Statistics for Business

Background: Descriptive Statistics

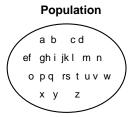
Panagiotis Th. Konstantinou

MSc in International Shipping, Finance and Management,
Athens University of Economics and Business

First Draft: July 15, 2015. This Draft: August 30, 2023.

Key Concepts

- A **population** is the collection of all items of interest or under investigation (*N* represents the population size)
- A **sample** is an observed subset of the population (*n* represents the sample size)
- A parameter is a specific characteristic of a population
- A statistic is a specific characteristic of a sample

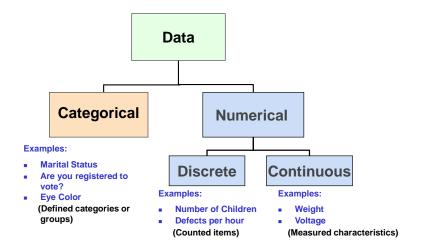


Values calculated using population data are called parameters

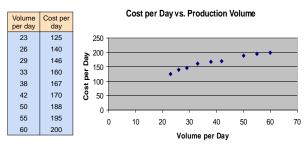
Sample

Values computed from sample data are called statistics

Data Types

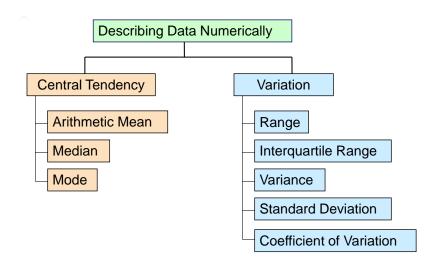


Relationships Between Variables

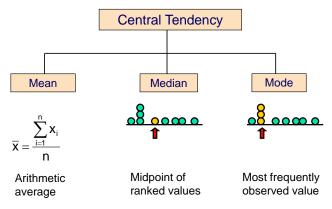


Investment Category	Investor A	Investor B	Investor C	Total
Stocks	46.5	55	27.5	129
Bonds	32.0	44	19.0	95
CD	15.5	20	13.5	49
Savings	16.0	28	7.0	51
Total	110.0	147	67.0	324

Describing Data Numerically



Measures of Central Tendency



- Median position $\frac{n+1}{2}$ position in the ordered data
 - ▶ If the number of values is odd, the median is the middle number
 - ► If the number of values is even, the median is the average of the two middle numbers

P. Konstantinou (AUEB)

Statistics for Business – I

August 30, 2023 6/18

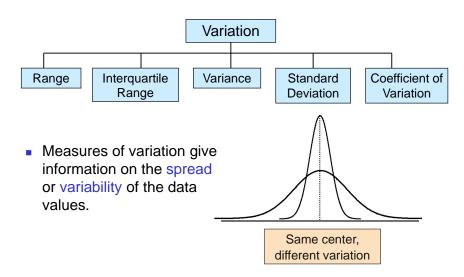
Measures of Central Tendency

Example

House Prices			
	\$2,000,000		
	500,000		
	300,000		
	100,000		
	100,000		
Sum	\$3,000,000		

- **Mean**: \$3,000,000/5 = \$600,000
- **Median**: middle value of ranked data = \$300,000
- **Mode**: most frequent value = \$100,000

Measures of Variability



Variance

• Population Variance:

Average of squared deviations of values from the mean

$$\sigma^2 = \frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}$$

where

- μ = population mean
- \triangleright N =population size
- $X_i = i$ —th value of the variable X

 Sample Variance: Average (approximately) of squared deviations of values from the sample mean:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

where

- $\bar{x} = \text{sample mean/average}$
- n = sample size
- $x_i = i$ —th value of the variable X

Standard Deviation

- Population Standard
 Deviation: Most commonly used measure of variation
 - Shows variation about the mean
 - ► Has the same units as the original data

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}}$$

• Sample Standard Deviation: Most commonly used

measure of variation

- Shows variation about the sample mean
- ► Has the *same units as the original data*

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Standard Deviation

Example: Sample Standard Deviation Computation

- Sample Data (x_i) : 10 12 14 15 17 18 18 24
- n = 8 and sample mean $= \bar{x} = 16$
- So the standard deviation is

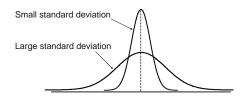
$$s = \sqrt{\frac{(10 - \bar{x})^2 + (12 - \bar{x})^2 + (14 - \bar{x})^2 + \dots + (24 - \bar{x})^2}{n - 1}}$$

$$= \sqrt{\frac{(10 - 16)^2 + (12 - 16)^2 + (14 - 16)^2 + \dots + (24 - 16)^2}{8 - 1}}$$

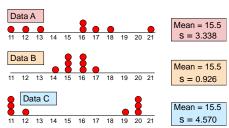
$$= \sqrt{\frac{126}{7}} = 4.2426$$

• This is a measure of the "average" scatter around the (sample) mean.

Comparing Standard Deviations

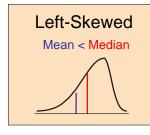


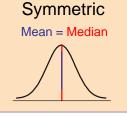
• The smaller the standard deviation, the more concentrated are the values around the mean.

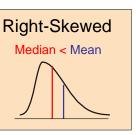


• Same mean, different standard deviations.

Shape of a Distribution







- Describes how data are distributed
- Measures of shape:
 - Symmetric or skewed
 - Left = Negative (mass of distr. concentrated on the right of figure); Right = Positive (mass of distr. concentrated on the left of figure).

$$SK = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{\left[\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{3/2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{s^3}$$

P. Konstantinou (AUEB)

Statistics for Business -

Coefficient of Variation

- Measures relative variation and is always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

$$CV = \left(\frac{s_x}{\bar{x}}\right) \cdot 100\%$$

- Stock A:
 - ► Avg price last year = \$50
 - ► Standard deviation = \$5

$$CV_A = \left(\frac{\$5}{\$50}\right) \cdot 100\% = 10\%$$

Stock B:

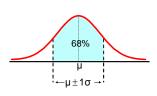
- ► Avg. price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{\$5}{\$100}\right) \cdot 100\% = 5\%$$

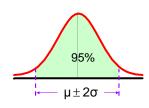
• Both stocks have the same standard deviation, but stock B is less variable relative to its price

The Empirical Rule

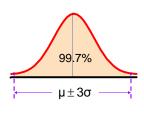
If the data distribution is bell-shaped, then the interval:



• $\mu \pm 1\sigma$ contains about 68% of the values in the population or the sample



• $\mu \pm 2\sigma$ contains about 95% of the values in the population or the sample



• $\mu \pm 3\sigma$ contains almost all (about 99.7%) of the values in the population or the sample.

Covariance

- The covariance measures the strength of the linear relationship between **two variables**
- The *population covariance*:

$$Cov(X, Y) = \sigma_{XY} = \frac{\sum_{i=1}^{N} (X_i - \mu_X)(Y_i - \mu_Y)}{N}.$$

• The *sample covariance*:

$$\widehat{\text{Cov}(x, y)} = s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}.$$

- Only concerned with the strength of the relationship
- No causal effect is implied
 - ightharpoonup Cov(x, y) > 0, x and y tend to move in the same direction
 - ightharpoonup Cov(x,y) < 0, x and y tend to move in *opposite* directions

Correlation Coefficients

- The correlation coefficient measures the relative strength of the linear relationship between **two variables**
- The *population correlation coefficient*:

$$Corr(X, Y) = \rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}.$$

• The sample correlation coefficient:

$$\widehat{\operatorname{Corr}(x,y)} = r_{xy} = \frac{\widehat{\operatorname{Cov}(x,y)}}{s_x s_y}.$$

- Unit free and ranges between -1 and 1
 - ▶ The closer to -1, the stronger the negative linear relationship
 - ► The closer to 1, the stronger the positive linear relationship
 - ► The closer to 0, the weaker any positive linear relationship

P. Konstantinou (AUEB) Statistics for Business – I August 30, 2023 17/18

Correlation Coefficients

Examples

