

Statistics for Business
 Assignment 1: Suggested Solutions

Probability Calculations

1. (a) There are $6!=720$ possible itineraries.
(b) In the 720 orderings, exactly 360 have Denver before San Francisco and 360 have San Francisco before Denver. So, the probability is 0.5 .
2. There are $\binom{50}{3}=\frac{50!}{3!(50-3)!}=19,600$ ways to choose the 3 winners. Each of these is equally likely.
(a) There are $\binom{4}{3}=\frac{4!}{3!(4-3)!}=4$ ways for the organizers to win all of the prizes. The probability is $4 / 19600$.
(b) There are $\binom{4}{2}\binom{46}{1}=276$ ways the organizers can win two prizes and one of the other 46 people to win the third prize. So, the probability is $276 / 19600$.
(c) There are $\binom{4}{1}\binom{46}{2}=4,140$ ways the organizers can win one prize and two of the other 46 people to win the second and third prize. The probability is 4140/19600.
(d) There are $\binom{46}{3}=15,180$ ways the organizers can win none of the prizes. The probability is $15180 / 19600$.
3. (a) Given the first two cards drawn are spades, there are 11 spades left in the deck. Thus, the probability is

$$
\frac{\binom{11}{3}}{\binom{50}{3}}=\frac{165}{19600}=0.0084
$$

(b) Given the first three cards drawn are spades, there are 10 spades left in the deck. Thus, the probability is

$$
\frac{\binom{10}{2}}{\binom{49}{2}}=\frac{45}{1176}=0.0383
$$

(c) Given the first four cards drawn are spades, there are 9 spades left in the deck. Thus, the probability is

$$
\frac{\binom{9}{1}}{\binom{48}{1}}=\frac{9}{48}=0.1875
$$

4. Define the events: P : positive response; M : male respondent; and F : female respondent. Then (given from the problem)

$$
\operatorname{Pr}(P \mid F)=0.7 ; \operatorname{Pr}(P \mid M)=0.4 ; \text { and } \operatorname{Pr}(M)=0.25
$$

Using Bayes' rule,

$$
\operatorname{Pr}(M \mid \bar{P})=\frac{\operatorname{Pr}(\bar{P} \mid M) \operatorname{Pr}(M)}{\operatorname{Pr}(\bar{P} \mid M) \operatorname{Pr}(M)+\operatorname{Pr}(\bar{P} \mid F) \operatorname{Pr}(F)}=\frac{.6(.25)}{.6(.25)+.3(.75)}=0.4 .
$$

5. Define the events M : major airline; P : private airline; C : commercial airline, and B : travel for business. Then (given from the problem)

$$
\operatorname{Pr}(M)=0.6 ; \operatorname{Pr}(C)=0.3 ; \quad \operatorname{Pr}(B \mid M)=0.5 ; \quad \operatorname{Pr}(B \mid P)=0.6 ; \operatorname{Pr}(B \mid C)=0.9
$$

(a) (Using the rule of total probability)

$$
\begin{aligned}
\operatorname{Pr}(B) & =\operatorname{Pr}(B \mid M) \operatorname{Pr}(M)+\operatorname{Pr}(B \mid P) \operatorname{Pr}(P)+\operatorname{Pr}(B \mid C) \operatorname{Pr}(C) \\
& =.6(.5)+.3(.6)+.1(.9)=0.57
\end{aligned}
$$

(b) $\operatorname{Pr}(B \cap P)=\operatorname{Pr}(B \mid P) \operatorname{Pr}(P)=.3(.6)=0.18$.
(c) $\operatorname{Pr}(P \mid B)=\operatorname{Pr}(B \cap P) / \operatorname{Pr}(B)=.18 / .57=0.3158$
(d) $\operatorname{Pr}(B \mid C)=0.90$.

