Statistics for Business

Assignment 3: Suggested Solutions

Confidence Intervals

1. The formula for the CIs is

$$
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}},
$$

with $\sigma=\$ 30,000$ and $n=80$.
(a) Since we want a 90% confidence interval, we use $z_{0.05}=1.645$, so

$$
119,155 \pm 1.645(30,000 / \sqrt{80})=119,155 \pm 5517 \text { or } \$ 113,638 \text { to } \$ 124,672
$$

(b) Since we want a 95% confidence interval, we use $z_{0.025}=1.96$, so

$$
119,155 \pm 1.96(30,000 / \sqrt{80})=119,155 \pm 6574 \text { or } \$ 112,581 \text { to } \$ 125,729
$$

(c) Since we want a 99% confidence interval, we use $z_{0.005}=2.576$, so

$$
119,155 \pm 2.576(30,000 / \sqrt{80})=119,155 \pm 8640 \text { or } \$ 110,515 \text { to } \$ 127,795
$$

2. (a) The point estimate of the population mean is the sample mean:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{8}[10+8+12+15+13+11+6+5]=\frac{80}{8}=10
$$

(b) The point estimate of the population standard deviation is the square root of the point estimate for the variance. We have that

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{8-1}\left[(10-10)^{2}+(8-10)^{2}+\ldots+(6-10)^{2}+(5-10)^{2}\right]=\frac{84}{7},
$$

so

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\frac{84}{7}}=3.464
$$

(c) The margin of error is

$$
t_{n-1,0.025} \frac{s}{\sqrt{n}}=t_{7,0.025} \frac{3.464}{\sqrt{8}}=2.365 \times \frac{3.464}{\sqrt{8}}=2.896
$$

(d) The 95% confidence interval estimate of the population mean is

$$
\bar{x} \pm t_{n-1, \alpha / 2} \frac{s}{\sqrt{n}}=10 \pm 2.365 \times \frac{3.464}{\sqrt{8}}=10 \pm 2.896 \text { or } 7.104 \text { to } 12.896
$$

3. To find these probabilities, I just used Excel.
(a) The margin of error is

$$
t_{n-1,0.025} \frac{s}{\sqrt{n}}=t_{45-1,0.025} \frac{\$ 65}{\sqrt{45}}=2.015 \times \frac{\$ 65}{\sqrt{45}}=\$ 19.525
$$

(b) The 95% confidence interval estimate of the population mean is

$$
\bar{x} \pm t_{n-1, \alpha / 2} \frac{s}{\sqrt{n}}=\$ 273 \pm 2.015 \times \frac{\$ 65}{\sqrt{45}}=\$ 273 \pm \$ 19.525 \text { or } \$ 253.48 \text { to } \$ 292.53
$$

(c) At 95% confidence, the population mean is between $\$ 253.48$ and $\$ 292.53$. The left tail is some $\$ 24$ above the prior year's $\$ 229$ level, or the current average spending is well above the average spending two years ago, so average spending is increasing. The point estimate of the increase is $\$ 273-\$ 229=\$ 44$ or 19.21% of the price two years ago.
4. (a) The point estimate of the population proportion is

$$
\hat{p}=\frac{46}{200}=0.23
$$

(b) The 95% confidence interval for the population proportion is

$$
\begin{aligned}
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} & =0.23 \pm 1.96 \sqrt{\frac{0.23(1-0.23)}{200}}=0.23 \pm 1.96 \times 0.0298 \\
& =0.23 \pm 0.0584 \text { or } 0.1716 \text { to } 0.2884
\end{aligned}
$$

5. We know that $\hat{p}=0.09$ (so that $1400 \times 0.09=126$ individuals voted MySpace) and $n=1400$. So the margin of error (with 95% confidence) is

$$
z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=1.96 \sqrt{\frac{0.09(1-0.09)}{1400}}=0.01499
$$

The 95% confidence interval for the population proportion is

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.09 \pm 1.96 \sqrt{\frac{0.09(1-0.09)}{1400}}=0.09 \pm 0.01499 \text { or } 0.075 \text { to } 0.105
$$

6. We have $\bar{x}_{M}=\$ 135.67$ and $n_{M}=40$ with $\sigma_{M}=\$ 35$; and $\bar{x}_{F}=\$ 68.64$ and $n_{F}=30$ with $\sigma_{F}=\$ 20$.
(a) The point estimate of the difference between the population mean expenditure for males and the population mean expenditure for females is

$$
\bar{x}_{M}-\bar{x}_{F}=\$ 135.67-\$ 68.64=\$ 67.03 .
$$

(b) With known variances at 99% confidence, the margin of error is

$$
z_{\alpha / 2} \sqrt{\frac{\sigma_{M}^{2}}{n_{M}}+\frac{\sigma_{F}^{2}}{n_{F}}}=2.576 \sqrt{\frac{(35)^{2}}{40}+\frac{(20)^{2}}{30}}=17.079
$$

(c) The 99% confidence interval for the difference between the two population means is

$$
\begin{aligned}
\left(\bar{x}_{M}-\bar{x}_{F}\right) \pm z_{\alpha / 2} \sqrt{\frac{\sigma_{M}^{2}}{n_{M}}+\frac{\sigma_{F}^{2}}{n_{F}}}= & 67.03 \pm 2.576 \sqrt{\frac{(35)^{2}}{40}+\frac{(20)^{2}}{30}}=67.03 \pm 17.079 \\
& \text { or } \$ 49.951 \text { to } \$ 84.109
\end{aligned}
$$

7. The data are

(x) Sample 1	10	7	13	7	9	8
(y) Sample 2	8	7	8	4	6	9

(a) For the means we have

$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{10+7+13+7+9+8}{6}=9 \\
& \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}=\frac{8+7+8+4+6+9}{6}=7
\end{aligned}
$$

Similarly, for the standard deviations, we have

$$
s_{x}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=2.28 ; \text { and } s_{y}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}=1.79
$$

(b) The point estimate of the difference between the two population means is

$$
\bar{x}-\bar{y}=9-7=2 .
$$

(c) The 90% confidence interval estimate of the difference between the two population means is (assuming equal variances)

$$
(\bar{x}-\bar{y}) \pm t_{n_{x}+n_{y}-2, \alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}
$$

The 'pooled' variance is estimated as

$$
s_{p}^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2}=\frac{(6-1)(2.28)^{2}+(6-1)(1.79)^{2}}{6+6-2}=4.201 .
$$

The reliability factor $t_{n_{x}+n_{y}-2, \alpha / 2}$ at 90% confidence is $t_{10,0.05}=1.812$. So the CI is

$$
\begin{aligned}
(\bar{x}-\bar{y}) \pm t_{n_{x}+n_{y}-2, \alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}= & 2 \pm 1.812 \sqrt{\frac{4.201}{6}+\frac{4.201}{6}}=2 \pm 2.144 \\
& \text { or }-0.144 \text { to } 4.144
\end{aligned}
$$

Hypothesis Tests

8. Let
$p_{1}=$ population proportion of adults planning to travel by airplane for 2003
$p_{2}=$ population proportion of adults planning to travel by airplane for 1993
(a) The hypothesis of interest is

$$
\begin{aligned}
& H_{0}: \\
& H_{1}: p_{1}-p_{2}=0 \\
& p_{1}-p_{2} \neq 0
\end{aligned}
$$

(b) The relevant sample proportions are

$$
\begin{aligned}
& \hat{p}_{1}=\frac{141}{523}=0.2696 \\
& \hat{p}_{2}=\frac{81}{477}=0.1698
\end{aligned}
$$

(c) With $\alpha=0.01$ we use $z_{\alpha / 2}=z_{0.005}=2.576$. The estimate for the common, overall proportion is

$$
\bar{p}=\frac{n_{1} \hat{p}_{1}+n_{2} \hat{p}_{2}}{n_{1}+n_{2}}=\frac{523(141 / 523)+477(81 / 477)}{523+477}=\frac{222}{1000}=0.222
$$

The test statistic for $p_{1}-p_{2}=0$ is

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{1}\right)-(0)}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_{1}}+\frac{\bar{p}(1-\bar{p})}{n_{2}}}}=\frac{(0.2696-0.1698)}{\sqrt{\frac{0.222(1-0.222)}{523}+\frac{0.222(1-0.222)}{477}}}=3.793 .
$$

Since $|z|=3.793>z_{0.005}=2.576$ we reject the null in favor of the alternative.
(d) We note that $\hat{p}_{1}-\hat{p}_{1}=0.2696-0.1698=0.0998>0$, which may be explained by the fact that airfares became quite cheaper over the period under study.
9. The hypothesis of interest is

$$
\begin{aligned}
& H_{0}: \quad \mu_{1}-\mu_{2}=0, \\
& H_{1}: \\
& \mu_{1}-\mu_{2} \neq 0 .
\end{aligned}
$$

Assuming that population variances are equal, the test statistic is ${ }^{1}$

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-d_{0}}{\sqrt{\left(s_{p}^{2} / n_{1}\right)+\left(s_{p}^{2} / n_{2}\right)}} \sim t_{n_{1}+n_{2}-2} ; \text { where } s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}
$$

We have

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(35-1)(5.2)^{2}+(40-1)(8.5)^{2}}{35+40-2}=51.193 .
$$

Hence $\left(t_{n_{1}+n_{2}-2}=t_{35+40-2}=t_{73}\right)$

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\left(s_{p}^{2} / n_{1}\right)+\left(s_{p}^{2} / n_{2}\right)}}=\frac{(13.6-10.1)}{\sqrt{\frac{51.193}{35}+\frac{51.193}{40}}}=2.113
$$

The p-value for this test statistic is ${ }^{2} 0.038$. Hence at $\alpha=0.05$ we reject the null hypothesis in favor of the alternative (note that $t_{73,0.025}=1.993$).
10. (a) It is necessary to use a paired-difference test, since the two samples are not random and independent. The hypothesis of interest is

$$
\begin{array}{lll}
H_{0} & : & \mu_{1}-\mu_{2}=0 \text { or } H_{0}: \mu_{d}=0 \\
H_{1} & : & \mu_{1}-\mu_{2} \neq 0 \text { or } H_{1}: \mu_{d} \neq 0
\end{array}
$$

We have

Population	1	2	3	4	5
$X:$	1.3	1.6	1.1	1.4	1.7
$Y:$	1.2	1.5	1.1	1.2	1.8
d_{i}	0.1	0.1	0	0.2	-0.1
d_{i}^{2}	0.01	0.01	0	0.04	0.01

[^0]so
\[

$$
\begin{aligned}
\bar{d} & =\frac{1}{n} \sum_{i=1}^{n} d_{i}=\frac{0.3}{5}=0.06 ; \text { and } \\
s_{d}^{2} & =\frac{\sum_{i=1}^{n} d_{i}^{2}-(1 / n)\left(\sum_{i=1}^{n} d_{i}\right)^{2}}{n-1}=\frac{0.07-(1 / 5)(0.3)^{2}}{5-1}=0.013
\end{aligned}
$$
\]

The test statistic is

$$
t=\frac{\bar{d}-d_{0}}{s_{d} / \sqrt{n}}=\frac{0.06-0}{\sqrt{0.013 / 5}}=1.177
$$

which is distributed as a t with $n-1=4$ degrees of freedom. The rejection region with $\alpha=0.05$ is $|t|>t_{4,0.025}=2.776$, and H_{0} is not rejected. We cannot conclude that the means are different.
(b) The p-value is

$$
\operatorname{Pr}(|t|>1.177)=2 \operatorname{Pr}(t>1.177)=2(0.152)=0.304
$$

(c) A 95% confidence interval for $\mu_{1}-\mu_{2}=\mu_{d}$ is

$$
\bar{d} \pm t_{4,0.025} \frac{s_{d}}{\sqrt{n}}=0.06 \pm 2.776 \sqrt{\frac{0.304}{5}}=0.06 \pm 0.142 \text { or }-0.082<\left(\mu_{1}-\mu_{2}\right)<0.202
$$

(d) In order to use the paired-difference test, it is necessary that the n paired observations be randomly selected from normally distributed populations. We note that 0 is contained in the CI, which is in line with the hypothesis test above.
11. (a) We first calculate

$$
s_{x}^{2}=15.333 \text { and } s_{y}^{2}=10.3
$$

Hence

$$
s_{p}^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2}=\frac{(4-1)(15.333)+(5-1)(10.3)}{4+5-2}=12.457 .
$$

(b) A 90% confidence interval for $\left(\mu_{1}-\mu_{2}\right)$ is given as

$$
\begin{aligned}
& (\bar{x}-\bar{y}) \pm t_{n_{x}+n_{y}-2, \alpha / 2} \sqrt{\frac{s_{p}^{2}}{n_{x}}+\frac{s_{p}^{2}}{n_{y}}}=(7-8.6) \pm t_{7,0.05} \sqrt{\frac{12.457}{4}+\frac{12.457}{5}} \\
& =-1.6 \pm 1.895 \times 2.368=-1.6 \pm 4.487 \text { or }-6.087<\left(\mu_{1}-\mu_{2}\right)<2.887 .
\end{aligned}
$$

(c) The test statistic is

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\left(s_{p}^{2} / n_{1}\right)+\left(s_{p}^{2} / n_{2}\right)}}=\frac{7-8.6}{\sqrt{\frac{12.457}{4}+\frac{12.457}{5}}}=-0.676
$$

The rejection region is one-tailed, based on $d f=7$ degrees of freedom. With $\alpha=$ 0.05 , the rejection region is $t<-t_{7,0.05}=-1.895$. Since the observed value, $t=-0.676$ does not fall in the rejection region, H_{0} is not rejected. We do not have sufficient evidence to indicate that $\left(\mu_{1}-\mu_{2}\right)<0$.
12. (a) The hypothesis of interest is

$$
\begin{array}{lll}
H_{0} & : & \mu_{1}-\mu_{2}=0 \\
H_{1} & : & \mu_{1}-\mu_{2} \neq 0
\end{array}
$$

(b) The rejection region is two-tailed, based on $d f=n_{1}+n_{2}-2=16+13-2=27$ degrees of freedom. With $\alpha=0.01$, the rejection region is $|t|>t_{27,0.005}=2.771$.
(c) The pooled estimator of σ^{2} is calculated as

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{(16-1)(4.8)^{2}+(13-1)(5.9)^{2}}{(16-1)+(13-1)}=28.271
$$

and the test statistic is

$$
t=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\left(s_{p}^{2} / n_{1}\right)+\left(s_{p}^{2} / n_{2}\right)}}=\frac{34.6-32.2}{\sqrt{28.271\left(\frac{1}{16}+\frac{1}{13}\right)}}=1.209
$$

(d) The p-value is

$$
p \text {-value }=\operatorname{Pr}(|t|>1.209)=2 \operatorname{Pr}(t>1.209)=0.237
$$

(e) Comparing the observed $t=1.209$ to the critical value $t_{27,0.005}=2.771$ or comparing the p-value (0.237) to $\alpha=0.01$, we find that H_{0} is not rejected and we conclude that $\mu_{1}=\mu_{2}$
13. The hypothesis of interest is

$$
\begin{array}{lll}
H_{0} & : & \sigma_{1}^{2}=\sigma_{2}^{2} \\
H_{1} & : & \sigma_{1}^{2}>\sigma_{2}^{2}
\end{array}
$$

and the test statistic is

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{114^{2}}{103^{2}}=1.22
$$

which is distributed as an $F_{n_{1}-1, n_{2}-1}=F_{16-1,15-1}=F_{15,14}$. The critical values of F for various values of α are given below using $d f_{1}=15$ and $d f_{2}=14$

α	0.10	0.05	0.025	0.01	0.005
$F_{15,14, \alpha}$	2.010	2.463	2.949	3.656	4.247

Moreover since the p-value is 0.358 , we conclude that H_{0} is not rejected. There is no evidence to indicate that the variances are different.

[^0]: ${ }^{1}$ It is also possible to test the hypothesis assuming unequal population variances. I do not follow this route here.
 ${ }^{2}$ In Excel, just use ' $=$ T. DIST. $2 \mathrm{~T}(2.113 ; 35+40-2)$ '

