PROGRESS AND PERFORMANCE MEASUREMENT AND EVALUATION

MA in Heritage Management

Structure of a Project Monitoring Information System

- Every project needs some form of formal control
- Creating a project monitoring system involves determining:
  - What data to collect

13-2

- How, when, and who will collect the data
- How to analyze the data
- How to report current progress to management

#### **Project Monitoring Information System**

#### Information System Structure

- What data are collected?
  - Current status of project (schedule and cost, activity duration times, resource usage and rates etc)
  - Remaining cost to compete project
  - Date that project will be complete
  - Potential problems to be addressed now
  - Out-of-control activities requiring intervention
  - Cost and/or schedule overruns and the reasons for them
  - Forecast of overruns at time of project completion

#### Project Monitoring System... (cont'd)

- Information System Structure (cont'd)
  - Collecting data and analysis
    - Who will collect project data?
    - How will data be collected?
    - When will the data be collected?
    - Who will compile and analyze the data?
  - Reports and reporting
    - Who will receive the reports?
    - How will the reports be transmitted?
    - When will the reports be distributed?

#### Project Monitoring System... (cont'd)

- A common project report includes:
  - Progress since last report
  - Current status of the project
    - Schedule
    - Cost
    - Scope
  - Cumulative trends
  - Problems and issues since last report
    - Actions and resolution of earlier problems
    - New variances and problems identified
  - Corrective action planned

# The Project Control Process

#### Control

The process of comparing actual performance against plan to identify deviations, evaluate courses of action, and take appropriate corrective action.

#### Project Control Steps

- 1. Setting a baseline plan
  - WBS, project network, time sequence and resource schedule and time-phase budget
- 2. Measuring progress and performance
  - Measurement of time performance
  - Measuring performance against budget (earned values against time-phase budget)
- 3. Comparing plan against actual
- 4. Taking action
- Tools
  - Tracking and baseline Gantt charts
  - Control charts

#### **Tracking Gantt Chart**

13–7



#### **Control Chart**



## Developing an Integrated Cost/Schedule System

#### Glossary of terms

| EV  | Earned value for a task is simply the percent complete times its original budget.<br>Stated differently, EV is the percent of the original budget that has been earned by<br>actual work completed. [The older acronym for this value was BCWP—budgeted cost<br>of the work performed.] |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PV  | The planned time-phased baseline of the value of the work scheduled. An approved cost estimate of the resources scheduled in a time-phased cumulative baseline [BCWS—budgeted cost of the work scheduled].                                                                              |
| AC  | Actual cost of the work completed. The sum of the costs incurred in accomplishing<br>work. [ACWP—actual cost of the work performed].                                                                                                                                                    |
| CV  | Cost variance is the difference between the earned value and the actual costs for the work completed to date where $CV = EV - AC$ .                                                                                                                                                     |
| SV  | Schedule variance is the difference between the earned value and the baseline line to date where $SV = EV - PV$ .                                                                                                                                                                       |
| BAC | Budgeted cost at completion. The total budgeted cost of the baseline or project cost accounts.                                                                                                                                                                                          |
| EAC | Estimated cost at completion.                                                                                                                                                                                                                                                           |
| ETC | Estimated cost to complete remaining work.                                                                                                                                                                                                                                              |
| VAC | Cost variance at completion. VAC indicates expected actual over- or underrun cost at completion.                                                                                                                                                                                        |
|     |                                                                                                                                                                                                                                                                                         |

#### Developing an Integrated Cost/Schedule System

- 1. Define the work using a WBS.
  - a. Scope
  - b. Work packages
  - c. Deliverables
  - d. Organization units
  - e. Resources
  - f. Budgets
- 2. Develop work and resource schedules.
  - a. Schedule resources to activities
  - b. Time-phase work packages into a network

- 3. Develop a time-phased budget using work packages included in an activity. Accumulate budgets (PV).
- 4. At the work package level, collect the actual costs for the work performed (AC). Multiply percent complete times original budget (EV).`
- 5. Compute the schedule variance (EV-PV) and the cost variance (EV-AC).

## Developing an Integrated Cost/Schedule System

13-11



## **Development of Project Baselines**

#### Purposes of a Baseline (PV)

An anchor point for measuring performance

- A planned cost and expected schedule against which actual cost and schedule are measured.
- A basis for cash flows and awarding progress payments.
- A summation of time-phased budgets (cost accounts as summed work packages) along a project timeline.

#### What Costs Are Included in Baselines?

- Labor, equipment, materials, project direct overhead costs (DOC)
  - If material and/or equipment are a significant portion, they can budgeted separately
  - Indirect overhead costs and profits are added later by accounting processes

# Development of Project Baselines (cont'd)

#### Rules for Placing Costs in Baselines

- Costs are placed exactly as they are expected to be "earned" in order to track them to their point of origin.
- Percent Complete Rule
  - Costs are periodically assigned to a baseline as units of work are completed over the duration of a work package.

# Methods of Variance Analysis

- Comparing Earned Value
  - With the expected schedule value.
  - With the actual costs.
- Assessing Status of a Project
  - Required data elements
    - Budgeted cost of the work scheduled (PV)
    - Budgeted cost of the work completed (EV)
    - Actual cost of the work completed (AC)
  - Calculate schedule and cost variances
    - A positive variance indicates a desirable condition, while a negative variance suggests problems or changes that have taken place.

### Cost/Schedule Graph

13–15



### Cost/Schedule Graphs

13–16



# Developing A Status Report: A Hypothetical Example

- Book page 464
- Assumptions

13-17

- Each cost account has only one work package, and each cost account will be represented as an activity on the network.
- The project network early start times will serve as the basis for assigning the baseline values.
- From the moment work an activity begins, some actual costs will be incurred each period until the activity is completed.

### Indexes to Monitor Progress

#### Performance Indexes

- Cost Performance Index (CPI)
  - Measures the cost efficiency of work accomplished to date.
  - CPI = EV/AC
- Scheduling Performance Index (SPI)
  - Measures scheduling efficiency
  - SPI = EV/PV

| Index | Cost (CPI) | Schedule (SPI)    |
|-------|------------|-------------------|
| >1.00 | Under cost | Ahead of schedule |
| =1.00 | On cost    | On schedule       |
| <1.00 | Over cost  | Behind schedule   |

### Indexes to Monitor Progress

#### Performance Indexes

- Percent Complete Indexes
  - Indicates how much of the work accomplished represents of the total budgeted (BAC) and actual (AC) dollars to date.

#### PCIB = EV/BAC

It is based on the original budget estimates

#### PCIC = AC/EAC

It is based on the actual costs and the estimated cost at completion

Compared to PCIB, PCIC includes newer, more complete information; however, sometimes is difficult to calculate EAC

# Additional Earned Value Rules

- Rules applied to short-duration activities and/or smallcost activities
  - 0/100 percent rule
    - Assumes 100 % of budget credit is earned at once and only when the work is completed.
  - □ 50/50 rule
    - Allows for 50% of the value of the work package budget to be earned when it is started and 50% to be earned when the package is completed.
  - Percent complete with weighted monitoring gates
    - Uses subjective estimated percent complete in combination with hard, tangible monitoring points.

# Forecasting Final Project Cost

- Methods used to revise estimates of future project costs:
  - EAC<sub>re</sub>
    - Allows experts in the field to change original baseline durations and costs because new information tells them the original estimates are not accurate.
  - EAC<sub>f</sub>
    - Uses actual costs-to-date plus an efficiency index to project final costs in large projects where the original budget is unreliable.

## Forecasting Final Project Cost

#### EACre = AC + ETCre

- EACre = revised estimated cost at completion
- AC = cumulative actual cost of work completed to date
- ETCre = revised estimated cost to complete remaining work

#### EACf = ETC + AC

ETC = work remaining / CPI = BAC - EV / (EV/AC)

#### To Complete Performance Index (TCPI)

$$= (BAC - EV)/(BAC - AC)$$

Measures the amount of value each remaining dollar in the budget must earn for the project to stay within the budget

#### An example

| Project number: 163Project manager: Connor GageProject priority now: 4Status as of: April 1, 2010Earned value figures:Status as of: April 1, 2010 |         |                  |         |         |           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|---------|---------|-----------|--|
| PV                                                                                                                                                | EV      | AC               | SV      | CV      | BAC       |  |
| 588,240                                                                                                                                           | 566,064 | 596,800          | -22,176 | -30,736 | 1,051,200 |  |
| EAC                                                                                                                                               | VAC     | EAC <sub>f</sub> | CPI     | PCIB    | PCIC      |  |
| 1,090,640                                                                                                                                         | -39,440 | 1,107,469        | .95     | .538    | .547      |  |

**Project description**: A computer-controlled conveyor belt that will move and position items on the belt with accuracy of less than one millimeter.

Status summary: The project is approximately 25 days behind schedule. The project has a cost variance of (\$30,736).

**Explanations**: The schedule variance has moved from noncritical activities to those on the critical path. Integration first phase, scheduled to start 3/26, is now expected to start 4/19, which means it is approximately 25 days behind schedule. This delay is traced to the loss of the second design team which made it impossible to start utilities documentation on 2/27 as planned. This loss illustrates the effect of losing valuable resources on the project. The cost variance to date is largely due to a design change that cost \$21,000.

Major changes since last report: The major change was loss of one design team to the project. Total cost of approved design changes: \$21,000. Most of this amount is attributed to the improved design of the serial I/O drivers.

**Projected cost at completion**: EAC<sub>f</sub> is estimated to be \$1,107,469. This represents an overrun of \$56,269, given a CPI of .95. The CPI of .95 causes the forecast to be greater than the VAC -\$39,440.

Risk watch: Nothing suggests the risk level of any segments has changed.

## Key Terms

**Baseline budget Control chart** Cost performance index (CPI) Cost variance (CV) Earned value (EV) Estimated Cost at Completion—Forecasted (EAC<sub>f</sub>) Estimated Cost at Completion—Revised Estimates (EAC<sub>re</sub>) Percent complete index—budget costs (PCIB) Percent complete index—actual costs (PCIC) Schedule performance index (SPI) Schedule variance (SV) Scope creep To complete performance index (TCPI) **Tracking Gantt chart** Variance at completion (VAC)