = 0.1.6 .4 $\sigma = \sqrt{np(1-p)} = \sqrt{(5)(0.1)(1-0.1)}$.2 = 0.67080 x 5 0 1 2 3 $\mu = np = (5)(0.5) = 2.5$ P(x)n = 5 p = 0.5.6 .4 $\sigma = \sqrt{np(1-p)} = \sqrt{(5)(0.5)(1-0.5)}$.2 =1.1180 х 2 3 5 August 28, 2023 21/65

P. Konstantinou (AUEB)

Normal Distribution – I

• The *normal distribution* is the most important of all probability distributions. The probability density function of a **normal random variable** is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; \quad -\infty < x < +\infty,$$

and we usually write $X \sim N(\mu_x, \sigma_x^2)$

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant

Normal Distribution – II

The shape and location of the normal curve changes as the mean (μ) and standard deviation (σ) change

Normal Distribution – III

• For a normal random variable *X* with mean μ and variance σ^2 , i.e., $X \sim N(\mu, \sigma^2)$), the cumulative distribution function is

$$F(x_0) = \Pr(X \le x_0),$$

э

Normal Distribution – IV

while the probability for a range of values is measured by the area under the curve

Normal Distribution – V

• Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (*Z*), with mean 0 and variance 1:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

• **Example**: If $X \sim N(100, 50^2)$, the Z value for X = 200 is

$$Z = \frac{X - \mu}{\sigma} = \frac{200 - 100}{50} = 2$$

This says that X = 200 is two standard deviations (2 increments of 50 units) above the mean of 100.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Normal Distribution – VI

Finding Normal Probabilities – I

イロト イポト イヨト イヨト

3

Finding Normal Probabilities – II

• The *total area under the curve is 1.0*, and the curve is symmetric, so half is above the mean, half is below

Finding Normal Probabilities – III

Table with cumulative *standard normal distribution*: For a given Z-value a, the table shows Φ(a) (the area under the curve from negative infinity to a)

tinou (AUEB)	Statistics for Business – II	
(HOLLD)	oranistics for Dasmess II	

P. Konstan

Finding Normal Probabilities – IV

Example: Suppose we are interested in Pr(Z < 2) − from the previous example. For negative Z−values, we use the fact that the distribution is symmetric to find the needed probability (e.g. Pr(Z < -2)).

Finding Normal Probabilities – V

• Example: Suppose X is normal with mean 8.0 and standard deviation 5.0. Find Pr(X < 8.6).

Finding Normal Probabilities – VI

• Example (Upper Tail Probabilities): Suppose X is normal with mean 8.0 and standard deviation 5.0. Find Pr(X > 8.6).

$$\Pr(X > 8.6) = \Pr(Z > 0.12) = 1 - \Pr(Z \le 0.12)$$

= 1 - 0.5478 = 0.4522

- Example (Finding X for a Known Probability) Suppose $X \sim N(8, 5^2)$. Find a X value so that only 20% of all values are below this X.
 - Find the *Z*-value for the known probability $\Phi(.84) = .7995$, so a 20% area in the lower tail is consistent with a *Z*-value of -0.84.

• □ ▶ • @ ▶ • E ▶ • E ▶

33/65

Finding Normal Probabilities – VII

2 Convert to X-units using the formula

$$X = \mu + Z\sigma = 8 + (-.84) \cdot 5 = 3.8.$$

So 20% of the values from a distribution with mean 8 and standard deviation 5 are less than 3.80.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Joint and Marginal Probability Distributions – I Joint Probability Functions

• Suppose that X and Y are discrete random variables. The *joint probability function* is

$$P(x, y) = \Pr(X = x \cap Y = y),$$

which is simply used to express the probability that *X* takes the specific value *x* and simultaneously *Y* takes the value *y*, as a function of *x* and *y*. This should satisfy:

- $0 \le P(x, y) \le 1 \text{ for all } x, y.$
- 2 $\sum_{x} \sum_{y} P(x, y) = 1$, where the sum is over all values (x, y) that are assigned nonzero probabilities.

Joint and Marginal Probability Distributions – II Joint Probability Functions

• For any random variables *X* and *Y* (discrete or continuous), the *joint (bivariate) distribution function F*(*x*, *y*) is

$$F(x, y) = \Pr(X \le x \cap Y \le y).$$

This defines the probability that simultaneously X is less than x and Y is less than y.

Joint and Marginal Probability Distributions

Marginal Probability Functions

• Let *X* and *Y* be jointly discrete random variables with probability function *P*(*x*, *y*). Then the *marginal probability functions* of *X* and *Y*, respectively, are given by

$$P_x(x) = \sum_{\text{all } y} P(x, y)$$
 $P_y(y) = \sum_{\text{all } x} P(x, y)$

• Let *X* and *Y* be jointly discrete random variables with probability function P(x, y). The *cumulative marginal probability functions*, denoted $F_x(x_0)$ and $G_y(y_0)$, show the probability that *X* is less than or equal to x_0 and that *Y* is less than or equal to y_0 respectively

37/65

Conditional Probability Distributions

If X and Y are jointly discrete random variables with joint probability function P(x, y) and marginal probability functions P_x(x) and P_y(y), respectively, then the conditional discrete probability function of Y given X is

$$P(y|x) = \Pr(Y = y|X = x) = \frac{\Pr(X = x, Y = y)}{\Pr(X = x)} = \frac{P(x, y)}{P_x(x)},$$

provided that $P_x(x) > 0$. Similarly,

$$P(x|y) = rac{P(x,y)}{P_y(y)}$$
, provided that $P_y(x) > 0$

Statistical Independence

Let X have distribution function F_x(x), Y have distribution function F_y(y), and X and Y have a joint distribution function F(x, y). Then X and Y are said to be *independent* if and only if

$$F(x, y) = F_x(x) \cdot F_y(y),$$

for every pair of real numbers (x, y).

• Alternatively, the two random variables *X* and *Y* are independent if the conditional distribution of *Y* given *X* does not depend on *X*:

$$\Pr(Y = y | X = x) = \Pr(Y = y).$$

• We also define *Y* to be **mean independent** of *X* when the conditional mean of *Y* given *X* equals the unconditional mean of *Y*:

$$\mathbf{E}(Y = y | X = x) = \mathbf{E}(Y = y).$$

Conditional Moments

• If *X* and *Y* are any two discrete random variables, the *conditional expectation* of *Y* given that *X* = *x*, is defined to be

$$\mu_{Y|X} = \mathbb{E}(Y|X = x) = \sum_{\text{all } y} y \cdot P(y|x)$$

• If *X* and *Y* are any two discrete random variables, the *conditional variance* of *Y* given that *X* = *x*, is defined to be

$$\sigma_{Y|X}^2 = \mathbb{E}[(Y - \mu_{Y|X})^2 | X = x] = \sum_{\text{all } y} (y - \mu_{Y|X})^2 \cdot P(y|x)$$

Joint and Marginal Distributions – I

Examples

• We are given the following data on the number of people attending AUEB this year.

	Subject of Study (Y)				
Sex (X)	Economics (0)	Finance (1)	Systems (2)		
<i>Male</i> (0)	40	10	30		
<i>Female</i> (1)	30	20	70		

- What is the probability of selecting an individual that studies Finance?
- 2 What is the expected value of *Sex*?
- What is the probability of choosing an individual that studies economics, given that it is a female?
- Are Sex and Subject statistically independent?

A (10) A (10)

Joint and Marginal Distributions – II

Examples

• First step: Totals

	Subject of Study (Y)			
Sex (X)	Economics (0)	Finance (1)	Systems (2)	Total
<i>Male</i> (0)	40	10	30	80
<i>Female</i> (1)	30	20	70	120
Total	70	30	100	200

• Second step: Probabilities

	Subject of Study (Y)			
Sex (X)	Economics (0)	Finance (1)	Systems (2)	Total
<i>Male</i> (0)	40/200 = 0.20	0.05	0.15	0.40
<i>Female</i> (1)	30/200 = 0.15	0.10	0.35	0.60
Total	70/200 = 0.35	0.15	0.50	1 = 940

Joint and Marginal Distributions – III

Examples

• Answers:

• The conditional mean of Y given X = 0 is

$$E(Y|X = 0)$$

= Pr(Y = 0|X = 0) \cdot 0+ Pr(Y = 1|X = 0) \cdot 1+ Pr(Y = 2|X = 0) \cdot 2
= $\frac{0.20}{0.4} \cdot 0 + \frac{0.05}{0.4} \cdot 1 + \frac{0.15}{0.4} \cdot 2 = 0.875$

(日)

Joint and Marginal Distributions – IV Examples

• The conditional mean of Y given X = 1 is

$$E(Y|X = 1)$$

= Pr(Y = 0|X = 1) \cdot 0+ Pr(Y = 1|X = 1) \cdot 1+ Pr(Y = 2|X = 1) \cdot 2
= $\frac{0.15}{0.6} \cdot 0 + \frac{0.10}{0.6} \cdot 1 + \frac{0.35}{0.6} \cdot 2 = 0.80$

(日)

Covariance, Correlation and Independence - I

Definition (Covariance)

If *X* and *Y* are random variables with means μ_x and μ_y , respectively, the *covariance* of *X* and *Y* is

$$\sigma_{XY} \equiv \operatorname{Cov}(X, Y) = \operatorname{E}[(X - \mu_x)(Y - \mu_y)].$$

• This can be found as

$$\operatorname{Cov}(X,Y) = \sum_{\operatorname{all} x} \sum_{\operatorname{all} y} (x - \mu_x)(y - \mu_y) \cdot P(x,y),$$

and an equivalent expression is

$$\operatorname{Cov}(X,Y) = \operatorname{E}[XY] - \mu_x \mu_y = \sum_{\text{all } x} \sum_{\text{all } y} xy \cdot P(x,y) - \mu_x \mu_y.$$

45/65

Covariance, Correlation and Independence - II

- The *covariance* measures the strength of the linear relationship between two variables.
- If two random variables are statistically independent, the covariance between them is 0. The converse is **not** necessarily true.

46/65

Covariance, Correlation and Independence – III

Definition (Correlation)

The correlation between X and Y is

$$\rho \equiv \operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y} = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y}$$

- $\rho = 0 \Rightarrow$ no linear relationship between *X* and *Y*.
- $\rho > 0 \Rightarrow$ positive linear relationship between *X* and *Y*.
 - ▶ when *X* is high (low) then *Y* is likely to be high (low)
 - $\rho = +1 \Rightarrow$ perfect positive linear dependency
- $\rho < 0 \Rightarrow$ negative linear relationship between *X* and *Y*.
 - ▶ when *X* is high (low) then *Y* is likely to be low (high)
 - $\rho = -1 \Rightarrow$ perfect negative linear dependency

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Covariance, Correlation and Independence - IV

P. Konstantinou (AUI	EB)
----------------------	-----

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moments of Linear Combinations - I

• Let *X* and *Y* be two random variables with means μ_X and μ_Y , and variances σ_X^2 and σ_Y^2 and covariance Cov(X, Y). Take a linear combination of *X* and *Y* :

$$W = aX + bY.$$

Then,

$$E(W) = E(aX + bY) = a\mu_X + b\mu_Y, \text{ and}$$
$$Var(W) = a^2\sigma_X^2 + b^2\sigma_Y^2 + 2abCov(X, Y),$$

or using the correlation

$$\operatorname{Var}(W) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\operatorname{Corr}(X, Y) \sigma_X \sigma_Y$$

Moments of Linear Combinations - II

Example

If a = 1 and b = -1, W = X - Y and

$$E(W) = E(X - Y) = \mu_X - \mu_Y$$

$$Var(W) = \sigma_X^2 + \sigma_Y^2 - 2Cov(X, Y)$$

$$= \sigma_X^2 + \sigma_Y^2 - 2Corr(X, Y)\sigma_X\sigma_Y$$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Moments of Linear Combinations

Example 1: Normally Distributed Random Variables

- Two tasks must be performed by the same worker.
 - X = minutes to complete task 1; $\mu_X = 20, \sigma_X = 5$;
 - Y = minutes to complete task 2; $\mu_Y = 30, \sigma_Y = 8$;
 - ► X and Y are normally distributed and independent...
- ★ What is the mean and standard deviation of the time to complete both tasks?
 - W = X + Y (total time to complete both tasks). So

$$E(W) = \mu_X + \mu_Y = 20 + 30 = 50$$

Var(W) = $\sigma_X^2 + \sigma_Y^2 + \underbrace{2\text{Cov}(X, Y)}_{=0, \text{ independence}} = 5^2 + 8^2 = 89$
 $\Rightarrow \sigma_W = \sqrt{89} \simeq 9.43$

Linear Combinations Random Variables – I Example 2: Portfolio Value

• The return per \$1,000 for two types of investments is given below

State of Economy		Investment Funds		
Prob	Economic condition	Passive X	Aggressive Y	
0.2	Recession	-\$25	-\$200	
0.5	Stable Economy	+\$50	+\$60	
0.3	Growing Economy	+\$100	+\$350	

- Suppose 40% of the portfolio (*P*) is in Investment *X* and 60% is in Investment *Y*. Calculate the portfolio return and risk.
 - Mean return for each fund investment

$$E(X) = \mu_X = (-25)(.2) + (50)(.5) + (100)(.3) = 50$$

$$E(Y) = \mu_Y = (-200)(.2) + (60)(.5) + (350)(.3) = 95$$

Linear Combinations Random Variables – II Example 2: Portfolio Value

Standard deviations for each fund investment

$$\sigma_X = \sqrt{(-25-50)^2(.2) + (50-50)^2(.5) + (100-50)^2(.3)}$$

= 43.30
$$\sigma_Y = \sqrt{(-200-95)^2(.2) + (60-95)^2(.5) + (350-95)^2(.3)}$$

= 193.71

The covariance between the two fund investments is

$$Cov(X, Y) = (-25 - 50)(-200 - 95)(.2) +(50 - 50)(60 - 95)(.5) +(100 - 50)(350 - 95)(.3) = 8250$$

Linear Combinations Random Variables – III

Example 2: Portfolio Value

► So

$$E(P) = 0.4(50) + 0.6(95) = 77$$

$$\sigma_P = \sqrt{(.4)^2(43.30)^2 + (.6)^2(193.71)^2 + 2(.4)(.6)8250}$$

= 133.04

э

イロト イポト イヨト イヨト

The *t*-Distribution – I

• Let two independent random variables $Z \sim N(0, 1)$ and $Y \sim \chi^2(n)$.¹ If Z and Y are independent, then

$$W = \frac{Z}{\sqrt{Y/n}} \sim t(n)$$

- The PDF of t has only one parameter, n, is always positive and symmetric around zero.
- Moreover it holds that

$$E(W) = 0 \text{ for } n > 1; Var(W) = \frac{n}{n-2} \text{ for } n > 2$$

and for n large enough: $W\underset{n\rightarrow\infty}{\sim}N(0,1)$

¹Let $Z_1, Z_2, ..., Z_n$ be independent r.v.s and $Z_i \sim N(0, 1)$. Then $\Upsilon = \sum_{i=1}^n Z_i^2 \sim \chi^2(n).$ P. Konstantinou (AUEB) Statistics for Business – II August 28, 2023

The *t*-Distribution – II

P. Konstantinou (AUEB)

August 28, 2023

э

Annex: Normal Approximation of Binomial - I

- Recall the binomial distribution, where we have *n* independent *trials* and the probability of success on any given trial = *p*.
- Let *X* be a binomial random variable ($X_i = 1$ if the *i*th trial is "success"):

$$E(X) = \mu = np$$

Var(X) = $\sigma^2 = np(1-p)$

The shape of the binomial distribution is approximately normal if n is large

57/65

Annex: Normal Approximation of Binomial – II

► The normal is a good approximation to the binomial when np(1 − p) > 5 (check that np > 5 and n(1 − p) > 5 to be on the safe side). That is

$$Z = \frac{X - \mathcal{E}(X)}{\sqrt{\operatorname{Var}(X)}} = \frac{X - np}{\sqrt{np(1 - p)}}.$$

For instance, let X be the number of successes from n independent trials, each with probability of success p. Then

$$\Pr(a < X < b) = \Pr\left(\frac{a - np}{\sqrt{np(1 - p)}} < Z < \frac{b - np}{\sqrt{np(1 - p)}}\right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Annex: Normal Approximation of Binomial – III

• **Example**: 40% of all voters support ballot proposition A. What is the probability that between 76 and 80 voters indicate support in a sample of n = 200?

$$E(X) = \mu = np = 200(0.40) = 80$$

Var(X) = $np(1-p) = 200(0.40)(1-0.40) = 48$

So

$$\Pr(76 < X < 80) = \Pr\left(\frac{76 - 80}{\sqrt{48}} < Z < \frac{80 - 80}{\sqrt{48}}\right)$$
$$= \Pr(-0.58 < Z < 0)$$
$$= \Phi(0) - \Phi(-0.58)$$
$$= 0.500 - 0.2810 = 0.219$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Annex: Uniform Distribution – I

• The *uniform distribution* is a probability distribution that has *equal probabilities* for all possible outcomes of the random variable (where $x_{\min} = a$ and $x_{\max} = b$)

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}; F(x) \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ 1 & x \ge b \end{cases}$$

Annex: Uniform Distribution – II

• Moments uniform distribution

$$\mu = \frac{a+b}{2};$$
 $\sigma^2 = \frac{(b-a)^2}{12}$

• **Example**: Uniform probability distribution over the range $2 \le x \le 6$. Then

$$f(x) = \frac{1}{6-2} = 0.25$$
 for $2 \le x \le 6$

and

E(X) =
$$\mu = \frac{a+b}{2} = \frac{2+6}{2} = 4$$

Var(X) = $\sigma^2 = \frac{(b-a)^2}{12} = \frac{(6-2)^2}{12} = 1.333$

・ 同 ト ・ ヨ ト ・ ヨ ト

Annex: The χ^2 Distribution – I

• Let $Z_1, Z_2, ..., Z_n$ be independent random variables and $Z_i \sim N(0, 1)$. Then

$$X = \sum_{i=1}^{n} Z_i^2 \sim \chi^2(n)$$

- The PDF of χ^2 has only one parameter, *n*, is always positive and right asymmetric.
- Moreover it holds that

$$E(X) = n$$
; and
 $Var(X) = 2n$

for $n \ge 2$.

Annex: The χ^2 Distribution – II

<ロト < 四ト < 三ト < 三ト

æ

Annex: The F Distribution – I

• Let *X* and *Y* be two independent random variables, that are distributed as $\chi^2 : X \sim \chi^2(n)$ and $Y \sim \chi^2(m)$. Then

$$W = \frac{X/n}{Y/m} \sim F(n,m)$$

- The PDF of F has two parameters, n and m (the degrees of freedom of the numerator and the denominator); it is positive and right asymmetric.
- Moreover it holds that if $W \sim F(n,m)$

$$E(W) = \frac{m}{1-m}$$
; for $m > 2$.

Annex: The F Distribution – II

