


Selecting a Descriptive Statistical
Procedure

Correlation
Type of Data Individual Scores Central Tendency Variability Coefficient

Nominal frequency, Mode Range � or C
rel. frequency, or (Chapter 4) (Chapter 5) (Chapter 15)
percent
(Chapter 3)

Ordinal frequency, Median Range Spearman rS
rel. frequency, or (Chapter 4) (Chapter 5) (Chapter 7)
percent
(Chapter 3)

Interval or frequency, Median Range Convert to 
ratio rel. frequency, or (Chapter 4) (Chapter 5) ranks, compute
(skewed percent Spearman rS
distribution) (Chapter 3) (Chapter 7)

Interval or frequency, Mean Standard Pearson r
ratio rel. frequency, (Chapter 4) deviation or (Chapter 7)
(normally percent, or variance and
distributed) z-score (Chapter 5) regression

(Chapters 3 and 6) (Chapter 8)



Selecting an Inferential Statistical
Procedure

Type of Design Parametric Test Nonparametric Test

One sample z-test none
(when σX is known) (Chapter 10)

One sample One-sample t-test none
(when σX is not (Chapter 11)
known)

Two independent Independent samples t-test Mann–Whitney U,
samples (Chapter 12) rank sums test, or

one-way chi square
(Chapter 15)

Two related samples Related samples t-test Wilcoxon T test
(Chapter 12) (Chapter 15)

Three or more Between-subjects ANOVA Kruskal–Wallis H or
independent samples Post Hoc test: one-way chi square
(one factor) HSD or protected t-test Post Hoc test:

(Chapter 13) rank sums test
(Chapter 15)

Three or more Within-subjects ANOVA Friedman �2

related samples Post Hoc test: Post Hoc test:
(one factor) HSD or protected t-test Nemenyi’s test

(Appendix A) (Chapter 15)

Two factors Two-way, between-subjects Two-way chi square
(independent ANOVA (Chapter 14) (Chapter 15)
samples)
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PREFACE TO THE INSTRUC TOR

After almost 20 years of writing and rewriting this book, I still obsess over creating the
clearest, most understandable explanation of each statistical procedure. My problem
with many textbooks is that they take too much of a statistics-for-statistics-sake
approach. They produce students who can compute an answer on demand, but who do
not understand why researchers would do so or what the answer reveals about data. 
I am not enamored by the eloquence of formulas. Instead, I concentrate on showing stu-
dents the eloquence of the logic of statistics. When we simplify the jargon and boil
them down to concrete ideas, statistics have practical purposes and they really do make
sense. I believe that giving students an understanding of this is the most important com-
ponent of any introductory course.

The premise of this book is that statistics make sense when presented within the con-
text of behavioral research. Therefore, each procedure is introduced using a simple
study with readily understandable goals. The focus is that research examines relation-
ships and that statistics are for describing and inferring such relationships. Each discus-
sion ends, however, by returning to an interpretation of the study in terms of behaviors.
Although the early examples involve very simple questions taken from everyday life, in
later chapters, as students develop their statistical thinking, the examples become more
representative of real research.

A textbook should work very hard at explaining concepts and tying them together.
Too often books simply offer up a concept and let students and their instructor sort it
out. My approach is that if it is important enough to mention, then it is important
enough to fully explain. To this end, the narrative attempts to teach the material—
clearly and patiently—the way a good teacher does. Further, I believe the best teachers
are those who can remember what it was like when they were first learning a concept,
before they spoke the technical language and could think in such terms. Therefore, I do
not forget that, from the student’s perspective, everything about this course is new and
often very strange and a little scary.

However, this book does not pander to student weaknesses and fears regarding math-
ematics. On the one hand, the book is geared toward students who are neither proficient
in math nor interested in becoming so, and who rather grudgingly learn statistics. On
the other hand, I expect that, ultimately, students will be capable of performing and
understanding the basic statistical procedures found in modern research—as “junior” 
researchers. Therefore, the tone is always “At first this may appear difficult, but you
can do it.” Thus, formulas are introduced in terms of what they accomplish, and
examples are worked through in a step-by-step manner. The similarities among different

PREFACE TO THE INSTRUC TOR

xxii



procedures are stressed, showing that they answer similar questions. And, the most diffi-
cult concepts are presented in small chunks that span different chapters, so that they are
less overwhelming when fully revealed.

I have retained the above goals throughout this revision. At the same time, I have
tried to keep the material readable and engaging so that students enjoy it as well as
learn from it. I include humor, at times I talk directly to students, I point out potential
mistakes, and I provide tips on how to get through the course. In addition, several
recurring individuals give a little “plot” to the book, providing continuity among topics,
and alerting students to particular pitfalls. Throughout, I have tried to dispel the notion
that statistics are incomprehensible and boring, and to show that learning statistics can
be fun and rewarding.

MAJOR CHANGES IN THE SIXTH EDITION

Although there are numerous changes in this edition, the most notable are:

New Integration Questions Additional end-of-chapter questions address two
issues. First, a chapter must often refer to a concept from a previous chapter, neces-
sarily assuming that students remember its discussion. If they do not, new material is
usually lost. Second although students know to compute a correlation in the correla-
tion chapter or a t-test in the t-test chapter, they have difficulty when asked to select
the appropriate procedure for a proposed study from the entire set of procedures
discussed in the course. Therefore, these new questions (1) force students to revisit
previous concepts to ensure their integration with the present chapter, and (2) pro-
vide practice at selecting procedures for specific studies from among all procedures
discussed to that point.

Revision of Effect Size The explanations of the very difficult concept of propor-
tion of variance accounted for were combined and reworked, with the major explana-
tions occurring once with linear regression and once with two-sample t-tests. (All
previous procedures for computing this in the various parametric and nonparametric
designs were retained.) In addition, a new discussion of computing and interpreting
Cohen’s d was included.

Revision of SPSS Appendix A complete, stand-alone guide to using SPSS to
compute the procedures discussed in the textbook is provided in Appendix B. It was
revised to be compatible with the new SPSS (PASW) version 17, as well as with previ-
ous versions. Notably, the instructions include performing the one-way within-subjects
ANOVA. A new feature—Using the SPSS Appendix—was added to many chapters to
better integrate the appendix with each chapter. The book is still organized so that
instructors may easily include or exclude discussions of SPSS.

Revision of the Entire Book I did not merely slap a new cover on the previous
edition. I performed a page-by-page revision of the entire book using my recent 
experiences from teaching statistics every semester, using reviews from other instruc-
tors, and using trends in the literature. This resulted in new explanations, new exam-
ples, new diagrams and tables, and new pedagogical devices. I also streamlined and
modernized the narrative, and I reviewed and revised the end-of chapter problems.
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CHAPTER CONTENT AND REVISIONS

Chapter 1 serves as a brief preface for the student and reviews basic math and graphing
techniques. Much of this is material that instructors often present at the first class meet-
ing, but having it in a chapter helps reinforce and legitimize the information.

Chapter 2 introduces the terminology, logic, and goals of statistics while integrating
them with the purpose and logic of behavioral research. An explanation of using
descriptive statistics to predict Y scores by using the relationship with X was added, and
the discussion of scales of measurement was revised.

Chapter 3 presents simple, relative, and cumulative frequency, as well as percentile.
The introduction to the proportion of the area under the normal curve was revised.
Grouped distributions are briefly discussed, with additional information in Appendix A.
The formulas for computing percentile were deleted.

Chapter 4 introduces measures of central tendency but focuses on the characteristics
of the mean. The discussion of using the mean to predict individual scores was revised,
as was the discussion of using the mean to summarize experiments.

Chapter 5 discusses measures of variability. The introduction to variability was
revised. Emphasis is first given to interpreting the variance and standard deviation
using their defining formulas, and then the computing formulas are introduced. The
chapter ends with a new discussion of errors in prediction and an introduction to
accounting for variance.

Chapter 6 deals with z-scores while the building blocks of central tendency and vari-
ability are still fresh in students’ minds. The chapter then makes a rather painless tran-
sition to sampling distributions and z-scores for sample means, to set up for later
inferential procedures. (Instructions for using linear interpolation with statistical tables
are presented in Appendix A.)

Chapter 7 presents correlation coefficients, first explaining type and strength, and then
showing the computations of the Pearson and Spearman coefficients. The concept of a
“good” predictor was introduced. The section on correlations in the population was moved
to Chapter 11 and a briefer version of resolving tied ranks was moved to Chapter 15.

Chapter 8 presents linear regression, explaining its logic and then showing the com-
putations for the components of the regression equation and the standard error of the
estimate. The explanation of errors in prediction, , and the proportion of variance
accounted for was revised.

Chapter 9 begins inferential statistics by discussing probability as it is used by
behavioral researchers. Then probability is linked to random sampling, representative-
ness, and sampling error. The focus now quickly moves to computing the probability
of sample means. Then the logic of using probability to make decisions about the rep-
resentativeness of sample means is presented, along with the mechanics of setting up
and using a sampling distribution. This is done without the added confusion of the for-
mal hypotheses and terminology of significance testing.

Chapter 10 presents statistical hypothesis testing using the z-test. Here significance
testing is presented within the context of experiments, including the terminology and
symbols, the interpretation of significant and nonsignificant results, Type I and Type II
errors, and an introduction to power.

Chapter 11 presents the one-sample t-test and the confidence interval for a popula-
tion mean. Because they are similar to t-tests, significance tests of the Pearson and
Spearman correlation coefficients are also included, with a new introduction of the
population correlation coefficient moved from Chapter 7. The chapter ends with a
revised discussion of how to design a powerful study.

r2
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Chapter 12 covers the independent- and the dependent-samples t-tests and versions
of the confidence interval used with each. The chapter ends with revised discussions of
how to interpret two-sample experiments and using the point-biserial correlation to
measure effect size. A new discussion of using Cohen’s d to measure effect size was
added.

Chapter 13 introduces the one-way, between-subjects ANOVA. The discussion of
experiment-wise error and the statistical underpinnings of ANOVA were revised and
simplified. Post hoc tests for equal and unequal ns, eta squared, and interpreting
ANOVA are also discussed. (The one-way, within-subjects ANOVA, with formulas, is
described in Appendix A.)

Chapter 14 deals with the two-way, between-subjects ANOVA; post hoc tests for
main effects and unconfounded comparisons in an interaction; and graphing and inter-
preting interactions. The two-way, within-subjects ANOVA and the two-way, mixed-
design ANOVA are also introduced.

Chapter 15 first covers the one-way and two-way chi square. The discussion of the
general logic of nonparametric procedures was revised and is followed by the Mann–
Whitney, rank sums, Wilcoxon, Kruskal–Wallis, and Friedman tests (with appropriate
post hoc tests and measures of effect size).

The text is designed to also serve as a reference book for later course work and proj-
ects, especially the material in Chapters 14 and 15 and the appendices. Also, the less
common procedures tend to occur at the end of a chapter and are presented so that
instructors may easily skip them without disrupting the discussion of the major proce-
dures. Likewise, as much as possible, chapters are designed to stand alone so that instruc-
tors may reorder or skip topics. This is especially so for correlation and regression, which
some instructors prefer covering after t-tests, while others place them after ANOVA.

PEDAGOGICAL FORMAT AND FEATURES

A number of features enhance the book’s usefulness as a study tool and as a reference.

■ Many mnemonics and analogies are used throughout the text book to promote reten-
tion and understanding.

■ Each chapter begins with “Getting Started” which lists previously discussed
concepts that students should review, followed by the learning goals for the chapter.

■ “New Statistical Notation” sections introduce statistical notations at the beginning of
the chapter in which they are needed but, to reduce student confusion, are introduced
before the conceptual issues.

■ An opening section in each chapter titled “WHY IS IT IMPORTANT TO KNOW
ABOUT . . . ?” introduces the major topic of the chapter, immediately placing it in a
research context.

■ Important procedural points are emphasized by a “REMEMBER,” a summary
reminder set off from the text.

■ Computational formulas are labeled and highlighted in color throughout the text.
■ Key terms are highlighted in bold, reviewed in the chapter summary, and listed in a

“Key Terms” section at the end of the chapter. An end-of-text glossary is included.
■ Graphs and diagrams are explained in captions and fully integrated into the

discussion.
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■ “Putting It All Together” sections at the end of each chapter provide advice,
cautions, and ways to integrate material from different chapters.

■ As part of “Putting It All Together,” the section called Using the SPSS Appendix
identifies the procedures from the chapter that SPSS will perform, and indicates the
subsection of the appendix containing the relevant instructions.

■ Each “Chapter Summary” section provides a substantive review of the material, not
merely a list of the topics covered.

■ Approximately 30 multipart questions are provided at the end of each chapter. The
questions are separated into “Review Questions,” which require students to define
terms and outline procedures, and “Application Questions,” which require students
to perform procedures and interpret results. Then the “Integration Questions,”
require students to combine information from the previous different chapters. Odd-
numbered questions have final and intermediate answers provided in Appendix D.
Even-numbered questions have answers in the online Instructor’s Resource Manual.

■ A Summary of Formulas is provided at the end of each chapter.
■ A glossary of symbols appears on the inside back cover. Tables on the inside front

cover provide guidelines for selecting descriptive and inferential procedures based
on the type of data or research design employed.

SUPPLEMENTARY MATERIALS

Supporting the book are several resources for students and instructors:

■ Student Workbook and Study Guide Additional review material for students is avail-
able in the Student Workbook and Study Guide, revised by Deborah J. Hendricks
and Richard T. Walls. Each chapter contains a review of objectives, terms, and
formulas; a programmed review; conceptual and computational problems (with
answers); and a set of multiple-choice questions similar to those in the Instructor’s
Resource Manual with Test Bank. A final chapter, called “Getting Ready for the
Final Exam,” facilitates student integration of the entire course. The workbook can
be ordered separately, or may be bundled with the text.

■ Instructor’s Resource Manual with Test Bank This supplement, also revised by
Deborah J. Hendricks and Richard T. Walls, contains approximately 750 test items
and problems as well as suggestions for classroom activities, discussion, and use
of statistical software. It also includes answers to the even-numbered end-of-chapter
questions from the book. It is available in print or electronically.

■ SPSS Software SPSS software is available for sale to students who schools do not
license SPSS.

■ The Book Companion Website offers a variety of study tools and useful resources,
such as flashcards, crossword puzzles, a glossary, and web quizzes by chapter.
Go to www.cengage.com/psychology/heiman to view all available resources.

■ Examview® CD Featuring automatic grading, ExamView® allows you to create,
deliver, and customize tests and study guides (both print and online) in minutes.

■ Microsoft® PowerPoint® Lecture Outlines These simple Power Point lecture outlines
can easily be adapted to fit your lectures, and include many key figures from the book.
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Okay, so you’re taking a course in statistics. You probably are curious—and maybe a little
anxious—about what it involves. After all, statistics are math! Well, relax. Statistics do not
require that you be a math wizard. Students in the behavioral sciences throughout the
world take a course like the one you are about to take, and they get through it. In fact, sta-
tistics can be fun! They are challenging, there is an elegance to their logic, and you can do
nifty things with them. So, keep an open mind, be prepared to do a little work, and you’ll
be amazed by what happens. You’ll find that statistics are interesting and educational, they
help you to think logically, and they make behavioral research much easier to understand.

In this chapter we first deal with some common misconceptions that students have
about statistics. Then we’ll review the basic math that you’ll be using.

WHY IS IT IMPORTANT TO LEARN STATISTICS
(AND HOW DO YOU DO THAT?)

Here are some frequently asked questions that will teach you something about statistics
and your statistics course.

What Are Statistics? The term statistics is often used as a shorthand for statistical
procedures. These are formulas and calculations developed by statisticians that psy-
chologists and other behavioral researchers employ when “analyzing” the results of
their research. Also, some of the answers that we compute are called statistics.

Why Must I Learn Statistics? Statistics are an integral part of psychology and
other behavioral sciences, so statistics and statistical concepts are used every day.
Therefore, to understand your chosen field of study, you must understand statistics.
You’ve already experienced this if you’ve ever read a published research article—you
probably skipped the section titled “Results.” Now you won’t have to.

What Do Researchers Do with Statistics? Statistics are tools used in research.
They are needed because the behavioral sciences are based on empirical research.
The word empirical means that knowledge is obtained through observation and measure-
ment, and behavioral research measures behaviors. Such measurement results in num-
bers, or scores. These scores obtained in research are the data. (By the way, the word
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Introduction to Statistics1
GETTING STARTED
Your goals in this chapter are to learn

■ Why researchers learn statistics.

■ The general purpose of statistical procedures.

■ The basic math that’s needed.
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data is plural, so say “the data are . . .”.) For example, to study intelligence, researchers
measure the IQ scores of different individuals; to study memory, we examine data that re-
flect the number of things that people remember or forget; to study social interactions,
we measure the distance people stand apart or their anxiety when meeting someone. And
so on. Thus, any study typically produces a very large batch of scores that must be made
manageable and meaningful. At this point, statistics are applied because they help us to
make sense out of the data. The procedures we will discuss do this in four ways. First,
some procedures organize the scores so that we can more clearly see any patterns in the
data. Often this simply involves creating a table or graph. Second, other statistics summa-
rize the scores. We don’t need to examine each of the hundreds of scores that may be
obtained in a study. Instead, a summary—such as the average score—allows us to quickly
and easily understand the general characteristics of the data. Third, statistics communi-
cate the results of a study. Researchers have created techniques and rules for this and,
because everyone uses the same rules, it is much easier for us to communicate with each
other, especially in published research reports. Finally, statistics are used to conclude
what the data indicate. All behavioral research is designed to answer a question about a
behavior and, ultimately, we must decide what the data tell us about that behavior.

But I’m Not Interested in Research; I Just Want to Help People! Even if you
are not interested in becoming a researcher, statistics are necessary for comprehending
other people’s research. Let’s say that you become a therapist or counselor. You hear of
a new therapy that says the way to “cure” people of some psychological problem is to
scare the living daylights out of them. This sounds crazy but what is important is the
research that does or does not support this therapy. As a responsible professional, you
would evaluate the research supporting this therapy before you would use it. You could
not do so without understanding statistics.

But I Don’t Know Anything about Research! This book is written for students
who have not yet studied how to conduct research. When we discuss each statistic, we also
discuss simple studies that employ the procedure, and this will be enough. Later, when you
study research methods, you will know the appropriate statistical procedures to use.

What if I’m Not Very Good at Math? This is not a math course. We will discuss
some research tools that happen to involve mathematical operations. But it is simple
math: adding, subtracting, multiplying, dividing, finding square roots, and drawing
simple graphs. Also, we will continuously review the math operations as they are
needed. Best of all, statisticians have already developed the statistics we’ll discuss, so
we won’t be deriving formulas, performing proofs, or doing other “mystery” math. We
will simply learn when to use the procedure that statisticians say is appropriate for a
given situation, then compute the answer and then determine what it tells us about the
data. (Eventually you’ll understand the tables on the inside of the front cover that sum-
marize which procedures are used in which type of study.)

What if I’m Not Very Good at Statistics? This course is not a test of whether
you should change your college major! First, there are not all that many procedures to
learn, and these fancy sounding “procedures” include such simple things as computing
an average or drawing a graph. Second, researchers usually do not memorize the
formulas. (For quick reference, at the end of each chapter in this book is a list of the
formulas discussed.) Finally, statistics are simply a tool used in research, just like a
wrench is a tool used to repair automobile engines. A mechanic does not need to be an
expert wrencher who loves to wrench, and you do not need be an expert statistician
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who loves statistics. Rather, in the same way that a mechanic must understand how to
correctly use a wrench, your goal is to be able to correctly use statistics.

I Looked through the Book: Statistics Aren’t Written in English! Statistics
do involve many strange symbols and unfamiliar terms. But these are simply the shorthand
“code” for communicating statistical results and for simplifying statistical formulas. A ma-
jor part of learning statistics is merely learning the code. Think of it this way: To understand
research you must speak the language, and you are about to learn the language of statistics.
Once you speak this language, much of the mystery surrounding statistics evaporates.

But, Those Formulas! What makes some formulas appear difficult is that they are
written in a code that communicates a sequence of operations: You first might square the
scores, then add them together, then divide by some other number, and so on. However,
most chapters begin with a section called “New Statistical Notation,” which explains the
symbols that you’ll encounter, and then each formula is presented with example data and
step-by-step instructions on how to work through it. (Each example involves an unrealis-
tically small number of scores, although real research involves large numbers of scores.)
There are also in-chapter “Quick Reviews” where you can practice what you have read
and at the end of each chapter are additional practice problems. With practice the formu-
las become easy, and then the rest of the mystery surrounding statistics will evaporate.

So All I Have to Do Is Learn How to Compute the Answers? No! Statistical
procedures are a tool that you must learn to apply. Ultimately you want to make sense
of data, and to do that, you must compute the appropriate statistic and then correctly
interpret it. More than anything else, you need to learn when and why to use each pro-
cedure and how to interpret its answer. Be sure to put as much effort into this as you
put into the calculations.

What about Using a Computer to Do Statistics? At first glance, you might
think that this book was written before the invention of computers. However, we focus
on using formulas to compute answers “by hand” because that is the only way for you
to understand statistics. (Having a computer magically produce an answer might sound
attractive, but with no idea how the answer was produced, you’d be overwhelmed.)
However, researchers usually do use computers to compute statistics. Therefore, Ap-
pendix B explains the basics of how to use “SPSS,” which is one of the leading statisti-
cal computer programs. Recently, the new version 17 was released and, for some
reason, the name was changed to PASW. However, we’ll still refer to it as SPSS. The
instructions in Appendix B are appropriate for version 17, and where needed, different
instructions are provided so they are appropriate for earlier versions also. Even if your
instructor cannot include this program in your statistics course, eventually you will
want to learn it or one like it. Then you can compute the statistics discussed in this book
quickly and accurately. (You’ll love it—it is soooo easy!)

Recognize that, although SPSS is a wizardlike program, it cannot select the appro-
priate statistical procedure for you nor interpret the answer. You really must learn when
to use each statistic and what the answer means.

All Right, So How Do I Learn Statistics? Avoid these pitfalls when studying
statistics:

■ Don’t skim the material. You do not speak the language yet, so you must translate
the terminology and symbols into things that you understand, and that takes time and
effort.
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■ Don’t try to “cram” statistics. You won’t learn anything (and your brain will melt).
Instead, work on statistics a little every day, digesting the material in bite-sized
pieces. This is the most effective—and least painful—way to learn statistics.

■ Don’t skip something if it seems difficult. Concepts build upon one another, and
material in one chapter sets up a concept in a later chapter so that things are bite
sized for you. Go back and review when necessary. (The beginning of each chapter
lists what you should understand from previous chapters.)

An effective strategy in this course includes

■ Learn (memorize), understand, and use the terminology. You are learning a new
language, and you can do this only by practicing it. In this book, terminology printed 
in boldface type is important, as is anything labeled REMEMBER. Use the glossary.
Making and studying flashcards is a good idea. At the end of a chapter, use the “Chapter
Summary” and “Key Terms” to improve your knowledge of the terminology.

■ Learn when and why to use each procedure. You’ll find this information at the begin-
ning of chapters in the section “Why Is It Important to Know About . . . ?”

■ Practice using the formulas. Master the formulas at each step because they often
reappear later as part of more complicated formulas. Test yourself with the in-chapter
“Quick Reviews.” If you cannot understand or perform a review, do not proceed! Go
back—you missed something.

■ Complete all of the problems at the end of each chapter, because the only way to
learn statistics is to do statistics. The “Review Questions” are for practicing the
terminology, definitions and concepts presented in the chapter. The “Application
Questions” give you practice computing and interpreting the answers from each
procedure. However, you must not forget about procedures from past chapters.
Therefore, starting in Chapter 3, you’ll see “Integration Questions,” which help you
to combine the information from different chapters. Remember, your task is to build
a complete mental list of all of the different procedures in this book. Eventually
you’ll be in faced with picking the one procedure that’s appropriate for a study from
all those we’ve discussed. (Often this occurs on your final exam.)

■ For all end-of-chapter problems, the answers to the odd-numbered problems are in
Appendix D and your instructor has the answers to the even-numbered problems.
Make a serious attempt at solving the problem first and only then look at the answer.
(This is the practice test before the real test.)

■ Pay extra attention to the sections titled “Interpreting the . . .” and “Statistics in
Published Research” so that you learn how to interpret statistical results, draw
conclusions, and understand what researchers do—and do not—say. These really 
are the most important aspects of learning statistics.

REVIEW OF MATHEMATICS USED IN STATISTICS

The remainder of this chapter reviews the math used in performing statistical proce-
dures. As you’ll see, there are accepted systems for statistical notation, for rounding an
answer, for transforming scores, and for creating graphs.

Basic Statistical Notation

Statistical notation refers to the standardized code for symbolizing the mathematical
operations performed in the formulas and for symbolizing the answers we obtain.
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Identifying Mathematical Operations We write formulas in statistical notation
so that we can apply them to any data. We usually use the symbol or to stand for
each individual score obtained in a study. When a formula says to do something to , it
means to do it to all the scores you are calling . When a formula says to do something
to , it means to do it to all the scores called .

The mathematical operations we’ll perform are simple ones. Addition is indicated by
the plus sign, and subtraction is indicated by the minus sign. We read from left to right,
so is read as “ minus .” (I said this was simple!) This order is important be-
cause , for example, is , but is . With subtraction, pay attention to
what is subtracted from what and whether the answer is positive or negative.

We indicate division by forming a fraction, such as . The number above the di-
viding line is called the numerator, and the number below the line is called the denomi-
nator. Always express fractions as decimals, dividing the denominator into the
numerator. (After all, 1/2 equals .5, not 2!)

Multiplication is indicated in one of two ways. We may place two components next
to each other: means “multiply times .” Or we may indicate multiplication using
parentheses: 4(2) and (4)(2) both mean “multiply 4 times 2.”

The symbol means square the score, so if is 4, is 16. Conversely, means
“find the square root of ,” so is 2. (The symbol also means “use your calculator.”)

Determining the Order of Mathematical Operations Statistical formulas of-
ten call for a series of mathematical steps. Sometimes the steps are set apart by paren-
theses. Parentheses mean “the quantity,” so always find the quantity inside the
parentheses first and then perform the operations outside of the parentheses on that
quantity. For example, (2)(4 � 3) indicates to multiply 2 times “the quantity 4 plus 3.”
So first add, which gives (2)(7), and then multiply to get 14.

A square root sign also operates on “the quantity,” so always compute the quantity

inside the square root sign first. Thus, means find the square root of the quan-

tity 2 � 7; so becomes , which is 3.
Most formulas are giant fractions. Pay attention to how far the dividing line is drawn

because the length of a dividing line determines the quantity that is in the numerator
and the denominator. For example, you might see a formula that looks like this:

The longest dividing line means you should divide the square root of 64 into the quan-
tity in the numerator. The dividing line in the fraction in the numerator is under only
the 6, so first divide 6 by 3, which is 2. Then add 14, for a total of 16. In the denomina-
tor, the square root of 64 is 8. After dividing, the final answer is 2.

If you become confused in reading a formula, remember that there is an order of prece-
dence of mathematical operations. Often this is summarized with PEMDAS meaning that,
unless otherwise indicated, first compute inside any Parentheses, then compute Exponents
(squaring and square roots), then Multiply or Divide, and finally, Add or Subtract. Thus,
for (2)(4) � 5, multiply 2 times 4 first and then add 5. For 22 � 32, square first, which
gives 4 � 9, which is then 13. On the other hand, (2 � 3)2 is 52, which is 25.

Working with Formulas We use a formula to find an answer, and we have sym-
bols that stand for that answer. For example, in the formula , the stands
for the answer we will obtain. The symbol for the unknown answer is always isolated

BB 5 AX 1 K

6

3
1 14

264
5

2 1 14

264
5

16

264
5

16

8
5 2

2922 1 7

22 1 7

2  24X
2XX 2XX 2

YXXY

X>Y

264 2 101610 2 4
YXX 2 Y

XY
X

X
YX



6 CHAPTER 1 / Introduction to Statistics

on one side of the equal sign, but we will know the numbers to substitute for the
symbols on the other side of the equal sign. For example, to find , say that ,

, and . In working any formula, the first step is to copy the formula and
then rewrite it, replacing the symbols with their known values. Thus, start with

Filling in the numbers gives

Rewrite the formula after performing each mathematical operation. Above, multiplication
takes precedence over addition, so multiply and then rewrite the formula as

After adding,

For simple procedures, you may have an urge to skip rewriting the formula after each
step. Don’t! That’s a good way to introduce errors.

Rounding Numbers

Close counts in statistics, so you must carry out calculations to the appropriate num-
ber of decimal places. Usually, you must “round off” your answer. The rule is this:
Always carry out calculations so that your final answer after rounding has two more
decimal places than the original scores. Usually, we have whole-number scores 
(e.g., 2 and 11) so the final answer contains two decimal places. But say the original
scores contain one decimal place (e.g., 1.4 and 12.3). Here the final answer should
contain three decimal places.

However, do not round off at each intermediate step in a formula; round off only at
the end! Thus, if the final answer is to contain two decimal places, round off your
intermediate answers to at least three decimal places. Then after you’ve completed all
calculations, round off the final answer to two decimal places.

To round off a calculation use the following rules:

If the number in the next decimal place is 5 or greater, round up. For example,
to round to two decimal places, an answer of 2.366 is rounded to 2.370, which
becomes 2.37.

If the number in the next decimal place is less than 5, round down: an answer of
3.524 is rounded to 3.520, which becomes 3.52.

We add zeroes to the right of the decimal point to indicate the level of precision we
are using. For example, rounding 4.996 to two decimal places produces 5, but to show
we used the precision of two decimal places, we report it as 5.00.

REMEMBER Round off your final answer to two more decimal places than
are in the original scores.

Transforming Scores

Many statistical procedures are nothing more than elaborate transformations. A
transformation is a mathematical procedure for systematically converting a set of
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scores into a different set of scores. Adding 5 to each score is a transformation, or
converting “number correct” into “percent correct” is a transformation.

We transform data for one of two reasons. First, transformations make scores easier
to work with. For example, if all of the scores contain a decimal, we might multiply
every score by 10 to eliminate the decimals. Second, transformations make different
kinds of scores comparable. For example, if you obtained 8 out of 10 on a statistics test
and 75 out of 100 on an English test, it would be difficult to compare the two scores.
However, if you transformed each grade to percent correct, you could then directly
compare performance on the two tests.

In statistics, we rely heavily on transformations to proportions and percents.

Proportions A proportion is a decimal number between 0 and 1 that indicates a
fraction of the total. To transform a number to a proportion, simply divide the number
by the total. If 4 out of 10 people pass an exam, then the proportion of people passing
the exam is 4/10, which equals .4. Or, if you score 6 correct on a test out of a possible
12, the proportion you have correct is 6/12, which is .5.

We can also work in the opposite direction from a known proportion to find the num-
ber out of the total it represents. Here, multiply the proportion times the total. Thus, to
find how many questions out of 12 you must answer correctly to get .5 correct, multi-
ply .5 times 12, and voilà, the answer is 6.

Percents We can also transform a proportion into a percent. A percent (or percent-
age) is a proportion multiplied by 100. Above, your proportion correct was .5, so you
had (.5)(100) or 50% correct. Altogether, to transform the original test score of 6 out of
12 to a percent, first divide the score by the total to find the proportion and then multi-
ply by 100. Thus, (6/12)(100) equals 50%.

To transform a percent back into a proportion, divide the percent by 100 (above,
50/100 equals .5). Altogether, to find the test score that corresponds to a certain per-
cent, transform the percent to a proportion and then multiply the proportion times the
total number possible. Thus, to find the score that corresponds to 50% of 12, transform
50% to the proportion, which is .5, and then multiply .5 times 12. So, 50% of 12 is
equal to (50/100)(12), which is 6.

Recognize that a percent is a whole unit: Think of 50% as 50 of those things called
percents. On the other hand, a decimal in a percent is a proportion of one percent. Thus,
.2% is .2, or two-tenths, of one percent, which is .002 of the total.

Creating Graphs

One type of statistical procedure is none other than plotting graphs. In case it’s been a
long time since you’ve drawn one, recall that the horizontal line across the bottom of a
graph is the axis, and the vertical line at the left-hand side is the axis. (Draw the 

axis so that it is about 60 to 75% of the length of the axis.) Where the two axes in-
tersect is always labeled as a score of zero on and a score of zero on . On the axis,
scores become larger positive scores as you move to the right. On the axis, scores be-
come larger positive scores as you move upward.

Say that we measured the height and weight of several people. We decide to place
weight on the axis and height on the axis. (How to decide this is discussed later.)
We plot the scores as shown in Figure 1.1. Notice that because the lowest height score
is 63, the lowest label on the axis is also 63. The symbol // in the axis indicates that
we cut out the part between 0 and 63. We do this with either axis when there is a large
gap between 0 and the lowest score we are plotting.

X

XX

Y
XYX

XY
YX



FIGURE 1.2

Plot of height and
weight scores using a
different scale on the 

axisY

Height Weight

63 130
64 140
65 155
66 160
67 165
68 170
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In the body of the graph we plot the scores from the table on the left. Jane is 63 inches
tall and weighs 130 pounds, so we place a dot above the height of 63 and opposite the
weight of 130. And so on. Each dot on the graph is called a data point. Notice that you
read the graph by using the scores on one axis and the data points. For example, to find
the weight of the person who has a height of 67, travel vertically from 67 to the data
point and then horizontally to the axis: 165 is the corresponding weight.

In later chapters you will learn when to connect the data points with lines and when
to create other types of figures. Regardless of the final form of a graph, always label
the and axes to indicate what the scores measure (not just and ), and always give
your graph a title indicating what it describes.

When creating a graph, make the spacing between the labels for the scores on an axis
reflect the spacing between the actual scores. In Figure 1.1 the labels 64, 65, and 66 are
equally spaced on the graph because the difference between 64 and 65 is the same as
the difference between 65 and 66. However, in other situations, the labels may not be
equally spaced. For example, the labels 10, 20, and 40 would not be equally spaced
because the distance between these scores is not equal.

Sometimes there are so many different scores that we cannot include a label for each
one. Be careful here, because the units used in labeling each axis then determine the
impression the graph gives. Say that for the previous weight scores, instead of labeling
the axis in units of 10 pounds, we labeled it in units of 100 pounds, as shown in 
Figure 1.2. This graph shows the same data as Figure 1.1, but changing the scale on the
Y axis creates a much flatter pattern of data points. This gives the misleading impression

Y

YXYX

Y

FIGURE 1.1

Plot of height and weight scores

Person Height Weight

Jane 63 130
Bob 64 140
Mary 65 155
Tony 66 160
Sue 67 165
Mike 68 170
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that regardless of their height, the people all have about the same weight. However, look-
ing at the actual scores, you see that this is not the case. Thus, always label the axes in a
way that honestly presents the data, without exaggerating or minimizing the pattern
formed by the data points.

That’s all the basic math you’ll need to get started. You are now ready to begin learning
to use statistics. In fact, you already use statistics. If you compute your grade average
or if you ask your instructor to “curve” your grades, you are using statistics. When you
understand from the nightly news that Senator Fluster is projected to win the election
or when you learn from a television commercial that Brand X “significantly” reduces
tooth decay, you are using statistics. You simply do not yet know the formal names for
these statistics or the logic behind them. But you will.

PUTTING IT ALL
TOGETHER

CHAPTER SUMMARY

1. All empirical research is based on observation and measurement, resulting in
numbers, or scores. These scores are the data.

2. Statistical procedures are used to make sense out of data: They are used to
organize, summarize, and communicate data and to draw conclusions about
what the data indicate.

3. The goal in learning statistics is to know when to perform a particular procedure
and how to interpret the answer.

4 Statistical notation refers to the standardized code for symbolizing the 
mathematical operations performed in the formulas and the answers obtained.

5. Unless otherwise indicated, the order of mathematical operations is to compute
inside parentheses first, then square or find square roots, then multiply or divide,
and then add or subtract.

6. Round off the final answer in a calculation to two more decimal places than are in
the original scores. If the digit in the next decimal place is equal to or greater than
5, round up; if the digit is less than 5, round down.

7. A transformation is a procedure for systematically converting one set of scores
into a different set of scores. Transformations make scores easier to work with 
and make different kinds of scores comparable.

8. A proportion is a decimal between 0 and 1 that indicates a fraction of the total. To
transform a score to a proportion, divide the score by the total. To determine the
score that produces a particular proportion, multiply the proportion times the total.

9. To transform a proportion to a percent, multiply the proportion times 100. To
transform an original score to a percent, find the proportion by dividing the score
by the total and then multiplying by 100.

10. To transform a percent to a proportion, divide the percent by 100. To find the
original score that corresponds to a particular percent, transform the percent to
a proportion and then multiply the proportion times the total.

11. A data point is a dot plotted on a graph to represent a pair of and scores.YX
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KEY TERMS

data 1
data point 8
percent 7

proportion 7
statistical notation 4
transformation 6

REVIEW QUESTIONS

(Answers for odd-numbered problems are in Appendix D.)

1. Why do researchers need to learn statistics?
2. What does the term statistical notation refer to?
3. (a) To how many places should you round a final answer? (b) If you are rounding

to two decimal places, what are the rules for rounding up or down?
4. (a) What is a transformation? (b) Why do we transform data?
5. If given no other information, what is the order in which to perform mathematical

operations?
6. What is a percentage?
7. What is a data point?
8. A researcher measures the IQ scores of a group of college students. What four

things will the researcher use statistics for?
9. What is a proportion and how is it computed?

10. How do you transform a percentage to a proportion?

APPLICATION QUESTIONS

11. (a) What proportion is 5 out of 15? (b) What proportion of 50 is 10? (c) One in a
thousand equals what proportion?

12. For each of the following, to how many places will you round off your final
answer? (a) When measuring the number of questions students answered cor-
rectly on a test. (b) When measuring what proportion of the total possible points
students have earned in a course. (c) When counting the number of people having
various blood types. (d) When measuring the number of dollar bills possessed by
each person in a group.

13. Transform each answer in question 11 to a percent.
14. The intermediate answers from some calculations based on whole-number scores

are and . We now want to find After
rounding, what values of and do we use?

15. Round off the following numbers to two decimal places: (a) 13.7462, (b) 10.043,
(c) 10.047, (d) .079, and (e) 1.004.

16. For find the value of Q when and .
17. Using the formula in question 16, find when and .
18. For and , find :

19. Using the formula in question 18, find for and .
20. Of the 40 students in a gym class, 13 played volleyball, 12 ran track (4 of whom

did a push-up), and the remainder were absent. (a) What proportion of the class

Y 5 24X 5 9D

D 5 a
X 2 Y

Y
b 12X 2

DY 5 4.8X 5 14
Y 5 22X 5 8Q

Y 5 5X 5 3Q 5 1X 1 Y 2 1X 2 1 Y 2 2

YX
X2 1 Y2.Y 5  3.3333X 5  4.3467892
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ran track? (b) What percentage played volleyball? (c) What percentage of the
runners did a push-up? (d) What proportion of the class was absent?

21. In your statistics course, there are three exams: I is worth 40 points, II is worth 
35 points, and III is worth 60 points. Your professor defines a passing grade as
earning 60% of the points. (a) What is the smallest score you must obtain on each
exam to pass it? (b) In total you can earn 135 points in the course. How many
points must you earn from the three exams combined to pass the course? (c) You
actually earn a total of 115 points during the course. What percent of the total did
you earn?

22. There are 80 students enrolled in statistics. (a) You and 11 others earned the same
score. What percent of the class received your score? (b) Forty percent of the class
received a grade of C. How many students received a C? (c) Only 7.5% of the
class received a D. How many students is this? (d) A student claims that .5% of
the class failed. Why is this impossible?

23. (a) How do you space the labels on the or axis of a graph? (b) Why must you
be careful when selecting the amounts used as these labels?

24. Create a graph showing the data points for the following scores.

YX

X Score Y Score

20 10
25 30
35 20
45 60
25 55
40 70
45 30
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Because statistics are part of the process of conducting research, to understand statis-
tics you need to first understand a little about research. Therefore, this chapter dis-
cusses the basics of behavioral research, the general ways that statistics are used in
research, and the major aspects of how we conduct a study that influence which statis-
tics are used.

THE LOGIC OF RESEARCH

Behavioral scientists study the “laws of nature” regarding the behavior of living organ-
isms. That is, researchers assume there are specific influences that govern every behavior
of all members of a particular group. Although any single study is a very small step in this
process, the goal is to understand every factor that influences behavior. Thus, when re-
searchers study such things as the mating behavior of sea lions, social interactions between
humans, or neural firing in a rat’s brain, they are ultimately studying the laws of nature.

The reason a study is a small step is because nature is very complex. Therefore,
research involves a series of translations in which we simplify things so that we can
examine a specific influence on a specific behavior in a specific situation. Then, using
our findings, we generalize back to the broader behaviors and laws we began with. For
example, here’s an idea for a simple study. Say that we think a law of nature is that
people must study information in order to learn it. We translate this into the more

Statistics and the 
Research Process2

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 1, (1) that we use statistics to make sense out of data and 
(2) how to create and interpret graphs.

Your goals in this chapter are to learn

■ The logic of samples and populations in behavioral research.

■ How to recognize a relationship between scores and what is meant by the
strength of a relationship.

■ What descriptive statistics are used for.

■ What inferential statistics are used for.

■ What the difference is between an experiment and a correlational study and
how to recognize the independent variable, the conditions, and the dependent
variable in an experiment.

■ What the four scales of measurement are.
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specific hypothesis that “the more you study statistics, the better you’ll learn them.”
Next we will translate the hypothesis into a situation where we can observe and meas-
ure specific people who study specific material in different amounts, to see if they do
learn differently. Based on what we observe, we will have evidence for working back
to the general law regarding studying and learning.

Part of this translation process involves samples and populations.

Samples and Populations

When researchers want to talk of a behavior occurring in some group in nature, they
say it occurs in the population. A population is the entire group of individuals to which
a law of nature applies. The population might be broadly defined (such as all animals,
all mammals, or all humans), but it can be more narrowly defined (such as all women,
all four-year-old English-speaking children in Canada, or all presidents of the United
States). For our studying research, the population might be all college students taking
statistics. Notice that, although ultimately researchers discuss the population of indi-
viduals, we sometimes talk of the population of scores, as if we have already measured
the behavior of everyone in the population in a particular situation.

The population contains all past, present, and future members of the group, so we
usually consider it to be infinitely large. However, to measure an infinitely large popu-
lation would take roughly forever! Instead, we measure a sample from the population.
A sample is a relatively small subset of a population that is intended to represent, or
stand in for, the population. Thus, we might study the students in your statistics class
as a sample representing the population of all college students enrolled in statistics. The
individuals measured in a sample are called the participants (or sometimes, the sub-
jects) and it is the scores from the sample(s) that constitute our data. As with a popula-
tion, sometimes we discuss a sample of scores as if we have already measured the
participants in a particular situation.

Notice that the definitions of a sample and a population depend on your perspective.
Say that we study the students in your statistics class. If these are the only individuals
we are interested in, then we have measured the population of scores. Or if we are in-
terested in the population of all college students studying statistics, then we have a sam-
ple of scores that represent that population. But if we are interested in both the
populations of college men and college women who are studying statistics, then the
men in the class are one sample and the women in the class are another sample, and
each represents its respective population. Finally, scores from one student can be a
sample representing the population of all scores that the student might produce. Thus, a
population is any complete group of scores that would be found in a particular situa-
tion, and a sample is a subset of those scores that we actually measure in that situation.

The logic behind samples and populations is this: We use the scores in a sample to
infer—to estimate—the scores we would expect to find in the population, if we could
measure them. Then, by translating the scores back into the behaviors they reflect, we
can infer the behavior of the population. Thus, when the television news uses a survey
to predict who will win the presidential election, they are using the scores from a sam-
ple (usually containing about 1200 voters) to infer the voting behavior of the population
of over 100 million voters. Likewise, if we observe that greater studying leads to better
learning for a sample of statistics students, we will infer that similar scores and behav-
iors would be found in the population of all statistics students. Then, because the popu-
lation is the entire group to which the law of nature applies, we are describing how
nature works. Thus, whenever we say a finding applies to the population, we are really
describing how a law of nature applies to everyone out there in the world.
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REMEMBER The population is the entire group of individuals—and scores—
to which our conclusions apply, based on our observation of a sample, which
is a subset of the population.

Recognize that the above logic assumes that our sample is representative of the pop-
ulation. We will discuss this issue in detail in Chapter 9, but put simply, a representa-
tive sample accurately reflects the individuals, behaviors, and scores found in the
population. Essentially, a representative sample is a good example—a miniversion—of
the larger population. With such a sample, our inferences about the scores and behav-
iors found in the population will also be accurate, and so we can believe what our data
seem to be telling us about nature. Thus, if your class is representative of all statistics
students, then the scores in the class are a good example of the scores that the popula-
tion would produce, and we can believe that everyone would behave as the class does.

Researchers try to create a representative sample by freely allowing the types of
individuals found in the population to occur in the sample. To accomplish this, we cre-
ate a random sample: the individuals in our sample are randomly selected from the
population. This means that who gets chosen depends simply on the luck of the draw
(like drawing names from a hat). Because we don’t influence which participants are
selected, the different types of individuals are free to occur in our sample as they do in
the population, so the sample’s characteristics “should” match the population.

However, random sampling is not foolproof because it may not produce a representa-
tive sample: Just by the luck of the draw, we may select participants whose characteris-
tics do not match those of the population. Then the sample will be unrepresentative,
inaccurately reflecting the behavior of the population. For example, maybe unknown to
us, a large number of individuals happen to be in your statistics class who do not behave
at all like typical students in the population—they are too bright, too lazy, or whatever.
If so, we should not believe what such a sample indicates about our law of nature
because the evidence it provides will be misleading and our conclusions will be wrong!
Therefore, as you’ll see, researchers always deal with the possibility that their conclu-
sions about the population might be incorrect because their sample is unrepresentative.

Nonetheless, after identifying the population and sample, the next step is to define
the specific situation and behaviors to observe and measure. We do this by selecting our
variables.

Obtaining Data by Measuring Variables

In our example research, we asked: Does studying statistics improve your learning of
them? Now we must decide what we mean by “studying” and how to measure it, and
what we mean by “learning” and how to measure it. In research the factors we measure
that influence behaviors—as well as the behaviors themselves—are called variables. A
variable is anything that, when measured, can produce two or more different scores.
A few of the variables found in behavioral research include your age, race, gender, and
intelligence; your personality type or political affiliation; how anxious, angry, or ag-
gressive you are; how attractive you find someone; how hard you will work at a task; or
how accurately you recall a situation.

Variables fall into two general categories. If a score indicates the amount of a variable
that is present, the variable is a quantitative variable. A person’s height, for example, is a
quantitative variable. Some variables, however, cannot be measured in amounts, but in-
stead a score classifies an individual on the basis of some characteristic. Such variables are
called qualitative, or classification, variables. A person’s gender, for example, is a qualita-
tive variable, because the “score” of male or female indicates a quality, or category.
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For our study, we might measure “studying” using such variables as how much 
effort is put into studying or the number of times a chapter is read, but say we select
the variable of the number of hours spent studying for a particular statistics test. We
might measure “learning” by measuring how well statistical results can be interpreted
or how quickly a specific procedure can be performed, but say we select the variable of
grades on the statistics test.

As in any research, we then study the law of nature by studying the relationship
between our variables.

Understanding Relationships

If nature relates those mental activities that we call studying to those mental activities
that we call learning, then different amounts of learning should occur with different
amounts of studying. In other words, there should be a relationship between studying

and learning. A relationship is a pattern in which, as the scores on one
variable change, the corresponding scores on the other variable change
in a consistent manner. In our example, we predict the relationship in
which the longer you study, the higher your test grade will be.

Say that we asked some students how long they studied for a test and
their subsequent grades on the test. We might obtain the data in Table 2.1.1

To see the relationship, first look at those people who studied for 1 hour
and see their grades. Then look at those whose score is 2 hours and see
their grades. And so on. These data form a relationship because, as study-
time scores change (increase), test grades also change in a consistent fash-
ion (also increase). Further, when study-time scores do not change (for
example, Gary and Bob both studied for 1 hour), grades do not change
either (they both received Fs). In statistics, we use the term association
when talking about relationships. Here, low study times are associated with
low test grades and high study times are associated with high test grades.

REMEMBER In a relationship, as the scores on one variable change, the
scores on the other variable change in a consistent manner.

Because this relationship occurs in the sample data, we have evidence that the
amount that people study does make a difference in their test grades. Therefore, assum-
ing that the sample is representative, we can generalize this finding to the broader pop-
ulation so that we can talk about how people learn in general. In the same way, most
research investigates relationships because a relationship is the telltale sign of a law of
nature at work: When nature ties behaviors or events together, we see a relationship
between the variables that measure those behaviors and events.

Thus, an important step in any research is to determine if there is a relationship in
the sample data that matches the relationship that we predict. A major use of statistical
procedures is to help us understand the relationship, examining the scores and the pat-
tern they form. The simplest relationships fit one of two patterns. Sometimes the pat-
tern fits “The more you , the more you ,” with higher scores paired with higher 

scores. Thus, the old saying “The bigger they are, the harder they fall” describes such
a relationship, as does “The more often you speed, the more traffic tickets you accumu-
late.” At other times, the pattern fits “The more you , the less you , with higher YX

Y
XYX

Study Time 
Student in Hours Test Grades

Gary 1 F
Bob 1 F

Sue 2 D
Jane 2 D

Tony 3 C
Sidney 3 C

Ann 4 B
Rose 4 B

Lou 5 A

TABLE 2.1

Scores Showing a
Relationship between 
the Variables of Study
Time and Test Grades

1The data presented in this book are a work of fiction. Any resemblance to real data is purely
a coincidence.
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scores paired with lower scores.” Thus, that other old saying “The more you prac-
tice statistics, the less difficult they are” describes a relationship, as does “The more al-
cohol you consume, the less coordinated you are.”

Relationships may also form more complicated patterns where, for example, more 
at first leads to more , but beyond a certain point more leads to less . For example,
the more you exercise, the better you feel, but beyond a certain point more exercise
leads to feeling less well, as pain and exhaustion set in.

Although the above examples involve quantitative variables, relationships can also in-
volve qualitative variables. For example, men typically are taller than women. If you think
of male and female as “scores” on the variable of gender, then this is a relationship, be-
cause as gender scores change (going from male to female), height scores tend to decrease.
We can study any combination of qualitative and quantitative variables in a relationship.

The Strength of a Relationship The data back in Table 2.1 show a perfectly con-
sistent association between study time and test grades: In a perfectly consistent rela-
tionship, each score on one variable is paired with only one score on the other variable.
In Table 2.1, all those who studied the same amount received the same grade. In the real
world, however, not everyone who studies the same amount will receive the same
grade. (Life is not fair.) However, a relationship can be present even if there is only
some degree of consistency so that, as the scores on one variable change, the scores on
the other variable tend to change in a consistent fashion. The degree of consistency in a
relationship is called its strength, and a less consistent relationship is called a weaker
relationship. For example, Table 2.2 shows two relationships between the number of
hours spent studying and the number of errors made on a test.

First look at Part A on the left side of Table 2.2. Again note the error scores paired
with each study-time score. Two aspects of the data produce a less consistent relation-
ship: (1) Not everyone who studies the same amount receives the same error score 
(1 hour of study produced 13, 12, or 11 errors), and (2) sometimes the same error score
is paired with different studying scores (11 errors occur with 1 and 2 hours). Nonethe-
less, a reasonably clear pattern is still here in which one batch of similar error scores

YXY
X

YX

A

X Y 
Study Time Errors 

Student in Hours on Test

1 1 13
2 1 12
3 1 11

4 2 11
5 2 10
6 2 10

7 3 10
8 3 9

9 4 9
10 4 8

11 5 7
12 5 6

B

X Y 
Study Time Errors 

Student in Hours on Test

1 1 13
2 1 11
3 1 9

4 2 12
5 2 10
6 2 9

7 3 9
8 3 7

9 4 9
10 4 7

11 5 8
12 5 6

TABLE 2.2

Data Showing a Stronger
(A) and Weaker (B)
Relationship between
Study Time and Number
of Errors on a Test
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tends to occur at one study time, but a different, lower batch of similar error scores
tends to occur at the next study time. Therefore, this is a reasonably strong relationship.

The data in Part B of Table 2.2 show a weaker relationship: (1) Each study time is
paired with a wider range of error scores (here 1 hour of study produced anywhere
between 13 and 9 errors), and (2) the same error scores occur with a greater variety of
study times (here 9 errors occur with 1, 2, 3 or 4 hours). These aspects produce greater
overlap between the error scores at one study time and those at the next, so there is
closer to the same batch of error scores at each study time. This produces a pattern of
decreasing errors that is harder to see.

Thus, the strength of a relationship is the extent to which one or close to one value
of tends to be consistently associated with only one value of . Conversely, in a
weaker relationship, a greater variety of scores is associated with each score and/or
the same score is paired with different scores.

REMEMBER A stronger relationship occurs the more that one group of simi-
lar scores is associated with one score and a different group of similar 

scores is associated with the next score.

Two factors produce a relationship that is not perfectly consistent. First, extraneous
influences are operating. For example, say that distracting noises occurred while some-
one studied for 1 hour, but not when someone else studied for 1 hour. Because of this,
their studying might not be equally effective, resulting in different error scores paired
with the same study-time score. Second, individual differences are operating. Individ-
ual differences refer to the fact that no two individuals are identical because of differ-
ences in genetics, experience, intelligence, personality, and many other variables. Thus,
test performance will be influenced by a person’s intelligence, aptitude, and motiva-
tion. Because students exhibit individual differences in these characteristics, they will
each be influenced differently by the same amount of studying and so will produce dif-
ferent error scores at the same study-time score.

Theoretically, a relationship can have any degree of strength. However, perfectly
consistent relationships do not occur in real research because individual differences and
extraneous variables are always operating. Despite this, the less consistent relationships
back in Table 2.2 still support our original hypothesis about how nature operates: They
show that, at least to some degree, nature does relate studying and test errors as we pre-
dicted. Therefore, our next step would be to measure the degree to which nature does
this. Likewise, in any research, it is never enough to say that you have observed a rela-
tionship; you must also determine the strength of the relationship. (Later chapters dis-
cuss statistical procedures for describing the strength of a relationship.)

REMEMBER Research is concerned not only with the existence of a relation-
ship but also with the strength of the relationship.

When No Relationship Is Present At the other extreme, when there is no consis-
tent pattern between two variables, there is no relationship. For example, there is not 
(I think) a relationship between the number of chocolate bars people consume each day
and the number of times they blink each minute. If we measure individuals on these
two variables, we might have the data shown in Table 2.3. Mentally draw in horizontal
lines so that you look at the batch of eye-blink scores paired with one chocolate score
at a time. Here there is no consistent change in the blink scores as the scores on the
chocolate variable change. Instead, very similar—but not identical—groups of blinking
scores are paired with each chocolate score. Because there is no relationship in this
sample, we do not have evidence that these variables are linked in nature.

XY
XY

XY
XY

XY
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REMEMBER A relationship is not present when virtually the same batch of
scores from one variable is paired with every score on the other variable.

X Y 
Chocolate Bars Eye Blinks 

Participant per Day per Minute

1 1 12
2 1 10
3 1 8
4 2 11
5 2 10
6 2 8
7 3 12
8 3 10
9 3 9

10 4 11
11 4 10
12 4 8

TABLE 2.3

Scores Showing No
Relationship between
Number of Chocolate
Bars Consumed per Day
and Number of Eye 
Blinks per Minute

■ A relationship is present when, as the scores on one
variable change, the scores on another variable tend
to change in a consistent fashion.

MORE EXAMPLES

Below, Sample A shows a perfect relationship: One 
score occurs at only one . Sample B shows a less
consistent relationship: Sometimes different occur
at a particular , and the same occurs with different

. Sample C shows no relationship: The same tend
to show up at every .

A B C

X Y X Y X Y
1 20 1 12 1 12
1 20 1 15 1 15
1 20 1 20 1 20
2 25 2 20 2 20
2 25 2 30 2 12
2 25 2 40 2 15
3 30 3 40 3 20
3 30 3 40 3 15
3 30 3 50 3 12

X
YsXs

YX
Ys

X
Y

For Practice

Which samples show a perfect, inconsistent, or no
relationship?

A B C D

X Y X Y X Y X Y
2 4 80 80 33 28 40 60
2 4 80 79 33 20 40 60
3 6 85 76 43 27 45 60
3 6 85 75 43 20 45 60
4 8 90 71 53 20 50 60
4 8 90 70 53 28 50 60

Answers
A: Perfect Relationship; B: Inconsistent Relationship; 
C and D: No Relationship

A  Q U I C K  R E V I E W

Graphing Relationships It is important that you be able to recognize a relation-
ship and its strength when looking at a graph. In a graph we have the and axes and
the and scores, but how do we decide which variable to call or ? In any study
we implicitly ask this question: For a given score on one variable, I wonder what scores

YXYX
YX
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occur on the other variable? The variable you identify as your “given” is then called the
variable (plotted on the axis). Your other, “I wonder” variable is your variable

(plotted on the axis). Thus, if we ask, “For a given amount of study time, what error
scores occur?” then study time is the variable, and errors is the variable. But if we
ask, “For a given error score, what study time occurs?” then errors is the variable,
and study time is the variable.

Once you’ve identified your and variables, describe the relationship using this
general format: “Scores on the variable change as a function of changes in the 

variable.” So far we have discussed relationships involving “test scores as a function
of study time” and “number of eye blinks as a function of amount of chocolate con-
sumed.” Likewise, if you hear of a study titled “Differences in Career Choices as a
Function of Personality Type,” you would know that we had wondered what career
choices (the scores) were associated with each of several particular, given personality
types (the scores).

REMEMBER The “given” variable in a study is designated the variable, and
we describe a relationship using the format “changes in as a function of
changes in .”

Recall from Chapter 1 that a “dot” on a graph is called a data point. Then, to read a
graph, read from left to right along the axis and ask, “As the scores on the axis
increase, what happens to the scores on the axis?” Figure 2.1 shows the graphs from
four sets of data.
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four sets of data
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Graph A shows the original test-grade and study-time data from Table 2.1. Here, as
the scores increase, the data points move upwards, indicating higher scores, so this
shows that as the scores increase, the scores also increase. Further, because every-
one who obtained a particular obtained the same , the graph shows perfectly consis-
tent association because there is one data point at each .

Graph B shows test errors as a function of the number of hours studied from Table
2.2A. Here increasing scores are associated with decreasing values of . Further,
because several different error scores occurred with each study-time score, we see a
vertical spread of different data points above each . This shows that the relationship is
not perfectly consistent.

Graph C shows the data from Table 2.2B. Again, decreasing scores occur with
increasing scores, but here there is greater vertical spread among the data points
above each . This indicates that there are greater differences among the error scores at
each study time, indicating a weaker relationship. For any graph, whenever the data
points above each are more vertically spread out, it means that the scores differ
more, and so a weaker relationship is present.

Graph D shows the eye-blink and chocolate data from Table 2.3, in which there was
no relationship. The graph shows this because the data points in each group are at about
the same height, indicating that about the same eye-blink scores were paired with each
chocolate score. Whenever a graph shows an essentially flat pattern, it reflects data that
do not form a relationship.

APPLYING DESCRIPTIVE AND INFERENTIAL STATISTICS

Statistics help us make sense out of data, and now you can see that “making sense”
means understanding the scores and the relationship that they form. However, because
we are always talking about samples and populations, we distinguish between descrip-
tive statistics, which deal with samples, and inferential statistics, which deal with
populations.

Descriptive Statistics

Because relationships are never perfectly consistent, researchers are usually confronted
by many different scores that may have a relationship hidden in them. The purpose of
descriptive statistics is to bring order to this chaos. Descriptive statistics are proce-
dures for organizing and summarizing sample data so that we can communicate and
describe their important characteristics. (When you see descriptive, think describe.)

As you’ll see, these “characteristics” that we describe are simply the answers to ques-
tions that we would logically ask about the results of any study. Thus, for our study-time
research, we would use descriptive statistics to answer: What scores occurred? What is
the average or typical score? Are the scores very similar to each other or very different?
For the relationship, we would ask: Is a relationship present? Do error scores tend to in-
crease or decrease with more study time? How consistently do errors change? And so on.

On the one hand, descriptive procedures are useful because they allow us to quickly and
easily get a general understanding of the data without having to look at every single score.
For example, hearing that the average error score for 1 hour of study is 12 simplifies a
bunch of different scores. Likewise, you can summarize the overall relationship by men-
tally envisioning a graph that shows data points that follow a downward slanting pattern.

On the other hand, however, there is a cost to such summaries, because they will not
precisely describe every score in the sample. (Above, not everyone who studied 1 hour
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scored 12.) Less accuracy is the price we pay for a summary, so descriptive statistics
always imply “generally,” “around,” or “more or less.”

Descriptive statistics also have a second important use. A major goal of behavioral
science is to be able to predict when a particular behavior will occur. This translates
into predicting individuals’ scores on a variable that measures the behavior. To do this
we use a relationship, because it tells us the high or low scores that tend to naturally
occur with a particular score. Then, by knowing someone’s score and using the
relationship, we can predict his or her score. Thus, from our previous data, if I know
the number of hours you have studied, I can predict the errors you’ll make on the test,
and I’ll be reasonably accurate. (The common descriptive statistics are discussed in the
next few chapters.)

REMEMBER Descriptive statistics are used to summarize and describe the
important characteristics of sample data and to predict an individual’s score
based on his or her score.

Inferential Statistics

After answering the above questions for our sample, we want to answer the same ques-
tions for the population being represented by the sample. Thus, although technically
descriptive statistics are used to describe samples, their logic is also applied to popula-
tions. Because we usually cannot measure the scores in the population, however, we
must estimate the description of the population, based on the sample data.

But remember, we cannot automatically assume that a sample is representative of the
population. Therefore, before we draw any conclusions about the relationship in the
population, we must first perform inferential statistics. Inferential statistics are proce-
dures for deciding whether sample data accurately represent a particular relationship in
the population. Essentially, inferential procedures are for deciding whether to believe
what the sample data seem to indicate about the scores and relationship that would be
found in the population. Thus, as the name implies, inferential procedures are for mak-
ing inferences about the scores and relationship found in the population.

If the sample is deemed representative, then we use the descriptive statistics com-
puted from the sample as the basis for estimating the scores that would be found in the
population. Thus, if our study-time data pass the inferential “test,” we will infer that a
relationship similar to that in our sample would be found if we tested everyone after
they had studied 1 hour, then tested everyone after studying 2 hours, and so on. Like-
wise, we would predict that when people study for 1 hour, they will make around 
12 errors and so on. (We discuss inferential procedures in the second half of this book.)

After performing the appropriate descriptive and inferential procedures, we stop being a
“statistician” and return to being a behavioral scientist: We interpret the results in terms of
the underlying behaviors, psychological principles, sociological influences, and so on, that
they reflect. This completes the circle because then we are describing how nature operates.

REMEMBER Inferential statistics are for deciding whether to believe what the
sample data indicate about the scores that would be found in the population.

Statistics versus Parameters

Researchers use the following system so that we know when we are describing a sam-
ple and when we are describing a population. A number that is the answer from a de-
scriptive procedure (describing a sample of scores) is called a statistic. Different
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statistics describe different characteristics of sample data, and the symbols for them are
letters from the English alphabet. On the other hand, a number that describes a charac-
teristic of a population of scores is called a parameter. The symbols for different
parameters are letters from the Greek alphabet.

Thus, for example, the average in your statistics class is a sample average, a descrip-
tive statistic that is symbolized by a letter from the English alphabet. If we then esti-
mate the average in the population, we are estimating a parameter, and the symbol for
a population average is a letter from the Greek alphabet.

REMEMBER Descriptive procedures result in statistics, which describe sam-
ple data and are symbolized using the English alphabet. Inferential proce-
dures are for estimating parameters, which describe a population of scores
and are symbolized using the Greek alphabet.

UNDERSTANDING EXPERIMENTS AND CORRELATIONAL STUDIES

All research generally focuses on demonstrating a relationship. Although we discuss a
number of descriptive and inferential procedures, only a few of them are appropriate
for a particular study. Which ones you should use depends on several issues. First, your
choice depends on what it is you want to know—what question about the scores do you
want to answer?

Second, your choice depends on the specific research design being used. A study’s
design is the way the study is laid out: how many samples there are, how the partici-
pants are tested, and the other specifics of how a researcher goes about demonstrating a
relationship. Different designs require different statistical procedures. Therefore, part
of learning when to use different statistical procedures is to learn with what type of de-
sign a procedure is applied. To begin, research can be broken into two major types of
designs because, essentially, there are two ways of demonstrating a relationship: exper-
iments and correlational studies.

Experiments

In an experiment the researcher actively changes or manipulates one variable and then
measures participants’ scores on another variable to see if a relationship is produced.
For example, say that we examine the amount of study time and test errors in an exper-
iment. We decide to compare 1, 2, 3, and 4 hours of study time, so we randomly select
four samples of students. We ask one sample to study for 1 hour, administer the test,
and count the number of errors that each participant makes. We have another sample
study for 2 hours, administer the test, and count their errors, and so on. Then we look
to see if we have produced the relationship where, as we increase study time, error
scores tend to decrease.

To select the statistical procedures you’ll use in a particular experiment, you must
understand the components of an experiment.

The Independent Variable An independent variable is the variable that is
changed or manipulated by the experimenter. Implicitly, it is the variable that we think
causes a change in the other variable. In our studying experiment, we manipulate study
time because we think that longer studying causes fewer errors. Thus, amount of study
time is our independent variable. Or, in an experiment to determine whether eating
more chocolate causes people to blink more, the experimenter would manipulate the
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independent variable of the amount of chocolate a person eats. You can remember the
independent variable as the variable that occurs independently of the participants’
wishes (we’ll have some participants study for 4 hours whether they want to or not).

Technically, a true independent variable is manipulated by doing something to par-
ticipants. However, there are many variables that an experimenter cannot manipulate in
this way. For example, we might hypothesize that growing older causes a change in
some behavior. But we can’t make some people 20 years old and make others 40 years
old. Instead, we would manipulate the variable by selecting one sample of 20-year-olds
and one sample of 40-year-olds. Similarly, if we want to examine whether gender is
related to some behavior, we would select a sample of females and a sample of males.
In our discussions, we will call such variables independent variables because the
experimenter controls them by controlling a characteristic of the samples. Statistically,
all independent variables are treated the same. (Technically, though, such variables are
called quasi-independent variables.)

Thus, the experimenter is always in control of the independent variable, either by de-
termining what is done to each sample or by determining a characteristic of the indi-
viduals in each sample. In essence, a participant’s “score” on the independent variable
is assigned by the experimenter. In our examples, we, the researchers, decided that one
group of students will have a score of 1 hour on the variable of study time or that one
group of people will have a score of 20 on the variable of age.

Conditions of the Independent Variable An independent variable is the overall
variable that a researcher examines; it is potentially composed of many different
amounts or categories. From these the researcher selects the conditions of the inde-
pendent variable. A condition is a specific amount or category of the independent vari-
able that creates the specific situation under which participants are examined. Thus,
although our independent variable is amount of study time—which could be any
amount—our conditions involve only 1, 2, 3, or 4 hours. Likewise, 20 and 40 are two
conditions of the independent variable of age, and male and female are each a condi-
tion of the independent variable of gender. A condition is also known as a level or a
treatment: By having participants study for 1 hour, we determine the specific “level”
of studying that is present, and this is one way we “treat” the participants.

The Dependent Variable The dependent variable is used to measure a partici-
pant’s behavior under each condition. A participant’s high or low score is supposedly
caused or influenced by—depends on—the condition that is present. Thus, in our
studying experiment, the number of test errors is the dependent variable because we
believe that errors depend on the amount of study. If we manipulate the amount of
chocolate people consume and measure their eye blinking, eye blinking is our depend-
ent variable. Or, if we studied whether 20- or 40-year-olds are more physically active,
then activity level is our dependent variable. (Note: The dependent variable is also
called the dependent measure, and we obtain dependent scores.)

A major component of your statistics course will be for you to read descriptions of
various experiments and, for each, to identify its components. Use Table 2.4 for help.
(It is also reproduced inside the front cover.) As shown, from the description, find the
variable that the researcher manipulates in order to influence a behavior—it is the inde-
pendent variable, and the amounts of the variable that are present are the conditions.
The behavior that is to be influenced is measured by the dependent variable, and the
amounts of the variable that are present are indicated by the scores. All statistical
analyses are applied to only the scores from this variable.
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REMEMBER In an experiment, the researcher manipulates the conditions of
the independent variable and, under each, measures participants’ behavior by
measuring their scores on the dependent variable.

Drawing Conclusions from Experiments The purpose of an experiment is to
produce a relationship in which, as we change the conditions of the independent vari-
able, participants’ scores on the dependent variable tend to change in a consistent fash-
ion. To see the relationship and organize your data, always diagram your study as
shown in Table 2.5. Each column in the table is a condition of the independent variable
(here, amount of study time) under which we tested some participants. Each number in
a column is a participant’s score on the dependent variable (here, number of test errors).

To see the relationship, remember that a condition is a participant’s “score” on the
independent variable, so participants in the 1-hour condition all had a score of 1 hour
paired with their dependent (error) score of 13, 12, or 11. Likewise, participants in the
2-hour condition scored “2” on the independent variable, while scoring 9, 8, or 7 
errors. Now, look for the relationship as we did previously, first looking at the error
scores paired with 1 hour, then looking at the error scores paired with 2 hours, and 
so on. Essentially, as amount of study time increased, participants produced a different,
lower batch of error scores. Thus, a relationship is present because, as study time
increases, error scores tend to decrease.

For help envisioning this relationship, we would graph the data points as we did pre-
viously. Notice that in any experiment we are asking, “For a given condition of the in-
dependent variable, I wonder what dependent scores occur?” Therefore, the
independent variable is always our variable, and the dependent variable is our vari-
able. Likewise, we always ask, “Are there consistent changes in the dependent variable
as a function of changes in the independent variable?” (Chapter 4 discusses special
techniques for graphing the results of experiments.)

YX

Researcher’s Role of Name of Amounts of Compute 
Activity Variable Variable Variable Present Statistics?

Researcher ➔ Variable ➔ Independent ➔ Conditions ➔ No
Manipulates influences a variable (Levels)
variable behavior

Researcher ➔ Variable measures ➔ Dependent ➔ Scores ➔ Yes
measures behavior that is Variable (Data)
variable influenced

TABLE 2.4

Summary of Identifying
an Experiment‘s 
Components

Independent Variable: Number of Hours Spent Studying

Condition 1: Condition 2: Condition 3: Condition 4:
1 Hour 2 Hours 3 Hours 4 Hours

13 9 7 5
12 8 6 3
11 7 5 2

TABLE 2.5

Diagram of an
Experiment Involving the
Independent Variable of
Number of Hours Spent
Studying and the Depen-
dent Variable of Number
of Errors Made on
a Statistics Test

Each column contains
participants’ dependent
scores measured under one
condition of the independent
variable.

Dependent Variable:
Number of Errors Made 
on a Statistics Test
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For help summarizing such an experiment, we have specific descriptive procedures for
summarizing the scores in each condition and for describing the relationship. For exam-
ple, it is simpler if we know the average error score for each hour of study. Notice, how-
ever, that we apply descriptive statistics only to the dependent scores. Above, we do not
know what error score will be produced in each condition so errors is our “I Wonder”
variable that we need help making sense of. We do not compute anything about the con-
ditions of the independent variable because we created and controlled them. (Above, we
have no reason to average together 1, 2, 3, and 4 hours.) Rather, the conditions simply
create separate groups of dependent scores that we examine.

REMEMBER We apply descriptive statistics only to the scores from the
dependent variable.

Then the goal is to infer that we’d see a similar relationship if we tested the entire
population in the experiment, and so we have specific inferential procedures for exper-
iments to help us make this claim. If the data pass the inferential test, then we use the
sample statistics to estimate the corresponding population parameters we would ex-
pect to find. Thus, Table 2.5 shows that participants who studied for 1 hour produced
around 12 errors. Therefore, we would infer that if the population of students studied
for 1 hour, their scores would be close to 12 also. But our sample produced around 
8 errors after studying for 2 hours, so we would infer the population would also make
around 8 errors when in this condition. And so on. As this illustrates, the goal of any
experiment is to demonstrate a relationship in the population, describing the different
group of dependent scores associated with each condition of the independent variable.
Then, because we are describing how everyone scores, we can return to our original
hypothesis and add to our understanding of how these behaviors operate in nature.

Correlational Studies

Not all research is an experiment. Sometimes we conduct a correlational study. In a
correlational study we simply measure participants’ scores on two variables and then
determine whether a relationship is present. Unlike in an experiment in which the re-
searcher actively attempts to make a relationship happen, in a correlational design the
researcher is a passive observer who looks to see if a relationship exists between the
two variables. For example, we used a correlational approach back in Table 2.1 when
we simply asked some students how long they studied for a test and what their test
grade was. Or, we would have a correlational design if we asked people their career
choices and measured their personality, asking “Is career choice related to personality
type?” (As we’ll see, correlational studies examine the “correlation” between variables,
which is another way of saying they examine the relationship.)

REMEMBER In a correlational study, the researcher simply measures partici-
pants’ scores on two variables to determine if a relationship exists.

As usual, we want to first describe and understand the relationship that we’ve
observed in the sample, and correlational designs have their own descriptive statistical
procedures for doing this. Then, to describe the relationship that would be found in the
population, we have specific correlational inferential procedures. Finally, as with an
experiment, we would translate the relationship back to the original hypothesis about
studying and learning that we began with, so that we can add to our understanding of
nature.
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A Word about Causality

When people hear of a relationship between and , they tend to automatically con-
clude that it is a causal relationship, with changes in causing the changes in . This
is not necessarily true (people who weigh more tend to be taller, but being heavier does
not make you taller!). The problem is that, coincidentally, some additional variable may
be present that we are not aware of, and it may actually be doing the causing. For
example, we’ve seen that less study time appears to cause participants to produce
higher error scores. But perhaps those participants who studied for 1 hour coinciden-
tally had headaches and the actual cause of their higher error scores was not lack of
study time but headaches. Or, perhaps those who studied for 4 hours happened to be
more motivated than those in the other groups, and this produced their lower error
scores. Or, perhaps some participants cheated, or the moon was full, or who knows! Re-
searchers try to eliminate these other variables, but we can never be certain that we
have done so.

Our greatest confidence in our conclusions about the causes of behavior come from
experiments because they provide the greatest opportunity to control or eliminate those
other, potentially causal variables. Therefore, we discuss the relationship in an experi-
ment as if changing the independent variable “causes” the scores on the dependent vari-
able to change. The quotation marks are there, however, because we can never
definitively prove that this is true; it is always possible that some hidden variable was
present that was actually the cause.

Correlational studies provide little confidence in the causes of a behavior because
this design involves little control of other variables that might be the actual cause.
Therefore, we never conclude that changes in one variable cause the other variable to
change based on a correlational study. Instead, it is enough that we simply describe

YX
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■ In an experiment, the researcher changes the con-
ditions of the independent variable and then meas-
ures participants’ behavior using the dependent
variable.

■ In a correlational design, the researcher measures
participants on two variables.

MORE EXAMPLES

In a study, participants’ relaxation scores are measured
after they’ve been in a darkened room for either 10,
20, or 30 minutes. This is an experiment because the
researcher controls the length of time in the room. The
independent variable is length of time, the conditions
are 10, 20, or 30 minutes, and the dependent variable
is relaxation.

A survey measures participants’ patriotism and also
asks how often they’ve voted. This is a correlational
design because the researcher passively measures both
variables.

For Practice

1. In an experiment, the ______ is changed by the
researcher to see if it produces a change in partici-
pants’ scores on the _____

2. To see if drinking influences one’s ability to drive,
participants’ level of coordination is measured
after drinking 1, 2, or 3 ounces of alcohol. The
independent variable is ______, the conditions are
______, and the dependent variable is ______.

3. In an experiment, the ______ variable reflects
participants’ behavior or attributes.

4. We measure the age and income of 50 people to
see if older people tend to make more money.
What type of design is this?

Answers
1. independent variable; dependent variable
2. amount of alcohol; 1, 2, or 3 ounces; level of coordination
3. dependent
4. correlational

A  Q U I C K  R E V I E W
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how nature relates the variables. Changes in might cause changes in , but we have
no convincing evidence of this.

Recognize that statistics do not solve the problem of causality. That old saying 
that “You can prove anything with statistics” is totally incorrect! When people think
logically, statistics do not prove anything. No statistical procedure can prove that 
one variable causes another variable to change. Think about it: How could some
formula written on a piece of paper “know” what causes particular scores to occur in
nature?

Thus, instead of proof, any research merely provides evidence that supports a partic-
ular conclusion. How well the study controls other variables is part of the evidence, as
are the statistical results. This evidence helps us to argue for a certain conclusion, but it
is not “proof” because there is always the possibility that we are wrong. (We discuss
this issue further in Chapter 7.)

THE CHARACTERISTICS OF SCORES

We have one more important issue to consider when deciding on the particular de-
scriptive or inferential procedure to use in an experiment or correlational study. Al-
though participants are always measured, different variables can produce scores that
have different underlying mathematical characteristics. The particular mathematical
characteristics of the scores also determine which descriptive or inferential procedure
to use. Therefore, always pay attention to two important characteristics of the vari-
ables: the type of measurement scale involved and whether the scale is continuous or
discrete.

The Four Types of Measurement Scales

Numbers mean different things in different contexts. The meaning of the number 1 on
a license plate is different from the meaning of the number 1 in a race, which is differ-
ent still from the meaning of the number 1 in a hockey score. The kind of information
that a score conveys depends on the scale of measurement that is used in measuring it.
There are four types of measurement scales: nominal, ordinal, interval, and ratio.

With a nominal scale, each score does not actually indicate an amount; rather, it is
used for identification. (When you see nominal, think name.) License plate numbers
and the numbers on football uniforms reflect a nominal scale. The key here is that
nominal scores indicate only that one individual is qualitatively different from another,
so in research, nominal scores classify or categorize individuals. For example, in a
correlational study, we might measure the political affiliation of participants by asking
if they are Democrat, Republican, or “Other.” To simplify these names we might re-
place them with nominal scores, assigning a 5 to Democrats, a 10 to Republicans, and
so on (or we could use any other numbers). Then we might also measure participants’
income, to determine whether as party affiliation “scores” change, income scores also
change. Or, if an experiment compares the conditions of male and female, then the
independent variable is a nominal, categorical variable, where we might assign a “1”
to identify each male, and a “2” to identify each female. Because we assign the num-
bers arbitrarily, they do not have the mathematical properties that numbers normally
have. For example, here the number 1 does not indicate more than 0 but less than 2 as it
usually does.

A different approach is to use an ordinal scale. Here the scores indicate rank order—
anything that is akin to 1st, 2nd, 3rd . . . is ordinal. (Ordinal sounds like ordered.) 

YX
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In our studying example, we’d have an ordinal scale if we assigned a 1 to students who
scored best on the test, a 2 to those in second place, and so on. Then we’d ask, “As
study times change, do students’ ranks also tend to change?” Or, if an experiment com-
pares the conditions of first graders to second graders, then this independent variable
involves an ordinal scale. The key here is that ordinal scores indicate only a relative
amount—identifying who scored relatively high or low. Also, there is no zero in ranks,
and the same amount does not separate every pair of adjacent scores: 1st may be only
slightly ahead of 2nd, but 2nd may be miles ahead of 3rd.

A third approach is to use an interval scale. Here each score indicates an actual
quantity, and an equal amount separates any adjacent scores. (For interval scores, re-
member equal intervals between them.) However, although interval scales do include
the number 0, it is not a true zero—it does not mean none of the variable is present.
Therefore, the key here is that you can have less than zero, so an interval scale allows
negative numbers. For example, temperature (in Celsius or Fahrenheit) involves an in-
terval scale: Because 0° does not mean that zero heat is present, you can have even less
heat at 1°. In research, interval scales are common with intelligence or personality
tests: A score of zero does not mean zero intelligence or zero personality. Or, in our
studying research we might determine the average test score and then assign students a
zero if they are average, a �1, �2, and so on, for the amount they are above average,
and a �1, �2, and so on, for the amount they are below average. Then we’d see if more
positive scores tend to occur with higher study times. Or, if we create conditions based
on whether participants are in a positive, negative, or neutral mood, then this indepen-
dent variable reflects an interval scale.

Notice that with an interval scale, it is incorrect to make “ratio” statements that com-
pare one score to another score. For example, at first glance it seems that 4°C is twice as
warm as 2°C. However, if we measure the same physical temperatures using the Fahren-
heit scale, we would have about 35° and 39°, respectively. Now one temperature is not
twice that of the other. Essentially, if we don’t know the true amount of a variable that is
present at 0, then we don’t know the true amount that is present at any other score.

Only with our final scale of measurement, a ratio scale, do the scores reflect the true
amount of the variable that is present. Here the scores measure an actual amount, there
is an equal unit of measurement, and 0 truly means that none of the variable is present.
The key here is that you cannot have negative numbers because you cannot have less
than nothing. Also, only with ratio scores can we make “ratio” statements, such as “4 is
twice as much as 2.” (So for ratio, think ratio!) We used ratio scales in our previous
examples when measuring the number of errors and the number of hours studied. Like-
wise, in an experiment, if we compare the conditions of having people on diets consist-
ing of either 1000, 1500, or 2000 calories a day, then this independent variable involves
a ratio scale.

We can study relationships that involve any combination of the above scales.

REMEMBER The scale of measurement reflected by scores may be nominal,
ordinal, interval, or ratio.

Continuous versus Discrete Scales

A measurement scale may be either continuous or discrete. A continuous scale allows
for fractional amounts; it “continues” between the whole-number amounts, so decimals
make sense. The variable of age is continuous because someone can be 19.6879 years
old. On the other hand, some variables involve a discrete scale, which are measured
only in whole amounts. Here, decimals do not make sense. For example, whether you

2
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are male or female or in first or second grade are discrete variables because you can be
in one group or the other, but not in-between. (Some variables may seem to involve
fractions—such as shoe size—but they are still discrete variables, because smaller divi-
sions are not possible and, again, there is no in between.)

Note: when a discrete variable has only two possible categories or scores, it is called
a dichotomous variable. Male/female or living/dead are dichotomous variables.

Usually researchers assume that nominal or ordinal variables are discrete and that
interval or ratio variables are at least theoretically continuous. For example, in-
telligence tests are designed to produce whole-number scores. But, theoretically, an
IQ of 95.6 makes sense, so intelligence is a theoretically continuous (interval) vari-
able. Likewise, it sounds strange if the government reports that the average family
has 2.4 children because no one has .4 of a child. However, it makes sense to treat
this ratio variable as if it is continuous, because we can interpret what it means if
this year the average is 2.4 children, but last year the average was 2.8. (I’ve heard that
a recent survey showed the average American home contains 2.5 people and 2.7
televisions!)

REMEMBER Whether a variable is continuous or discrete and whether it is
measured using a nominal, ordinal, interval, or ratio scale are factors that de-
termine which statistical procedure to apply.

To help you remember the four scales of measurement, Table 2.6 summarizes their
characteristics.

Type of Measurement Scale

Nominal Ordinal Interval Ratio

Quality Relative Quantity Quantity
quantity

No No Yes Yes

No No No Yes

To identify To judge who is To convey the To count the
males and 1st, 2nd, etc., in results of number of
females as 1 aggressiveness intelligence and correct answers
and 2 personality tests on a test

Telephone Letter grades Checkbook balance Weight
numbers Elementary Individual’s Distance
Social Security school grade standing relative traveled
numbers to class average

TABLE 2.6

Summary of Types of
Measurement Scales

Each column describes the
characteristics of the scale. What Does the

Scale Indicate?
Is There an
Equal Unit of
Measurement?

Is There a True
Zero?

How Might the
Scale be Used
in Reasearch?

Additional 
Examples

■ Nominal scales identify categories and ordinal
scales reflect rank order. Both interval and ratio
scales measure actual quantities, but negative
numbers can occur with interval scales and not 
with ratio scales.

■ Interval and ratio scales are assumed to be continu-
ous scales, which allow fractional amounts; nominal
and ordinal scales are assumed to be discrete scales,
which do not allow fractional amounts.

continued

A  Q U I C K  R E V I E W



30 CHAPTER 2 / Statistics and the Research Process

STATISTICS IN PUBLISHED RESEARCH: USING STATISTICAL TERMS

You have already begun to learn the secret language found in published research.
You’ll frequently encounter such terms as relationship, independent and dependent
variable, condition, or statistic. Also, that phrase “as a function of” is common. Often
it is in the title of a graph, so seeing “Agility as a Function of Age” indicates that the
graph shows the relationship between scores that measure participants’ ages and 
Y scores that measure agility. The phrase is also used in the title of reports. For exam-
ple, “Anxiety When Dating as a Function of Introversion Level” indicates that the
researcher wondered if people are more or less anxious about going on a date, depend-
ing on the particular (given) amount of introversion that they exhibit.

The reason that published research seems to involve a secret language is because many
details are left out. Implicitly it is assumed that the reader of a report (you) has taken a
statistics course and so understands the terminology of statistics and research. This means
that most of the terms that we’ll discuss are seldom defined in published reports. There-
fore, for you to understand research and apply statistical procedures (let alone understand
this book), these terms need to become part of your everyday vocabulary.

X

As you proceed through this course, however, don’t let the terminology and details ob-
scure your ultimate purpose. Keep things in perspective by remembering the overall
logic of research, which can be summarized by the following five steps:

1. Based on a hypothesized law of nature, we design either an experiment or a corre-
lational study to measure variables and to observe the predicted relationship in the
sample.

2. We use descriptive statistics to understand the scores and the relationship in the
sample.

3. We use inferential procedures to decide whether the sample accurately represents
the scores and relationship that we would find if we could study everyone in the
population.

PUTTING IT 
ALL TOGETHER

MORE EXAMPLES

If your grade on an essay exam is based on the num-
ber of correct statements you include, then a ratio
scale is involved; if it is based on how much your
essay is better or worse than what the professor
expected, an interval scale is involved; if it indicates
that yours was relatively one of the best or worst
essays in the class, this is an ordinal scale (as is
pass/fail, which is dichotomous); if it is based on the
last digit of your ID number, then a nominal scale is
involved. If you can receive one grade or another, but
nothing in between, it involves a discrete scale; if frac-
tions are possible, it involves a continuous scale.

For Practice

1. Whether you are ahead or behind when gambling
involves a _____ scale.

2. The number of hours you slept last night involves
a _____ scale.

3. Your blood type involves a _____ scale.

4. Whether you are a lieutenant or major in the army
involves a _____ scale.

5. A _____ scale allows fractions; a _____ scale
allows only whole amounts.

Answers
1. interval 4. ordinal
2. ratio 5. continuous; discrete
3. nominal
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4. By describing the scores and relationship that would be found in the population,
we are actually describing the behavior of everyone in a particular group in a par-
ticular situation.

5. By describing the behavior of everyone in a particular situation, we are describing
how a law of nature operates.

CHAPTER SUMMARY

1. The group of all individuals to which research applies is the population. The
subset of the population that is actually measured is the sample.

2. Usually, participants are selected using random sampling so that all scores in the
population have the same chance of being selected. The sample should be
representative. By chance, however, a sample may be unrepresentative.

3. A variable is anything that, when measured, can produce two or more different
scores. Variables may be quantitative, measuring a quantity or amount, or
qualitative, measuring a quality or category.

4. A relationship occurs when a change in scores on one variable is associated with a
consistent change in scores on another variable.

5. The term individual differences refers to the fact that no two individuals are identical.

6. Because of individual differences and external influences, relationships can have
varying strengths.

7. The “given” variable in any relationship is designated the variable, and we describe
a relationship using the format “changes in as a function of changes in .”

8. Descriptive statistics are used to organize, summarize, and describe sample data,
and to predict an individual’s score using the relationship with . Inferential
statistics are for deciding whether the sample data actually represent the relation-
ship that occurs in the population.

9. A statistic is a number that describes a characteristic of a sample of scores, sym-
bolized using a letter from the English alphabet. A statistic is used to infer or
estimate the corresponding parameter. A parameter is a number that describes a
characteristic of a population of scores, symbolized using a letter from the 
Greek alphabet.

10. A study’s design is the particular way in which the study is laid out.

11. In an experiment, we manipulate the independent variable and then measure
participants’ scores on the dependent variable. A specific amount or category of
the independent variable is called a condition, treatment, or level.

12. In a correlational study, neither variable is actively manipulated. Scores on both
variables are simply measured and then the relationship is described.

13. In any type of research, if a relationship is observed, it may or may not mean that
changes in one variable cause the other variable to change.

XY

XY
X
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14. The four scales of measurement are (a) a nominal scale, in which numbers name
or identify a quality or characteristic; (b) an ordinal scale, in which numbers
indicate rank order; (c) an interval scale, in which numbers measure a specific
amount, but with no true zero; or (d) a ratio scale, in which numbers measure
a specific amount and 0 indicates truly zero amount.

15. A continuous variable can be measured in fractional amounts. A discrete variable
is measured only in whole amounts. A dichotomous variable is a discrete variable
that has only two amounts or categories.

KEY TERMS

as a function of 19
condition 23
continuous scale 28
correlational study 25
dependent variable 23
descriptive statistics 20
design 22
dichotomous variable 29
discrete scale 29
experiment 22
independent variable 22
individual differences 17
inferential statistics 21
interval scale 28

level 23
nominal scale 27
ordinal scale 27
parameter 22
participant 14
population 13
ratio scale 28
relationship 15
sample 13
statistic 21
strength of a relationship 17
treatment 23
variable 14

REVIEW QUESTIONS

(Answers for odd-numbered problems are in Appendix D.)

1. (a) What is a population? (b) What is a sample? (c) How are samples used to
make conclusions about populations? (d) What are researchers really referring to
when they talk about the population?

2. What do you see when (a) a relationship exists between two variables? (b) No
relationship is present?

3. What does the strength of a relationship refer to?
4. What pattern in the Y scores will produce a weaker relationship?
5. What are the two aspects of a study to consider when deciding on the particular

descriptive or inferential statistics that you should employ?
6. What is the difference between an experiment and a correlational study?
7. What is the difference between the independent variable and the conditions of the

independent variable?
8. In an experiment, what is the dependent variable?
9. What is the general purpose of all research, whether experiments or correlational

studies?
10. (a) What are descriptive statistics used for? (b) What are inferential statistics used

for?
11. (a) What is the difference between a statistic and a parameter? (b) What types of

symbols are used for statistics and parameters?
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12. (a) Define the four scales of measurement. (b) What are continuous and discrete
variables? (c) Which scales of measurement are usually assumed to be discrete
and which are assumed to be continuous?

APPLICATION QUESTIONS

13. A student named Foofy (who you’ll be taking statistics with) conducted a survey.
In her sample, 83% of mothers employed outside the home would rather be home
raising children. She concluded that “the statistical analyses prove that most
working women would rather be at home.” What is the problem with this conclu-
sion?

14. In study A, a researcher gives participants various amounts of alcohol and then
observes any decrease in their ability to walk. In study B, a researcher notes the
various amounts of alcohol that participants drink at a party and then observes any
decrease in their ability to walk. (a) Which study is an experiment, and which is a
correlational study? Why? (b) Which study will be best for showing that drinking
alcohol causes an impairment in walking? Why?

15. Another student in your class, Poindexter, conducted a survey of college students
about their favorite beverage. Based on what the sample said, he concluded that
most college students prefer carrot juice to other beverages! What statistical argu-
ment can you give for not accepting this conclusion?

16. In each of the following experiments, identify the independent variable, the condi-
tions of the independent variable, and the dependent variable: (a) Studying
whether scores on a final exam are influenced by background music that is soft,
loud, or absent. (b) Comparing freshmen, sophomores, juniors, and seniors with
respect to how much fun they have while attending college. (c) Studying whether
being first born, second born, or third born is related to intelligence. (d) 
Examining whether length of daily exposure to a sun lamp (15 minutes versus 
60 minutes) alters self-reported depression. (e) Studying whether being in a room
with blue walls, green walls, red walls, or beige walls influences the number of
aggressive acts produced by adolescents.

17. List the scales of measurement, starting with the scale that provides the most pre-
cise information about the amount of a variable present and ending with the scale
that provides the least precise information.

18. Using the terms sample, population, variable, statistics, and parameter,
summarize the steps a researcher follows, starting with a hypothesis and 
ending with a conclusion about a nature.

19. For the following data sets, which show a relationship?

Sample A Sample B Sample C Sample D

X Y X Y X Y X Y

1 10 20 40 13 20 92 71
1 10 20 42 13 19 93 77
1 10 22 40 13 18 93 77
2 20 22 41 13 17 95 75
2 20 23 40 13 15 96 74
3 30 24 40 13 14 97 73
3 30 24 42 13 13 98 71
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20. Which sample in question 19 shows the strongest relationship? How do you
know?

21. Which of the graphs below depict a relationship? How do you know?
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22. Which study in question 21 demonstrates the strongest relationship? How do you
know?

23. In question 21, why is each relationship a telltale sign that a law of nature is at
work?

24. (a) Poindexter says that Study A in problem 21 examines age scores as a function
of weight scores. Is he correct? (b) He also claims that in Study C the researcher
is asking, “For a given shoe size, what speed scores occur?” Is he correct? 
(c) If the studies in question 21 were conducted as experiments, in each, which
variable is the independent variable and which is the dependent variable?
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25. Complete the chart below to identify the characteristics of each variable.

Qualitative Continuous, Type of
or Discrete, or Measurement

Variable Quantitative Dichotomous Scale

Gender ________ ________ ________

Academic major ________ ________ ________

Number of minutes before ________ ________ ________
and after an event

Restaurant ratings ________ ________ ________
(best, next best, etc.)

Speed (miles per hr) ________ ________ ________

Dollars in your pocket ________ ________ ________

Change in weight (in lb) ________ ________ ________

Checking account balance ________ ________ ________

Reaction time ________ ________ ________

Letter grades ________ ________ ________

Clothing size ________ ________ ________

Registered voter ________ ________ ________

Therapeutic approach ________ ________ ________

Schizophrenia type ________ ________ ________

Work absences ________ ________ ________

Words recalled ________ ________ ________
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So, we’re off into the wonderful world of descriptive statistics. Recall that descriptive
statistics tell us the obvious things we would ask about the relationship and scores in a
sample. Before we examine the relationship between two variables, however, we first
summarize the scores from each variable alone. Then, two important things that we
always wish to know are: Which scores occurred, and how often did each occur? The
way to answer this is to organize the scores into tables and graphs based on what are
called frequency distributions. In this chapter, you’ll see how to create various kinds of
frequency distributions and how to use a frequency distribution to derive additional in-
formation about the scores.

Before we get to that, however, here are some terms and symbols you’ll encounter in
this chapter.

NEW STATISTICAL NOTATION

The scores we initially measure in a study are called the raw scores. Descriptive statistics
help us to “boil down” the raw scores into an interpretable, “digestible” form. There are
several ways to do this, but the starting point is to count the number of times each score
occurred. The number of times a score occurs is the score’s frequency, symbolized by
the lowercase f. (Always pay attention to whether a symbol is upper- or lowercase.) If we
count the frequency of every score in the data, we create a frequency distribution. A
distribution is the general name that researchers have for any organized set of data. As
you’ll see, there are several ways to create a frequency distribution, so we will combine
the term frequency (and f ) with other terms and symbols.

Frequency Distributions 
and Percentiles3

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 1, how to calculate proportions and percents.

■ From Chapter 2, the four types of measurement scales.

Your goals in this chapter are to learn

■ What simple frequency, relative frequency, cumulative frequency,
and percentile are.

■ How bar graphs, histograms, and polygons are created.

■ What normal, skewed, bimodal, and rectangular distributions are and how to
interpret them.

■ How relative frequency and percentile are obtained using the area under the
normal curve.
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In most statistical procedures, we also count the total number of scores. The sym-
bol for the total number of scores in a set of data is the uppercase . An of 10 means
we have 10 scores, or means we have 43 scores. Note that is not the number
of different scores, so even if all 43 scores in a sample are the same score, still
equals 43.

REMEMBER The frequency of a score is symbolized by . The total number
of scores in the data is symbolized by .

WHY IS IT IMPORTANT TO KNOW ABOUT FREQUENCY DISTRIBUTIONS?

Presenting data in a graph or table is important for two reasons. First, it answers our
question about the different scores that occurred in our data and it does this in an
organized manner. You’ll also see that we have names for some commonly occurring
distributions so that we can easily communicate and envision a picture of even very
large sets of data. Therefore, always create a table or graph of your data. As the saying
goes, “A picture is worth a thousand words,” and nowhere is this more appropriate than
when trying to make sense out of data. Second, the procedures discussed here are im-
portant because they are the building blocks for other descriptive and inferential statis-
tics. (You will be using what you learn here throughout the remainder of this book.)

As you’ll see, we can organize data in one of four ways: using each score’s simple
frequency, relative frequency, cumulative frequency, or percentile.

SIMPLE FREQUENCY DISTRIBUTIONS

The most common way to organize scores is to create a simple frequency distribution.
A simple frequency distribution shows the number of times each score occurs in a set
of data. The symbol for a score’s simple frequency is simply . To find for a score,
count how many times the score occurs. If three participants scored 6, then the
frequency of 6 (its f ) is 3. Creating a simple frequency distribution involves counting
the frequency of every score in the data. One way to see a distribution is in a table.

Presenting Simple Frequency in a Table

Let’s begin with the following raw scores. (They might measure a variable from a cor-
relational study, or they may be dependent scores from an experiment.)

14 14 13 15 11 15 13 10 12
13 14 13 14 15 17 14 14 15

In this disorganized arrangement, it is difficult to make sense out of these scores. See
what happens, though, when we arrange them into the simple frequency table shown in
Table 3.1.

We have several rules for making a frequency table. Start with a score column and an
column. The score column has the highest score in the data at the top of the column.

Below that are all possible whole-number scores in decreasing order, down to the lowest
score that occurred. Thus, the highest score is 17, the lowest score is 10, and although
no one obtained a score of 16, we still include it. Opposite each score in the column is
the score’s frequency: In this sample there is one 17, zero 16s, four 15s, and so on.

f

f

ff

N
f

N
NN 5 43

NN

Score

17 1
16 0
15 4
14 6
13 4
12 1
11 1
10 1

f

TABLE 3.1

Simple Frequency
Distribution Table

The left-hand column identi-
fies each score, and the right-
hand column contains the
frequency with which the
score occurred.
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Not only can we easily see the frequency of each score, but we can also determine
the combined frequency of several scores by adding together their individual s. For ex-
ample, the score of 13 has an of 4, and the score of 14 has an of 6, so their combined
frequency is 10.

Notice that, although there are 8 scores in the score column, is not 8. There are 
18 scores in the original sample, so is 18. You can see this by adding together the fre-
quencies in the column: The 1 person scoring 17 plus the 4 people scoring 15 and so
on adds up to the 18 people in the sample. In a frequency distribution, the sum of the
frequencies always equals .

REMEMBER The sum of all frequencies in a sample equals N.

That’s how to create a simple frequency distribution. Such a distribution is also
called a regular frequency distribution or a plain old frequency distribution.

N

f
N

N

ff
f

A  Q U I C K  R E V I E W

■ A frequency distribution shows the number of times
participants obtained each score.

MORE EXAMPLES

The scores 15, 16, 13, 16, 15, 17, 16, 15, 17, and 15,
contain one 13, no 14s, four 15s, and so on, producing
the following frequency table:

Scores f
17 2
16 3
15 4
14 0
13 1

For Practice

1. What is the difference between and ?

2. Create a frequency table for these scores: 7, 9, 6, 6,
9, 7, 7, 6, and 6.

Nf

3. What is the here?

4. What is the frequency of 6 and 7 together?

Answers
1. f is the number of times a score occurs; N is the total

number of scores in the data.

2. Scores f

9 2
8 0
7 3
6 4

3.
4. f 5 3 1 4 5 7

N 5 9

N

Graphing a Simple Frequency Distribution

When researchers talk of a frequency distribution, they often imply a graph. Essen-
tially, it shows the relationship between each score and the frequency with which it oc-
curs. We ask, “For a given score, what is its corresponding frequency?”, so we place
the scores on the axis and frequency on the axis.

REMEMBER A graph of a frequency distribution shows the scores on the 
axis and their frequency on the axis.

Recall that a variable will involve one of four types of measurement scales—nominal,
ordinal, interval, or ratio. The type of scale involved determines whether we graph a
frequency distribution as a bar graph, a histogram, or a polygon.

Y
X

YX



Bar Graphs Recall that in nominal data each score identifies a category, and in or-
dinal data each score indicates rank order. A frequency distribution of nominal or ordi-
nal scores is graphed by creating a bar graph. In a bar graph, a vertical bar is centered
over each score on the axis, and adjacent bars do not touch.

Figure 3.1 shows two bar graphs of simple frequency distributions. Say that the up-
per graph is from a survey in which we counted the number of participants in each cat-
egory of the nominal variable of political party affiliation. The axis is labeled using
the “scores” of political party, and because this is a nominal variable, they can be
arranged in any order. In the frequency table, we see that six people were Republicans,
so we draw a bar at a height (frequency) of 6 and so on.

Say that the lower graph is from a survey in which we counted the number of partic-
ipants having different military ranks (an ordinal variable). Here the axis is labeled
from left to right, which corresponds to low to high. Again, the height of each bar is the
score’s frequency.

REMEMBER Create a bar graph to show the frequency distribution of nomi-
nal or ordinal scores.

X

X

X
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FIGURE 3.1

Simple frequency bar
graphs for nominal and
ordinal data

The height of each bar
indicates the frequency of
the corresponding score on
the x axis.

Nominal Variable of 
Political Affiliations

Party f

Communist 1
Socialist 3
Democrat 8
Republican 6  

Ordinal Variable of 
Military Rank

Party f

General 3
Colonel 8
Lieutenant 4
Sergeant 5 
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The reason we create bar graphs with nominal and ordinal scales is because re-
searchers assume that both are discrete scales: You can be in one group or the next, but
not in-between. The space between the bars in a bar graph indicates this. Later we will
see bar graphs in other contexts and this same rule always applies:

Create a bar graph whenever the variable is discrete. 

On other hand, recall that interval and ratio scales are assumed to be continuous: They
allow fractional amounts that continue between the whole numbers. To communicate
this, these scales are graphed using continuous figures.

Histograms Create a histogram when plotting a frequency distribution containing a
small number of different interval or ratio scores. A histogram is similar to a bar graph
except that in a histogram adjacent bars touch. For example, say that we measured the
number of parking tickets some people received, obtaining the data in Figure 3.2. Again,
the height of each bar indicates the corresponding score’s frequency. Although you can-
not have a fraction of a ticket, this ratio variable is theoretically continuous (e.g., you
can talk about an average of 3.14 tickets per person). By having no gap between the bars
in our graph, we communicate that there are no gaps when measuring this variable.

Polygons Usually, we don’t create a histogram when we have a large number of dif-
ferent interval or ratio scores, such as if our participants had from 1 to 50 parking tick-
ets. The 50 bars would need to be very skinny, so the graph would be difficult to read.
We have no rule for what number of scores is too large, but when a histogram is unwork-
able, we create a frequency polygon. Construct a frequency polygon by placing a data
point over each score on the axis at a height corresponding to the appropriate fre-
quency. Then connect the data points using straight lines. To illustrate this, Figure 3.3
shows the previous parking ticket data plotted as a frequency polygon. Because each line
continues between two adjacent data points, we communicate that our measurements
continue between the two scores on the axis and therefore that this is a continuous
variable. Later we will create graphs in other contexts that also involve connecting data
points with straight lines. This same rule always applies:

Connect adjacent data points with straight lines whenever the variable
is continuous.
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FIGURE 3.2

Histogram showing the
simple frequency of park-
ing tickets in a sample

Score f

7 1
6 4
5 5
4 4
3 6
2 7
1 9  



Notice that a polygon includes on the axis the next score above the highest score
in the data and the next score below the lowest score (in Figure 3.3, scores of 0 and 
8 are included). These added scores have a frequency of 0, so the polygon touches the

axis. In this way, we create a complete geometric figure—a polygon—with the axis
as its base.

REMEMBER Create a histogram or polygon to plot the frequency distribu-
tion for an interval or ratio variable.

Often in statistics you must a read a polygon to determine a score’s frequency, so be
sure you can do this: Locate the score on the axis and then move upward until you
reach the line forming the polygon. Then, moving horizontally, locate the frequency of
the score. For example, as shown by the dashed line in Figure 3.3, the score of 4 has an

equal to 4.

REMEMBER The height of the polygon above any score corresponds to that
score’s frequency.

Table 3.2 reviews the rules for constructing bar graphs, histograms, and polygons.

f

X

XX

X
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FIGURE 3.3

Simple frequency
polygon showing the
frequency of parking
tickets in a sample

Score f

7 1
6 4
5 5
4 4
3 6
2 7
1 9 

Graph When Used? How Produced?

Bar graph With nominal or Adjacent bars 
ordinal scores do not touch

Histogram With small range of Adjacent bars
interval/ratio scores do touch

Polygon With large range of Straight lines;
interval/ratio scores add points above and 

below actual scores 

TABLE 3.2

When to create a bar
graph, histogram, or
polygon

Consider the scale of 
measurement of scores on 
the axis. X
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TYPES OF SIMPLE FREQUENCY DISTRIBUTIONS

Research often produces scores that form frequency polygons having one of several
common shapes, and so we have names to identify them. Each shape comes from an
idealized distribution of a population. By far the most important frequency distribution
is the normal distribution. (This is the big one, folks.)

The Normal Distribution

Figure 3.4 shows the polygon of the ideal normal distribution. (Let’s say these are test
scores from a population of college students.) Although specific mathematical proper-
ties define this polygon, in general it is a bell-shaped curve. But don’t call it a bell
curve (that’s so pedestrian!). Call it a normal curve or a normal distribution or say
that the scores are normally distributed.

Because it represents an ideal population, a normal curve is different from the
choppy polygon we saw previously. First, the curve is smooth because a population
produces so many different scores that the individual data points are too close to-
gether for straight lines to connect them. Instead, the data points themselves form a
smooth line. Second, because the curve reflects an infinite number of scores, we can-
not label the axis with specific frequencies. Simply remember that the higher the
curve is above a score, the higher is the score’s frequency. Finally, regardless of how
high or low an score might be, theoretically it might sometimes occur. Therefore,
as we read to the left or to the right on the axis, the frequencies approach—but
never reach—a frequency of zero, so the curve approaches but never actually touches
the axis. X

X
X

Y

A  Q U I C K  R E V I E W

■ Create a bar graph with nominal or ordinal scores,
a histogram with a few interval/ratio scores, and a
polygon with many different interval/ratio scores.

MORE EXAMPLES

After a survey, to graph (1) the frequency of males
versus females (a nominal variable), create a bar
graph; (2) the number of people who are first born,
second born, etc. (an ordinal variable), create a bar
graph; (3) the frequency of participants falling into
each of five salary ranges (a few ratio scores), create a
histogram; (4) the frequency for each individual
salary reported (many ratio scores), create a polygon.

For Practice

1. A has a separate, discrete bar above each
score, a contains bars that touch, and a
has dots connected with straight lines.

2. To show the number of freshmen, sophomores, and
juniors who are members of a fraternity, plot a .

3. To show the frequency of people who are above
average weight by either 0, 5, 10, or 15 pounds,
plot a .

4. To show the number of people preferring chocolate
or vanilla ice cream in a sample, plot a .

5. To show the number of people who are above av-
erage weight by each amount between 0 and 100
pounds, plot a .

Answers
1. bar graph; histogram; polygon
2. bar graph
3. histogram
4. bar graph
5. polygon



As you can see from Figure 3.4, the normal distribution has the following character-
istics. The score with the highest frequency is the middle score between the highest and
lowest scores. (Here it is the score of 30.) The normal curve is symmetrical, meaning
that the left half below the middle score is a mirror image of the right half above the
middle score. As we proceed away from the middle score either toward the higher or
lower scores, the frequencies at first decrease slightly. Farther from the middle score,
however, the frequencies decrease more drastically, with the highest and lowest scores
having relatively low frequency.

In statistics the scores that are relatively far above and below the middle score of the dis-
tribution are called the “extreme” scores. Then, the far left and right portions of a normal
curve containing the low-frequency, extreme scores are called the tails of the distribution.
In Figure 3.4, the tails are roughly below the score of 15 and above the score of 45.

The reason the normal curve is important is because it is a very common distribution
in psychology and other behavioral sciences: For most of the variables that we study, the
scores naturally form a curve similar to this, with most of the scores around the middle
score, and with progressively fewer higher or lower scores. Because of this, the normal
curve is also very common in our upcoming statistical procedures. Therefore, before you
proceed, be sure that you can read the normal curve. Can you see in Figure 3.4 that the
most frequent scores are between 25 and 35? Do you see that a score of 15 has a rela-
tively low frequency and a score of 45 has the same low frequency? Do you see that
there are relatively few scores in the tail above 50 or in the tail below 10? Above all,
you must be able to see this in your sleep.

On a normal distribution, the farther a score is from the central score of the
distribution, the less frequently the score occurs.

A distribution may not match the previous curve exactly, but it can still meet the mathe-
matical definition of a normal distribution. Consider the three curves in Figure 3.5. Curve 
is generally what we think of as the ideal normal distribution. Curve is skinny relative to
the ideal because only a few scores around the middle score have a relatively high fre-
quency. On the other hand, Curve is fat relative to the ideal because more scores farther
below and above the middle have a high frequency. Because these curves generally have
that bell shape, however, for statistical purposes their differences are not critical.

Other Common Frequency Polygons

Not all data form a normal distribution and then the distribution is called nonnormal.
One common type of nonnormal distribution is a “skewed distribution.” A skewed dis-
tribution is similar to a normal distribution except that it has only one pronounced tail.

C

A
B
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FIGURE 3.4

The ideal normal curve

Scores farther above and be-
low the middle scores occur
with progressively lower
frequencies. f

Test scores

Tail Tail

0 10 15 20 25 30 35 40 45 50 555 . . .. . .
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As shown in Figure 3.6, a distribution may be either negatively skewed or positively
skewed.

A negatively skewed distribution contains extreme low scores that have a low fre-
quency but does not contain low-frequency, extreme high scores. The polygon on the
left in Figure 3.6 shows a negatively skewed distribution. This pattern might be found,
for example, by measuring the running speed of professional football players. Most
would tend to run at higher speeds, but a relatively few linemen lumber in at the slower
speeds. (To remember negatively skewed, remember that the pronounced tail is over
the lower scores, sloping toward zero, toward where the negative scores would be.)

On the other hand, a positively skewed distribution contains extreme high scores
that have low frequency but does not contain low-frequency, extreme low scores. The
right-hand polygon in Figure 3.6 shows a positively skewed distribution. This pattern
might be found, for example, if we measured participants’ “reaction time” for recogniz-
ing words. Usually, scores will tend to be rather low, but every once in a while a person
will “fall asleep at the switch,” requiring a large amount of time and thus producing a
high score. (To remember positively skewed, remember that the tail slopes away from
zero, toward where the higher, positive scores are located.)

REMEMBER Whether a skewed distribution is negative or positive corre-
sponds to whether the distinct tail slopes toward or away from zero.

Another type of nonnormal distribution is a bimodal distribution, shown in the left-
hand side of Figure 3.7. A bimodal distribution is a symmetrical distribution contain-
ing two distinct humps, each reflecting relatively high-frequency scores. At the center

FIGURE 3.5

Variations of bell-shaped curves 
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FIGURE 3.6

Idealized skewed
distributions

The direction in which the
distinctive tail slopes
indicates whether the skew 
is positive or negative.
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of each hump is one score that occurs more frequently than the surrounding scores, and
technically the center scores have the same frequency. Such a distribution would occur
with test scores, for example, if most students scored at 60 or 80, with fewer students
failing or scoring in the 70s or 90s.

Finally, a third type of distribution is a rectangular distribution, as shown in the
right-hand side of Figure 3.7. A rectangular distribution is a symmetrical distribution
shaped like . . . are you ready? . . . like a rectangle! There are no discernible tails be-
cause the frequencies of all scores are the same.

Labeling Frequency Distributions

You need to know the names of the previous distributions because descriptive statistics
describe the characteristics of data, and one very important characteristic is the shape
of the distribution that the data form. Thus, although I might have data containing many
different scores, if, for example, I tell you they form a normal distribution, you can
mentally envision the distribution and quickly and easily understand what the scores
are like: Few scores are very low or very high, with the most common, frequent scores
in the middle. Therefore, the first step when examining any data is to identify the shape
of the simple frequency distribution that they form.

REMEMBER The shape of the frequency distribution that scores form is an
important characteristic of the data.

Recognize, however, that data in the real world will never form the perfect shapes
that we’ve discussed. Instead, the scores will form a bumpy, rough approximation to
the ideal distribution. For example, data never form a perfect normal curve and, at best,
only come close to that shape. However, rather than drawing a different, approximately
normal curve every time, we simplify the task by envisioning the ideal normal curve as
our one “model” of any distribution that generally has this shape. Likewise, we envi-
sion the ideal shape when discussing the other common curves that we’ve seen.

Thus, we apply the names of our ideal distributions to actual data as a way of sum-
marizing and communicating their general shape. For example, Figure 3.8 contains
some frequency distributions that might be produced in research, and the correspon-
ding labels we might use. (Notice that we even apply these names to histograms or bar
graphs.) We assume that the sample represents a population that more closely fits the
corresponding ideal polygon: If we measure the population, the additional scores and
their corresponding frequencies should “fill in” the sample curve, smoothing it out to
be closer to the ideal curve.
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FIGURE 3.7

Idealized bimodal and
rectangular distributions
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A  Q U I C K  R E V I E W

■ The most common frequency distributions are nor-
mal distributions, negatively or positively skewed
distributions, bimodal distributions, and rectangu-
lar distributions.

MORE EXAMPLES

The variable of intelligence (IQ) usually forms a
normal distribution: The most common scores are
in the middle, with higher or lower IQs occurring
progressively less often. If IQ was positively
skewed, there would be only one distinct tail, lo-
cated at the higher scores. If IQ was negatively
skewed, there would be only a distinct tail at the
lower scores. If IQ formed a bimodal distribution,
there would be two distinct parts of the curve con-
taining the highest-frequency scores. If IQ formed a
rectangular distribution, each score would have the
same frequency.

For Practice

1. Arrange the scores below from most frequent to
least frequent.

f

A B C D

FIGURE 3.8

Simple frequency distri-
butions of sample data
with appropriate labels
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2. What label should be given to each of the following?

f f

f f

Scores 
(a)

Scores 
(b)

Scores 
(c)

Scores 
(d)

Answers
1. C, B, A, D
2. a. positively skewed; b. bimodal; c. normal; 

d. negatively skewed  

RELATIVE FREQUENCY AND THE NORMAL CURVE

We will return to simple frequency distributions—especially the normal curve—throughout
the remainder of this course. However, counting the frequency of scores is not the only thing
we do. Another important procedure is to describe scores using relative frequency. 
Relative frequency is the proportion of that is made up by a score’s simple frequency.
Recall that a proportion indicates a fraction of the total, so relative frequency indicates
the fraction of the entire sample that is made up by the times that a score occurs. Thus,
whereas simple frequency is the number of times a score occurs, relative frequency is the
proportion of time the score occurs. The symbol for relative frequency is 

We’ll first calculate relative frequency using a formula so that you understand its
math, although later we’ll compute it using a different approach. Here is your first sta-
tistical formula.

rel. f.

N

The formula for computing a score’s relative frequency is

rel.  f 5
f

N
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This says that to compute relative frequency, divide the frequency ( ) by the total num-
ber of scores ( ). For example, if a score occurred four times ( ) in a sample of 10
scores ( ), then filling in the formula gives

The score has a relative frequency of .40, meaning that the score occurred .40 of the
time in the sample.

As you can see here, one reason that we compute relative frequency is simply be-
cause it can be easier to interpret than simple frequency. Interpreting that a score has a
frequency of 4 is difficult because we have no frame of reference—is this often or not?
However, we can easily interpret the relative frequency of .40 because it means that the
score occurred .40 of the time.

REMEMBER Relative frequency indicates the proportion of the time (out of )
that a score occurred.

We can also begin with and compute the corresponding simple frequency. To
transform relative frequency into simple frequency, multiply the relative frequency
times . Thus, if is .4 and is 10, multiply .4 times 10 and the answer is 4; the
score occurs four times in this sample.

Finally, sometimes we transform relative frequency to percent. Converting relative
frequency to percent gives the percent of the time that a score occurred. To transform
relative frequency to percent, multiply the times 100. Above, the was .40, so

Thus, 40% of the sample had this score. Conversely, to transform
percent into relative frequency, divide the percent by 100. Thus 40% / 100 .40.

Presenting Relative Frequency in a Table or Graph

A distribution showing the relative frequency of all scores is called a relative frequency
distribution. To create a relative frequency table, first create a simple frequency table,
as we did previously. Then add a third column labeled “ ”

For example, look at Table 3.3. To compute , we need , which here is 20. Then
the score of 1, for example, has so its relative frequency is 4/20, or .20. And so on.

We can also determine the combined relative frequency of several scores by adding
their frequencies together: In Table 3.3, a score of 1 has a relative frequency of .20, and
a score of 2 has a relative frequency of .50, so together, their relative frequency is .20 1
.50, or .70; participants having a 1 or 2 compose .70 of our sample. (To check your
table, remember that, except for rounding error, the sum of all relative frequencies in a
distribution should equal 1: All scores together should constitute 100% of the sample.)

We graph a relative frequency distribution using the same rules as with simple fre-
quency: Create a bar graph if the scores involve a nominal or ordinal scale, and create a

f 5 4,
Nrel. f

rel. f.

5
1.40 2 1100 2 5 40%.

rel. frel. f

Nrel. fN

rel. f

N

rel.  f 5
f

N
5

4

10
5 .40

N
fN

f

Score f rel. f

6 1 .05
5 0 .00
4 2 .10
3 3 .15
2 10 .50
1 4 .20

Total: 20 1.00 100%5

TABLE 3.3

Relative Frequency 
Distribution

The left-hand column identi-
fies the scores, the middle
column shows each score’s
frequency, and the right-hand
column shows each score’s
relative frequency.



histogram or polygon if the scores involve an interval or ratio scale. Figure 3.9 presents
examples using the data from Table 3.3. The only novelty here is that the axis reflects
relative frequency, so it is labeled in increments between 0 and 1.0.

Finding Relative Frequency Using the Normal Curve

Although relative frequency is an important component of statistics, we will not emphasize
the previous formula. (You’re welcome.) Instead, most of the time our data will be nor-
mally distributed, and then we will use the normal curve to determine relative frequency. 

To understand this approach, think about a normal curve in a different way. Imagine
that you are flying in a helicopter over a parking lot. The and axes are laid out on
the ground, and the people who received a particular score are standing in line in front
of the marker for their score. The lines of people are packed so tightly together that,
from the air, you only see the tops of many heads in a “sea of humanity.” If you painted
a line that went behind the last person in line at each score, you would have the normal
curve shown in Figure 3.10.

From this perspective, the height of the curve above any score reflects the number of
people standing in line at that score. Thus, in Figure 3.10, the score of 30 has the highest
frequency because the longest line of people is standing at this score in the parking lot. 

YX

Y
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FIGURE 3.10

Parking lot view of the
ideal normal curve.

The height of the curve above
any score reflects the number
of people standing in line at
that score. f
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FIGURE 3.9

Examples of relative frequency distributions using the data in Table 3.3 
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The reason for using this “parking lot view” is so that you think of the normal curve as a
picture of something solid: The space under the curve between the curve and the 

axis has area that represents individuals and their scores. The entire parking lot contains
everyone in the sample and 100% of the scores. Therefore, any portion of the parking lot—
any portion of the space under the curve—corresponds to that portion of the sample.

For example, notice that in Figure 3.10 a vertical line is drawn through the middle
score of 30, and so .50 of the parking lot is to the left of the line. Because the complete
parking lot contains all participants, a part that is .50 of it contains 50% of the partici-
pants. (We can ignore those relatively few people who are straddling the line.) Partici-
pants are standing to the left of the line because they received scores of 29, 28, and so
on. So, in total, 50% of the participants received scores below 30. Now turn this around:
If 50% of the participants obtained scores below 30, then the scores below 30 occurred
50% of the time. Thus, the scores below 30 have a combined relative frequency of .50. 

This logic is so simple it almost sounds tricky: if you have one-half of the parking
lot, then you have one-half of the participants and thus one-half of the scores, so those
scores occur .50 of the time. Or, if you have 25% of the parking lot, then you have 25%
of the participants and 25% of the scores, so those scores occur .25 of the time. 

This is how we describe what we have done using statistical terminology: The total
space occupied by the everyone in the parking lot is called the total area under the nor-
mal curve. We identify some particular scores and determine the area of the correspon-
ding portion of the polygon above those scores. We then compare the area of this
portion to the total area to determine the proportion of the total area under the curve
that we have selected. Then, as we’ve seen,

The proportion of the total area under the normal curve that is occupied by a
group of scores corresponds to the combined relative frequency of those scores.

Of course, statisticians don’t fly around in helicopters, eyeballing parking lots, so here’s
a different example: Say that by using a ruler and protractor, we determine that in Figure
3.11 the entire polygon occupies an area of 6 square inches on the page. This total area cor-
responds to all scores, which is N. Say that the area under the curve between the scores of
30 and 35 covers 2 square inches. This area is due to the number of times these scores oc-
cur. Therefore, the scores between 30 and 35 occupy 2 out of the 6 square inches created
by all scores, so these scores constitute , or .33, of the entire distribution. Thus, the
scores between 30 and 35 constitute .33 of our N, so they have a relative frequency of .33.

We could obtain this answer by using the formula for relative frequency if, using 
and each score’s , we computed the for each score between 30 and 35 and then
added them together. However, the advantage of using the area under the curve is that
we can get the answer without knowing or the simple frequencies of these scores.N

rel. ff
N

2>6

X

FIGURE 3.11

Finding the proportion of
the total area under the
curve

The complete curve occupies
6 square inches, with scores
between 30 and 35 occupying
2 square inches.
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COMPUTING CUMULATIVE FREQUENCY AND PERCENTILE

Researchers have one other approach for organizing the scores in addition to comput-
ing simple and relative frequency. Sometimes we want to know a score’s standing rela-
tive to the other scores. For example, it may be most informative to know that 30 people
scored above 80 or that 60 people scored below 80. When we seek such information,
the convention in statistics is to count the number of scores below the score, computing
either cumulative frequency or percentile.
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A  Q U I C K  R E V I E W

■ Relative frequency is the proportion of the time that
a score occurs.

■ The area under the normal curve corresponds to
100% of a sample, so a proportion of the curve will
contain that proportion of the scores, which is their
relative frequency.

MORE EXAMPLES

Below, the shaded area is .15 of the total curve (so
15% of people in the parking lot are standing at these
scores). Thus, scores between 55 and 60 occur .15 of
the time, so their combined relative frequency is .15.
Above the score of 70 is .50 of the curve, so scores
above 70 have a combined relative frequency of .50.

For Practice

1. If a score occurs 23% of the time, its relative fre-
quency is .

2. If a score’s relative frequency is .34, it occurs
percent of the time.

3. If scores occupy .20 of the area under the curve,
they have a relative frequency of .

4. Say that the scores between 15 and 20 have a rela-
tive frequency of .40. They make up of the
area under the normal curve.

Answers
1. 23%/100 5 .23
2. (.34)(100) 5 34%
3. .20
4. .40 

f

Scores
50 55 60 65 70 75 80 85 9045 95

.50.15

In fact, whatever the variable might be, whatever the might be, and whatever the ac-
tual frequency of each score is, we know that the area these scores occupy is 33% of
the total area, and that’s all we need to know to determine their relative frequency.
This is especially useful because, as you’ll see in Chapter 6, statisticians have created
a system for easily finding the area under any part of the normal curve. Therefore, we
can easily determine the relative frequency for scores in any part of a normal distribu-
tion. (No, you won’t need a ruler and a protractor.) Until then, simply remember this:

REMEMBER The total area under the normal curve corresponds to the times
that all scores occur, so a proportion of the total area under the curve corre-
sponds to the proportion of time some of the scores occur, which is their rel-
ative frequency.

N
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Computing Cumulative Frequency

Cumulative frequency is the frequency of all scores at or below a particular score. The
symbol for cumulative frequency is To compute a score’s cumulative frequency, we
add the simple frequencies for all scores below the score to the frequency for the score,
to get the frequency of scores at or below the score.

For example, Table 3.4 shows a “cumulative frequency distribution” created from a
simple frequency table to which we add a column. Begin with the lowest score. Here,
no one scored below 10, and one person scored 10, so we have a of 1 (one person
scored 10 or below 10). Next, there were two scores of 11. We add this to the previous

for 10, so the for 11 is 3 (three people scored at 11 or below 11). Next, no one
scored at 12, but three people scored below 12, so the for 12 is also 3. And so on,
each time adding the frequency for a score to the cumulative frequency for the score
immediately below it.

As a check, verify that the for the highest score equals : Here all 20 participants
obtained either the highest score or a score below it.

Nowadays, researchers seldom create graphs showing cumulative frequency, so we
won’t. In fact, cumulative frequency is not the most common way to summarize scores.
But cumulative frequency is the first step in computing percentiles, which are very
common.

Computing Percentiles

We’ve seen that the proportion of time a score occurs provides a frame of reference
that is easier to interpret than the number of times a score occurs. Therefore, our final
procedure is to transform cumulative frequency into a percent of the total. A score’s
percentile is the percent of all scores in the data that are at or below the score. Thus,
for example, if the score of 80 is at the 75th percentile, this means that 75% of the
sample scored at or below 80.

Usually, we will already know a score’s cf. Then

Ncf

cf
cfcf

f
cf

cf

cf.

Score f cf

17 1 20
16 2 19
15 4 17
14 6 13
13 4 7
12 0 3
11 2 3
10 1 1 

TABLE 3.4

Cumulative Frequency
Distribution

The left-hand column identi-
fies the scores, the center col-
umn contains the simple
frequency of each score, and
the right-hand column con-
tains the cumulative
frequency of each score.

The formula for finding the percentile for a score with a 
known cf is

Score’s Percentile 5 a
cf

N
b 1100 2

This says to first divide the score’s by , which transforms the into a proportion of
the total sample. Then we multiply this times 100, which converts it into a percent of
the total. Thus, if a score has a of 5 and is 10, then so the score
is at the 50th percentile.

Table 3.5 shows the previous cumulative frequency table (where ) trans-
formed to percentiles. With one person scoring 10 or below, (1/20)(100) equals 5, so 10
is at the 5th percentile. The three people scoring 11 or below are at the 15th percentile
and so on. The highest score is, within rounding error, the 100th percentile, because
100% of the sample has the highest score or below.

N 5 20

15>10 2 1100 2 5 50,Ncf

cfNcfScore f cf Percentile

17 1 20 100
16 2 19 95
15 4 17 85
14 6 13 65
13 4 7 35
12 0 3 15
11 2 3 15
10 1 1 5 

TABLE 3.5

Percentiles

The right-hand column
contains the percentile of
each score. 
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FIGURE 3.12

Normal distribution
showing the area under
the curve to the left of
selected scores

f
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.85 of curve

For finding the score at a percentile not shown in our table, the precise way is with a
computer program (such as SPSS). However, a quick way to find an approximate per-
centile is to use the area under the normal curve.

Finding Percentile Using the Area Under the Normal Curve

Percentile describes the scores that are lower than a particular score, and on the normal
curve, lower scores are to the left of a particular score. Therefore, the percentile for a
given score corresponds to the percent of the total area under the curve that is to the left
of the score. For example, on the distribution in Figure 3.12, 50% of the curve is to the
left of the middle score of 30. Because scores to the left of 30 are below it, 50% of the
distribution is below 30 (in the parking lot, 50% of the people are standing to the left of
the line and all of their scores are less than 30). Thus, the score of 30 is at the 50th per-
centile. Likewise, to find the percentile for the score of 20 in Figure 3.12, we would
find the percent of the total area that is to the left of 20. Say that we find that 15% of
the curve is to the left of 20; then 20 is at the 15th percentile.

We can also work the other way to find the score at a given percentile. Say that we
seek the score at the 85th percentile. We would measure over until 85% of the area
under the curve is to the left of a certain point. If, as shown in Figure 3.12, the score of
45 is at that point, then 45 is at the 85th percentile.

Notice that we make a slight change in our definition of percentile when we use the
normal curve. Technically, a percentile is the percent of scores at or below a score.
However, in everyday use, the at may be dropped. Then percentile becomes the percent
of scores below a particular score. This is acceptable if we are describing a large sam-
ple or a population because those participants at the score are a negligible portion of
the total (remember that we ignored those relatively few people who were straddling
the line). Thus, in Figure 3.12, the score of 30 is at the 50th percentile, so we say that
50% of the scores are below 30 and 50% are above it.

However, if we are describing a small sample, we should not ignore those at the
score, because those participants may actually constitute a sizable portion of the sam-
ple. Say that 10% have this score. If we conclude that 50% are above and 50% are be-
low, with 10% at the score, we have the impossible total of 110%! Therefore, with
small samples, percentile is calculated and defined as the percent of scores at or below
a particular score. Because of this distinction, you should use the area under the normal
curve to compute percentile when you have a large sample or a population that also fits
the normal curve. 
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STATISTICS IN PUBLISHED RESEARCH: APA PUBLICATION RULES

The rules that we’ve used for creating tables and graphs are part of the procedures for cre-
ating research publications established by the American Psychological Association (APA).
We will also follow “APA format” when we discuss how to report various statistics. (Note:
Computer programs, such as SPSS, sometimes do not operate according to these rules.)

You won’t always see frequency tables and graphs in published reports, because they are
very expensive to print. Instead, often researchers simply state that “the scores were nor-
mally distributed” or whatever, and you are expected to mentally envision the distribution.

One way in which researchers shrink the size of published tables and graphs is to
create a grouped distribution.

A WORD ABOUT GROUPED FREQUENCY DISTRIBUTIONS

In the previous examples, we examined each score individually, creating ungrouped
distributions. When we have too many scores to produce a manageable ungrouped dis-
tribution, we create a grouped distribution. In a grouped distribution, scores are com-
bined to form small groups, and then we report the total , , , or percentile of all
scores in each group.

For example, look at the grouped distribution shown in Table 3.6. In the score col-
umn, “0-4” contains the scores 0, 1, 2, 3, 4, and “5–9” contains scores 5 through 9, and
so on. The for each group is the sum of the frequencies for the scores in that group.
Thus, the scores between 0 and 4 have a total of 7, while, for the highest scores be-
tween 40 and 44, the total is 2. Likewise, the combined relative frequency of scores
between 0 and 4 is .28, while for scores between 40 and 44 it is .08. Each cumulative

f
f

f
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A  Q U I C K  R E V I E W

■ Cumulative frequency ( ) indicates the number of
participants in a sample that scored at or below a
particular score.

■ Percentile indicates the percent of a sample that
scored at or below a particular score.

■ The proportion of the normal curve to the left of a
score is the proportion of participants scoring below
that score, which translates into the score’s percentile.

MORE EXAMPLES

If the score of 80 has a of 35, it means that 35 par-
ticipants had a score of 80 or below 80. If 80 is at the
90th percentile, it means that 90% of the sample had a
score of 80 or below 80 and, on a normal distribution,
80 is located over toward the right-hand tail, with 90%
of the curve located to the left of it.

For Practice

On an exam, 10 students scored 19, 15 students scored
20, no students scored 21, and everyone else scored 21.

cf

cf 1. The for the score of 20 is .

2. The for the score of 21 is .

3. If 60 students took the exam, the percentile for the
score of 20 is .

4. What does this percentile indicate?

5. In a normal curve showing these grades, how
much of the curve is to the right of (above) 20 and
how much is to the left of (below) 20?

Answers
1. 15
2. 15
3. Then percentile.
4. 25% of the class scored 20 or below 20.
5. 75% of the curve is above 20, and 25% of the curve is

below 20. 

1.25 2 1100 2 5 25th115>60 2 5 .25.

cf

cf



frequency is the number of scores that are at 44 or below the highest score in the group.
Thus, 7 scores are at 4 or below while 25 scores are at 44 or below. (Because 44 is the
highest score, we know that is 25.) Finally, each percentile indicates the percent of
scores that are below the highest score in the group, so the score of 4 is at the 28th per-
centile, and the score of 44 is at the 100th percentile. 

Appendix A.1 shows examples of graphs of grouped distributions (Figure A.1) with
the details of how to create grouped distributions. 

N
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Score f rel. f cf Percentile

40–44 2 .08 25 100
35–39 2 .08 23 92
30–34 0 .00 21 84
25–29 3 .12 21 84
20–24 2 .08 18 72
15–19 4 .16 16 64
10–14 1 .04 12 48

5–9 4 .16 11 44
0–4 7 .28 7 28   

TABLE 3.6

Grouped Distribution
Showing f, rel.f, cf, and
Percentile

The left-hand column identi-
fies the lowest and highest
score in each group.

All of the procedures in this chapter indicate how often certain scores occur, but
each provides a slightly different perspective that allows you to interpret the data in
a slightly different way. Which particular procedure you should use is determined
by which provides the most useful information. However, you may not automati-
cally know which is the best technique for a given situation. So, understand that re-
searchers often explore their data, and you should too. Try different techniques and
then choose the approach that allows you to make the most sense out of your data.

Using the SPSS Appendix: Appendix B shows you how to use the SPSS computer
program to produce the distributions that we’ve discussed. As described in Appendix
B.1 you’ll first need to label your variables and input your raw scores. Then, as in 
Appendix B.2, you can create frequency tables and plot bar graphs, histograms and
polygons. You can also compute percentiles. 

CHAPTER SUMMARY

1. The number of scores in the data is symbolized by .

2. A simple frequency distribution shows the frequency of each score. The symbol
for simple frequency is .

3. When graphing a simple frequency distribution, if the variable involves a nominal
or an ordinal scale, create a bar graph. If the variable involves a few different
interval or ratio scores, create a histogram. With many different interval or ratio
scores, create a polygon.

4. In a normal distribution forming a normal curve, extreme high and low scores are
relatively infrequent, scores closer to the middle score are more frequent, and the
middle score occurs most frequently. The low-frequency, extreme low and
extreme high scores are in the tails of a normal distribution.

f

N

PUTTING IT 
ALL TOGETHER
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5. A negatively skewed distribution contains low-frequency, extreme low scores,
but not low-frequency, extreme high scores. A positively skewed distribution
contains low-frequency, extreme high scores, but not low-frequency, extreme
low scores.

6. A bimodal distribution is symmetrical, with two areas showing relatively high-
frequency scores. In a rectangular distribution, all scores have the same
frequency.

7. The relative frequency of a score, symbolized by , is the proportion of time
that the score occurred. A relative frequency distribution is graphed in the same
way as a simple frequency distribution except that the axis is labeled in
increments between 0 and 1.0.

8. The proportion of the total area under the normal curve occupied by particular
scores equals the combined relative frequency of those scores.

9. The cumulative frequency of a score, symbolized by , is the frequency of all
scores at or below the score.

10. Percentile is the percent of all scores at or below a given score. On the normal
curve the percentile of a score is the percent of the area under the curve to the left
of the score.

11. In an ungrouped distribution, the , , , or percentile of each individual score
is reported.

12. In a grouped distribution, different scores are grouped together, and the , , ,
or percentile for each group is reported.

cfrel. ff

cfrel. ff

cf

Y

rel. f

KEY TERMS 

bar graph 39
bimodal distribution 44
cumulative frequency 52
distribution 36
frequency 36
frequency polygon 40
grouped distribution 54
histogram 40
negatively skewed distribution 44
normal curve 42
normal distribution 42

cfrel. fNf percentile 52
positively skewed distribution 44
proportion of the total area under the

curve 50
rectangular distribution 45
relative frequency 47
relative frequency distribution 48
simple frequency 37
simple frequency distribution 37
tail 43
ungrouped distribution 54

REVIEW QUESTIONS

(Answers for odd-numbered problems are in Appendix D.)

1. What do each of the following symbols mean? (a) ; (b) ; (c) ; (d) .
2. (a) What is the difference between a bar graph and a histogram? (b) With what

kind of data is each used?

cfrel. ffN



3. (a) What is the difference between a histogram and a polygon? (b) With what kind
of data is each used?

4. (a) What is the difference between a score’s simple frequency and its relative
frequency? (b) What is the difference between a score’s cumulative frequency 
and its percentile?

5. (a) What is the advantage of computing relative frequency instead of simple
frequency? (b) What is the advantage of computing percentile instead of
cumulative frequency?

6. (a) What is the difference between a skewed distribution and a normal
distribution? (b) What is the difference between a bimodal distribution and 
a normal distribution? (c) What does a rectangular distribution indicate about
the frequencies of the scores?

7. What is the difference between a positively skewed distribution and a negatively
skewed distribution?

8. (a) Why must the for the highest score in a sample equal ? (b) Why must the
sum of all s in a sample equal ?

9. What is the difference between graphing a relationship as we did in Chapter 2 and
graphing a frequency distribution?

10. What is the difference between how we use the proportion of the total area under
the normal curve to determine relative frequency and how we use it to determine
percentile. 

11. What does it mean when a score is in a tail of a normal distribution?
12. (a) How is percentile defined in a small sample? (b) How is percentile defined for

a large sample or population when calculated using the normal curve?

APPLICATION QUESTIONS

13. In reading psychological research, you encounter the following statements.
Interpret each one. (a) “The IQ scores were approximately normally distributed.”
(b) “A bimodal distribution of physical agility scores was observed.” (c) “The
distribution of the patients’ memory scores was severely negatively skewed.”

14. From the data 1, 4, 5, 3, 2, 5, 7, 3, 4, and 5, Poindexter created the following
frequency table. What five things did he do wrong?

Nf
Ncf
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Score f cf

1 1 0
2 1 1
3 2 3
4 2 5
5 3 8
7 1 9

N 5 6

15. The distribution of scores on your statistics test is positively skewed. What does
this indicate about the difficulty of the test?

16. (a) On a normal distribution of exam scores, Poindexter scored at the 10th
percentile, so he claims that he outperformed 90% of his class. Why is he correct
or incorrect? (b) Because Foofy’s score is in a tail of the distribution, she claims
she had one of the highest scores on the exam. Why is she correct or incorrect?
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17. Interpret each of the following. (a) In a small sample, you scored at the 35th
percentile. (b) Your score has a of .40. (c) Your score is in the upper tail of
the normal curve. (d) Your score is in the left-hand tail of the normal curve. 
(e) Your score has a of 50. (f) From the normal curve, your score is at the 
60th percentile.

18. Draw a normal curve and identify the approximate location of the following
scores. (a) You have the most frequent score. (b) You have a low-frequency score,
but the score is higher than most. (c) You have one of the lower scores, but it has a
relatively high frequency. (d) Your score seldom occurred.

19. The following shows the distribution of final exam scores in a large introductory
psychology class. The proportion of the total area under the curve is given for two
segments.

cf

rel. f

f

Exam scores

50 55 60 65 70 75 80 85 9045

.20 .30

95

(a) Order the scores 45, 60, 70, 72, and 85 from most frequent to least frequent. 
(b) What is the percentile of a score of 60? (c) What proportion of the sample
scored below 70? (d) What proportion scored between 60 and 70? (e) What
proportion scored above 80? (f) What is the percentile of a score of 80?

20. What is the advantage and disadvantage of using grouped frequency distributions?
21. Organize the ratio scores below in a table showing simple frequency, relative

frequency, and cumulative frequency.

49 52 47 52 52 47 49 47 50
51 50 49 50 50 50 53 51 49

22. (a) Draw a simple frequency polygon using the data in question 23. (b) Draw a
relative frequency histogram of these data.

23. Organize the interval scores below in a table showing simple frequency,
cumulative frequency, and relative frequency.

16 11 13 12 11 16 12 16 15
16 11 13 16 12 11

24. Using the data in question 25, draw the appropriate graph to show (a) simple
frequency and (b) relative frequency.

INTEGRATION QUESTIONS

25. Describe each scale of measurement. (Ch. 2)
26. (a) Which scales of measurement are assumed to be discrete; what does 

this mean? (b) Which scales are assumed to be continuous; what does this
mean? (Ch. 2)



27. What type of graph should you create when counting the frequency of: (a) The
brands of cell phones owned by students? Why? (b) The different body weights
reported in a statewide survey? Why? (c) The people falling into one of eight
salary ranges? Why? (d) The number of students who were absent from a class
either at the beginning, middle, or end of the semester. (Chs. 2, 3) 

28. An experimenter studies vision in low light by having participants sit in a
darkened room for either 5, 15, or 25 minutes and then tests their ability to
correctly identify 20 objects. (a) What is the independent variable here? (b) What
are the conditions? (c) What is the dependent variable? (d) You would use the
scores from which variable to create a frequency distribution? (Chs. 2, 3)

29. Our is 50, and for some scores we have selected the proportion of the area under
the curve is .60. (a) What percent of the time do we expect these scores to occur? 
(b) How many of our participants do we expect to have these scores? (Chs. 1, 3)

■ ■ ■ SUMMARY OF 
FORMULAS

N

Integration Questions 59

1. The formula for computing a score’s relative
frequency is

rel.  f 5
f

N

2. The formula for finding the percentile for a score
with a known is:

Score’s Percentile 5 a
cf

N
b 1100 2

cf



The frequency distributions discussed in the previous chapter are important because the
shape of a distribution is an important characteristic of data for us to know. Therefore,
the first step in any statistical analysis is to determine the distribution’s shape. Then,
however, we compute individual numbers—statistics—that each describe an important
characteristic of the data. This chapter discusses statistics that describe the important
characteristic called central tendency. The following sections present (1) the concept of
central tendency, (2) the three ways to compute central tendency, and (3) how we use
them to summarize and interpret data.

But first . . . 

NEW STATISTICAL NOTATION

A new important symbol is the Greek letter called sigma. Sigma is the symbol for
summation. It is used in conjunction with a symbol for scores, so you will see such no-
tations as In words, is pronounced sum of X and literally means to find the
sum of the scores. Thus, for the scores 5, 6, and 9 is 20, and in code we would
say, Notice that we do not care whether each is a different score. If the
scores are 4, 4, and 4, then 

REMEMBER The symbol indicates to sum the scores.X©X

©X 5 12.
X©X 5 20.

©XX
©X©X.

©,

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 2, the logic of statistics and parameters and the difference
between an independent and a dependent variable.

■ From Chapter 3, when to create bar graphs or polygons, how to interpret
polygons, and how to use the area under the normal curve.

Your goals in this chapter are to learn

■ What measures of central tendency tell us about data.

■ What the mean, median, or mode is and when each is appropriate.

■ How a sample mean is used.

■ What deviations around the mean are.

■ How to interpret and graph the results of an experiment.

Measures of Central Tendency:
The Mean, Median, and Mode4

60



WHY IS IT IMPORTANT TO KNOW ABOUT CENTRAL TENDENCY?

Recall that descriptive statistics tell us the obvious things we would ask about a sample
of scores. So think about what questions you ask your professor about the grades after
you’ve taken an exam. Your first question is how did you do, but your second question
is how did everyone else do? Did everyone score high, low, or what? Central tendency
is important because it answers this most basic question about data: Are the scores gen-
erally high scores or low scores? You need this information to understand both how the
class performed and how you performed relative to everyone else. But it is difficult to
do this by looking at the individual scores or at the frequency distribution. Instead, it is
much better if you know something like the class average; an average on the exam of
80 versus 30 is very understandable. Therefore, in virtually all research, we first com-
pute a statistic that shrinks the data down into one number that summarizes everyone’s
score. This statistic is called a measure of central tendency. This is the only way to eas-
ily describe and interpret the sample as a whole.

WHAT IS CENTRAL TENDENCY?

To understand central tendency, first change your perspective of what a score indicates.
For example, if I am 70 inches tall, don’t think of this as indicating that I have 70 inches
of height. Instead, think of any variable as an infinite continuum—a straight line—and
think of a score as indicating a participant’s location on that line. Thus, my score
locates me at the address labeled 70 inches. If my brother is 60 inches tall, then he is
located at the point marked 60 on the height variable. The idea is not so much that he is
10 inches shorter than I am, but rather that we are separated by a distance of 10 units—
in this case, 10 “inch” units. In statistics, scores are locations, and the difference
between any two scores is the distance between them.

From this perspective, a frequency distribution shows the location of the scores. For
example, Figure 4.1 shows height scores from two samples, one containing low scores
and one containing higher scores. In our parking lot view of the normal curve, partici-
pants’ scores determine where they stand. A high score puts them on the right side of
the lot, a low score puts them on the left side, and a middle score puts them in a crowd
in the middle. Further, if we have two distributions containing different scores, then the
distributions have different locations on the variable.

Thus, when we ask, “Are the scores generally high scores or low scores?” we are ac-
tually asking, “Where on the variable is the distribution located?” A measure of central
tendency is a score that summarizes the location of a distribution on a variable. Listen
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FIGURE 4.1

Two sample polygons on
the variable of height

Each polygon indicates the
locations of the scores and
their frequencies.

0

Height (in inches)
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scores

. . . . . . Higher

Sample A Sample B

58 59 60 61 62 68 69 70 71 72
scores
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to its name: It is a score that indicates where the center of the distribution tends to be lo-
cated. Thus, a measure of central tendency is a number that is a summary that you can
think of as indicating where on the variable most scores are located; or the score that
everyone scored around; or the typical score; or the score that serves as the address for
the distribution as a whole.

So, in Sample A back in Figure 4.1, most of the scores are in the neighborhood of
59, 60, and 61 inches, so a measure of central tendency will indicate that the distribu-
tion is centered at 60 inches. In Sample B, the scores are distributed around 70 inches.

Notice that the above example again illustrates how to use descriptive statistics 
to envision the important aspects of the distribution without looking at every
individual score. If a researcher told you only that one normal distribution is 
centered at 60 and the other is centered at 70, you could envision Figure 4.1 and
have a general idea of what’s in the data. Thus, although you’ll see other statistics
that add to this mental picture, measures of central tendency are at the core of sum-
marizing data.

REMEMBER The first step in summarizing any set of data is to compute the
appropriate measure of central tendency.

We will discuss three common measures of central tendency. The trick is to com-
pute the correct one so that you accurately envision where most scores in the data are
located. Which measure of central tendency you should calculate depends on two
factors:

1. The scale of measurement used so that the summary makes sense given the 
nature of the scores.

2. The shape of the frequency distribution the scores produce so that the measure
accurately summarizes the distribution.

In the following sections, we first discuss the mode, then the median, and finally 
the mean.

THE MODE

One way to describe where most of the scores in a distribution are located is to find the
one score that occurs most frequently. The most frequently occurring score is called the
mode. (We have no accepted symbol for the mode.) For example, say we’ve collected
some test scores and arranged them from lowest to highest: 2, 3, 3, 4, 4, 4, 4, 5, 5, and
6. The score of 4 is the mode because it occurs more frequently than any other score.
The left-hand distribution in Figure 4.2 shows that the mode does summarize these data
because most of the scores are “around” 4. Also, notice that the scores form a roughly
normal curve, with the highest point at the mode. When a polygon has one hump, such
as on the normal curve, the distribution is called unimodal, indicating that one score
qualifies as the mode.

Data may not always produce a single mode. For example, consider the scores 2, 3,
4, 5, 5, 5, 6, 7, 8, 9, 9, 9, 10, 11, and 12. Here two scores, 5 and 9, are tied for the most
frequently occurring score. This sample is plotted on the right in Figure 4.2. In Chapter
3, such a distribution was called bimodal because it has two modes. Describing this
distribution as bimodal and identifying the two modes does summarize where most of
the scores tend to be located—most are either around 5 or around 9.



Uses of the Mode

The mode is typically used to describe central tendency when the scores reflect a nom-
inal scale of measurement (when participants are categorized using a qualitative vari-
able). For example, say that we asked some people their favorite flavor of ice cream.
The way to summarize such data would be to indicate the most frequently occurring
category: Reporting that the mode was a preference for “Goopy Chocolate” is very in-
formative. Also, you have the option of reporting the mode along with other measures
of central tendency when describing other scales of measurement because it’s always
informative to know the “modal score.”

REMEMBER The mode is the most frequently occurring score in the data and
is usually used to summarize nominal scores.

There are, however, two potential limitations with the mode. First, the distribution
may contain many scores that are all tied at the same highest frequency. With more than
two modes, we fail to summarize the data. In the most extreme case, we might obtain a
rectangular distribution such as 4, 4, 5, 5, 6, 6, 7, and 7. Here there is no mode. A sec-
ond problem is that the mode does not take into account any scores other than the most
frequent score(s), so it may not accurately summarize where most scores in the distri-
bution are located. For example, say that we obtain the skewed distribution containing
7, 7, 7, 20, 20, 21, 22, 22, 23, and 24. The mode is 7, but this is misleading. Most of the
scores are not around 7 and instead are up in the low 20s.

Because of these limitations, we usually rely on one of the other measures of central
tendency when we have ordinal, interval, or ratio scores.

THE MEDIAN

Often a better measure of central tendency is the median. The median is simply another
name for the score at the 50th percentile. Recall that 50% of a distribution is at or 
below the score at the 50th percentile. Thus, if the median is 10, then 50% of the scores
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FIGURE 4.2

(a) A unimodal distribution and (b) a bimodal distribution

Each vertical line marks a highest point on the distribution. This indicates a most frequent score, which is a mode.
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are either at or below 10. (Note that the median will not always be one of the scores
that occurred.) The median is typically a better measure of central tendency than the
mode because (1) only one score can be the median and (2) the median will usually be
around where most of the scores in the distribution tend to be located. The symbol for
the median is usually its abbreviation, Mdn.

As we discussed in the previous chapter, when researchers are dealing with a large
distribution they may ignore the relatively few scores at a percentile, so they may say
that 50% of the scores are below the median and 50% are above it. To visualize this, re-
call that a score’s percentile equals the proportion of the area under the curve that is to
the left of—below—the score. Therefore, the 50th percentile is the score that separates
the lower 50% of the distribution from the upper 50%. For example, look at Graph A in
Figure 4.3. Because 50% of the area under the curve is to the left of the line, the score
at the line is the 50th percentile, so that score is the median.

In fact, the median is the score below which 50% of the area of any polygon is lo-
cated. For example, in the skewed distribution in Graph B of Figure 4.3, if .50 of the area
under the curve is to the left of the vertical line, then the score at the line is the median.

There are several ways to calculate the median. When scores form a perfect normal
distribution, the median is also the most frequent score, so it is the same score as the
mode. When scores are approximately normally distributed, the median will be close to
the mode.

When data are not at all normally distributed, however, there is no easy way to deter-
mine the point below which .50 of the area under the curve is located. Also, recall that
using the area under the curve is not accurate with a small sample. In these situations,
we can estimate the median using the following system. Arrange the scores from low-
est to highest. With an odd number of scores, the score in the middle position is the ap-
proximate median. For example, for the nine scores 1, 2, 3, 3, 4, 7, 9, 10, and 11, the
score in the middle position is the fifth score, so the median is the score of 4. On the
other hand, if is an even number, the average of the two scores in the middle is the
approximate median. For example, for the ten scores 3, 8, 11, 11, 12, 13, 24, 35, 46,
and 48, the middle scores are at position 5 (the score of 12) and position 6 (the score of
13). The average of 12 and 13 is 12.5, so the median is approximately 12.5.

To precisely calculate the median, consult an advanced textbook for the formula, or
as in Appendix B.3, use the SPSS computer program, which is the easiest solution.

N

FIGURE 4.3

Location of the median in a normal distribution (A) and in a positively skewed distribution (B)

The vertical line indicates the location of the median, with one-half of the distribution on each side of it.
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Uses of the Median

The median is not used to describe nominal data: To say, for example, that 50% of our
participants preferred “Goopy Chocolate” or below is more confusing than informa-
tive. On the other hand, the median is the preferred measure of central tendency when
the data are ordinal scores. For example, say that a group of students ranked how well a
college professor teaches. Reporting that the professor’s median ranking was 3 com-
municates that 50% of the students rated the professor as number 1, 2, or 3. Also, as
you’ll see later, the median is preferred when interval or ratio scores form a very
skewed distribution. (Again you have the option of reporting the median with other
types of data when appropriate, simply because it is informative.)

REMEMBER The median (Mdn) is the score at the 50th percentile and is used
to summarize ordinal or highly skewed interval or ratio scores.

Computing the median still ignores some information in the data because it reflects
only the frequency of scores in the lower 50% of the distribution, without considering
their mathematical values or considering the scores in the upper 50%. Therefore, the
median is not our first choice for describing the central tendency of normal distribu-
tions of interval or ratio scores.
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A  Q U I C K  R E V I E W

■ The mode is the most frequent score in the data.
■ The median is the score at the 50th percentile. If 

is an odd number, the median is the middle score. If
is even, the median is the average of the middle

scores.

MORE EXAMPLES

For the scores 1, 4, 2, 3, 5, and 3, the mode is 3. The
median is found in two steps. First, order the scores:
1, 2, 3, 3, 4, and 5. Then, is even, so the median is
the average of the scores in the third and fourth posi-
tions: The average of 3 and 3 is 3. However, for the
scores 3, 4, 7, 9, and 10, , so the median is at the
middle position, which is 7.

N 5 5

N

N

N

For Practice

1. What is the mode in 4, 6, 8, 6, 3, 6, 8, 7, 9, and 8?

2. What is the median in the above scores?

3. With what types of scores is the mode most
appropriate?

4. With what types of scores is the median most
appropriate?

Answers
1. In this bimodal data, both 6 and 8 are modes.
2. ; the median is the average of 6 and 7,

which is 6.50.
3. With nominal scores
4. With ordinal or skewed interval/ratio scores

N 5 10

THE MEAN

By far the all-time most common measure of central tendency in behavioral research is
the mean. The mean is the score located at the mathematical center of a distribution.
Although technically we call this statistic the arithmetic mean, it is what most people
call the average. Compute a mean in the same way that you compute an average: Add
up all the scores and then divide by the number of scores you added. Unlike the mode
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or the median, the mean includes every score, so it does not ignore any information in
the data.

Let’s first compute the mean in a sample. Usually, we use to stand for the raw
scores in a sample and then the symbol for a sample mean is . It is pronounced “the
sample mean” (not “bar ”: bar sounds like the name of a ranch!). Get in the habit of
thinking of as a quantity itself so that you understand statements such as “the size of

” or “this is larger than that .”
To compute , recall that the symbol for “add up all the scores” is and that the

symbol for the number of scores is . ThenN
ΣXX

XXX
X

XX
X

X

The formula for computing a sample mean is

X 5
ΣX

N

As an example, consider the scores 3, 4, 6, and 7. Adding the scores together produces
, and is 4. Thus, . Saying that the mean of these scores is 5

indicates that the mathematical center of this distribution is located at the score of 5.
(As here, the mean may be a score that does not actually occur in the data.)

What is the mathematical center of a distribution? Think of the center as the balance
point. Thus, visualize a teeter-totter on a playground. The left-hand side of Figure 4.4
shows 3, 4, 6, and 7 sitting on the teeter-totter, and the mean of 5 balances the distribu-
tion. The right-hand side of Figure 4.4 shows how the mean is the balance point even
when the distribution is not symmetrical (the score of 1 has an f of 2). Here the mean is
4 (because ), and it balances the distribution.

Uses of the Mean

Computing the mean is appropriate whenever getting the “average” of the scores makes
sense. Therefore, do not use the mean when describing nominal data. (For example, if
we count the number of males versus females, an average of the genders would be
meaningless.) Likewise, do not compute the mean with ordinal scores (it is strange to
say that, on average, runners came in 5.7th in a race). This leaves the mean to describe
interval or ratio data.

In addition, however, also consider the shape of the distribution. The mathematical
center of the distribution must also be the point where most of the scores are located.
This will be the case when we have a symmetrical and unimodal distribution. 
For example, say that a simple creativity test produced the scores of 5, 6, 2, 1, 3, 4, 5,
4, 3, 7, and 4, which are shown in Figure 4.5. Here, and , so the meanN 5 11ΣX 5 44

ΣX>N 5 20>5 5 4

X 5 20>4 5 5NΣX 5 20

FIGURE 4.4

The mean as the balance
point of a distribution
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score is 4. Computing the mean is appropriate here be-
cause it is the point around which most of the scores are
located: Most often the scores are at or near 4.

Notice that Figure 4.5 shows an approximately normal
distribution. Always compute the mean to summarize a
normal or approximately normal distribution: The mean
is the mathematical center of any distribution, and in a
normal distribution, most of the scores are located around
this central point. Therefore, the mean is an accurate sum-
mary and provides an accurate address for the distribution.

REMEMBER Describe the central tendency of a
normal distribution of interval or ratio scores by
computing the mean.

The Mean 67

FIGURE 4.5

Location of the mean on a symmetrical distribution.

The vertical line indicates the location of the mean score.

A  Q U I C K  R E V I E W

■ The mean is the average score, located at the mathe-
matical center of the distribution.

■ The mean is appropriate for a symmetrical distribu-
tion of interval or ratio scores.

MORE EXAMPLES

To find the mean of the scores 3, 4, 6, 8, 7, 3, and 5:
, and .

Then ; this rounds to 5.14.

For Practice

1. What is the symbol for the sample mean?

2. What is the mean of 7, 6, 1, 4, 5, and 2?

X 5 36>7 5 5.1428
N 5 7ΣX 5 3 1 4 1 6 1 8 1 7 1 3 1 5 5 36

3. With what data is the appropriate?

4. How is a mean interpreted?

Answers
1.
2. , , , rounding to 4.17.
3. With normally distributed or symmetrical distributions

of interval or ratio scores
4. It is the center or balance point of the distribution.

X 5 4.1666N 5 6ΣX 5 25
X

X

0

3

2

1

f

Creativity scores

X

1 2 3 54 6 7 8

Comparing the Mean, Median, and Mode

In a perfect normal distribution, all three measures of central tendency are located at
the same score. For example, above in Figure 4.5 the mean of 4 also splits the curve in
half, so 4 is the median. Also, the mean of 4 has the highest frequency, so 4 is the mode.
If a distribution is only roughly normal, then the mean, median, and mode will be close
to the same score. In this case, you might think that any measure of central tendency
would be good enough. Not true! The mean uses all information in the scores, and most
of the inferential procedures we’ll see involve the mean. Therefore, the rule is that the
mean is the preferred statistic to use with interval or ratio data unless it clearly provides
an inaccurate summary of the distribution.

The mean will inaccurately describe a skewed (nonsymmetrical) distribution. You
have seen this happen if you’ve ever obtained one low grade in a class after receiving
many high grades—your average drops like a rock. The low score produces a negatively
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skewed distribution, and the mean gets pulled away from where most of your grades are,
toward that low grade. What hurts is then telling someone your average because it’s mis-
leading: It sounds as if all of your grades are relatively low, even though you have only
that one zinger.

The mean is always pulled toward the tail of any skewed distribution because it must
balance the entire distribution. You can see this starting with the symmetrical distribu-
tion containing the scores 1, 2, 2, 2, and 3. The mean is 2, and this accurately describes
most scores. However, adding the score of 20 skews the sample. Now the mean is
pulled up to 5. But! Most of these scores are not at or near 5. As this illustrates,
although the mean is always at the mathematical center, in a skewed distribution, that
center is not where most of the scores are located.

The solution is to use the median to summarize a skewed distribution. Figure 4.6
shows the relative positions of the mean, median, and mode in skewed distributions. In
both graphs, the mean is pulled toward the extreme tail and is not where most scores
are located. The mode is toward the side away from the extreme tail and so the distri-
bution is not centered here either. Thus, of the three measures, the median most accu-
rately reflects the central tendency—the overall address—of a skewed distribution.

REMEMBER Use the mean to summarize normal distributions of interval or
ratio scores; use the median to summarize skewed distributions.

It is for the above reasons that the government uses the median to summarize such
skewed distributions as yearly income or the price of houses. For example, recent U.S.
census data indicated that the median income is slightly above $50,000. But a relatively
small number of corporate executives, movie stars, professional athletes, and the like
make millions! If we include these salaries and compute the average income, it is about
$68,000. However, this is misleading because most people do not earn at or near this
higher figure. Instead, the median is a better summary of this distribution.

Believe it or not, we’ve now covered the basic measures of central tendency. In sum,
the first step in summarizing data is to compute a measure of central tendency to
describe the score around which the distribution tends to be located.

■ Compute the mode with nominal data or with a distinctly bimodal distribution of 
any type of scores.

■ Compute the median with ordinal scores or with a skewed distribution of interval or
ratio scores.

■ Compute the mean with a normal distribution of interval or ratio scores.

FIGURE 4.6

Measures of central 
tendency for skewed 
distributions
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relative positions of the
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Most often the data in behavioral research are summarized using the mean. This is
because most often we measure variables using interval or ratio scores and most often
with such scores, “mother nature” produces a reasonably normal distribution. Because
the mean is used so extensively, we will delve further into its characteristics and uses in
the following sections.

TRANSFORMATIONS AND THE MEAN

Recall that we perform transformations to make scores easier to work with or to make
scores from different variables comparable. The simplest transformation is to add, sub-
tract, multiply, or divide each score by a constant. This brings up the burning question:
How do transformations affect the mean?

If we add a constant to each raw score in a sample, the new mean of the trans-
formed scores will equal the old mean of the raw scores plus . For example, the scores
7, 8, and 9 have a mean of 8. Adding 5 to each score produces 12, 13, and 14. The new
mean is 13. The old mean of 8 plus the constant 5 also equals 13. Thus, the rule is that
new . The same logic applies for other mathematical operations.
When subtracting K from each score, new . When multiplying each
score by , new . When dividing each score by , new .

The above rules also apply to the median and to the mode. In essence, using a con-
stant merely changes the location of each score on the variable by points, so we also
move the “address” of the distribution by the same amount.

DEVIATIONS AROUND THE MEAN

To understand why the mean is used so extensively in statistics and research, you must
first understand why the mean is the center of a distribution. The mean is the center
score because it is just as far from the scores above it as it is from the scores below it.
That is, the total distance that some scores lie above the mean equals the total distance
that other scores lie below the mean.

The distance separating a score from the mean is called the score’s deviation, indi-
cating the amount the score “deviates” from the mean. A score’s deviation is equal to
the score minus the mean, or in symbols:

K

X 5  1old X 2 >KKX 5  1old X 2KK
X 5  old X – K

X 5  old X 1  K

K
1K 2
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The formula for computing a score’s deviation is

X – X

Thus, if the sample mean is 47, a score of 50 deviates by , because .
A score of 40 deviates from the mean of 47 by , because .

REMEMBER Always subtract the mean from the raw score when computing
a score’s deviation.

Do not, however, think of deviations as simply positive or negative numbers. Think
of a deviation as having two components: The number, which indicates distance from

40 2 47 5 2727
50 2 47 is 1 313
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the mean (which is always positive), and the sign, which indicates direction from the
mean. For example, the table in Figure 4.7 shows that we computed the deviation
scores for our previous creativity scores by subtracting the mean of 4 from each score.
In the polygon in Figure 4.7 the axis is labeled twice, once using each creativity score
and, underneath, using its corresponding deviation score. Thus, you can see that a posi-
tive deviation indicates that the raw score is larger than the mean and graphed to the
right of the mean. A negative deviation indicates that the score is less than the mean
and graphed to the left of the mean. The size of the deviation (regardless of its sign) in-
dicates the distance the raw score lies from the mean: the larger the deviation, the
farther into the tail the score is from the mean. A deviation of 0 indicates that an indi-
vidual’s raw score equals the mean.

Now you can see why the mean is the mathematical center of any distribution. If we
add together all of the positive deviations we have the total distance that some scores are
above the mean. Adding all of the negative deviations, we have the total distance that
other scores are below the mean. If we add all of the positive and negative deviations
together, we have what is called the sum of the deviations around the mean. As in the
table in Figure 4.7, the total of the positive deviations will always equal the total of the
negative deviations. Therefore:

The sum of the deviations around the mean always equals zero.

Thus, the mean is the center of a distribution because, in total, it is an equal distance
form the scores above and below it. Therefore, the half of the distribution that is below
the mean balances with the half of the distribution that is above the mean.

The sum of the deviations around the mean always equals zero, regardless of the
shape of the distribution. For example, in the skewed sample of 4, 5, 7 and 20, the mean
is 9, which produces deviations of , , , and , respectively. Their sum is
again zero.

Some of the formulas you will see in later chapters involve something similar 
to computing the sum of the deviations around the mean. The statistical code for

finding the sum of the deviations around the mean is . Al-
ways work inside parentheses first, so this says to first find the devia-
tion for each score, The indicates to then find the sum 
of the deviations. Thus, say we have the scores 3, 4, 6, and 7. With

, then , which equals
zero.

REMEMBER is the symbol for the sum of the devia-
tions around the mean.

Σ1 X 2 X 2

1  1 1  2Σ1X 2 X 2  5  22 1  21X 5  5

Σ1X 2 X 2 .

Σ1X 2 X 2

111222425

X

Score Minus Score Equals Deviation

1 4
2 4
3 4
3 4
4 4
4 4
4 4
5 4
5 4
6 4
7 4
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1252

1152

1152
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2152

2152

2252

2352

FIGURE 4.7

Deviations Around the Mean

The mean is subtracted from each score,
resulting in the score’s deviation.
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The importance of the sum of the deviations equaling zero is that this makes the
mean the score that, literally, everyone in the sample scored around, with scores above
or below it to the same extent. Therefore, we think of the mean as the typical score be-
cause it more or less describes everyone’s score, with the same amounts of more and
less. This is why the mean is such a useful tool for summarizing a distribution. It is also
why we use the mean when we are predicting any individual scores.

Using the Mean to Predict Scores

Recall that a goal of behavioral science is to predict a behavior in a particular situation.
This translates into predicting the scores found in that situation. When we don’t know
anything else, the mean is our best prediction about the score that any individual ob-
tains. Because it is the central, typical score, we act as if all the scores were the mean
score, and so we predict that score every time. This is why, if the class average on an
exam is 80, you would predict that each student’s grade is 80. Further, for any students
who were absent, you’d predict that they will score an 80 as well. Likewise, if your
friend has a B average in college, you would predict that he or she received a B in every
course. For any future course, you’d also predict a B.

However, not every score in a sample will equal the mean, so our predictions will
sometimes be wrong. To measure the amount of our error when predicting unknown
scores, we measure how well we can predict the known scores in our data. The amount
of error in any single prediction is the difference between what someone actually gets

and what we predict he or she gets . In symbols, this difference is . We’ve
seen that this is called a deviation, but alter your perspective here: In this context, a de-
viation is the amount of error we have when we predict the mean as someone’s score.

REMEMBER When we use the mean to predict scores, a deviation 
indicates our error: the difference between the we predict for someone and
the that he or she actually gets.

If we determine the amount of error in every prediction, our total error is equal to the
sum of the deviations. As we’ve seen, in any data the sum of the deviations is always
zero. Thus, by predicting the mean score every time, the errors in our predictions will,
over the long run, cancel out to equal zero. For example, the test scores 70, 75, 85, and
90 have a of 80. One student scored the 70, but we would predict he scored 80, so we
would be wrong by . But, another student scored the 90; by predicting an 80 for
her, we would be off by In the same way, our errors for the sample will cancel out
so that the total error is zero. Likewise, we assume that other participants will behave
similarly to those in our sample, so that using the mean to predict any unknown scores
should also result in a total error of zero.

If we predict any score other than the mean, the total error will be greater than zero.
A total error of zero means that, over the long run, we overestimate by the same amount
that we underestimate. A basic rule of statistics is that if we can’t perfectly describe
every score, then the next best thing is to have our errors balance out. There is an old
joke about two statisticians shooting at a target. One hits 1 foot to the left of the target,
and the other hits 1 foot to the right. “Congratulations,” one says. “We got it!” Like-
wise, if we cannot perfectly describe every score, then we want our errors—our over-
and underestimates—to balance out to zero. Only the mean provides this capability.

Of course, although our total error will equal zero, any individual prediction may be
very wrong. Later chapters will discuss how to reduce these errors. For now, however,

110.
210

X

X
X

1X 2 X 2

X 2 X1X 21X 2
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DESCRIBING THE POPULATION MEAN

Recall that ultimately we seek to describe the population of scores we would find in a
given situation. Populations are unwieldy, so we must also summarize them. Usually
we have interval or ratio scores that form at least an approximately normal distribution,
so we usually describe the population using the mean. 

The symbol for the mean of a population is the Greek letter (pronounced “mew”).
Thus, to indicate that the population mean is 143, we’d say that . The symbol

simply shows that we’re talking about a population instead of a sample, but a mean
is a mean, so a population mean has the same characteristics as a sample mean: is the
average score in the population, it is the center of the distribution, and the sum of the
deviations around equals zero. Thus, is the score around which everyone in the
population scored, it is the typical score, and it is the score that we predict for any indi-
vidual in the population.

REMEMBER The symbol for a population mean is .�

��

�
�

� 5 143
�

A  Q U I C K  R E V I E W

■ A deviation is the difference between a score and
the mean (or ) and indicates a score’s loca-
tion relative to the mean.

■ When using the mean to predict a score, the score’s
deviation indicates the amount of error in the
prediction. The total error over all such predictions
is , the sum of the deviations around the
mean, which equals zero.

MORE EXAMPLES

In some data, . Therefore, scores above 30
will produce positive deviations which will cancel out
with the negative deviations from the scores below the
mean, so that the sum of the deviations equals zero.
For every participant, we’d predict a score of 30. Over
the long run, our over- and under-estimates will can-
cel out. In symbols, each error is the difference be-
tween the actual and the that we predict, so theXX

X 5  30

Σ1X 2 X 2

1X 2 X 2
total error is the sum of the deviations, ,
which is zero.

For Practice

1. By performing , you are computing a ____.

2. By performing , you are computing ____.

3. By saying that , you are saying
that the mean is located ____ relative to the scores
in a sample.

4. By saying that , you are saying
that when predicting someone’s score is the mean,
our errors ____.

Answers
1. deviation
2. the sum of the deviations around the mean
3. in the center of the distribution
4. balance out to equal a total of zero 

Σ1X 2 X 2  5  0

Σ1X 2 X 2  5  0

Σ1X 2 X 2

X 2 X

Σ1X 2 X 2

remember that unless we have additional information about the scores, the mean is our
best prediction of any score.

REMEMBER We use the mean as everyone’s predicted score because, over
the long run, the over- and underestimates will cancel out so that the total er-
ror in our predictions equals zero.



How do we determine the value of If all the scores in the population are known to
us, we compute using the same formula that we used to compute :

Usually, however, a population is infinitely large, so we cannot directly compute .
Instead, we estimate based on the mean of a random sample. If, for example, a sam-
ple’s mean in a particular situation is 99, then, assuming the sample accurately repre-
sents the population, we would estimate that in this situation is also 99. We make
such an inference because it is a population with a mean of 99 that is most likely to pro-
duce a sample with a mean of 99. That is, a of 99 indicates a sample with mostly
scores around 99 in it. What population would be most likely to provide these scores?
The population containing mostly scores around 99—where the population mean is 99.
Thus, we assume that most scores in a sample are located where most scores in the pop-
ulation are located, so a sample mean is a good estimate of .

SUMMARIZING RESEARCH

Now you can understand how measures of central tendency are used in research. Usu-
ally we compute the mean because we have normally distributed interval or ratio
scores. Thus, we might compute the mean number of times our participants exhibit a
particular behavior, or compute their mean response to a survey question. In a correla-
tional study we compute their mean score on the variable and the mean score on the

variable. Using such means, we can describe the typical score and predict the scores
of other individuals, including those of the entire population.

Instead we might compute the median or the mode if we have other types of scores
or distributions. When considering the shape of the distribution, we are usually con-
cerned with the shape of distribution for the population, because ultimately that is what
we want to describe. How do we know its shape? The first step in conducting a study is
to read relevant published research reports. From these you will learn many things, in-
cluding what other researchers say about the population and how they compute central
tendency.

Summarizing an Experiment

We perform similar steps when summarizing the results of an experiment. Remember
though that the results that need summarizing are the scores from the dependent vari-
able. Therefore, it is the characteristics of the dependent scores that determine whether
we compute the mean, median, or mode.

REMEMBER The measure of central tendency to compute in an experiment
is determined by the type of scale used to measure the dependent variable.

Usually it is appropriate to compute the mean, and we do so for each condition of
the independent variable. For example, here is a very simple study. Say that we think
people will make more mistakes when recalling a long list of words than when recall-
ing a short list. We create three conditions of the independent variable of list length. In
one condition, participants read a list containing 5 words and then recall it. In another
condition, participants read a 10-item list and recall it, and in a third condition, they

Y
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read a 15-item list and recall it. For each participant, we measure the dependent vari-
able of number of errors made in recalling the list.

First, look at the individual scores shown in Table 4.1. A relationship is present here
because a different and higher set of error scores occurs in each condition. Most experi-
ments involve a much larger , however, so to see the relationship buried in the raw
scores, we compute a measure of central tendency. 

In our memory experiment, the variable of recall errors is a ratio variable that is as-
sumed to form an approximately normal distribution. Therefore, we compute the mean
score in each condition by computing the mean of the scores in each column. These
are shown under each column in Table 4.1.

Normally in a research report you will not see the individual raw scores. There-
fore, to interpret the mean in any study, simply envision the scores that would typi-
cally produce such a mean. For example, when , envision a normal distribution
of scores above and below 3, with most scores close to 3. Likewise, for each mean,
essentially envision the kinds of raw scores shown in our columns. Thus, the means
show that recalling a 5-item list resulted in one distribution located around three er-
rors, but recalling a 10-item list produced a different distribution at around six errors,
and recalling a 15-item list produced still another distribution at around nine errors.
Further, we use the mean score to describe the individual scores in each condition. 
In Condition 1, for example, we’d predict that any participant would make about 
three errors.

Most important is the fact that, by looking at the means alone, we see that a rela-
tionship is present here: as the conditions change (from 5 to 10 to 15 items in a list),
the scores on the dependent variable also change (from around 3, to around 6, to
around 9 errors, respectively). 

Note, however, that not all means must change for a relationship to be present. For
example, we might find that only the mean in the 5-item condition is different from
the mean in the 15-item condition. We still have a relationship if, at least sometimes,
as the conditions of the independent variable change, the dependent scores also
change.

REMEMBER We summarize an experiment usually by computing the mean
of the dependent scores in each condition. A relationship is present if the
means from two or more conditions are different.

The above logic also applies to the median or mode. For example, say that we study
political party affiliation as a function of a person’s year in college. Our dependent
variable is political party, a nominal variable, so the mode is the appropriate measure
of central tendency. We might see that freshmen most often claim to be Republican,
but the mode for sophomores is Democrat; for juniors, Socialist; and for seniors,
Communist. These data reflect a relationship because they indicate that as college
level changes, political affiliation tends to change. Likewise, say that the median

income for freshmen is lower than
the median income for sophomores,
which is lower than for upperclass-
men. This tells us that the location
of the distribution of incomes is dif-
ferent for each class, so we know
that the income “scores” of individ-
uals are changing as their year in
college changes.

X 5 3

N

Condition 1: Condition 2: Condition 3:
5-Item List 10-Item List 15-Item List

2 5 7
3 6 9
4 7 11

X 5 9X 5 6X 5 3

TABLE 4.1

Errors Made by
Participants Recalling a 
5-, 10-, or 15-Item List

The mean of each condition
is under each column. 



Graphing the Results of an Experiment

Recall that the independent variable involves the conditions “given” to participants so
it is plotted on the axis. The dependent variable is plotted on the axis. However, be-
cause we want to summarize the data, usually we do not plot the individual scores.
Rather, we plot either the mean, median, or mode of the dependent scores from each
condition.

REMEMBER Always plot the conditions of the independent variable on the 
axis and the mean, median, or mode of the dependent scores on the axis.

Note: Do not be confused by the fact that we use to represent the scores when
computing the means. We still plot them on the axis.

We complete the graph by creating either a line graph or a bar graph. The type of
graph to select is determined by the characteristics of the independent variable.

Line Graphs Create a line graph when the independent variable is an interval or a
ratio variable. In a line graph adjacent data points are connected with straight lines.

For example, our independent variable of list length involves a ratio scale. Therefore,
we create the line graph shown on the left in Figure 4.8. Note that the label on the 

axis is “mean recall errors.” Then we place a data point above the 5-item condition
opposite the mean of 3 errors, another data point above the 10-item condition at the
mean of 6 errors, and so on. We use straight lines to connect the data points here for the
same reason we did when producing polygons: Anytime the variable on the axis in-
volves an interval or ratio scale, we assume that it is a continuous variable and there-
fore we draw lines. The lines show that the relationship continues between the points
shown on the axis. For example, we assume that if there had been a 6-item list, the
mean error score would fall on the line connecting the means for the 5- and 10-item lists.
(The APA publication guidelines do not recommend using histograms to summarize
experiments.)

X

X

Y

Y
X

YX

YX
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FIGURE 4.8

Line graphs showing (A) the relationship for mean errors in recall as a function of list length and (B) the data points we
envision around each mean
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The previous Figure 4.8 conveys the same information as the means did back in
Table 4.3, where a different mean indicates a different distribution of scores. We envi-
sion these distributions as shown in the right-hand graph. Each mean implies a sample
of scores and their corresponding data points are around—above and below—the
mean’s data point. Because the vertical positions of the means change as the conditions
change, we know that the raw scores also change, so a relationship is present.

Notice that you can easily spot such a relationship because the different means pro-
duce a line graph that is not horizontal. On any graph, if the summary data points form
a line that is not horizontal, it indicates that the individual Y scores are changing as
the X scores change, so a relationship is present. On the other hand, say that each con-
dition had produced a mean of 5 errors. As shown below on the left in Figure 4.9, this
results in a horizontal (flat) line, indicating that as list length changes, the mean error
score stays the same. This implies that (as in the figure on the right) the individual
scores stay the same regardless of the condition, so no relationship is present. Thus, on
any graph, if the summary data points form a horizontal line, it indicates that the indi-
vidual Y scores do not change as the X scores change, and so a relationship is not
present.

Bar Graphs Create a bar graph when the independent variable is a nominal or an
ordinal variable. Notice that the rule here is the same as it was in Chapter 3: Create a
bar graph whenever the X scores are nominal or ordinal scores. With experiments, we
place a bar above each condition on the axis to the height on the axis that corre-
sponds to the mean for that condition. As usual, adjacent bars do not touch: Recall that
nominal or ordinal scales are discrete, meaning that you can have one score or the
other, but nothing in-between. The spaces between the bars communicate this.

For example, say that we compared the recall errors made by psychology majors,
English majors, and physics majors. The independent variable of college major is a
nominal variable, so we have the bar graph shown in Figure 4.10. Because the tops of
the bars do not form a horizontal line, we know that different means and thus different
scores occur in each condition. We can again envision that we would see individual er-
ror scores at around 8 for physics majors, around 4 for psychology majors, and around
12 for English majors. Thus, the scores change as a function of college major, so a rela-
tionship is present.

YX

FIGURE 4.9

Line graphs showing (A) no relationship for mean errors in recall as a function of list length and (B) the data points we
envision around each mean
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FIGURE 4.10

Bar graph showing mean
errors in recall as a func-
tion of college major

The height of each bar corre-
sponds to the mean score for
the condition.
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A  Q U I C K  R E V I E W

■ Graph the independent variable on the axis and
the mean, median, or mode of the dependent scores
on the Y axis.

■ Create a line graph when the independent variable
is interval or ratio; produce a bar graph when it is
nominal or ordinal.

MORE EXAMPLES

We ask males and females to rate their satisfaction
with an instructor and the mean scores are 20 and 30,
respectively. To graph this, gender is a nominal inde-
pendent variable, so plot a bar graph, with the labels
“male” and “female” on and the means for each on

. Instead, say we measure the satisfaction scores of
students tested with either a 10-, 40-, or 80-question
final exam and, because the scores form skewed dis-
tributions, compute the median scores. Test length is a
ratio independent variable, so plot a line graph, with
the labels 10, 40, and 80 on and the median of each
condition on .Y

X

Y
X

X For Practice

1. The independent variable is plotted on the ____
axis, and the dependent variable is plotted on 
the ____ axis.

2. A ____ shows a data point above each , with
adjacent data points connected with straight lines.

3. A ____ shows a discrete bar above each .

4. The characteristics of the ____ variable determine
whether to plot a line or bar graph.

5. Create a bar graph with ____ or ____ variables.

6. Create a line graph with ____ or ____ variables.

Answers
1.
2. line graph
3. bar graph
4. independent
5. nominal; ordinal
6. interval; ratio

X; Y

X

X

Note: In a different experiment we might have measured a nominal or an ordinal
dependent variable. In that case we would plot the mode or median on the axis for
each condition. Then, again depending on the characteristics of the independent vari-
able, we would create either a line or bar graph.

REMEMBER The scale of measurement of the dependent variable determines
the measure of central tendency to calculate. The scale of the independent
variable determines the type of graph to create.

Y
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Inferring the Relationship in the Population

Previously we summarized the results of our list-learning experiment in terms of the sam-
ple data. But this is only part of the story. The big question remains: Do these data reflect
a law of nature? Do longer lists produce more recall errors for everyone in the population?

Recall that to make inferences about the population, we must first compute the appro-
priate inferential statistics. Assuming that our data passed the inferential test, we can
conclude that each sample mean represents the population mean that would be found for
that condition. The mean for the 5-item condition was 3, so we infer that if everyone 
in the population recalled a 5-item list, the mean error score would be 3. Similarly,
if the population recalled a 10-item list, would equal the condition’s mean of 6, and if
the population recalled a 15-item list, would be 9. Because we are describing how the
scores change in the population, we are describing the relationship in the population.

In research publications, we essentially assume that a graph for the population
would be similar to our previous line graph of the sample data. However, so that you
can understand some statistical concepts we will discuss later, you should envision the
relationship in the population in the following way. Each sample mean provides a
good estimate of the corresponding , indicating approximately where on the depend-
ent variable each population would be located. Further, we’ve assumed that recall er-
rors are normally distributed. Thus, we can envision the relationship in the population
as the normal distributions shown in Figure 4.11. (Note: These are frequency distribu-
tions, so the dependent scores of recall errors are on the axis.) As the conditions of
the independent variable change, scores on the dependent variable increase so that
there is a different, higher population of scores for each condition. Essentially, the dis-
tributions change from one centered around 3 errors, to one around 6 errors, to one
around 9 errors. (The overlap among the distributions simply shows that some people
in one condition make the same number of errors as other people in adjacent condi-
tions.) On the other hand, say that the sample means from our conditions were the
same, such as all equal to 5. Then we would envision the one, same population of
scores, located at the of 5, that we’d expect regardless of our conditions.

Remember that the population of scores reflects the behavior of everyone. If, as the
independent variable changes, everyone’s behavior changes, then we have learned
about a law of nature involving that behavior. Above, we believe that everyone’s recall
behavior tends to change as list length changes, so we have evidence of how human
memory generally works in this situation. That’s about all there is to it; we have basi-
cally achieved the goal of our research.

The process of arriving at the above conclusion sounds easy because it is easy. In
essence, statistical analysis of most experiments involves three steps: (1) Compute each
sample mean (and other descriptive statistics) to summarize the scores and the relation-
ship found in the experiment, (2) Perform the appropriate inferential procedure to de-
termine whether the data are representative, and (3) Determine the location of the

�

X

�

�
�
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FIGURE 4.11

Locations of populations
of error scores as a func-
tion of list length

Each distribution contains
the scores we would expect to
find if the population were
tested under a condition.

0 1 2 3 4 5 6 7 8 9 10 11 12
Recall errors

f

μ for 
5-item 

list

μ for 
10-item 

list

μ for 
15-item 

list



population of scores that you expect would be found for each condition by estimating
each . Once you’ve described the expected population for each condition, you are ba-
sically finished with the statistical analysis.

REMEMBER Envision a normal distribution located at the for each condi-
tion when envisioning the relationship in the population from an experiment.

STATISTICS IN PUBLISHED RESEARCH: USING THE MEAN

When reading a research article, you may be surprised by how seldom the word rela-
tionship occurs. The phrase you will see instead is “a difference between the means.”
As we saw, when the means from two conditions are different numbers, then each con-
dition is producing a different batch of scores, so a relationship is present. Thus, re-
searchers often communicate that they have found a relationship by saying that they
have found a difference between two or more means. If they have not found a relation-
ship, then they say no difference was found.

One final note: Research journals that follow APA’s publication guidelines do not use
the statistical symbol for the sample mean ( ). Instead, the symbol is . When describ-
ing the population mean, however, is used. (For the median, is used.)Mdn�

MX

�

�

Chapter Summary 79

The mean is the measure of central tendency in behavioral research. You should under-
stand the mode and the median, but the most important topics in this chapter involve
the mean, because they form the basis for virtually everything else that we will discuss.
In particular, remember that the mean is the basis for interpreting most studies. You will
always want to say something like “the participants scored around 3” in a particular
condition because then you are describing their typical behavior in that situation. Thus,
regardless of what other fancy procedures we discuss, remember that to make sense out
of your data you must ultimately return to identifying around where the scores in each
condition are located.

Using the SPSS Appendix: See Appendix B.3 to compute the mean, median, and
mode for one sample of data, along with other descriptive statistics we’ll discuss. For
experiments, we will obtain the mean for each condition as part of performing the
experiment’s inferential procedure.

CHAPTER SUMMARY

1. Measures of central tendency summarize the location of a distribution on a
variable, indicating where the center of the distribution tends to be.

2. The mode is the most frequently occurring score or scores in a distribution. It is
used primarily to summarize nominal data.

3. The median, symbolized by Mdn, is the score at the 50th percentile. It is used
primarily with ordinal data and with skewed interval or ratio data.

4. The mean is the average score located at the mathematical center of a distribution.
It is used with interval or ratio data that form a symmetrical, unimodal distri-
bution, such as the normal distribution. The symbol for a sample mean is , and
the symbol for a population mean is .�

X

PUTTING IT 
ALL TOGETHER
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5. Transforming raw scores by using a constant results in a new value of the mean,
median, or mode that is equal to the one that would be obtained if the transforma-
tion were performed directly on the old value.

6. The amount a score deviates from the mean is computed as .

7. The sum of the deviations around the mean, , equals zero. This makes
the mean the best score to use when predicting any individual score, because the
total error across all such estimates will equal zero.

8. In graphing the results of an experiment, the independent variable is plotted on the 
axis and the dependent variable on the axis. A line graph is created when the in-

dependent variable is measured using a ratio or an interval scale. A bar graph is cre-
ated when the independent variable is measured using a nominal or an ordinal scale.

9. On a graph, if the summary data points form a line that is not horizontal, then the
individual scores change as a function of changes in the scores, and a relation-
ship is present. If the data points form a horizontal line, then the scores do not
change as a function of changes in the scores, and a relationship is not present.

10. A random sample mean is the best estimate of the corresponding population’s
mean . The in each condition of an experiment is the best estimate of the 
that would be found if the population was tested under that condition.

11. We conclude that a relationship in the population is present when we infer
different values of , implying different distributions of dependent scores, for two
or more conditions of the independent variable.

�

�X1� 2
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Mdn   
bar graph 76
bimodal distribution 62
deviation 69
line graph 75
mean 66

�Σ1X 2 X 2XΣX measure of central tendency 61
median 63
mode 62
sum of the deviations around the mean 70
sum of 60
unimodal distribution 62
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REVIEW QUESTIONS

(Answers for odd-numbered problems are in Appendix D.)

1. What does a measure of central tendency indicate?
2. What two aspects of the data determine which measure of central tendency to use?
3. What is the mode, and with what type of data is it most appropriate?
4. What is the median, and with what type of data is it most appropriate?
5. What is the mean, and with what type of data is it most appropriate?
6. Why is it best to use the mean with a normal distribution?
7. Why is it inappropriate to use the mean with a skewed distribution?
8. Which measure of central tendency is used most often in behavioral research? Why?
9. What two pieces of information about the location of a score does a deviation

score convey?



10. Why do we use the mean of a sample to predict any score that might be found in
that sample?

11. (a) What is the symbol for a score’s deviation from the mean? (b) What is the
symbol for the sum of the deviations? (c) What does it mean to say “the sum of
the deviations around the mean equals zero”?

12. What is and how do we usually determine its value?

APPLICATION QUESTIONS

13. For the following data, compute (a) the mean and (b) the mode.

55 57 59 58 60 57 56 58 61 58 59

14. (a) In question 13, what is your best estimate of the median (without computing
it)? (b) Explain why you think your answer is correct. (c) Calculate the
approximate median using the method described in this chapter.

15. A researcher collected the following sets of data. For each, indicate the measure of
central tendency she should compute: (a) the following IQ scores: 60, 72, 63, 83,
68, 74, 90, 86, 74, and 80; (b) the following error scores: 10, 15, 18, 15, 14, 13, 42,
15, 12, 14, and 42; (c) the following blood types: O,
O, O, and (d) the following grades: B, D, C, A, B, F, C, B, C, D, and D.

16. You misplaced two of the scores in a sample, but you have the data indicated be-
low. What should you guess the missing scores to be? Why?

7 12 13 14 11 14 13 13 12 11

17. On a normal distribution of scores, four participants obtained the following
deviation scores: , 0, and (a) Which person obtained the lowest raw
score? How do you know? (b) Which person’s raw score had the lowest
frequency? How do you know? (c) Which person’s raw score had the highest
frequency? How do you know? (d) Which person obtained the highest raw
score? How do you know?

18. In a normal distribution of scores, five participants obtained the following devi-
ation scores: , and . (a) Which score reflects the highest raw
score? (b) Which score reflects the lowest raw score? (c) Rank-order the devia-
tion scores in terms of their frequency, starting with the score with the lowest
frequency.

19. For the following experimental results, interpret specifically the relationship
between the independent and dependent variables:

21015,2211,

11.13,25

AB1;
A2, A2, O, A1, AB2, A1,

�

Application Questions 81

1 5 6

Hours of sleep deprivation

25
20
15
10
5

30

30
35
40

2 4 7 8

M
ea

n 
nu

m
be

r 
of

 e
rr

or
s



82 CHAPTER 4 / Measures of Central Tendency: The Mean, Median, and Mode

20. (a) In question 19, give a title to the graph, using “as a function of.” (b) If you par-
ticipated in the study in question 19 and had been deprived of 5 hours of sleep,
how many errors do you think you would make? (c) If we tested all people in the
world after 5 hours of sleep deprivation, how many errors do you think each
would make? (d) What symbol stands for your prediction in part c?

21. Foofy says a deviation of is always better than a deviation of . Why is she
correct or incorrect?

22. You hear that a line graph of data from the Grumpy Emotionality Test slants
downward as a function of increases in the amount of sunlight present on the day
participants were tested. (a) What does this tell you about the mean scores for the
conditions? (b) What does this tell you about the raw scores for each condition? 
(c) Assuming the samples are representative, what does this tell you about the ’s?
(d) What do you conclude about whether there is a relationship between 
emotionality and sunlight in nature?

23. You conduct a study to determine the impact that varying the amount of noise 
in an office has on worker productivity. You obtain the following productivity
scores.

Condition 1: Condition 2: Condition 3:
Low Noise Medium Noise Loud Noise

15 13 12
19 11 9
13 14 7
13 10 8 

(a) Assuming that productivity scores are normally distributed ratio scores, com-
pute the summaries of this experiment. (b) Draw the appropriate graph for these
data. (c) Assuming that the data are representative, draw how we would envision
the populations produced by this experiment. (d) What conclusions should you
draw from this experiment?

24. Assume that the data in question 25 reflect a highly skewed interval variable. (a)
Compute the summaries of these scores. (b) What conclusion would you draw
from the sample data? (c) What conclusion would you draw about the populations
produced by this experiment?

INTEGRATION QUESTIONS

25. (a) How do you recognize the independent variable of an experiment? (b) How do
you recognize the dependent variable? (Ch. 2)

26. (a) What is the rule for when to make a bar graph in any type of study? (b)
Variables using what scales meet this rule? (c) How do you recognize such scales?
(d) What is the rule for when to connect data points with lines? (e) Variables using
what scales meet this rule? (f) How do you recognize such scales? (Chs. 2, 3)

27. When graphing the results of an experiment: (a) Which variable is plotted on the
axis? (b) Which variable is plotted on the axis. (c) When do you produce a bar

graph or a line graph? (Chs. 3, 4)
YX

�

2515



28. Foofy conducts an experiment in which participants are given 1, 2, 3, 4, 5, or 6
hours of training on a new computer statistics program. They are then tested on
the speed with which they can complete several analyses. She summarizes her
results by computing that the mean number of training hours per participant is 3.5,
and so she expects would also be 3.5. Is she correct? If not, what should she do?
(Chs. 2, 4)

29. For each of the experiments below, determine (1) which variable should be plotted
on the Y axis and which on the X axis, (2) whether the researcher should use a
line graph or a bar graph to present the data, and (3) how she should summarize
scores on the dependent variable: (a) a study of income as a function of age; (b) a
study of politicians’ positive votes on environmental issues as a function of the
presence or absence of a wildlife refuge in their political district; (c) a study of
running speed as a function of carbohydrates consumed; (d) a study of rates of
alcohol abuse as a function of ethnic group. (Chs. 2, 4)

30. Using independent and dependent: In an experiment, the characteristics of the
___________ variable determine the measure of central tendency to compute,
and the characteristics of the ___________ variable determine the type of graph 
to produce. (Chs. 2, 4)

■ ■ ■ SUMMARY OF 
FORMULAS

�

Integration Questions 83

1. The formula for the sample mean is

2. The formula for a score’s deviation is X 2 X

X 5  
ΣX

N

3. To estimate the median, arrange the scores in
rank order. If is an odd number, the score in
the middle position is roughly the median. If is
an even number, the average of the two scores in
the middle positions is roughly the median.   

N
N
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So far you’ve learned that applying descriptive statistics involves considering the shape
of the frequency distribution formed by the scores and then computing the appropriate
measure of central tendency. This information simplifies the distribution and allows
you to envision its general properties.

But not everyone will behave in the same way, and so there may be many, very dif-
ferent scores. Therefore, to have a complete description of any set of data, you must
also answer the question “Are there large differences or small differences among the
scores?” This chapter discusses the statistics for describing the differences among
scores, which are called measures of variability. The following sections discuss (1) the
concept of variability, (2) how to compute statistics that describe variability, and 
(3) how to use these statistics in research.

First, though, here are a few new symbols and terms.

NEW STATISTICAL NOTATION

A new symbol you’ll see is , which indicates to find the sum of the squared :
First square each and then find the sum of the squared . Thus, to find for the
scores 2, 2, and 3, we have , which becomes , which equals 17.

We have a similar looking operation called the squared sum of that is symbolized
by . Work inside the parentheses first, so first find the sum of the scores and
then square that sum. Thus, to find for the scores 2, 2, and 3, we have

, which is , which is 49. Notice that for the same scores of 2, 2, and
3, produced 17, while produced the different answer of 49. Be careful when
dealing with these terms.

1ΣX 22ΣX2
17 2212 1  2 1  3 22

1ΣX 22
X1ΣX2 2

X
4 1 4 1 922 1 22 1 32

ΣX2XsX
XsΣX2

Measures of Variability:
Range, Variance, and 
Standard Deviation5

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 4, what the mean is, what and stand for, and what 
deviations are.

Your goals in this chapter are to learn

■ What is meant by variability.

■ What the range indicates.

■ When the standard deviation and variance are used and how to interpret them.

■ How to compute the standard deviation and variance when describing a sample,
when describing the population, and when estimating the population.

■ How variance is used to measure errors in prediction and what is meant by
accounting for variance.

�X



REMEMBER indicates the sum of squared Xs, and indicates the
squared sum of X.

With this chapter we begin using subscripts. Pay attention to subscripts because they
are part of the symbols for certain statistics.

Finally, some statistics will have two different formulas, a definitional formula and a
computational formula. A definitional formula defines a statistic and helps you to un-
derstand it. Computational formulas are the formulas to use when actually computing a
statistic. Trust me, computational formulas give exactly the same answers as defini-
tional formulas, but they are much easier and faster to use.

WHY IS IT IMPORTANT TO KNOW ABOUT MEASURES OF VARIABILITY?

Computing a measure of variability is important because without it a measure of cen-
tral tendency provides an incomplete description of a distribution. The mean, for exam-
ple, only indicates the central score and where the most frequent scores are. You can
see what’s missing by looking at the three samples in Table 5.1. Each has a mean of 6,
so if you didn’t look at the distributions, you might think that they are identical. How-
ever, sample A contains scores that differ greatly from each other and from the mean.
Sample B contains scores that differ less from each other and from the mean. In sample
C no differences occur among the scores.

Thus, to completely describe a set of data, we need to know not only the central ten-
dency but also how much the individual scores differ from each other and from the cen-
ter. We obtain this information by calculating statistics called measures of variability.
Measures of variability describe the extent to which scores in a distribution differ
from each other. With many, large differences among the scores, our statistic will be a
larger number, and we say the data are more variable or show greater variability.

Measures of variability communicate three related aspects of the data. First, the
opposite of variability is consistency. Small variability indicates few and/or small
differences among the scores, so the scores must be consistently close to each other
(and reflect that similar behaviors are occurring). Conversely, larger variability indi-
cates that scores (and behaviors) were inconsistent. Second, recall that a score indicates
a location on a variable and that the difference between two scores is the distance that
separates them. From this perspective, by measuring differences, measures of variabil-
ity indicate how spread out the scores and the distribution are. Third, a measure of vari-
ability tells us how accurately the measure of central tendency describes the
distribution. Our focus will be on the mean, so the greater the variability, the more the

scores are spread out, and the less accurately they are summarized
by the one, mean score. Conversely, the smaller the variability, the
closer the scores are to each other and to the mean.

Thus, by knowing the variability in the samples in Table 5.1,
we’ll know that sample C contains consistent scores (and behav-
iors) that are close to each other, so 6 accurately represents them.
Sample B contains scores that differ more—are more spread out—
so they are less consistent, and so 6 is not so accurate a summary.
Sample A contains very inconsistent scores that are spread out far
from each other, so 6 does not describe most of them.

You can see the same aspects of variability with larger distribu-
tions. For example, consider the three distributions in Figure 5.1

1ΣX 22ΣX 2
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TABLE 5.1

Three Different Distributions 
Having the Same Mean Score

Sample A Sample B Sample C

0 8 6
2 7 6
6 6 6
10 5 6
12 4 6

X 5 6X 5 6X 5 6
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A  Q U I C K  R E V I E W

■ Measures of variability describe the amount that
scores differ from each other.

■ When scores are variable, we see frequent and/or
large differences among the scores, indicating that
participants are behaving inconsistently.

MORE EXAMPLES

If a survey produced high variability, then each person
had a rather different answer—and score—than the

next. This produces a wide normal curve. If the variabil-
ity on an exam is small, then many students obtained
either the same or close to the same score. This produces
a narrow normal curve.

For Practice

1. When researchers measure the differences among
scores, they measure ____.

2. The opposite of variability is ____.

continued

using our a “parking lot approach.” If our statistics indicate very small variability, we
should envision a polygon similar to Distribution A: It is narrow or “skinny” because
most people in the parking lot are standing in line at their scores close to the mean
(with few at, say, 45 and 55). We envision such a distribution, because it produces
small differences among the scores, and thus will produce a measure of variability
that is small. However, a relatively larger measure of variability indicates a polygon
similar to Distribution B: It is more spread out and wider, because longer lines of
people are at scores farther above and below the mean (more people scored near 45
and 55). This will produce more frequent and/or larger differences among the scores
and this produces a measure of variability that is larger. Finally, very large variability
suggests a distribution similar to Distribution C: It is very wide because people 
are standing in long lines at scores that are farther into the tails (scores near 45 and
55 occur very often). Therefore, frequently scores are anywhere between very low
and very high, producing many large differences, which produce a large measure of
variability.

REMEMBER Measures of variability communicate the differences among the
scores, how consistently close to the mean the scores are, and how spread out
the distribution is.

FIGURE 5.1

Three variations of the normal curve
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For example, the scores of 0, 2, 6, 10, 12 have a range of 12 0 12. The less vari-
able scores of 4, 5, 6, 7, 8 have a range of 8 4 4. The perfectly consistent sample
of 6, 6, 6, 6, 6 has a range of 6 6 0.

Thus, the range does communicate the spread in the data. However, the range is a
rather crude measure. It involves only the two most extreme scores it is based on the
least typical and often least frequent scores. Therefore, we usually use the range as our
sole measure of variability only with nominal or ordinal data.

With nominal data we compute the range by counting the number of categories we
have. For example, say we ask participants their political party affiliation: We have
greater consistency if only 4 parties are mentioned than if 14 parties are reported. With
ordinal data the range is the distance between the lowest and highest rank: If 100 run-
ners finish a race spanning only the positions from first through fifth, this is a close race
with many ties; if they span 75 positions, the runners are more spread out.

It is also informative to report the range along with the following statistics that are
used with interval and ratio scores.

UNDERSTANDING THE VARIANCE AND STANDARD DEVIATION

Most behavioral research involves interval or ratio scores that form a normal distribu-
tion. In such situations (when the mean is appropriate), we use two similar measures of
variability, called the variance and the standard deviation.

Understand that we use the variance and the standard deviation to describe how dif-
ferent the scores are from each other. We calculate them, however, by measuring how
much the scores differ from the mean. Because the mean is the center of a distribution,
when scores are spread out from each other, they are also spread out from the mean.
When scores are close to each other, they are also close to the mean.

This brings us to an important point. The mean is the score around which a distribu-
tion is located. The variance and standard deviation allow us to quantify “around.” For

52
52

52
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The formula for computing the range is

Range � highest score � lowest score 

THE RANGE

One way to describe variability is to determine how far the lowest score is from the
highest score. The descriptive statistic that indicates the distance between the two most
extreme scores in a distribution is called the range.

3. When the variability in a sample is large, are the
scores close together or very different from each
other?

4. If a distribution is wide or spread out, then the
variability is ____.

Answers
1. variability
2. consistency
3. different
4. large
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example, if the grades in a statistics class form a normal distribution with a mean of 80,
then you know that most of the scores are around 80. But are most scores between 79
and 81 or between 60 and 100? By showing how spread out scores are from the mean,
the variance and standard deviation define “around.”

REMEMBER The variance and standard deviation are two measures of vari-
ability that indicate how much the scores are spread out around the mean.

Mathematically, the distance between a score and the mean is the difference between
them. Recall from Chapter 4 that this difference is symbolized by , which is the
amount that a score deviates from the mean. Thus, a score’s deviation indicates how far
it is spread out from the mean. Of course, some scores will deviate by more than oth-
ers, so it makes sense to compute something like the average amount the scores deviate
from the mean. Let’s call this the “average of the deviations.” The larger the average of
the deviations, the greater the variability.

To compute an average, we sum the scores and divide by N. We might find the aver-
age of the deviations by first computing for each participant and then summing
these deviations to find . Finally, we’d divide by N, the number of deviations.
Altogether, the formula for the average of the deviations would be1

Average of the deviations

We might compute the average of the deviations using this formula, except for a big
problem. Recall that the sum of the deviations around the mean, , always
equals zero because the positive deviations cancel out the negative deviations. This
means that the numerator in the above formula will always be zero, so the average of
the deviations will always be zero. So much for the average of the deviations!

But remember our purpose here:We want a statistic like the average of the deviations
so that we know the average amount the scores are spread out around the mean. But,
because the average of the deviations is always zero, we calculate slightly more com-
plicated statistics called the variance and standard deviation. Think of them, however,
as each producing a number that indicates something like the average or typical amount
that the scores differ from the mean.

REMEMBER Interpret the variance and standard deviation as roughly indicat-
ing the average amount the raw scores deviate from the mean.

The Sample Variance

If the problem with the average of the deviations is that the positive and negative devia-
tions cancel out, then a solution is to square each deviation. This removes all negative
signs, so the sum of the squared deviations is not necessarily zero and neither is the av-
erage squared deviation.

By finding the average squared deviation, we compute the variance. The sample
variance is the average of the squared deviations of scores around the sample mean.
The symbol for the sample variance is . Always include the squared sign because it
is part of the symbol. The capital S indicates that we are describing a sample, and the
subscript indicates that it is computed for a sample of scores.XX

S2
X

Σ1X 2 X 2

5
Σ1X 2 X 2

N

Σ1X 2 X 2
X 2 X

X – X

1In advanced statistics there is a very real statistic called the “average deviation.” This isn’t it.



REMEMBER The symbol stands for the variance in a sample of scores.

The formula for the variance is similar to the previous formula for the average deviation
except that we add the squared sign. The definitional formula for the sample variance is

Although we will see a better, computational formula later, we will use this one now
so that you understand the variance. Say that we measure the ages of some children, as
shown in Table 5.2. The mean age is 5 so we first compute each deviation by subtract-
ing this mean from each score. Next, we square each deviation. Then adding the
squared deviations gives , which here is 28. The N is 7, so

Thus, in this sample, the variance equals 4. In other words, the average squared devia-
tion of the age scores around the mean is 4.

The good news is that the variance is a legitimate measure of variability. The bad news,
however, is that the variance does not make much sense as the “average deviation.” There
are two problems. First, squaring the deviations makes them very large, so the variance is
unrealistically large. To say that our age scores differ from their mean by an average of 4
is silly because not one score actually deviates from the mean by this much. The second
problem is that variance is rather bizarre because it measures in squared units. We meas-
ured ages, so the scores deviate from the mean by 4 squared years (whatever that means!).

Thus, it is difficult to interpret the variance as the “average of the deviations.” The vari-
ance is not a waste of time, however, because it is used extensively in statistics. Also, vari-
ance does communicate the relative variability of scores. If one sample has and
another has , you know that the second sample is more variable because it has a
larger average squared deviation. Thus, think of variance as a number that generally com-
municates how variable the scores are:The larger the variance, the more the scores are
spread out.

The measure of variability that more directly communicates the “average of the de-
viations” is the standard deviation.

The Sample Standard Deviation

The sample variance is always an unrealistically large number because we square each
deviation. To solve this problem, we take the square root of the variance. The answer is
called the standard deviation. The sample standard deviation is the square root of the

S2
X 5 3

S2
X 5 1

S2
X 5

Σ1X 2 X 22

N
5

28

7
5 4

Σ1X 2 X 22

S2
X 5

Σ1X 2 X 22

N

S2
X
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Participant Age Score – �

1 2 – 5 � –3 9
2 3 – 5 � –2 4
3 4 – 5 � –1 1
4 5 – 5 � 0 0
5 6 – 5 � 1 1
6 7 – 5 � 2 4
7 8 – 5 � 3 9

N 7 Σ1X 2 X 22 5 285

1X 2 X 221X 2 X 2X
TABLE 5.2

Calculation of Variance
Using the Definitional
Formula
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sample variance. (Technically, the standard deviation equals the square root of the av-
erage squared deviation! But that’s why we’ll think of it as somewhat like the “average
deviation”.) Conversely, squaring the standard deviation produces the variance.

The symbol for the sample standard deviation is (which is the square root of the
symbol for the sample variance: ).

REMEMBER The symbol stands for the sample standard deviation.

To create the definitional formula here, we simply add the square root sign to the pre-
vious defining formula for variance. The definitional formula for the sample standard
deviation is

The formula shows that to compute SX we first compute everything inside the square
root sign to get the variance. In our previous age scores the variance was 4. Then we
find the square root of the variance to get the standard deviation. In this case,

so

The standard deviation of the age scores is 2.
The standard deviation is as close as we come to the “average of the deviations,” and

there are three related ways to interpret it. First, our of 2 indicates that the age scores
differ from the mean by an “average” of 2. Some scores deviate by more and some by
less, but overall the scores deviate from the mean by close to an average of 2. Further,
the standard deviation measures in the same units as the raw scores, so the scores differ
from the mean age by an “average” of 2 years.

Second, the standard deviation allows us to gauge how consistently close together
the scores are and, correspondingly, how accurately they are summarized by the mean.
If is relatively large, then we know that a large proportion of scores are relatively far
from the mean. If is small, then more of the scores are close to the mean, and rela-
tively few are far from it.

And third, the standard deviation indicates how much the scores below the mean de-
viate from it and how much the scores above the mean deviate from it, so the standard
deviation indicates how much the scores are spread out around the mean. To see this,
we find the scores at “plus 1 standard deviation from the mean” and “minus 1
standard deviation from the mean” . For example, our age scores of 2, 3, 4, 5, 6,
7, and 8 produced and , The score that is from the mean is the score
at , or 7. The score that is from the mean is the score at , or 3. Looking
at the individual scores, you can see that it is accurate to say that the majority of the
scores are between 3 and 7.

REMEMBER The standard deviation indicates the “average deviation” from
the mean, the consistency in the scores, and how far scores are spread out
around the mean.

In fact, the standard deviation is mathematically related to the normal curve so that
computing the scores at and is especially useful. For example, say that in11SX–1SX

5 – 2–1SX5 1 2
11SXSX 5 2X 5 5

1–1SX 2
111SX 2

SX

SX

SX

SX 5  2 

SX 5 14

SX 5  
B

Σ1X 2 X 22

N

SX

2S2
X 5 SX

SX



the statistics class with a mean of 80, the is 5. The score at is 75,
and the score at is 85. Figure 5.2 shows about where these scores are
located on a normal distribution.

(Here is how to visually locate about where the scores at and are on any
normal curve. Above the scores close to the mean, the curve forms a downward convex
shape . As you travel toward each tail, the curve changes its pattern to an upward
convex shape The points at which the curve changes its shape are called inflection
points. The scores under the inflection points are the scores that are 1 standard devia-
tion away from the mean.)

Now here’s the important part: These inflection points produce the characteristic bell
shape of the normal curve so that about 34% of the area under the curve is always be-
tween the mean and the score that is at an inflection point. Recall that area under the
curve translates into the relative frequency of scores. Therefore, about 34% of the
scores in a normal distribution are between the mean and the score that is 1 standard
deviation from the mean. Thus, in Figure 5.2, approximately 34% of the scores are be-
tween 75 and 80, and 34% of the scores are between 80 and 85. Altogether, about 68%
of the scores are between the scores at and from the mean. Thus, 68% of
the statistics class has scores between 75 and 85. Conversely, about 16% of the scores
are in the tail below 75, and 16% are above 85. Thus, saying that most scores are be-
tween 75 and 85 is an accurate summary because the majority of scores (68%) are here.

REMEMBER Approximately 34% of the scores in a normal distribution are
between the mean and the score that is 1 standard deviation from the mean.

In summary, here is how the standard deviation (and variance) add to our description
of a distribution. If we know that data form a normal distribution and that, for example,
the mean is 50, then we know where the center of the distribution is and what the typi-
cal score is. With the variability, we can envision the distribution. For example, Figure
5.3 shows the three curves you saw at the beginning of this chapter. Say that I tell you
that is 4. This indicates that participants who did not score 50 missed it by an “aver-
age” of 4 and that most (68%) of the scores fall in the relatively narrow range between
46 and . Therefore, you should envision something like Distribu-
tion A:The high-frequency raw scores are bunched close to the mean, and the middle
68% of the curve is the narrow slice between 46 and 54. If, however, is 7, you know
that the scores are more inconsistent because participants missed 50 by an “average” of
7, and 68% of the scores fall in the wider range between 43 to 57. Therefore, you’d en-
vision Distribution B: A larger average deviation is produced when scores further above

SX

54 150 1 4 2150 2 4 2

SX

21SX11SX

1´ 2
1> 2

11SX–1SX

80 – 5 1at 11SX 2
80 – 5 1at 2 1SX 2SX
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FIGURE 5.2

Normal distribution
showing scores at plus 
or minus 1 standard 
deviation

With , the score of 75
is at , and the score of
85 is at . The percent-
ages are the approximate
percentages of the scores
falling into each portion of
the distribution.

11SX

–1SX

SX 5 5

f

0

34%              34%

68%
16%16%

X

75 80 85

– 1SX +1SX
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or below the mean have higher frequency, so the high-frequency part of the distribution
is now spread out between 43 and 57. Lastly, say that is 12; you know that large/-
frequent differences occur, with participants missing 50 by an “average” of 12 points,
so 68% of the scores are between 38 and 62. Therefore, envision Distribution C: Scores
frequently occur that are way above or below 50, so the middle 68% of the distribution
is relatively wide and spread out between 38 and 62.

SX

FIGURE 5.3

Three variations of the normal curve

0
Scores Scores

f

Distribution A Distribution B

f

Scores

Distribution C

f

30 35 40 45 50 55 60 65 70

S   = 4

0 30 35 40 45 50 55 60 65 70 75 0 30 35 40 45 50 55 60 65 70 7525

X

X

S   = 7X

X X
+S  X

+S  X

S   = 12X–S
–SX

X

–SX +SX
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■ The sample variance and the sample standard 
deviation are the two statistics to use with the
mean to describe variability.

■ The standard deviation is interpreted as the average
amount that scores deviate from the mean.

MORE EXAMPLES

For the the scores 5, 6, 7, 8, 9, the 7. The vari-
ance is the average squared deviation of the
scores around the mean (here, ). The standard
deviation is the square root of the variance. is in-
terpreted as the average deviation of the scores: Here,

, so when participants missed the mean,
they were above or below 7 by an “average” of 1.41.
Further, in a normal distribution, about 34% of the
scores would be between the and .
About 34% of the scores would be between the and

.

For Practice

1. The symbol for the sample variance is ____.

2. The symbol for the sample standard deviation 
is ____.

5.59 17 2 1.41 2
X

8.41 17 1 1.41 2X

SX 5 1.41

SX

SX 5 2
1S 2

X 2
X 5

1SX 2
1S2

X 2 3. What is the difference between computing the
standard deviation and the variance?

4. In sample A, ; in sample B, .
Sample A is ____ (more/less) variable and most
scores tend to be ____ (closer to/farther from) the
mean.

5. If and , then 68% of the scores fall 
between ____ and ____.

Answers
1.
2.
3. The standard deviation is the square root of the variance.
4. less; closer
5. 8; 12

SX

S2
X

SX 5 2X 5 10

SX 5 11.41SX 5 6.82



Use this formula only when describing a sample. It says to first find , then square
that sum, and then divide by N. Subtract that result from . Finally, divide by N again.

For example, for our age scores in Table 5.3, the is 35, is 203, and N is 7.
Putting these quantities in the formula, we have

The squared sum of is , which is 1225, so

Now, 1225 divided by 7 equals 175, so

Because 203 minus 175 equals 28, we have

Finally, after dividing, we have

Thus, again, the sample variance for these age scores is 4.
Do not read any further until you can work this formula!

S2
X 5 4

S2
X 5

28

7

S2
X 5

203 2 175

7

S2
X 5

203 2
1225

7

7

352X

S2
X 5

ΣX2 2
1ΣX 22

N

N
5

203 2
135 22

7

7

ΣX2ΣX
ΣX2

©X
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COMPUTING THE SAMPLE VARIANCE AND SAMPLE STANDARD DEVIATION

The previous definitional formulas for the variance and standard deviation are impor-
tant because they show that the core computation is to measure how far the raw scores
are from the mean. However, by reworking them, we have less obvious but faster com-
putational formulas.

Computing the Sample Variance

The computational formula for the sample variance is derived from its previous defini-
tional formula: we’ve replaced the symbol for the mean with its formula and then re-
duced the components.

The computational formula for the sample variance is

S2
X 5

ΣX2 2
1ΣX 22

N

N

Score

2 4
3 9
4 16
5 25
6 36
7 49
8 64

� 35 � 203 ΣX2ΣX

X2X

TABLE 5.3

Calculation of Variance
Using the Computational
Formula
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Computing the Sample Standard Deviation

The computational formula for the standard deviation merely adds the square root sym-
bol to the previous formula for the variance.

The computational formula for the sample standard deviation is

SX 5
R

ΣX2 2
1ΣX 22

N

N

Use this formula only when computing the sample standard deviation. For example, for
the age scores in Table 5.3, we saw that is 35, is 203, and N is 7. Thus,

As we saw, the computations inside the square root symbol produce the variance,
which is 4, so we have

After finding the square root, the standard deviation of the age scores is

Finally, be sure that your answer makes sense when computing (and ). First,
variability cannot be a negative number because you are measuring the distance scores
are from the mean, and the formulas involve squaring each deviation. Second, watch
for answers that don’t fit the data. For example, if the scores range from 0 to 50, the
mean should be around 25. Then the largest deviation is about 25, so the “average” de-
viation will be much less than 25. However, it is also unlikely that is something like
.80: If there are only two deviations of 25, imagine how many tiny deviations it would
take for the average to be only .80.

Strange answers may be correct for strange distributions, but always check whether
they seem sensible. A rule of thumb is

For any roughly normal distribution, the standard deviation should equal
about one-sixth of the range.

SX

S2
XSX

SX 5 2

SX 5 24

SX 5
R

203 2
135 22

7

7

ΣX2ΣX
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■ indicates to find the sum of the squared Xs.
■ indicates to find the squared sum of  X.

MORE EXAMPLES

For the scores 5, 6, 7, 8, 9:

1ΣX 22
ΣX2 1. To find the variance,

continued

N 5 5

ΣX2 5 52 1 62 1 72 1 82 1 92 5 255

ΣX 5 5 1 6 1 7 1 8 1 9 5 35



Mathematical Constants and the Standard Deviation

As discussed in Chapter 4, sometimes we transform scores by either adding, subtracting,
multiplying, or dividing by a constant. What effects do such transformations have on the
standard deviation and variance? The answer depends on whether we add (subtracting is
adding a negative number) or multiply (dividing is multiplying by a fraction).

Adding a constant to all scores merely shifts the entire distribution to higher or lower
scores. We do not alter the relative position of any score, so we do not alter the spread in
the data. For example, take the scores 4, 5, 6, 7, and 8. The mean is 6. Now add the con-
stant 10. The resulting scores of 14, 15, 16, 17, and 18 have a mean of 16. Before the
transformation, the score of 4 was 2 points away from the mean of 6. In the transformed
data, the score is now 14, but it is still 2 points away from the new mean of 16. In the
same way, each score’s distance from the mean is unchanged, so the standard deviation
is unchanged. If the standard deviation is unchanged, the variance is also unchanged.

Multiplying by a constant, however, does alter the relative positions of scores and
therefore changes the variability. If we multiply the scores 4, 5, 6, 7, and 8 by 10, they
become 40, 50, 60, 70, and 80. The original scores that were 1 and 2 points from the
mean of 6 are now 10 and 20 points from the new mean of 60. Each transformed score
produces a deviation that is 10 times the original deviation, so the new standard devia-
tion is also 10 times greater. (Note that this rule does not apply to the variance. The new
variance will equal the square of the new standard deviation.)

REMEMBER Adding or subtracting a constant does not alter the variability of
scores, but multiplying or dividing by a constant does alter the variability.

THE POPULATION VARIANCE AND THE POPULATION STANDARD DEVIATION

Recall that our ultimate goal is to describe the population of scores. Sometimes re-
searchers will have access to a population of scores, and then they directly calculate

The Population Variance and the Population Standard Deviation 95

so

2. To find the standard deviation, perform the above
steps and then find the square root, so

5 22.00 5 1.41

SX 5
R

ΣX2 – 
1ΣX 22

N

N
5
R

255 2
1225

5

5

S2
X 5

10

5
5 2.00

5
225 2 245

5
S2

X 5

255 2
1225

5

5

S2
X 5

ΣX2 2
1ΣX 22

N

N
5

255 2
135 22

5

5

For Practice

For the scores 2, 4, 5, 6, 6, 7:

1. What is ?

2. What is ?

3. What is the variance?

4. What is the standard deviation?

Answers
1.
2.

3.

4. SX 5 22.667 5 1.63

S 2
X 5

166 – 
900

6

6
5 2.667

22 1 42 1 52 1 62 1 72 5 166
130 22 5  900

ΣX2

1ΣX 22
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the actual population variance and standard deviation. The symbol for the known and
true population standard deviation is (the is the lowercase Greek letter s,
called sigma). Because the squared standard deviation is the variance, the symbol for
the true population variance is . (In each case, the subscript indicates a popula-
tion of scores.)

The definitional formulas for and are similar to those we saw for a sample:

Population Standard Deviation Population Variance

The only novelty here is that we determine how far each score deviates from the popu-
lation mean, . Otherwise the population standard deviation and variance tell us ex-
actly the same things about the population that we saw previously for a sample: Both
are ways of measuring how much, “on average,” the scores differ from , indicating
how much the scores are spread out in the population. And again, 34% of the popula-
tion will have scores between and the score that is above , and another 34%
will have scores between and the score that is below , for a total of 68%
falling between these two scores.

REMEMBER The symbols and are used when describing the known
true population variability.

The previous defining formulas are important for showing you what and are.
We won’t bother with their computing formulas, because these symbols will appear for
you only as a given, when much previous research allows us to know their values.

However, at other times, we will not know the variability in the population. Then we
will estimate it using a sample.

Estimating the Population Variance and Population
Standard Deviation

We use the variability in a sample to estimate the variability that we would find if we
could measure the population. However, we do not use the previous formulas for the
sample variance and standard deviation as the basis for this estimate. These statistics
(and the symbols and ) are used only to describe the variability in a sample. They
are not for estimating the corresponding population parameters.

To understand why this is true, say that we measure an entire population of scores
and compute its true variance. We then draw many samples from the population and
compute the sample variance of each. Sometimes a sample will not perfectly represent
the population so that the sample variance will be either smaller or larger than the pop-
ulation variance. The problem is that, over many samples, more often than not the sam-
ple variance will underestimate the population variance. The same thing occurs when
using the standard deviation.

In statistical terminology, the formulas for and are called the biased estima-
tors: They are biased toward underestimating the true population parameters. This is
a problem because, as we saw in the previous chapter, if we cannot be accurate, we at
least want our under- and overestimates to cancel out over the long run. (Remember
the statisticians shooting targets?) With the biased estimators, the under- and over-
estimates do not cancel out. Instead, they are too often too small to use as estimates of
the population.
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The sample variance and the sample standard deviation are perfectly ac-
curate for describing a sample, but their formulas are not designed for estimating
the population. To accurately estimate a population, we should have a sample of ran-
dom scores, so here we need a sample of random deviations. Yet, when we measure
the variability of a sample, we use the mean as our reference point, so we encounter
the restriction that the sum of the deviations must equal zero. Because of this, not
all deviations in the sample are “free” to be random and to reflect the variability
found in the population. For example, say that the mean of five scores is 6 and that four
of the scores are 1, 5, 7, and 9. Their deviations are , , �1, and �3, so the sum
of their deviations is . Therefore, the final score must be 8, because it must have a
deviation of �2 so that the sum of all deviations is zero. Thus, the deviation for this
score is determined by the other scores and is not a random deviation that reflects
the variability found in the population. Instead, only the deviations produced by the
four scores of 1, 5, 7, and 9 reflect the variability found in the population. The same
would be true for any four of the five scores. Thus, in general, out of the N scores in
a sample, only N � 1 of them (the N of the sample minus 1) actually reflect the vari-
ability in the population.

The problem with the biased estimators ( and ) is that these formulas divide by
. Because we divide by too large a number, the answer tends to be too small. Instead,

we should divide by � 1. By doing so, we compute the unbiased estimators of the
population variance and standard deviation. The definitional formulas for the unbiased
estimators of the population variance and standard deviation are

Estimated Population Variance Estimated Population Standard Deviation

Notice we can call them the estimated population standard deviation and the esti-
mated population variance. These formulas are almost the same as the previous
defining formulas that we used with samples: The standard deviation is again the
square root of the variance, and in both the core computation is to determine the
amount each score deviates from the mean and then compute something like an “aver-
age” deviation. The only novelty here is that, when calculating the estimated popula-
tion standard deviation or variance, the final division involves .

The symbol for the unbiased estimator of the standard deviation is the lowercase ,
and the symbol for the unbiased estimator of the variance is the lowercase . To keep
all of your symbols straight, remember that the symbols for the sample involve the cap-
ital or big , and in those formulas you divide by the “big” value of . The symbols for
estimates of the population involve the lowercase or small s, and here you divide by the
smaller quantity, � 1. Further, the small is used to estimate the small Greek called

. Finally, think of and as the inferential variance and the inferential standard de-
viation, because the only time you use them is to infer the variance or standard devia-
tion of the population based on a sample. Think of and as the descriptive variance
and standard deviation because they are used to describe the sample.

REMEMBER and describe the variability in a sample; and esti-
mate the variability in the population.

For future reference, the quantity is called the degrees of freedom. The degrees
of freedom is the number of scores in a sample that are free to reflect the variability in
the population. The symbol for degrees of freedom is df, so here .df 5 N – 1

N – 1
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In the final analysis, you can think of as simply a correction factor. Because
is a smaller number than , dividing by produces a slightly larger answer.

Over the long run, this larger answer will prove to be a more accurate estimate of the
population variability.

Computing the Estimated Population Variance 
and Standard Deviation

The only difference between the computational formula for the estimated population
variance and the previous computational formula for the sample variance is that here
the final division is by .N 2 1

N – 1NN – 1
N – 1

The computational formula for the estimated population 
variance is

S2
X 5

ΣX2 – 
1ΣX 22

N

N – 1

Notice that in the numerator we still divide by .
In previous examples, our age scores of 3, 5, 2, 4, 6, 7, and 8 produced ,

and . The was 7 so equals 6. Putting these quantities into the above
formula gives

Work through this formula the same way you did for the sample variance: is
1225, and 1225 divided by 7 equals 175, so

Now 203 minus 175 equals 28, so

and the final answer is

This answer is slightly larger than the sample variance for these age scores, which
was . Although 4 accurately describes the sample, we estimate the variance of
the population is 4.67. In other words, if we could compute the true population vari-
ance, we would expect to be 4.67.

A standard deviation is always the square root of the corresponding variance. There-
fore, the formula for the estimated population standard deviation involves merely
adding the square root sign to the previous formula for the variance.
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The computational formula for the estimated population
standard deviation is

sX 5
R

©X2 – 
1©X 22

N

N – 1

For our age scores, the estimated population variance was . Then, is sXs2
X 5 4.67

which is 2.16. Thus, if we could compute the standard deviation using the en-
tire population of scores, we would expect to be 2.16.

Interpreting the Estimated Population Variance 
and Standard Deviation

Interpret the estimated population variance and standard deviation in the same way as
and , except that now they describe how much we expect the scores to be spread

out in the population, how consistent or inconsistent we expect the scores to be, and
how accurately we expect the population to be summarized by .

Notice that, assuming a sample is representative, we have pretty much reached our
ultimate goal of describing the population of scores. If we can assume that the distribu-
tion is normal, we have described its overall shape. The sample mean provides a
good estimate of the population mean . So, for example, based on a statistics class
with a mean of 80, we’d infer that the population would score at a µ of 80. The size of

(or ) estimates how spread out the population is, so if turned out to be 6, we’d
expect that the “average amount” the individual scores deviate from the of 80 is
about 6. Further, we’d expect about 34% of the scores to fall between 74 and 80 (be-
tween and the score at ) and about 34% of the scores to fall between 80 and 86
(between and the score at 1 ) for a total of 68% of the scores between 74 and 86.
With this picture in mind, and because scores reflect behaviors, we have a good idea of
how most individuals in the population behave in this situation (which is why we con-
duct research the first place).
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■ The symbols and refer to the estimated popula-
tion standard deviation and variance, respectively.
When computing them, the final division involves
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MORE EXAMPLES

For the scores 5, 6, 7, 8, 9, to estimate the population
variability:
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A SUMMARY OF THE VARIANCE AND STANDARD DEVIATION

To keep track of all of the symbols, names, and formulas for the different statistics
you’ve seen, remember that variability refers to the differences between scores and that
the variance and standard deviation are two methods for describing variability. In
every case, we are finding the difference between each score and the mean and then cal-
culating an answer that is somewhat like the “average deviation.”

Organize your thinking about measures of variability using Figure 5.4. Any standard
deviation is merely the square root of the corresponding variance. We compute the de-
scriptive versions when the scores are available: When describing the sample, we cal-
culate and . When describing the population we calculate and . When the
population of scores is unavailable, we infer the variability of the population based on
a sample by computing the unbiased estimators, and . These “inferential” formu-
las require a final division by instead of by .

With these basics in hand, you are now ready to apply the variance and standard de-
viation to research.

APPLYING THE VARIANCE AND STANDARD DEVIATION TO RESEARCH

As we’ve seen, we usually summarize data by computing the mean to describe the typ-
ical score and the standard deviation to describe how consistently close the other scores
were to it. Thus, the mean from a study might describe the number of times that partic-
ipants exhibited a particular behavior, but a small standard deviation indicates that they
consistently did so. Or, in a survey, the mean might describe the typical opinion held
by participants, but a large standard deviation indicates substantial disagreement
among them.

We also compute the mean and standard deviation in each condition of an experi-
ment. For example, in Chapter 4 we tested the influence of recalling a 5- 10- or 
15- item list. Say that we obtained the recall scores in Table 5.4. In published research
you would not see the individual scores, so you would know only that, for example, a

NN 2 1
sXs2

X

σXσ2
XSXS2

X

The standard deviation is the square root of the vari-
ance, so

For Practice

1. The symbols for the biased population estimators
are ____ and ____.

2. The symbols for the unbiased population
estimators are ____ and ____.

3. When do you compute the unbiased estimators?

sX 5
R

255 – 
135 22

5

4
5 22.50 5 1.58

4. When do you compute the biased estimators?

5. Compute the estimated population variance and
standard deviation for the scores 1, 2, 2, 3, 4, 4,
and 5.

Answers
1. ; 

2. ; 

3. To estimate the population standard deviation and
variance

4. To describe the sample standard deviation and variance

5. ; SX 5 22.00 5  1.41s2
X 5 

75 – 
121 22

7

6
 5 2.00

sXs2
X

SXS 2
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5-item list produced scores around the mean of 3. By also considering the variability,
you would also know that these scores differed from this mean by an “average” of only
.82. In the 15-item condition, however, scores were spread out by almost twice as
much, differing from the mean by 1.63. Therefore, we know that scores were closer to
the mean in the 5-item condition, so 3 is a more accurate summary here than 9 is for
the 15-item condition. Also, because these recall scores reflect a behavior, we know
that memory behavior is more consistent when people recall a 5-item list, with rela-
tively large differences in their behavior when recalling a 15-item list.

Variability and the Strength of a Relationship

Measures of variability also tell us about the strength of the overall relationship that an
experiment demonstrates. Recall from Chapter 2 that a stronger relationship is more
consistent. In an experiment, this translates into everyone in a condition having the
same score or close to the same score. In other words, using the terminology of this
chapter we would say that a strong relationship occurs when there is little variability
among the scores within each condition. For example, all three standard deviations in
Table 5.4 are relatively small. This indicates that, as shown, the raw scores within each
condition are relatively close to each other. Therefore, the overall relationship between

list length and recall scores is rather strong.
Conversely, larger standard deviations per

condition (say in the neighborhood of 3 or
4) would indicate that a particular list length
produced a wide variety of recall scores that
are much more spread out around their
mean. Therefore, we would describe this as
a less consistent, weaker relationship.

Applying the Variance and Standard Deviation to Research 101

FIGURE 5.4

Organizational chart 
of descriptive and 
inferential measures 
of variability

To estimate
population variance

To describe 
population variance

Describing variability
(differences between scores)

In formulas final division uses N In formulas final division uses N – 1 

Taking square root gives Taking square root gives Taking square root gives

Estimated population
standard deviation

Population
standard deviation

Sample
standard deviation

SX X
sX

Descriptive measures 
are used to describe a 

known sample

Inferential measures 
are used to estimate 
the population based 

To describe 
sample variance

5-Item List 10-Item List 15-Item List

3 5 9
4 5 11
2 8 7 

X� � 3 X� � 6 X� � 9
SX � .82 SX � 1.41 SX � 1.63 

TABLE 5.4

Mean and Standard
Deviation in Each
Condition of Recalling 
5-, 10-, or 15-Item Lists

σ
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Later we’ll see more objective techniques for describing the strength of a relation-
ship in experiments (and in correlational studies). For now:

REMEMBER The strength of a relationship is determined by the variability of
the dependent scores (the scores) that are paired with each condition (each

score).

A third use of variability is that it communicates the amount of error we have when
predicting participants’ scores.

Variability and Errors in Prediction

You know that the mean is the best score to predict as any participant’s score, so, for
example, we’d predict a recall score of 3 for anyone in the 5-item condition. How-
ever, sometimes our predictions will be wrong. To determine our errors when predict-
ing unknown scores, we determine how well we can predict the known scores in the
data. As in Chapter 4, the amount of error in one prediction is the difference between
what someone actually gets and what we predict he or she gets (the ). This dif-
ference is , a deviation. Because some predictions will contain more error than
others, we want to find the average error, so we need the “average deviation.” As
you’ve seen, the closest we get to the average deviation is to compute the variance
and standard deviation.

Thus, we have a novel way to view and : Because they measure the difference
between each score and the mean, they also measure the “average” error in our pre-
dictions when we predict the mean for all participants. For example, back in Table 5.4,
the mean in the 15-item condition is 9 and the standard deviation is 1.63. This indicates
that the scores differ from the mean by an “average” of 1.63, so if we predict that all
participants in this condition score 9, on average we’ll be “off” by about 1.63. If was
larger, at say 4, then we’d know that participants’ scores are farther from the mean, so
we’d have greater error when predicting that they scored at 9.

Similarly, the sample variance is somewhat like the average deviation, although less
directly. This is too bad because, technically, variance is the proper way to measure
the errors in our prediction. In fact, variance is sometimes called error or error vari-
ance. Thus, when , the variance is , which is 2.66. This indicates that
when we predict that participants in the 15-item condition scored 9, our “average
error”—as measured by the variance—is about 2.66. Although this number may seem
strange, simply remember that the larger the variance, the larger the error, and the
smaller the variance, the smaller the error.

REMEMBER When we predict that participants obtained the mean score, our
“average error” is measured by the variance.

The same logic applies to the population. If the population is known, then we’ll
predict anyone’s score is �, and our errors in prediction equal . Or, if we must es-
timate the population using the sample, then we’ll use the sample mean to estimate
the � we predict for everyone, and we estimate that our errors in prediction will
equal .

REMEMBER Summarizing data using the standard deviation and variance
indicates the consistency of the scores and behavior, the strength of the rela-
tionship, and the “average error” when using the mean to predict scores.
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Accounting for Variance

Finally, we have one other use of the term variance. In research reports you will en-
counter such phrases as accounting for variance or the variance accounted for. They
are used when researchers describe the usefulness of a relationship when we use it to
predict scores. Because a relationship shows the particular scores that are naturally
paired with an , if we know participants’ , we know the around which they tend to
score. Thus, to some extent we can predict when individuals have one score and when
other individuals have a different score. One way to measure the differences in scores
is to compute the variance. If we compute the variance of all scores in a study, this
reflects all of the differences in scores that we want to predict, so this is the variance
that we want to account for.

How well a relationship helps us to predict the different Y scores is the extent
that it “explains” or “accounts” for the variance in Y scores.

For example, back in Table 5.4 we have a total of nine scores, so their differences
produce the variance in recall scores that we want to account for. However, the rela-
tionship with list length tends to group similar scores together. Therefore, we know
when participants score around 3 (when they recall a 5-item list) and when they pro-
duce a different score of, say, 9 (when they recall a 15-item list). By considering list
length, our predictions seem very close to each person’s actual score, so we seem to be
close to predicting many of the differences among the nine scores. Therefore, in our
lingo, we would say that the variable of list length seems to “account for” a sizable
portion of the variance in recall scores. However, we still have some error in our pre-
dictions because not everyone scored exactly the score we’d predict. Therefore, some
differences among scores are not predicted, so we say that some of the variance in re-
call scores is not accounted for.

On the other hand, consider when a relationship is weaker, such as the relationship
between someone’s gender and his or her height. We would predict the average man’s
height for any man and the average woman’s height for any woman. However, there is
a wide range of women’s and men’s heights, so our predictions each time may not be
very close to someone’s actual height. Therefore, this relationship is not all that much
help in predicting someone’s exact height, and so it would be described as accounting
for little of the variance in height.

As these examples illustrate, more consistent relationships account for a greater
amount of the variance. Chapters 8 and 12 discuss ways to precisely measure the
amount of variance accounted for. Until then,

REMEMBER How well a relationship helps us to predict the different 
scores in the data is the extent that it accounts for the variance in scores.

STATISTICS IN PUBLISHED RESEARCH: REPORTING VARIABILITY

The standard deviation is most often reported in published research because it most di-
rectly indicates how consistently close the scores are to the mean and because it allows
us to easily determine the middle 68% of the distribution. However, as if you haven’t
seen enough symbols already, journals that follow APA guidelines do not use the statis-
tical symbols we have used for the sample standard deviation. Instead, the symbol for
the sample standard deviation is SD.

Y
Y

Y
Y

Y
YXX

Y
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We do not, however, use symbols in sentences, so we would not say “The large SD
was . . . .” Instead, symbols usually appear in parentheses. For example, recall that the
symbol for the sample mean is , so in a report of our list-length study, you might see
this: “The fewest errors were produced when recalling 5-item lists (M � 3.00, SD �
.83) with the 10-item condition producing more . . . ”

M

At this point the three steps in analyzing any set of data should be like a reflex for you.
(1) Consider the scale of measurement used and the shape of the distribution formed by
the scores. (2) Describe around where most participants scored, usually by computing
the for each group or for each condition of an experiment. (3) Describe the variabil-
ity—how spread out the scores are—around each mean, usually by computing the sam-
ple standard deviation. With this information, you are largely finished with descriptive
statistics because you know the important characteristics of the sample data and you’ll
be ready to draw inferences about the corresponding population. 

Using the SPSS Appendix Section B.3 in Appendix B shows how to compute the
mean, median, and mode, as well as the variance, standard deviation, and range for a
sample of scores. Later we will compute the mean and standard deviation in each con-
dition of an experiment as part of performing inferential statistics.

CHAPTER SUMMARY

1. Measures of variability describe how much the scores differ from each other, or
how much the distribution is spread out.

2. The range is the difference between the highest and the lowest score.

3. The variance is used with the mean to describe a normal distribution of 
interval or ratio scores. It is the average of the squared deviations of scores 
around the mean.

4. The standard deviation is also used with the mean to describe a normal distribution
of interval/ratio scores. It is the square root of the variance. It can be thought of as
somewhat like the “average” amount that scores deviate from the mean.

5. Transforming scores by adding or subtracting a constant does not alter the
standard deviation. Transforming scores by multiplying or dividing by a constant
alters the standard deviation by the same amount as if we had multiplied or
divided the original standard deviation by the constant.

6. There are three versions of the formula for variance: describes how far the sam-
ple scores are spread out around , describes how far the population of scoresσX

2X
SX

2

X

PUTTING IT 
ALL TOGETHER

is spread out around �, and is computed using sample data but is the
inferential, unbiased estimate of how far the scores in the population are spread
out around .

7. There are three versions of the formula for the standard deviation: describes
how far the sample scores are spread out around , describes how far the popu-
lation is spread out around , and is computed using sample data but is the in-
ferential, unbiased estimate of how far the scores in the population are spread out
around .�

SX�
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8. The formulas for the descriptive measures of variability (for and ) use N as
the final denominator. The inferential formulas (for and ) use . The
quantity is the degrees of freedom in the sample.

9. On a normal distribution, approximately 34% of the scores are between the mean
and the score that is a distance of one standard deviation from the mean. There-
fore, approximately 68% of the distribution lies between the two scores that are
plus and minus one standard deviation from the mean.

10. We summarize an experiment usually by computing the mean and standard devia-
tion in each condition. When the standard deviations are relatively small, the
scores in the conditions are similar, and so a more consistent—stronger—relation-
ship is present.

11. When we predict that participants obtained the mean score, our error in predic-
tions is determined by the variability in the scores. In this context the variance and
standard deviation measure the differences between the participants’ actual scores

and the score we predict for them , so we are computing an answer that is
somewhat like the “average” error in our predictions.

12. The amount that a relationship with helps us to predict the different scores in
the data is the extent that accounts for the variance in scores.

KEY TERMS 
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REVIEW QUESTIONS

(Answers for odd-numbered problems are in Appendix D.)

1. In any research, why is describing the variability important?
2. What do measures of variability communicate about (a) the size of differences

among the scores in a distribution? (b) how consistently the participants
behaved? (c) the size of our “average error” when we predict that participants
obtained the mean?

3. (a) What is the range? (b) Why is it not the most accurate measure of variability?
(c) When is it used as the sole measure of variability?

4. (a) What do both the variance and the standard deviation tell you about a 
distribution? (b) Which measure will you usually want to compute? Why?

5. (a) What is the mathematical definition of the variance? (b) Mathematically, how
is a sample’s variance related to its standard deviation and vice versa?
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6. (a) What do , , and have in common in terms of what they communicate?
(b) How do they differ in terms of their use?

7. Why are your estimates of the population variance and standard deviation always
larger than the corresponding values that describe a sample from that population?

8. In an experiment, how does the size of SX in each condition suggest the strength
of the relationship?

9. (a) How do we determine the scores that mark the middle 68% of a sample? 
(b) How do we determine the scores that mark the middle 68% of a known popu-
lation? (c) How do we estimate the scores that mark the middle 68% of an
unknown population?

10. (a) What is the phrase used to convey that by knowing participants’ score in a
relationship it helps us to more accurately predict their ? (b) How do we describe
it when our predictions are closer to participants’ actual scores?

APPLICATION QUESTIONS

11. In a condition of an experiment, a researcher obtains the following creativity scores:

3 2 1 0 7 4 8 6 6 4

In terms of creativity, interpret the variability of these data using the following:
(a) the range, (b) the variance, and (c) the standard deviation.

12. If you could test the entire population in question 11, what would you expect each
of the following to be? (a) The typical, most common creativity score; (b) the
variance; (c) the standard deviation; (d) the two scores between which about 68%
of all creativity scores occur in this situation.

13. In Question 11: (a) What are the scores at and from the mean? (b) If
is 1000, how many people do you expect will score between 1.59 and 6.61? 

(c) How many people do you expect will score below 1.59?
14. As part of studying the relationship between mental and physical health, you

obtain the following heart rates:

73 72 67 74 78 84 79 71 76 76
79 81 75 80 78 76 78

In terms of differences in heart rates, interpret these data using the following:
(a) the range, (b) the variance, and (c) the standard deviation.

15. If you could test the population in question 14, what would you expect each of the
following to be? (a) The shape of the distribution; (b) the typical, most common
rate; (c) the variance; (d) the standard deviation; (e) the two scores between which
about 68% of all heart rates fall.

16. Foofy has a normal distribution of scores ranging from 2 to 9. (a) She computed
the variance to be �.06. What should you conclude about this answer, and why?
(b) She recomputes the standard deviation to be 18. What should you conclude,
and why? (c) She recomputes the variance to be 1.36. What should you conclude,
and why? (d) If she computed that � 0 and , what would you conclude?

17. From his statistics grades, Guchi has a of 60 and . Pluto has a of 60
and . (a) Who is the more inconsistent student, and why? (b) Who is more
accurately described as a 60 student, and why? (c) For which student can you
more accurately predict the next test score, and why? (d) Who is more likely to do
either extremely well or extremely poorly on the next exam?
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18. Indicate whether by knowing someone’s score on the first variable, the relationship
accounts for a large or small amount of the variance in the second variable. (a) For
children ages 1 to 6, using age to predict height ; (b) for ages 30 to 40, using age to
predict the driving ability of adults; (c) using a students’ hours of studying to predict
final exam grades; (d) using students’ hair color to predict final exam grades.

19. Consider the results of this experiment:

Condition A Condition B Condition C

12 33 47
11 33 48
11 34 49
10 31 48

(a) What “measures” should you compute to summarize the experiment? 
(b) These are ratio scores. Compute the appropriate descriptive statistics and
summarize the relationship in the sample data. (c) How consistent does it appear
the participants were in each condition? (d) Does this relationship account for
much of the variance in the scores?

20. Say that you conducted the experiment in question 19 on the entire population. 
(a) Summarize the relationship that you’d expect to observe. (b) How consistently
do you expect participants to behave in each condition?

21. In two studies, the mean is 40 but in Study , and in Study B, .
(a) What is the difference in the appearance of the distributions from these
studies? (b) Where do you expect the majority of scores to fall in each study?

22. Consider these ratio scores from an experiment:

Condition 1 Condition 2 Condition 3

18 8 3
13 11 9
9 6 5

(a) What should you do to summarize the experiment? (b) Summarize the rela-
tionship in the sample data. (c) How consistent were participants in each
condition?

23. Say that you conducted the experiment in question 22 on the entire population.
(a) Summarize the relationship that you’d expect to observe. (b) How consis-
tently do you expect participants to behave in each condition?

24. Comparing the results in questions 19 and 22, which experiment produced the
stronger relationship? How do you know?

INTEGRATION QUESTIONS

25. What are the three major pieces of information we need in order to summarize the
scores in any data? (Ch. 3, 4, 5)

26. What is the difference between what a measure of central tendency tells us and
what a measure of variability tells us? (Chs. 4, 5)

SX 5 10A, SX 5 5

Integration Questions 107



108 CHAPTER 5 / Measures of Variability: Range, Variance, and Standard Deviation

27. What is a researcher communicating with each of the following statements? 
(a) “The line graph of the means was relatively flat, although the variability in
each condition was quite large.” (b) “For the sample of men ( and )
we conclude . . . ” (c) “We expect that in the population the average score is 14
and the standard deviation is 3.5 . . . ” (Chs. 4, 5)

28. For each of the following, identify the conditions of the independent variable, the
dependent variable, their scales of measurement, which measure of central
tendency and variability to compute and which scores you would use in the com-
putations. (a) We test whether participants laugh longer (in seconds) to jokes told
on a sunny or rainy day. (b) We test babies whose mothers were or were not
recently divorced, measuring whether the babies lost weight, gained weight, or
remained the same. (c) We compare a group of adult children of alcoholics to a
group whose parents were not alcoholics. In each, we measure participants’
income. (d) We count the number of creative ideas produced by participants who
are paid either 5, 10, or 50 cents per idea. (e) We measure the number of words in
the vocabulary of 2-year-olds as a function of whether they have 0, 1, 2, or 3 older
siblings. (f) We compare people 5 years after they have graduated from either high
school, a community college, or a four-year college. Considering all participants
at once, we rank order their income. (Chs. 2, 4, 5)

29. For each experiment in question 28, indicate the type of graph you would create,
and how you would label the and axes. (Chs. 2, 4)YX

SD 5 3M 5 14

■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for the range is

Range � highest score � lowest score

2. The computational formula for the sample
variance is

3. The computational formula for the sample
standard deviation is
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4. The computational formula for estimating the
population variance is

5. The computational formula for estimating the
population standard deviation is
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z-Scores and the Normal 
Curve Model6

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 3, that relative frequency is the proportion of time that scores
occur, and that it corresponds to the proportion of the area under the normal
curve; that a percentile equals the percent of the area under the curve to the
left of a score.

■ From Chapter 4, that the larger a score’s deviation, the farther into the tail of
the distribution it lies and the lower is its simple frequency and relative frequency.

■ From Chapter 5, that and indicate the “average” deviation of scores
around and , respectively.

Your goals in this chapter are to learn

■ What a z-score is and what it tells you about a raw score’s relative standing.

■ How the standard normal curve is used with z-scores to determine relative
frequency, simple frequency, and percentile.

■ The characteristics of the sampling distribution of means and what the
standard error of the mean is.

■ How computing z-scores for sample means is used to determine their relative
frequency.

�X
σXSX

The techniques discussed in the preceding chapters for graphing, measuring central
tendency, and measuring variability comprise the descriptive procedures used in most
behavioral research. In this chapter, we’ll combine these procedures to answer another
question about data: How does any one particular score compare to the other scores in a
sample or population? We answer this question by transforming raw scores into z-scores.

In the following sections, we discuss (1) the logic of z-scores and their simple com-
putation, (2) how z-scores are used to describe individual scores, and (3) how z-scores
are used to describe sample means.

NEW STATISTICAL NOTATION

Statistics often involve negative and positive numbers. Sometimes, however, we ignore
a number’s sign. The size of a number, regardless of its sign, is the absolute value of
the number. When we do not ignore the sign, you’ll encounter the symbol , which
means “plus or minus.” Saying “ ,” means or . Saying “the scores between 

,” means all possible scores from , through 0, up to and including .1121;1
2111;1

;
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WHY IS IT IMPORTANT TO KNOW ABOUT z-SCORES?

Recall that we transform raw scores to make different variables comparable and to
make scores within the same distribution easier to interpret. The “z-transformation” is
the Rolls-Royce of transformations because with it we can compare and interpret
scores from virtually any normal distribution of interval or ratio scores.

Why do we need to do this? Because researchers usually don’t know how to inter-
pret someone’s raw score: Usually, we won’t know whether, in nature, a score should
be considered high or low, good, bad, or what. Instead, the best we can do is compare a
score to the other scores in the distribution, describing the score’s relative standing.
Relative standing reflects the systematic evaluation of a score relative to the sample or
population in which the score occurs. The way to calculate the relative standing of a
score is to transform it into a z-score. As you’ll see, with z-scores we can easily deter-
mine the underlying raw score’s location in a distribution, its relative and simple
frequency, and its percentile. All of this helps us to know whether the individual’s raw
score was relatively good, bad, or in-between.

UNDERSTANDING z-SCORES

To see how z-scores reflect relative standing, let’s say that we conduct a study at
Prunepit University in which we measure the “attractiveness” of a sample of men. The
scores form the normal curve in Figure 6.1, with a . Of these scores, we espe-
cially want to interpret those of three men: Slug, who scored 35; Binky, who scored 65;
and Biff, who scored 90. Using the statistics you’ve learned, you already know how to
do this. Let’s review.

What would we say to Slug? “Bad news, Slug. Your score places you far below aver-
age in attractiveness. What’s worse, down in the tail, the height of the curve above your
score indicates a low frequency, so not many men received this low score. Also, the pro-
portion of the area under the curve at your score is small, so the relative frequency—
the proportion of all men receiving your score—is low. Finally, Slug, your percentile is
low, so a small percentage scored below you while a large percentage scored above
you. So Slug, scores such as yours are relatively infrequent, and few scores are lower
than yours.”

X 5 60
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For Binky, there’s good news and bad news. “The good news, Binky, is that your
score of 65 is above the mean, which is also the median; you are better-looking than
more than 50% of these men. The bad news is that you are not far above the mean.
Also, the area under the curve at your score is relatively large, and thus the relative fre-
quency of equally attractive men is large. What’s worse, a relatively large part of the
distribution has higher scores.”

And then there’s Biff. “Yes, Biff, your score of 90 places you well above average in
attractiveness. In fact, as you have repeatedly told everyone, you are one of the most
attractive men around. Also, the area under the curve at your score is quite small, so
only a small proportion of men are equally attractive. Finally, the area under the curve
to the left of your score is relatively large, so if we cared to figure it out, we’d find that
you are at a very high percentile, with only a small percentage above you.”

These descriptions are based on each man’s relative standing because, considering
our “parking lot” approach to the normal curve, we literally determined where each
stands in the parking lot compared to everyone else. However, there are two problems
with these descriptions. First, they were somewhat subjective and imprecise. Second,
to get them we had to look at all scores in the distribution. However, recall that the
point of statistics is to accurately summarize our data so that we don’t need to look at
every score. The way to obtain the above information, but more precisely and without
looking at every score, is to compute each man’s z-score.

Our description of each man above was based on how far above or below the mean
his raw score appeared to be. To precisely determine this distance, our first calcula-
tion is to determine a score’s deviation, which equals . For example, Biff’s
score of 90 deviates by Likewise, Slug’s score of 
35 deviates by . Such deviations sound impressive, but are they? 
We have the same problem with deviations that we had with raw scores; we don’t
necessarily know whether a particular deviation should be considered large or small.
However, looking at the distribution, we see that only a few scores deviate by such
large amounts and that is what makes them impressive. Thus, a score is impressive if
it is far from the mean, and “far” is determined by how often other scores deviate
from the mean by that amount.

Therefore, to interpret a score’s location, we need to compare its deviation to all
deviations; we need a standard to compare to each deviation; we need the standard
deviation! As you know, we think of the standard deviation as our way of computing
the “average deviation.” By comparing a score’s deviation to the standard deviation,
we can describe the location of the score in terms of this average deviation. Thus, say
that, the sample standard deviation for the attractiveness scores is 10. Biff’s devia-
tion of is equivalent to 3 standard deviations, so Biff’s raw score is located 
3 standard deviations above the mean. Thus, his raw score is impressive because it 
is three times as far above the mean as the “average” amount that scores were about
the mean.

By transforming Biff’s deviation into standard deviation units, we have computed
his z-score. A z-score is the distance a raw score is from the mean when measured in
standard deviations. The symbol for a z-score in a sample or population is z.

A z-score always has two components: (1) either a positive or negative sign which
indicates whether the raw score is above or below the mean, and (2) the absolute value
of the z-score which indicates how far the score lies from the mean when measured in
standard deviations. So, Biff is above the mean by 3 standard deviations, so his z-score
is . If he had been below the mean by this amount, he would have .

Thus, like any raw score, a z-score is a location on the distribution. However,
the important part is that a z-score also simultaneously communicates its distance from

z 5 2313

130

35 2 60 5 225
1because 90 2 60 5 130. 2130

X 2 X
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the mean. By knowing where a score is relative to the mean, we know the score’s rela-
tive standing within the distribution.

REMEMBER A z-score describes a raw score’s location in terms of how far
above or below the mean it is when measured in standard deviations.

Computing z-Scores

Above, we computed Biff’s z-score in two steps. First, we found the score’s deviation
by subtracting the mean from the raw score. Then we divided the score’s deviation by
the standard deviation. So,

The formula for transforming a raw score in a sample 
into a z-score is

z 5
X 2 X

SX

(This is both the definitional and the computational formula.) We are computing a 
z-score from a sample of scores, so we use the descriptive sample standard deviation,

(the formula with the final division by ). When starting from scratch with a sample
of raw scores, first compute and and then substitute their values into the formula.

To find Biff’s z-score, we substitute his raw score of 90, the of 60, and the of 10
into the formula:

Find the deviation in the numerator first and always subtract from . This gives

After dividing,

Likewise, Binky’s raw score was 65, so

Binky’s raw score is literally one-half of one standard deviation above the mean. 
And finally, Slug’s raw score is 35, so

Here, 35 minus 60 results in a deviation of minus 25, so his z-score is 2.50. Slug’s
raw score is 2.5 standard deviations below the mean. 

Of course, a raw score that equals the mean produces a z-score of 0, because it is zero
distance from itself. For example, an attractiveness score of 60 will produce an and 
that are the same number, so their difference is 0.

XX
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We can also compute a z-score for a score in a population, if we know the population
mean ( ) and the true standard deviation of the population . (We never compute 
z-scores using the estimated population standard deviation, ) The logic here is the
same as in the previous formula, but using these symbols gives

sX

1σX 2�

The formula for transforming a raw score in a population 
into a z-score is

z 5
X 2 �

σX

The formula for transforming a z-score in a sample into 
a raw score is

X 5 1z 2 1SX 2 1 X

Now the answer indicates how far the raw score lies from the population mean when
measured using the population standard deviation. For example, say that in the popula-
tion of attractiveness scores, and . Biff’s raw score of 90 is again a

, but now this is his location in the population of scores.
Notice that the size of a z-score will depend on both the size of the raw score’s deviation

and the size of the standard deviation. Biff’s deviation of 30 was impressive because the
standard deviation was only 10. If the standard deviation had been 30, then Biff would have
had . Now he is not so impressive because his deviation equals
the “average” deviation, indicating that his raw score is among the more common scores.

Computing a Raw Score When z Is Known

Sometimes we know a z-score and want to find the corresponding raw score. For exam-
ple, say that another man, Bucky, scored . What is his raw score? With 
and , his z-score indicates that he is 1 standard deviation above the mean. In
other words, he is10 points above 60, so his raw score is 70. What did we just do? We
multiplied his z-score times and then added the mean.SX

SX 5 10
X 5 60z 5 11

z 5 190 2 60 2 >30 5 11.00

1

z 5 190 2 60 2 >10 5 13.00
σX 5 10� 5 60

For Bucky’s z-score of 

so

so

To check this answer, compute the z-score for the raw score of 70. You should end up
with the z-score you started with: .11

X 5 70

X 5 110 1 60

X 5 111 2 110 2 1 60

11
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Finally, say that Fuzzy has a (with and ). Then his raw
score is

so

Adding a negative number is the same as subtracting its positive value, so

Fuzzy has a raw score of 47.
The above logic is also used to transform a z-score into its corresponding raw score

in the population. Using the symbols for the population gives

X 5 47

X 5 213 1 60

X 5 121.30 2 110 2 1 60

SX 5 10X 5 60z 5 21.30

The formula for transforming a z-score in a population into 
a raw score is

X 5 1z 2 1σX 2 1 �

Here, we multiply the z-score times the population standard deviation and then add . So,
say that Fuzzy is from the population where and . For his z of we
have: He has a raw score of 47 in the population.

After transforming a raw score or z-score, always check whether your answer makes
sense. At the very least, raw scores smaller than the mean must produce negative 
z-scores, and raw scores larger than the mean must produce positive z-scores. When
working with z-score, always pay close attention to the positive or negative sign!
Further, as you’ll see, we seldom obtain z-scores greater than or less than .
Although they are possible, be very skeptical if you compute such a z-score, and
double-check your work.

2313

X 5 121.30 2 110 2 1 60 5 47.
21.30σX 5 10� 5 60

�

■ A indicates that the raw score is above the
mean, a that it is below the mean.

■ The absolute value of z indicates the score’s distance
from the mean, measured in standard deviations.

MORE EXAMPLES

In a sample, and To find z for 

To find the raw score for 

 5 22.15 1 25 5 22.85
 X 5 1z 2 1SX 2 1 X 5 12.43 2 15 2 1 25

z 5 2 .43:

z 5
X 2 X

SX
5

32 2 25

5
5

17

5
5 11.40

X 5 32:SX 5 5.X 5 25

2z
1z For Practice

With and ,

1. What is for 

2. What produces ? 

With and ,

3. What is the for a score of 132?

4. What produces ?

Answers
1.
2.
3.
4. X 5 111.4 2 116 2 1 100 5 122.4

z 5 1132 2 100 2 >16 5 12.00
X 5 121.30 2 110 2 1 50 5 37
z 5 144 2 50 2 >10 5 2.60

z 5 11.4X

z

σX 5 16� 5 100

z 5 21.30X

X 5 44?z

SX 5 10X 5 50

A  Q U I C K  R E V I E W
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FIGURE 6.2

z-distribution of attractiveness scores at Prunepit U

The labels on the axis show first the raw scores and then the z-scores.X

INTERPRETING z-SCORES USING THE z-DISTRIBUTION

The reason that z-scores are so useful is that they directly communicate the relative
standing of a raw score. The way to see this is to first envision any sample or popula-
tion as a z-distribution. A z-distribution is the distribution produced by transforming
all raw scores in the data into z-scores. For example, say that our attractiveness scores
produce the z-distribution shown in Figure 6.2. The axis is also labeled using the
original raw scores to show that by creating a z-distribution, we only change the way
that we identify each score. Saying that Biff has a z of is merely another way to
say that he has a raw score of 90. He is still at the same point on the distribution, so
Biff’s z of has the same frequency, relative frequency, and percentile as his raw
score of 90.

By envisioning such a z-distribution, you can see how z-scores form a standard way
to communicate relative standing. The z-score of 0 indicates that the raw score equals
the mean. A “ ” indicates that the z-score (and raw score) is above and graphed to the
right of the mean. Positive z-scores become increasingly larger as we proceed farther
to the right. Larger positive z-scores (and their corresponding raw scores) occur less
frequently. Conversely, a “ ” indicates that the z-score (and raw score) is below and
graphed to the left of the mean. Negative z-scores become increasingly larger as we
proceed farther to the left. Larger negative z-scores (and their corresponding raw
scores) occur less frequently. However, as shown, most of the z-scores are between

and .
Do not be misled by negative z-scores: A raw score that is farther below the mean is

a smaller raw score, but it produces a negative z-score whose absolute value is larger.
Thus, for example, a z-score of corresponds to a lower raw score than a z-score of

Also, a negative z-score is not automatically a bad score. For some variables, the
goal is to have as low a raw score as possible (for example, errors on a test). With these
variables, larger negative z-scores are best.

21.
22

2313
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REMEMBER On a normal distribution, the larger the z-score, whether posi-
tive or negative, the farther the raw score is from the mean and the less fre-
quently the raw score and the z-score occur.

Figure 6.2 illustrates three important characteristics of any z-distribution.

1. A z-distribution has the same shape as the raw score distribution. Only when the
underlying raw score distribution is normal will its z-distribution be normal.

2. The mean of any z-distribution is 0. Whatever the mean of the raw scores is, it
transforms into a z-score of 0.

3. The standard deviation of any z-distribution is 1. Whether the standard deviation
in the raw scores is 10 or 100, it is still one standard deviation, which transforms
into an amount in z-scores of 1.

Now you can see why z-scores are so useful: All normal z-distributions are similar,
so a particular z-score will convey the same information in every distribution. There-
fore, the way to interpret the individual scores from any normally distributed variable
is to envision a z-distribution similar to Figure 6.2. Then, for example, if we know that
z is 0, we know that the corresponding raw score is at the mean (and at the median and
mode). Also, recall from Chapter 5 that the two raw scores that are from the
mean delineate the middle 68% of the curve. Now you know that being from the
mean produces z-scores of . Therefore, approximately 68% of the scores on any nor-
mal distribution will be between the z-scores at . Likewise, any other z-score will
always be in the same relative location, so if z is , then, like Binky’s, the raw score
is slightly above the mean and slightly above the 50th percentile, where scores still
have a high simple and relative frequency. But, if z is , then, like Biff’s, the raw
score is one of the highest possible scores in the upper tail of the distribution, having a
low frequency, a low relative frequency and a very high percentile. And so on.

REMEMBER The way to interpret the raw scores in any sample or population
is to determine their relative standing by envisioning them as a z-distribution.

As you’ll see in the following sections, in addition to describing relative standing as
above, z distributions have two additional uses: (1) comparing scores from different
distributions and (2) computing the relative frequency of scores.

USING z-SCORES TO COMPARE DIFFERENT VARIABLES

An important use of z-scores is when we compare scores from different variables.
Here’s a new example. Say that Cleo received a grade of 38 on her statistics quiz and
a grade of 45 on her English paper. These scores reflect different kinds of tasks, so
it’s like comparing apples to oranges. The solution is to transform the raw scores
from each class into z-scores. Then we can compare Cleo’s relative standing in
English to her relative standing in statistics, so we are no longer comparing apples
and oranges.

Note: The z-transformation equates or standardizes different distributions, so 
z-scores are often referred to as standard scores.

Say that for the statistics quiz the was 30 and the was 5. Cleo’s grade of 
38 becomes . For the English paper, the was 40 and the was 10, so her
45 becomes A z-score of is farther above any mean than a z-score of11.6z 5 1.5.

SXXz 5 11.6
SXX

13

1.50
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FIGURE 6.3

Comparison of distribu-
tions for statistics and
English grades, plotted
on the same set of axes

Thus, Cleo did relatively better in statistics because she is farther above the
statistics mean than she is above the English mean.

Another student, Attila, obtained raw scores that produced in statistics and
in English. In which class did he do better? His z-score of in English is rel-

atively better, because it is less distance below the mean.
We can also see these results in Figure 6.3, in which the z-distributions from both

classes are plotted on one set of axes. (The greater height of the English distribution
reflects a larger , with a higher f for each score.) Notice that the raw scores from each
class are spaced differently along the axis, because the classes have different stan-
dard deviations. However, z-scores always increment by one standard deviation,
whether it equals 5 points in statistics or 10 points in English. Therefore, the spacing of
the z-scores is the same for the two classes and so they are comparable. Now we can
see that Cleo scored better in statistics than in English but that Attila scored better in
English than in statistics.

REMEMBER To compare raw scores from two different variables, transform
the scores into z-scores.

USING z-SCORES TO DETERMINE THE RELATIVE FREQUENCY OF RAW SCORES

A third important use of z-scores is for computing the relative frequency of raw scores.
Recall that relative frequency is the proportion of time that a score occurs, and that rel-
ative frequency can be computed using the proportion of the total area under the curve.
We can use the z-distribution to determine relative frequency because, as we’ve seen,
when raw scores produce the same z-score they are at the same location on their distri-
butions. By being at the same location, a z-score delineates the same proportion of the
curve, cutting off the same “slice” of the distribution every time. Thus, the relative fre-
quency at particular z-scores will be the same on all normal z-distributions.

For example, 50% of the raw scores on a normal curve are to the left of the mean,
and scores to the left of the mean produce negative z-scores. In other words, the

X
N

21z 5 21
z 5 22
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negative z-scores make up 50% of any distribution. Thus, the negative z-scores back 
in Figure 6.3 constitute 50% of their respective distributions, which corresponds to a
relative frequency of . On any normal z-distribution, the relative frequency of the
negative z-scores is .

Having determined the relative frequency of the z-scores, we work backwards 
to identify the corresponding raw scores. In the statistics distribution in Figure 6.3,
students having negative z-scores have raw scores ranging between 15 and 30, so the
relative frequency of scores between 15 and 30 is . In the English distribution,
students having negative z-scores have raw scores between 10 and 40, so the relative
frequency of these scores is .

Similarly, approximately 68% of the scores always fall between the z-scores of 
and . Thus, in Figure 6.3, students having z-scores between constitute approxi-
mately 68% of each distribution. Working backwards to the raw scores we see that sta-
tistics grades between 25 and 35 constitute approximately 68% of the statistics
distribution, and English grades between 30 and 50 constitute approximately 68% of
the English distribution.

In the same way, we can determine the relative frequencies for any set of scores.
Thus, in a normal distribution of IQ scores (whatever the and may be), we know
that those IQs producing negative z-scores have a relative frequency of .50, and that
about 68% of all IQ scores will fall between the scores at z-scores of . The same will
be true for a distribution of running speeds, a distribution of personality test scores, or
for any normal distribution.

We can also use z-scores to determine the relative frequency of scores in any other
portion of a distribution. To do so, we employ the standard normal curve.

The Standard Normal Curve

Because all normal z-distributions are similar, we don’t need to draw a different 
z-distribution for every set of raw scores. Instead, we envision one standard curve that,
in fact, is called the standard normal curve. The standard normal curve is a perfect
normal z-distribution that serves as our model of any approximately normal z-distribu-
tion. It is used in this way: Most data produce only an approximately normal distribu-
tion, producing a roughly normal z-distribution. However, to simplify things, we
operate as if the z-distribution always fits one, perfect normal curve, which is the stan-
dard normal curve. We use this curve to first determine the relative frequency of partic-
ular z-scores. Then, as we did above, we work backwards to determine the relative
frequency of the corresponding raw scores. This is the relative frequency we would
expect, if our data formed a perfect normal distribution. Usually, this provides a reason-
ably accurate description of our data, although how accurate we are depends on how
closely the data conform to the true normal curve. Therefore, the standard normal curve
is most accurate when (1) we have a large sample (or population) of (2) interval or ratio
scores that (3) come close to forming a normal distribution.

The first step is to find the relative frequency of the z-scores and for that we look at
the area under the standard normal curve. Statisticians have already determined the pro-
portion of the area under various parts of the normal curve, as shown in Figure 6.4. The
numbers above the axis indicate the proportion of the total area between the z-scores.
The numbers below the axis indicate the proportion of the total area between the
mean and the z-score. (Don’t worry, you won’t need to memorize them.)

Each proportion is also the relative frequency of the z-scores—and raw scores—
located in that part of the curve. For example, between a z of 0 and a z of 1 is .34131
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FIGURE 6.4

Proportions of total 
area under the standard
normal curve

The curve is symmetrical:
50% of the scores fall below
the mean, and 50% fall above
the mean.

(or 34.13%) of the area, so, as we’ve seen, about 34% of the scores are here. Or, scores
between a z of and a z of occur of the time, and this added to , gives
a total of 0.4772 of the scores between the mean and . Finally, with .3413 of the
scores between the mean and and of the scores between the mean and

, a total of of the area under the curve is between . (See, approxi-
mately 68% of the distribution really is between from the mean!)

We can also add together nonadjacent portions of the curve. For example, out in 
the lower tail beyond is of the area under the curve (because

. Likewise, in the upper tail beyond is also 
of the area under the curve. Thus, a total of .0456 (or 4.56%) of all scores fall in 
the tails beyond .

Finally, notice that z-scores beyond or beyond occur only .0013 of the time,
for a total of .0026 (.26 of 1%!), which is why the range of z is essentially between .
This also explains why Chapter 5 said that the should be about one-sixth of the
range of the raw scores. The range is roughly between zs of , a distance of six times
the standard deviation. If the range is six times the standard deviation, then the stan-
dard deviation is one-sixth of the range.

REMEMBER For any approximately normal distribution, transform the raw
scores to z-scores and use the standard normal curve to find the relative fre-
quency of the scores.

We usually apply the standard normal curve in one of four ways. First, we can find
relative frequency. Most often we begin with a particular raw score in mind and then
compute its z-score (using our original z-score formula). For example, in our original
attractiveness scores, say that another man, Cubby, has a raw score of 80, which, with

and , is a z of . We can envision Cubby’s location as in Figure 6.5.
We might first ask what proportion of scores are expected to fall between the mean and
Cubby’s score. We see that of the total area falls between the mean and .
Therefore, we expect or 47.72%, of the attractiveness scores to fall between the
mean and Cubby’s score of 80. (Conversely, of the area under the curve—and
scores—are above his score.)

.0228
.4772

z 5 12.4772
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;3
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FIGURE 6.5

Location of Cubby’s score
on the z-distribution of
attractiveness scores

Cubby’s raw score of 80 
is a z-score of .12

Second, we can find simple frequency. We might ask how many people scored
between the mean and Cubby’s score. Then we would convert the above relative fre-
quency to simple frequency by multiplying the N of the sample times the relative fre-
quency. Say that our was 1000. If we expect of the scores to fall here, then

, so we expect about 477 people to have scores between the
mean and Cubby’s score.

Third, we can find a raw score’s percentile. Recall that a percentile is the percent of
all scores below—graphed to the left of—a score. After computing the z-score for a raw
score, first see if it is above or below the mean. As in Figure 6.5, the mean is also the
median (the 50th percentile). A positive z-score is above the mean, so Cubby’s z-score
of is above the 50th percentile. In fact, his score is above the .4772 that fall between
the mean and his score. Thus, adding the .50 of the scores below the mean to the .4772
of the scores between the mean and his score gives a total of .9772 of all scores below
Cubby’s. We usually round off percentile to a whole number, so Cubby’s raw score of
80 is at the 98th percentile. Conversely, anyone scoring above the raw score of 80
would be in about the top 2% of scores.

On the other hand, say that Elvis obtained an attractiveness score of 40, producing a
z-score of . As in Figure 6.6, a total of .0228 (2.28%) of the distribution is below (to
the left of) Elvis’s score. With rounding, Elvis ranks at the 2nd percentile.

Fourth, we can find the raw score at a specific percentile. We can also work in the
opposite direction to find the raw score located at a particular percentile (or relative fre-
quency). Say that we had started by asking what attractiveness score is at the 2nd per-
centile (or we had asked below what raw score is .0228 of the distribution?). As in
Figure 6.6, a z-score of is at the 2nd percentile, or below is of the
distribution. Then to find the raw score at this z, we use a formula for transforming a 
z-score into a raw score. For example, we saw that in a sample, . We’d
find that the corresponding attractiveness score is 40.

Using the z-Table

So far our examples have involved whole-number z-scores, although with real data a
z-score may contain decimals. However, fractions of z-scores do not result in propor-
tional divisions of the previous areas. Instead, find the proportion of the total area

X 5 1z 2 1SX 2 1 X

.0228z 5 2222

22

12

1 .4772 2 11000 2 5 477.2
.4772N
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FIGURE 6.6

Location of Elvis’s score on the z-distribution of attractiveness scores

Elvis is at approximately the 2nd percentile.

under the standard normal curve for any two-decimal z-score by looking in Table 1
of Appendix C. A portion of this “z-table” is reproduced in Table 6.1.

Say that you seek the area under the curve that is above or below a .
First, locate the z in column A, labeled “z.” Then column B, labeled “Area Between
the Mean and z,” contains the proportion of the area under the curve between the
mean and the z identified in column A. Thus, .4484 of the curve is between the mean
and the z of . Because this z is positive, we place this area between the mean
and the z on the right-hand side of the distribution, as shown in Figure 6.7. Column
C, labeled “Area Beyond z in the Tail,” contains the proportion of the area under the

curve that is in the tail beyond the z-score. Thus, .0516 of
the curve is in the right-hand tail of the distribution beyond
the z of (also shown in Figure 6.7).

Notice that the z-table contains no positive or negative
signs. You must decide whether z is positive or negative,
based on the problem you’re working. Thus, if our z had been

, columns B and C would provide the respective areas
on the left-hand side of Figure 6.7. (As shown here, always
sketch the normal curve, locate the mean, and identify the
portions of the curve you’re working with. This greatly sim-
plifies the problem.)

If you get confused when using the z-table, look at the nor-
mal distribution at the top of the table, like in Table 6.1. The
different shaded portions indicate the area under the curve
described in each column.

To work in the opposite direction to find the z-score that
corresponds to a particular proportion, read the columns in
the reverse order. First, find the proportion in column B or C,
that you seek, and then identify the corresponding z-score in

21.63

11.63

11.63

z 5 11.63

1.60 .4452 .0548
1.61 .4463 .0537
1.62 .4474 .0526
1.63 .4484 .0516
1.64 .4495 .0505
1.65 .4505 .0495 

TABLE 6.1

Sample Portion of the 
z-Table

Area Between
Mean and z

Area 
Beyond z 

in Tail
z

–z +z

CC

A B C

B B

X–
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If You Seek First, You Should Then You

Relative frequency of transform to z find its area in column B*

scores between and 

Relative frequency of transform to z find its area in column C*

scores beyond in tail

that marks a given  Find rel. f in column B transform its z to 
rel. f between and 

that marks a given  find rel. f in column C transform its z to 
rel. f beyond in tail

Percentile of an above transform to z find its area in column B 
and add .50

Percentile of an below transform to z find its area in column C

*To find the simple frequency of the scores, multiply rel. f times N.  

XXX

XXX

X
XX

XX
XX

X
X

XX
X

TABLE 6.2

Summary of Steps When
Using the z-Tables

column A. For example, say that you seek the z-score corresponding to 44.84% of the
curve between the mean and z. Find .4484 in column B and then, in column A, the z-
score is 1.63.

Sometimes, you will need a proportion that is not given in the table, or you’ll need
the proportion corresponding to a three-decimal z-score. In such cases, round to the
nearest value in the z-table or, to compute the precise value, perform “linear interpola-
tion” (described in Appendix A.2).

Use the information from the z-tables as we have done previously. For example, say
that we want to examine Bucky’s raw score, which transforms into the positive z-score
of , located at the right-hand side back in Figure 6.7. If we seek the proportion of
scores above his score, then from column C we expect that of the scores are
above this score. If we seek the relative frequency of scores between his score and the
mean, from column B we expect that of the scores are between the mean up to
his raw score. Then we can also compute simple frequency or percentile as discussed
previously. Or, if we began by asking what raw score demarcates or of the
curve, we would first find these proportions in column B or C, respectively, then find
the z-score of in column A, and then use our formula to transform the z-score to
the corresponding raw score.

Table 6.2 summarizes these procedures.

11.63

.0516.4484

.4484

.0516
11.63

f

X

0.4484 0.05160.0516

Column B

Column C

z = +1.63z = –1.63

Column B

Column C

0.4484

FIGURE 6.7

Distribution showing the
area under the curve for

and z 5 11.63z 5 21.63
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■ To find the relative frequency of scores above or
below a raw score, transform it into a z-score. From
the z-tables, find the proportion of the area under
the curve above or below that z.

■ To find the raw score at a specified relative
frequency, find the proportion in the z-tables and
transform the corresponding z into its raw score.

MORE EXAMPLES

With and ,
To find the relative frequency of scores above 

45: Say-
ing “above” indicates in the upper tail, so from
column C the relative frequency is .

To find the percentile of the score of 41.5:
. Between this positive z

and in column B is . This score is at the 65th
percentile because 

To find the proportion below : “Below”
indicates the lower tail, so from column C is .3520.

To find the score above the mean with 15% of the
scores between it and the mean (or the score at 
the 65th percentile): From column B, the pro-
portion closest to is so . Then

.X 5 110.39 2 14.0 2 1 40 5 41.56
z 5 10.39.1517.15

z 5 20.38
.1480 1 .50 5 .6480 5 .65.

.1480X
z 5 141.5 2 40 2 >4 5 10.38

.1056

 z 5 1X 2 X 2 >SX 5 145 2 40 2 >4 5 11.25.

SX 5 4X 5 40

For Practice

For a sample: X� � 65, SX � 12, and N � 1000.

1. What is the relative frequency of scores 
below 59?

2. What is the percentile of 75?

3. How many scores are between the mean and 70?

4. What raw score delineates the top 3%?

Answers
1. z � (59 � 65)/12 � �.50; “below” is the lower tail, so

from column C is .3085. 
2. z � (75 � 65)/12 � �.83; between z and the mean, from

column B, is .2967. Then 
percentile.

3. z � (70 � 65)/12 � �.42; from column B is .1628;
(.1628)(1000) gives about 163 scores. 

4. The “top” is the upper tail, so from column C 
the closest to .03 is .0301, with z � �1.88; 
so X � (�1.88)(12) � 65 � 87.56. 

.7967 5 80th.2967 1 .50 5

A  Q U I C K  R E V I E W

STATISTICS IN PUBLISHED RESEARCH: USING z-SCORES

A common use of z-scores is with diagnostic psychological tests such as intelligence or
personality tests. Often, however, test results are also shared with people who do not
understand z-scores; imagine someone learning that he or she has a negative personality
score! Therefore, z-scores are often transformed to more user-friendly scores. A famous
example of this is the Scholastic Aptitude Test (SAT). To eliminate negative scores and
decimals, sub-test scores are transformed so that the mean is about 500 and the standard
deviation is about 100. We’ve seen that z-scores are usually between �3, which is why
SAT scores are limited to between 200 and 800 on each part. (You may hear of higher
scores but this occurs by adding together the subtest scores.) 

The normal curve and z-scores are also used when researchers create a “statistical
definition” of a psychological or sociological attribute. When debating such issues as
what a genius is or how to define “abnormal,” researchers often rely on relative standing.
For example, the term “genius” might be defined as scoring above a z of �2 on an intel-
ligence test. We’ve seen that only about 2% of any distribution is above this score, so we
have defined genius as being in the top 2% on the intelligence test. Or, “abnormal”
might be defined as having a z-score below �2 on a personality inventory. Such scores
are statistically abnormal because they are very infrequent, extremely low scores.
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Finally, when instructors “curve grades” it means they are assigning grades based on
relative standing, and the curve they usually use is the normal curve and z-scores. If the
instructor defines A students as the top 2%, then students with z-scores greater than �2
receive As. If B students are the next 13%, then students having z-scores between �1
and �2 receive Bs, and so on.

USING z-SCORES TO DESCRIBE SAMPLE MEANS

Now we will discuss how to compute a z-score for a sample mean. This procedure is
very important because all inferential statistics involve computing something like a
z-score for our sample data. We’ll elaborate on this procedure in later chapters but, for
now, simply understand how to compute a z-score for a sample mean and then apply the
standard normal curve model.

To see how the procedure works, say that we give a part of the SAT to a sample of
25 students at Prunepit U. Their mean score is 520. Nationally, the mean of individual
SAT scores is 500 (and is 100), so it appears that at least some Prunepit students
scored relatively high, pulling the mean to 520. But how do we interpret the perform-
ance of the sample as a whole? The problem is the same as when we examined individ-
ual raw scores: Without a frame of reference, we don’t know whether a particular
sample mean is high, low, or in-between.

The solution is to evaluate a sample mean by computing its z-score. Previously, a 
z-score compared a particular raw score to the other scores that occur in this situa-
tion. Now we’ll compare our sample mean to the other sample means that occur in
this situation. Therefore, the first step is to take a small detour and create a distribu-
tion showing these other means. This distribution is called the sampling distribution
of means.

The Sampling Distribution of Means

If the national average SAT score is 500, then, in other words, the of the population
of SAT scores is 500. Because we randomly selected a sample of 25 students and
obtained their SAT scores, we essentially drew a sample of 25 scores from this popula-
tion. To evaluate our sample mean, we first create a distribution showing all other pos-
sible means we might have obtained.

One way to do this would be to record all SAT scores from the population on slips of
paper and deposit them into a very large hat. We could then hire a statistician to sample
this population. So that we can see all possible sample means that might occur the stat-
istician would sample the population an infinite number of times: She would randomly
select a sample with the same size as ours (25), compute the sample mean, replace
the scores in the hat, draw another 25 scores, compute the mean, and so on. (She’d get
very bored, so the pay would have to be good.)

Even though the of individual SAT scores is 500, our “bored statistician” would
not obtain a sample mean equal to 500 every time. There are a variety of SAT scores in
the population and sometimes the luck of the draw would produce an unrepresentative
mix of them: sometimes a sample would contain too many high scores and not enough
low scores compared to the population, so the sample mean would be above 500 to
some degree. At other times, a sample would contain too many low scores and not
enough high scores, so the mean would be below 500 to some degree. Therefore, over

�

N

�

σX
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f

μ 

X X X X X X XX X XX X X

Lower means
500

Higher means

FIGURE 6.8

Sampling distribution of
random sample means of
SAT scores

The axis is labeled to 
show the different values of

we obtain when we sample 
a population where the 
mean in 500.

X

X

the long run, the statistician would obtain many different sample means. To see them
all, she would create a frequency polygon, which is called the sampling distribution of
means. The sampling distribution of means is the frequency distribution of all possi-
ble sample means that occur when an infinite number of samples of the same size are
randomly selected from one raw score population.

Our SAT sampling distribution of means is shown in Figure 6.8. This is similar to a
distribution of raw scores, except that here each score on the axis is a sample mean.
(Still think of the distribution as a parking lot full of people, except that now each per-
son is the captain of a sample, having the sample’s mean score.)

The sampling distribution is the population of sample means so its mean is symbol-
ized by and it stands for the average sample mean. (Yes, that’s right, it’s the mean of
the means!) Here the of the sampling distribution equals 500, which was also the 
of the raw scores. To the right of are the sample means the statistician obtained that
are greater than 500, and to the left of are the sample means that were less than 500.
However, the sampling distribution forms a normal distribution. This is because most
scores in the population are close to 500, so most of the time the statistician will get a
sample containing scores that are close to 500, so the sample mean will be close to 500.
Less frequently, the statistician will obtain a strange sample containing mainly scores
that are farther below or above 500, producing means that are farther below or above
500. Once in a great while, some very unusual samples will be drawn, resulting in sam-
ple means that deviate greatly from 500. However, because the individual SAT scores
are balanced around 500, over the long run, the sample means created from those
scores will also be balanced around 500, so the average mean will equal 500.

The story about the bored statistician is useful because it helps you to understand
what a sampling distribution is. Of course, in reality, we cannot “infinitely” sample a
population. However, we know that the sampling distribution would look like Figure 6.8
because of the central limit theorem. The central limit theorem is a statistical principle
that defines the mean, the standard deviation, and the shape of a sampling distribution.
From the central limit theorem, we know that the sampling distribution of means always
(1) forms an approximately normal distribution, (2) has a equal to the of the
underlying raw score population from which the sampling distribution was created, and
(3), as you’ll see shortly, has a standard deviation that is mathematically related to the
standard deviation of the raw score population.

The importance of the central limit theorem is that with it we can describe the sam-
pling distribution from any variable without actually having to infinitely sample the
population of raw scores. All we need to know is (1) that the raw score population
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forms a normal distribution of ratio or interval scores (so that computing the mean is
appropriate) and (2) what the and of the raw score population is. Then we’ll know
the important characteristics of the sampling distribution of means.

REMEMBER The central limit theorem allows us to envision the sampling
distribution of means, which shows all means that occur through exhaustive
sampling of a raw score population.

Why do we want to see the sampling distribution? Remember that we took a small
detour, but the original problem was to evaluate our Prunepit mean of 520. Once we
envision the distribution back in Figure 6.8, we have a model of the frequency distri-
bution of all sample means that occur when measuring SAT scores. Then we can 
use it to determine the relative standing of our sample mean. To do so, we simply
determine where a mean of 520 falls on the axis of the sampling distribution in
Figure 6.8 and then interpret the curve accordingly. If 520 lies close to 500, then it is
a frequent, common mean when sampling SAT scores (the bored statistician fre-
quently obtained this result). But if 520 lies toward the tail of the distribution, far
from 500, then it is a more infrequent and unusual sample mean (the statistician
seldom found such a mean).

The sampling distribution is a normal distribution, and you already know how to
determine the location of any “score” on a normal distribution: We use—you guessed
it—z-scores. That is, we determine how far the sample mean is from the mean of the
sampling distribution when measured using the standard deviation of the distribution.
This will tell us the sample mean’s relative standing among all possible means that
occur in this situation.

To calculate the z-score for a sample mean, we need one more piece of information:
the standard deviation of the sampling distribution.

The Standard Error of the Mean

The standard deviation of the sampling distribution of means is called the standard
error of the mean. (The term standard deviation was already taken.) Like a standard
deviation, the standard error of the mean can be thought of as the “average” amount
that the sample means deviate from the of the sampling distribution. That is, in some
sampling distributions, the sample means may be very different from one another and,
“on average,” deviate greatly from the average sample mean. In other distributions, the

may be very similar and deviate little from .
For the moment, we’ll discuss the true standard error of the mean, as if we had

actually computed it using the entire sampling distribution. Its symbol is . The 
indicates that we are describing a population, but the subscript indicates
that we are describing a population of sample means—what we call the sampling dis-
tribution of means. The central limit theorem tells us that can be found using the
following formula:

σ X

X
σσX

�Xs

�

X

σX�

The formula for the true standard error of the mean is

σX 5
σX

1N
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Notice that the formula involves , the true standard deviation of the underlying raw
score population, and , our sample size.

The size of depends first on the size of . This is because with more variable raw
scores the statistician often gets a very different set of scores from one sample to the
next, so the sample means will be very different (and will be larger). But, if the raw
scores are not so variable, then different samples will tend to contain the same scores,
and so the means will be similar (and will be smaller). Second, the size of 
depends on the size of . With a very small (say 2), it is easy for each sample to be
different from the next, so the sample means will differ (and will be larger). How-
ever, with a large , each sample will be more like the population, so all sample means
will be closer to the population mean (and will be smaller).

To compute for the sampling distribution of SAT means, we know that is 100
and our is 25. Thus, using the above formula we have

The square root of 25 is 5, so

and thus

A of 20 indicates that in our SAT sampling distribution, our individual sample
means differ from the of 500 by something like an “average” of 20 points.

Notice that although the individual SAT scores differ by an “average” of 100, their
sample means differ by only an “average” of 20. This is because the bored statisti-
cian will often encounter a variety of high and low scores in each sample, but they will
usually balance out to produce means at or close to 500. Therefore, the sample means will
not be as spread out around 500 as the individual scores are. Likewise, every sampling dis-
tribution is less spread out than the underlying raw score population used to create it.

Now, at last, we can calculate a z-score for our sample mean.

Computing a z-Score for a Sample Mean

We use this formula to compute a z-score for a sample mean:

1σX 2
1σX 2

�
σX

σX 5 20

σX 5
100

5

σX 5
σX
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The formula for the transforming a sample mean into a 
z-score is

z 5
X 2 �

σX

In the formula, stands for our sample mean, stands for the mean of the sampling
distribution (which equals the mean of the underlying raw score population) and 

stands for the standard error of the mean. As we did with individual scores, this
formula measures how far a score is from the mean of a distribution, measured using
σX

�X
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the standard deviation. Here, however, we are measuring how far the sample mean
score is from the mean of the sampling distribution, measured using the “standard devi-
ation” called the standard error.

For the sample from Prunepit U, , , and , so

Thus, a sample mean of 520 has a z-score of on the SAT sampling distribution of
means that occurs when is 25.

Another Example Combining All of the Above Say that over at Podunk U, a
sample of 25 SAT scores produced a mean of 460. With and , we’d
again envision the SAT sampling distribution we saw back in Figure 6.8. To find the 
z-score, first, compute the standard error of the mean :

Then find z:

The Podunk sample has a z-score of on the sampling distribution of SAT means.

Describing the Relative Frequency of Sample Means

Everything we said previously about a z-score for an individual score applies to a 
z-score for a sample mean. Thus, because our original Prunepit mean has a z-score 
of , we know that it is above the of the sampling distribution by an amount
equal to the “average” amount that sample means deviate above . Therefore,
we know that, although they were not stellar, our Prunepit students did outperform a
substantial proportion of comparable samples. Our sample from Podunk U, however,
has a z-score of , so its mean is very low compared to other means that occur in
this situation.

And here’s the nifty part: Because the sampling distribution of means always forms
at least an approximately normal distribution, if we transformed all of the sample
means into z-scores, we would have a roughly normal z-distribution. Recall that the
standard normal curve is our model of any roughly normal z-distribution. Therefore,
we can apply the standard normal curve to a sampling distribution.

REMEMBER The standard normal curve model and the z-table can be used
with any sampling distribution, as well as with any raw score distribution.

Figure 6.9 shows the standard normal curve applied to our SAT sampling distribu-
tion of means. Once again, larger positive or negative z-scores indicate that we are far-
ther into the tails of the distribution, and the corresponding proportions are the same
proportions we used to describe raw scores. Therefore, as we did then, we can use the
standard normal curve (and the z-table) to determine the proportion of the area under
any part of the curve. This proportion is also the expected relative frequency of the cor-
responding sample means in that part of the sampling distribution.
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For example, the Prunepit sample has a z of . As in Figure 6.9 (and from col-
umn B of the z-table), of all scores fall between the mean and z of on any
normal distribution. Therefore, of all SAT sample means are expected to fall
between the and the sample mean at a z of . Because here the is 500 and a z
of is at the sample mean of 520, we can also say that of all SAT sample
means are expected to be between 500 and 520 (when is 25).

However, say that we asked about sample means above our sample mean. As in
column C of the z-table, above a z of is .1587 of the distribution. Therefore, we
expect that .1587 of SAT sample means will be above 520. Similarly, the Podunk U
sample mean of 460 has a z of . As in column B of the z-table, a total of of
a distribution falls between the mean and this z-score. Therefore, we expect .4772 of
SAT means to be between 500 and 460, with (as in column C) only of the
means below 460.

We can use this same procedure to describe sample means from any normally dis-
tributed variable.

Summary of Describing a Sample Mean with a z-Score

To describe a sample mean from any raw score population, follow these steps:

1. Envision the sampling distribution of means (or better yet, draw it) as a normal
distribution with a equal to the of the underlying raw score population.

2. Locate the sample mean on the sampling distribution, by computing its z-score.

a. Using the of the raw score population and your sample , compute the stan-
dard error of the mean:

b. Compute z by finding how far your is from the of the sampling
distribution, measured in standard error units:

3. Use the z-table to determine the relative frequency of scores above or below this 
z-score, which is the relative frequency of sample means above or below your
mean.

z 5 1X 2 � 2 >σX

�X

σX 5 σX>1N
NσX
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FIGURE 6.9

Proportions of the standard normal curve applied to the sampling distribution of SAT means  
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PUTTING IT ALL
TOGETHER

The most important concept for you to understand is that any normal distribution 
of scores can be described using the standard normal curve model and z-scores. To
paraphrase a famous saying, a normal distribution is a normal distribution is a normal
distribution. Any normal distribution contains the same proportions of the total area
under the curve between z-scores. Therefore, whenever you are discussing individual
scores or sample means, think z-scores and use the previous procedures.

You will find it very beneficial to sketch the normal curve when working on z-score
problems. For raw scores, label where the mean is and about where the specified 
raw score or z-score is, and identify the area that you seek. At the least, this will
instantly tell you whether you seek information from column B or column C in the 
z-table. For sample means, first draw and identify the raw score population that the
bored statistician would sample, and then draw and label the above parts of the sam-
pling distribution.

By the way, what was Biff’s percentile?

Using the SPSS Appendix As described in Appendix B.3, SPSS will simultaneously
transform an entire sample of scores into z-scores. We enter in the raw scores and SPSS
produces a set of z-scores in a column next to where we typed our raw scores.

CHAPTER SUMMARY

1. The relative standing of a score reflects a systematic evaluation of the score relative
to a sample or population. A z-score indicates a score’s relative standing by indicat-
ing the distance the score is from the mean when measured in standard deviations.

■ To describe a sample mean, compute its z-score and
use the z-table to determine the relative frequency
of sample means above or below it.

MORE EXAMPLES

On a test, , , and our . What
proportion of sample means will be above 

First, compute the standard error of the mean :

Next, compute z:

Finally, examine the z-table: The area above this z is
the upper tail of the distribution, so from column C is
0.0668. This is the proportion of sample means
expected to be above a mean of 103.

z 5
X 2 �
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For Practice

A population of raw scores has and 
our and 

1. The of the sampling distribution here 
equals ____.

2. The symbol for the standard error of the mean is
____, and here it equals ____.

3. The z-score for a sample mean of 80 is ____.

4. How often will sample means between 75 and 80
occur in this situation?

Answers
1. 75
2.
3.
4. From Column B: .4884 of the Time

z 5 180 2 75 2 >2.20 5 12.27
σX 

; 22>1100 5 2.20

�

X 5 80N 5 100
σX 5 22;� 5 75
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2. A positive z-score indicates that the raw score is above the mean; a negative 
z-score indicates that the raw score is below the mean. The larger the absolute
value of z, the farther the raw score is from the mean, so the less frequently the 
z-score and raw score occur.

3. z-scores are used to describe the relative standing of raw scores, to compare raw
scores from different variables, and to determine the relative frequency of raw
scores.

4. A z-distribution is produced by transforming all raw scores in a distribution into 
z-scores.

5. The standard normal curve is a perfect normal z-distribution that is our model 
of the z-distribution that results from data that are approximately normally
distributed, interval or ratio scores.

6. The sampling distribution of means is the frequency distribution of all possible
sample means that occur when an infinite number of samples of the same size 
N are randomly selected from one raw score population.

7. The central limit theorem shows that in a sampling distribution of means (a) the
distribution will be approximately normal, (b) the mean of the sampling distribu-
tion will equal the mean of the underlying raw score population, and (c) the
variability of the sample means is related to the variability of the raw scores.

8. The true standard error of the mean is the standard deviation of the sampling
distribution of means.

9. The location of a sample mean on the sampling distribution of means can be
described by calculating a z-score. Then the standard normal curve model can be
applied to determine the expected relative frequency of the sample means that are
above or below the z-score.

10. Biff’s percentile was 99.87.

1σX 2

KEY TERMS

central limit theorem 125
relative standing 110
sampling distribution of means 125
standard error of the mean 126

;   z  σX standard normal curve 118
standard score 116
z-distribution 115
z-score 111

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. (a) What does a z-score indicate? (b) Why are z-scores important?
2. On what two factors does the size of a z-score depend?
3. What is a z-distribution?
4. What are the three general uses of z-scores with individual raw scores?
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5. (a) What is the standard normal curve? (b) How is it applied to a set of data? 
(c) What three criteria should be met for it to give an accurate description of the
scores in a sample?

6. (a) What is a sampling distribution of means? (b) When is it used? (c) Why is it
useful?

7. What three things does the central limit theorem tell us about the sampling
distribution of means? (b) Why is the central limit theorem so useful?

8. What does the standard error of the mean indicate?
9. (a) What are the steps for using the standard normal curve to find a raw score’s

relative frequency or percentile? (b) What are the steps for finding the raw score
that cuts off a specified relative frequency or percentile? (c) What are the steps 
for finding a sample mean’s relative frequency?

APPLICATION QUESTIONS

10. In an English class last semester, Foofy earned a ). Her
friend, Bubbles, in a different class, earned a ). Should 
Foofy be bragging about how much better she did? Why?

11. Poindexter received a 55 on a biology test and a 45 on a philosophy 
test . He is considering whether to ask his two professors to curve the
grades using z-scores. (a) Does he want the to be large or small in biology?
Why? (b) Does he want the to be large or small in philosophy? Why?

12. Foofy computes z-scores for a set of normally distributed exam scores. She obtains
a z-score of for 8 out of 20 of the students. What do you conclude?

13. For the data,

9 5 10 7 9 10 11 8 12 7 6 9

(a) Compute the z-score for the raw score of 10. (b) Compute the z-score for the
raw score of 6.

14. For the data in question 13, find the raw scores that correspond to the following:
(a) ; (b) 

15. Which z-score in each of the following pairs corresponds to the lower raw 
score? (a) ; (b) 
(c) (d) 

16. For each pair in question 15, which z-score has the higher frequency?
17. In a normal distribution, what proportion of all scores would fall into each of the

following areas? (a) Between the mean and ; (b) below
(c) between and ; (d) above and below .

18. For a distribution in which , , and : (a) What is the rela-
tive frequency of scores between 76 and the mean? (b) How many participants are
expected to score between 76 and the mean? (c) What is the percentile of someone
scoring 76? (d) How many subjects are expected to score above 76?

19. Poindexter may be classified as having a math dysfunction—and not have to take
statistics—if he scores below the 25th percentile on a diagnostic test. The of the
test is 75 . Approximately what raw score is the cutoff score for him to
avoid taking statistics?

20. For an IQ test, we know the population and the . We are
interested in creating the sampling distribution when . (a) What does thatN 5 64
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sampling distribution of means show? (b) What is the shape of the distribution of
IQ means and the mean of the distribution? (c) Calculate for this distribution.
(d) What is your answer in part (c) called, and what does it indicate? (e) What is
the relative frequency of sample means above 101.5?

21. Someone has two job offers and must decide which to accept. The job in City A
pays $47,000 and the average cost of living there is $65,000, with a standard
deviation of $15,000. The job in City B pays $70,000, but the average cost of
living there is $85,000, with a standard deviation of $20,000. Assuming salaries
are normally distributed, which is the better job offer? Why?

22. Suppose you own shares of a company’s stock, the price of which has risen so
that, over the past ten trading days, its mean selling price is $14.89. Over the
years, the mean price of the stock has been $10.43 You wonder if
the mean selling price over the next ten days can be expected to go higher. Should
you wait to sell, or should you sell now?

23. A researcher develops a test for selecting intellectually gifted children, with a 
of 56 and a of 8. (a) What percentage of children are expected to score below
60? (b) What percentage of scores will be above 54? (c) A gifted child is
defined as being in the top 20%. What is the minimum test score needed to qual-
ify as gifted?

24. Using the test in question 23, you measure 64 children, obtaining a of 57.28.
Slug says that because this is so close to the of 56, this sample could hardly
be considered gifted. (a) Perform the appropriate statistical procedure to
determine whether he is correct. (b) In what percentage of the top scores is this
sample mean?

25. A researcher reports that a sample mean produced a relatively large positive or
negative z score. (a) What does this indicate about that mean’s relative frequency?
(b) What graph did the researcher examine to make this conclusion? (c) To what
was the researcher comparing his mean?

INTEGRATION QUESTIONS

26. What does a relatively small standard deviation indicate about the scores in a
sample? (b) What does this indicate about how accurately the mean summarizes
the scores. (c) What will this do to the z-score for someone who is relatively far
from the mean? Why? (Chs. 5, 6)

27. (a) With what type of data is it appropriate to compute the mean and standard
deviation? (b) With what type of data is it appropriate to compute z-scores? 
(Chs. 4, 5, 6)

28. (a) What is the difference between a proportion and a percent? (b) What are the
mathematical steps for finding a specified percent of ? (Ch. 1)

29. (a) We find that .40 of a sample of 500 people score above 60. How many people
scored above 60? (b) In statistical terms, what are we asking about a score when
we ask how many people obtained the score? (c) We find that 35 people out of 
50 failed an exam. What proportion of the class failed? (d) What percentage 
of the class failed? (Chs. 1, 3)

30. What is the difference between the normal distributions we’ve seen in previous
chapters and (a) a z-distribution and (b) a sampling distribution of means? 
(Chs. 3, 6)
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■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for transforming a raw score in a
sample into a z-score is

2. The formula for transforming a z-score in a
sample into a raw score is

3. The formula for transforming a raw score in a
population into a z-score is

z 5
X 2 �

σX

X 5 1z 2 1SX 2 1 X

z 5
X 2 X

SX

4. The formula for transforming a z-score in a
population into a raw score is

5. The formula for transforming a sample mean
into a z-score on the sampling distribution of
means is

6. The formula for the true standard error of the
mean is
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σX

1N

z 5
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Recall that in research we want to not only demonstrate a relationship but also describe
and summarize the relationship. The one remaining type of descriptive statistic for us
to discuss is used to summarize relationships, and it is called the correlation coefficient.
In the following sections, we’ll consider when these statistics are used and what they
tell us. Then we’ll see how to compute the two most common versions of the correla-
tion coefficient. First, though, a few more symbols.

NEW STATISTICAL NOTATION

Correlational analysis requires scores from two variables. Then, stands for the scores
on one variable, and stands for the scores on the other variable. Usually each pair of
X–Y scores is from the same participant. If not, there must be a rational system for
pairing the scores (for example, pairing the scores of roommates). Obviously we must
have the same number of and scores.

We use the same conventions for that we’ve previously used for . Thus, is the
sum of the scores, is the sum of the squared scores, and is the squared
sum of the scores.Y

1©Y 22Y©Y 2Y
©YXY

YX

Y
X
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The Correlation Coefficient7
GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 2, that in a relationship, particular scores tend to occur with a
particular , a more consistent relationship is “stronger,” and we can use
someone’s to predict what his/her will be.

■ From Chapter 5, that greater variability indicates a greater variety of scores is
present and so greater variability produces a weaker relationship. Also that the
phrase “accounting for variance” refers to accurately predicting scores.

Your goals in this chapter are to learn

■ The logic of correlational research and how it is interpreted.

■ How to read and interpret a scatterplot and a regression line.

■ How to identify the type and strength of a relationship.

■ How to interpret a correlation coefficient.

■ When to use the Pearson r and the Spearman .

■ The logic of inferring a population correlation based on a sample correlation.

rS

Y

YX
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You will also encounter three other notations. First, indicates to first find
the sum of the and the sum of the and then multiply the two sums together. Sec-
ond, , called the sum of the cross products, says to first multiply each score in a
pair times its corresponding score and then sum all of the resulting products.

REMEMBER says to multiply the sum of times the sum of .
says to multiply each times its paired and then sum the products.

Finally, stands for the numerical difference between the and scores in a pair,
which you find by subtracting one from the other.

Now, on to the correlation coefficient.

WHY IS IT IMPORTANT TO KNOW ABOUT CORRELATION COEFFICIENTS?

Recall that a relationship is present when, as the scores increase, the corresponding 
scores change in a consistent fashion. Whenever we find a relationship, we then want
to know its characteristics: What pattern is formed, how consistently do the scores
change together, and what direction do the scores change? The best—and easiest—way
to answer these questions is to compute a correlation coefficient. The correlation
coefficient is the descriptive statistic that, in a single number, summarizes and de-
scribes the important characteristics of a relationship. The correlation coefficient quan-
tifies the pattern in a relationship, examining all X–Y pairs at once. No other statistic
does this. Thus, the correlation coefficient is important because it simplifies a complex
relationship involving many scores into one, easily interpreted statistic. Therefore, in
any research where a relationship is found, always calculate the appropriate correlation
coefficient.

As a starting point, the correlation coefficients discussed in this chapter are most
commonly associated with correlational research.

UNDERSTANDING CORRELATIONAL RESEARCH

Recall that a common research design is the correlational study. The term correlation
is synonymous with relationship, so in a correlational design we examine the rela-
tionship between variables. (Think of correlation as meaning the shared, or “co,” re-
lationship between the variables.) The relationship can involve scores from virtually
any variable, regardless of how we obtain them. Often we use a questionnaire or
observe participants, but we may also measure scores using any of the methods used
in experiments.

Recall that correlational studies differ from experiments in terms of how we
demonstrate the relationship. For example, say that we hypothesize that as people
drink more coffee they become more nervous. To demonstrate this in an experiment,
we might assign some people to a condition in which they drink 1 cup of coffee, as-
sign others to a 2-cup condition and assign still others to a 3-cup condition. Then we
would measure participants’ nervousness and see if more nervousness is related to
more coffee. Notice that, by creating the conditions, we (the researchers) determine
each participant’s score because we decide whether their “score” will be 1, 2, or 3
cups on the coffee variable.

In a correlational design, however, we do not manipulate any variables, so we do not
determine participants’ scores. Rather, the scores on both variables reflect an amountX

X

YX

YXD

YX©XY
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Y
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or category of a variable that a participant has already experienced. Therefore, we
simply measure the two variables and describe the relationship that is present. Thus,
we might ask participants the amount of coffee they have consumed today and measure
how nervous they are.

Recognize that computing a correlation coefficient does not create a correlational
design: It is the absence of manipulation that creates the design. In fact, in later chapters
we will compute correlation coefficients in experiments. However, correlation coeffi-
cients are most often used as the primary descriptive statistic in correlational research,
and you must be careful when interpreting the results of such a design.

Drawing Conclusions from Correlational Research

People often mistakenly think that a correlation automatically indicates causality. How-
ever, recall from Chapter 2 that the existence of a relationship does not necessarily
indicate that changes in cause the changes in . A relationship—a correlation—can
exist, even though one variable does not cause or influence the other. Two requirements
must be met to confidently conclude that causes .

First, must occur before . However, in correlational research, we do not always
know which factor occurred first. For example, if we simply measure the coffee drink-
ing and nervousness of some people after the fact, it may be that participants who were
already more nervous then tended to drink more coffee. Therefore, maybe greater nerv-
ousness actually caused greater coffee consumption. In any correlational study, it is
possible that causes .

Second, must be the only variable that can influence . But, in correlational
research, we do little to control or eliminate other potentially causal variables. For exam-
ple, in the coffee study, some participants may have had less sleep than others the night
before testing. Perhaps the lack of sleep caused those people to be more nervous and to
drink more coffee. In any correlational study, some other variable may cause both 
and to change. (Researchers often refer to this as “the third variable problem.”)

Thus, a correlation by itself does not indicate causality. You must also consider the
research method used to demonstrate the relationship. In experiments we apply the in-
dependent variable first, and we control other potential causal variables, so experiments
provide better evidence for identifying the causes of a behavior.

Unfortunately, this issue is often lost in the popular media, so be skeptical the next
time some one uses correlation and cause together. The problem is that people often
ignore that a relationship may be a meaningless coincidence. For example, here’s a re-
lationship: As the number of toilets in a neighborhood increases, the number of crimes
committed in that neighborhood also increases. Should we conclude that indoor plumb-
ing causes crime? Of course not! Crime tends to occur more frequently in the crowded
neighborhoods of large cities. Coincidentally, there are more indoor toilets in such
neighborhoods.

The problem is that it is easy to be trapped by more mysterious relationships. Here’s
a serious example: A particular neurological disease occurs more often in the colder,
northern areas of the United States than in the warmer, southern areas. Do colder tem-
peratures cause this disease? Maybe. But, for all the reasons given above, the mere ex-
istence of this relationship is not evidence of causality. The north also has fewer sunny
days, burns more heating oil, and differs from the south in many other ways. One of
these variables might be the cause, while coincidentally, colder temperatures are also
present.

Thus, a correlational study is not used to infer a causal relationship. It is possible that
changes in might cause changes in , but we will have no convincing evidence ofYX

Y
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this. Instead, correlational research is used to simply describe how nature relates the
variables, without identifying the cause.

REMEMBER We should not infer causality from correlational designs, be-
cause may cause , may cause , or a third variable may cause both 
and .

Distinguishing Characteristics of Correlational Analysis

There are four major differences between how we handle data in a correlational analy-
sis versus in an experiment. First, back in our coffee experiment, we would examine
the mean nervousness score ( ) for each condition of the amount of coffee consumed ( ).
With correlational data, however, we typically have a large range of different scores:
People would probably report many amounts of coffee beyond only 1, 2, or 3 cups.
Comparing the mean nervousness scores for many groups would be very difficult.
Therefore, in correlational procedures, we do not compute a mean score at each .
Instead, the correlation coefficient summarizes the entire relationship at once.

A second difference is that, because we examine all pairs of X–Y scores, correla-
tional procedures involve one sample: In correlational designs, N always stands for the
number of pairs of scores in the data.

Third, we will not use the terms independent and dependent variable with a correla-
tional study (although some researchers argue that these terms are acceptable here).
Part of our reason is that either variable may be called or . How do we decide?
Recall that in a relationship the scores are the “given” scores. Thus, if we ask, “For a
given amount of coffee, what are the nervousness scores?” then amount of coffee is ,
and nervousness is . Conversely, if we ask, “For a given nervousness score, what is
the amount of coffee consumed?” then nervousness is , and amount of coffee is .
Further, recall that, in a relationship, particular scores naturally occur at a particular .
Therefore, if we know someone’s , we can predict his or her corresponding . The
procedures for doing this are described in the next chapter, where the variable is
called the predictor variable, and the variable is called the criterion variable. As
you’ll see, researchers used correlational techniques to identify variables that are
“good predictors” of scores.

Finally, as in the next section, we graph correlational data by creating a scatterplot.

Plotting Correlational Data: The Scatterplot

A scatterplot is a graph that shows the location of each data point formed by a pair of
X–Y scores. Figure 7.1 contains the scores and resulting scatterplot showing the rela-
tionship between coffee consumption and nervousness. It shows that people drinking
1 cup have nervousness scores around 1 or 2, but those drinking 2 cups have higher
nervousness scores around 2 or 3, and so on. Thus, we see that one batch of data points
(and scores) tend to occur with one , and a different batch of data points (and thus
different scores) are at a different .

Real research typically involves a larger N and the data points will not form such
a clear pattern. In fact, notice the strange data point produced by and .
A data point that is relatively far from the majority of data points in the scatterplot is
referred to as an outlier—it lies out of the general pattern. Why an outlier occurs is
usually a mystery to the researcher.

Notice that the scatterplot does summarize the data somewhat. In the table, two peo-
ple had scores of 1 on coffee consumption and nervousness, but the scatterplot shows
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one data point for them. (As shown, some researchers circle such a data point to indi-
cate that points are on top of each other.) In a larger study, many participants with a par-
ticular score may obtain the same , so the number of data points may be
considerably smaller than the number of pairs of raw scores.

When you conduct a correlational study, always begin the analysis by creating a scat-
terplot. The scatterplot allows you to see the relationship that is present and to map out
the best way to summarize it. (Also, you can see whether the extreme scores from any
outliers may be biasing your computations.) Published reports of correlational studies,
however, often do not show the scatterplot. Instead, from the description provided, you
should envision the scatterplot, and then you will understand the relationship formed
by the data. You get the description of the scatterplot from the correlation coefficient. A
correlation coefficient communicates two important characteristics of a relationship:
the type of relationship that is present and the strength of the relationship.

REMEMBER A correlation coefficient is a statistic that communicates the
type and strength of relationship.

TYPES OF RELATIONSHIPS

The type of relationship that is present in a set of data is the overall direction in which
the scores change as the scores change. There are two general types of relation-
ships: linear and nonlinear relationships.

Linear Relationships

The term linear means “straight line,” and a linear relationship forms a pattern that fol-
lows one straight line. This is because in a linear relationship, as the scores increase,
the scores tend to change in only one direction. To understand this, first look at the
data points in the scatterplot on the left in Figure 7.2. This shows the relationship be-
tween the hours that students study and their test performance. A scatterplot that slants
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Scatterplot showing
nervousness as a function
of coffee consumption
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in only one direction like this indicates a linear relationship: it indicates that as students
study longer, their grades tend only to increase. The scatterplot on the right in Figure 7.2
shows the relationship between the hours that students watch television and their test
scores. It too is a linear relationship, showing that, as students watch more television,
their test scores tend only to decrease.

For our discussions, we will summarize a scatterplot by drawing a line around its
outer edges. (Published research will not show this.) As in Figure 7.2, a scatterplot that
forms an ellipse that slants in one direction indicates a linear relationship: by slanting,
it indicates that the scores are changing as the scores increase; slanting in one di-
rection indicates it is linear relationship.

Further, as shown, we can also summarize a relationship by drawing a line through
the scatterplot. (Published research will show this.) The line is called the regression
line. While the correlation coefficient is the statistic that summarizes a relationship, the
regression line is the line on a graph that summarizes the relationship. We will discuss
the procedures for drawing the line in the next chapter, but for now, the regression line
summarizes a relationship by passing through the center of the scatterplot. That is, al-
though all data points are not on the line, the distance that some are above the line
equals the distance that others are below it, so the regression line passes through the
center of the scatterplot. Therefore, think of the regression line as showing the linear—
straight line—relationship hidden in the data: It is how we visually summarize the gen-
eral pattern in the relationship.

REMEMBER The regression line summarizes a relationship by passing through
the center of the scatterplot.

The difference between the scatterplots in Figure 7.2 illustrates the two subtypes of
linear relationships that occur, depending on the direction in which the scores change.
The study–test relationship is a positive relationship. In a positive linear relationship,
as the scores increase, the scores also tend to increase. Thus, low scores are
paired with low scores, and high scores are paired with high scores. Any relation-
ship that fits the pattern “the more , the more ” is a positive linear relationship.YX
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XYX
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FIGURE 7.2

Scatterplots showing positive and negative linear relationships
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(Remember positive by remembering that as the scores increase, the scores change
in the direction away from zero, toward higher positive scores.)

On the other hand, the television–test relationship is a negative relationship. In a
negative linear relationship, as the scores increase, the scores tend to decrease.
Low scores are paired with high scores, and high scores are paired with low 
scores. Any relationship that fits the pattern “the more , the less ” is a negative linear
relationship. (Remember negative by remembering that as the scores increase, the 
scores change toward zero, heading toward negative scores.)

Note: The term negative does not mean that there is something wrong with a rela-
tionship. It merely indicates the direction in which the scores change as the scores
increase.

Nonlinear Relationships

If a relationship is not linear, then it is nonlinear. Nonlinear means that the data cannot
be summarized by one straight line. Another name for a nonlinear relationship is a
curvilinear relationship. In a nonlinear, or curvilinear, relationship, as the scores
change, the scores do not tend to only increase or only decrease: At some point, the 
scores change their direction of change.

Nonlinear relationships come in many different shapes, but Figure 7.3 shows two
common ones. The scatterplot on the left shows the relationship between a person’s age
and the amount of time required to move from one place to another. Very young chil-
dren move slowly, but as age increases, movement time decreases. Beyond a certain
age, however, the time scores change direction and begin to increase. (Such a relation-
ship is called U-shaped.) The scatterplot on the right shows the relationship between
the number of alcoholic drinks consumed and feeling well. At first, people tend to feel
better as they drink, but beyond a certain point, drinking more makes them feel pro-
gressively worse. (Such a scatterplot reflects an inverted U-shaped relationship.)
Curvilinear relationships may be more complex than those above, producing a wavy
pattern that repeatedly changes direction. To be nonlinear, however, a scatterplot does
not need to be curved. A scatterplot might be best summarized by straight regression
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FIGURE 7.3

Scatterplots showing nonlinear relationships
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lines that form a V, an inverted V, or any other shape. It would still be nonlinear as long
as it does not fit one straight line.

Notice that the terms linear and nonlinear are also used to describe relationships
found in experiments. If, as the amount of the independent variable (X) increases, the
dependent scores (Y ) also increase, then it is a positive linear relationship. If the de-
pendent scores decrease as the independent variable increases, it is a negative relation-
ship. And if, as the independent variable increases, the dependent scores change their
direction of change, it is a nonlinear relationship.

How the Correlation Coefficient Describes the 
Type of Relationship

Remember that the correlation coefficient is a number that we compute using our data.
We communicate that the data form a linear relationship first because we compute a
linear correlation coefficient—a coefficient whose formula is designed to summarize a
linear relationship. (Behavioral research focuses primarily on linear relationships, so
we’ll discuss only them.) How do you know whether data form a linear relationship? If
the scatterplot generally follows a straight line, then linear correlation is appropriate.
Also, sometimes, researchers describe the extent to which a nonlinear relationship has
a linear component and somewhat fits a straight line. Here, too, linear correlation is
appropriate. However, do not try to summarize a nonlinear relationship by computing a
linear correlation coefficient. This is like putting a round peg into a square hole: The
data won’t fit a straight line very well, and the correlation coefficient won’t accurately
describe the relationship.

The correlation coefficient communicates not only that we have a linear relationship
but also whether it is positive or negative. Sometimes our computations will produce a
negative number (with a minus sign), indicating that we have a negative relationship.
Other data will produce a positive number (and we place a plus sign with it), indicating
that we have a positive relationship. Then, with a positive correlation coefficient we
envision a scatterplot that slants upward as the scores increase. With a negative coef-
ficient we envision a scatterplot that slants downward as the scores increase.

The other characteristic of a relationship communicated by the correlation coeffi-
cient is the strength of the relationship.

STRENGTH OF THE RELATIONSHIP

Recall that the strength of a relationship is the extent to which one value of is con-
sistently paired with one and only one value of . The size of the coefficient that we
compute (ignoring its sign) indicates the strength of the relationship. The largest value
you can obtain is 1, indicating a perfectly consistent relationship. (You cannot beat per-
fection so you can never have a coefficient greater than 1!) The smallest possible value
is 0, indicating that no relationship is present. Thus, when we include the positive or
negative sign, the correlation coefficient may be any value between and The
larger the absolute value of the coefficient, the stronger the relationship. In other
words, the closer the coefficient is to , the more consistently one value of is paired
with one and only one value of .

REMEMBER A correlation coefficient has two components: The sign indi-
cates either a positive or a negative linear relationship; the absolute value
indicates the strength of the relationship.

X
Y;1

11.21

X
Y

X
X

142 CHAPTER 7 / The Correlation Coefficient



Correlation coefficients do not, however, measure in units of “consistency.” Thus, if
one correlation coefficient is and another is we cannot conclude that one
relationship is twice as consistent as the other. Instead, we evaluate any correlation
coefficient by comparing it to the extreme values of 0 and . The starting point is a
perfect relationship.

Perfect Association

A correlation coefficient of or describes a perfectly consistent linear relationship.
Figure 7.4 shows an example of each. (In this and the following figures, first look at the
scores to see how they pair up. Then look at the scatterplot. Other data having the same
correlation coefficient produce similar patterns, so we envision similar scatterplots.)

Here are four interrelated ways to think about what a correlation coefficient tells you
about the relationship. First, it indicates the relative degree of consistency. A coefficient
of 1 indicates that everyone who obtains a particular score obtains one and only one
value of . Every time changes, the scores all change to one new value.

Second, and conversely, the coefficient communicates the variability in the scores
paired with an . When the coefficient is , only one is paired with an , so there is
no variability—no differences—among the scores paired with each .

Third, the coefficient communicates how closely the scatterplot fits the regression
line. Because a coefficient equal to indicates zero variability or spread in the Y;1
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scores at each , we know that their data points are on top of one another. And, because
it is a perfect straight-line relationship, all data points will lie on the regression line.

Fourth, the coefficient communicates the relative accuracy of our predictions
when we predict participants’ scores by using their scores. A coefficient of 
indicates perfect accuracy in predictions: because only one score occurs with each

we will know every participants’ score every time. Look at the positive relation-
ship back in Figure 7.4: We will always know when people have a score of 2
(when they have an of 1), and we will know when they have a different of 5 or 8
(when they have an of 3 or 5, respectively). The same accuracy is produced in the
negative relationship.

Note: In statistical lingo, because we can perfectly predict the scores here, we
would say that these variables are perfect “predictors” of . Further, recall from
Chapter 5 that the variance is a way to measure differences among scores. When we
can accurately predict when different scores will occur, we say we are “accounting
for the variance in .” A better predictor (X) will account for more of the variance in .
To communicate the perfect accuracy in predictions with correlations of  , we would
say that “100% of the variance is accounted for.”

REMEMBER The correlation coefficient communicates the consistency of the
relationship, the variability of the scores at each , the shape of the scatter-
plot, and our accuracy when using to predict scores.

Intermediate Association

A correlation coefficient that does not equal indicates that the data form a linear
relationship to only some degree. The closer the coefficient is to , however, the
closer the data are to forming a perfect relationship, and the closer the scatterplot is to
forming a straight line. Therefore, the way to interpret any other value of the correla-
tion coefficient is to compare it to .

For example, Figure 7.5 shows data that produce a correlation coefficient of 
Again interpret the coefficient in four ways. First, consistency: A coefficient less than

indicates that not every participant at a particular had the same . However, a
coefficient of is close to so there is close to perfect consistency. That is, even
though different values of occur with the same , the scores are relatively close to
each other.

Second, variability: By indicating reduced consistency, this coefficient indicates that
there is now variability (differences) among the scores at each . However, becauseXY

YXY
11,1.98
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FIGURE 7.5
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is close to (close to the situation where there is zero variability) we know that
the variability in our scores is close to zero and relatively small.

Third, the scatterplot: Because there is variability in the s at each , not all data
points fall on the regression line. Back in Figure 7.5, variability in scores results in a
group of data points at each that are vertically spread out above and below the regres-
sion line. However, a coefficient of is close to so we know that the data points
are close to, or hug, the regression line, resulting in a scatterplot that is a narrow, or
skinny, ellipse.

Fourth, predictions: When the correlation coefficient is not , knowing partici-
pants’ scores allows us to predict only around what their score will be. For exam-
ple, in Figure 7.5, for an of 1 we’d predict that a person has a around 1 or 2, but we
won’t know which. In other words, we will have some error in our predictions. How-
ever, a coefficient of is close to (close to the situation where there is zero
error). This indicates that our predicted scores will be close to the actual scores that
participants obtained, and so our error will be small. With predictions that are close to
participants’ scores, we would describe this variable as “a good predictor of .”
Further, because we will still know when scores around 1 or 2 occur and when differ-
ent s around, say, 4 or 5 occur, this variable still “accounts for” a sizable portion of
the variance among all scores.

The key to understanding the strength of any relationship is this:

As the variability—differences—in the Y scores paired with an X becomes
larger, the relationship becomes weaker.

The correlation coefficient communicates this because, as the variability in the s at
each becomes larger, the value of the correlation coefficient approaches 0. Figure 7.6
shows data that produce a correlation coefficient of only (The fact that this is a
negative relationship has nothing to do with its strength.) Here the spread in the 

scores (the variability) at each is relatively large. This does two things that are con-
trary to a relationship. First, instead of seeing a different scores at different s, we
see very different s for individuals who have the same . Second, instead of seeing
one value of at only one , the scores at different s overlap, so we see one value
of paired with different values of . Thus, the weaker the relationship, the more the 

scores tend to change when does not, and the more the scores tend to stay the
same when does change.

Thus, it is the variability in at each that determines the consistency of a relation-
ship, which in turn determines the characteristics we’ve examined. Thus, a coefficient
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of .28 is not very close to , so, as in Figure 7.6, we know that (1) only barely does
one value or close to one value of tend to be associated with one value of ; (2) con-
versely, the variability among the scores at every is relatively large; (3) the large
differences among scores at each produce data points on the scatterplot at each 
that are vertically spread out, producing a “fat” scatterplot that does not hug the regres-
sion line; and (4) because each is paired with a wide variety of scores, knowing par-
ticipants’ will not allow us to accurately predict their . Instead, our prediction errors
will be large because we have only a very general idea of when higher scores tend to
occur and when lower scores occur. Thus, this is a rather poor “predictor” because
it “accounts” for little of the variance among scores.

REMEMBER Greater variability in the scores at each reduces the strength
of a relationship and the size of the correlation coefficient.

Zero Association

The lowest possible value of the correlation coefficient is 0, indicating that no relation-
ship is present. Figure 7.7 shows data that produce such a coefficient. When no rela-
tionship is present, the scatterplot is circular or forms an ellipse that is parallel to the 
axis. Likewise, the regression line is a horizontal line. 

A scatterplot like this is as far from forming a slanted straight line as possible, and a
correlation coefficient of 0 is as far from as possible. Therefore, this coefficient tells
us that no score tends to be consistently associated with only one value of . Instead,
the Ys found at one are virtually the same as those found at any other . This also
means that knowing someone’s score will not in any way help us to predict the corre-
sponding . (We can account for none of the variance in .) Finally, this coefficient in-
dicates that the spread in at any equals the overall spread of in the data, producing
a scatterplot that is a circle or horizontal ellipse that in no way hugs the regression line.

REMEMBER The larger a correlation coefficient (whether positive or nega-
tive), the stronger the linear relationship, because the less the are spread
out at each , and so the closer the data come to forming a straight line.X
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FIGURE 7.7
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THE PEARSON CORRELATION COEFFICIENT

Now that you understand the correlation coefficient, we can discuss its computation.
However, statisticians have developed a number of correlation coefficients having dif-
ferent names and formulas. Which one is used in a particular study depends on the na-
ture of the variables and the scale of measurement used to measure them. By far the
most common correlation coefficient in behavioral research is the Pearson correlation
coefficient. The Pearson correlation coefficient describes the linear relationship be-
tween two interval variables, two ratio variables, or one interval and one ratio variable.
(Technically, its name is the Pearson Product Moment Correlation Coefficient.) The
symbol for the Pearson correlation coefficient is the lowercase r. (All of the example
coefficients in the previous section were rs.)

Mathematically r compares how consistently each value of is paired with each
value of . In Chapter 6, you saw that we compare scores from different variables by
transforming them into z-scores. Computing r involves transforming each score into
a z-score (call it ), transforming each score into a z-score (call it ), and then
determining the “average” amount of correspondence between all pairs of z-scores.
The Pearson correlation coefficient is defined as

r 5
a 1zXzY 2

N

zXXzY

Y
X

Y
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A  Q U I C K  R E V I E W

■ As scores increase, in a positive linear
relationship, the scores tend to increase, and in a
negative linear relationship, the scores tend to
decrease.

■ The larger the correlation coefficient, the more
consistently one occurs with one , the
smaller the variability in s at an , the more
accurate our predictions, and the narrower the
scatterplot.

MORE EXAMPLES

A coefficient of .84 indicates (1) as increases,
consistently increases; (2) everyone at a particular 
shows little variability in scores; (3) by knowing an
individual’s , we can closely predict his/her score;
and (4) the scatterplot is a narrow ellipse, with the data
points lying near the upward slanting regression line.
However, a coefficient of .38 indicates (1) as in-
creases, somewhat consistently increases; (2) a wide
variety of scores paired with a particular ; (3) know-
ing an score does not produce accurate predictions of
the paired score; and (4) the scatterplot is a wide el-
lipse around the upward slanting regression line.

Y
X

XY
Y

X1

YX
Y

X
YX1

XY
XY

Y
Y

X For Practice

1. In a ______ relationship, as the scores increase,
the scores increase or decrease only. This is not
true in a ______ relationship.

2. The more that you smoke cigarettes, the lower
is your healthiness. This is a ______ linear
relationship, producing a scatterplot that slants
______ as increases.

3. The more that you exercise, the better is your
muscle tone. This is a ______ linear relationship,
producing a scatterplot that slants ______ as 
increases.

4. In a stronger relationship the variability among the
scores at each is ______, producing a scatter-

plot that forms a ______ ellipse.

5. The ______ line summarizes the scatterplot.

Answers

1. linear; nonlinear
2. negative; down
3. positive; up
4. smaller; narrower
5. regression
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Multiplying each times the paired , summing the products, and then dividing by
N produces the average correspondence between the scores.

Luckily, the computational formula for r does all of that at once. It is derived from
the above formula by replacing the symbols and with their formulas and then,
in each, replacing the symbols for the mean and standard deviation with their formu-
las. This produces a monster of a formula. After reducing it, we have the smaller mon-
ster below.

zYzX

zYzX
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The computational formula for the Pearson correlation 
coefficient is

r 5
N1©XY 2 2 1©X 2 1©Y 2

 2 3N1©X2 2 2 1©X 22 4 3N1©Y2 2 2 1©Y 22 4

In the numerator, N (the number of pairs) is multiplied times . From this, sub-
tract the quantity obtained by multiplying times . In the denominator, in the
left brackets, multiply N times and from that subtract . In the right bracket,
multiply N times and from that subtract . Multiply the answers in the two
brackets together and find the square root. Then divide the denominator into the numer-
ator and, voilà, the answer is the Pearson r.

As an example, say that we ask ten people the number of times they visited a doctor
in the last year and the number of glasses of orange juice they drink daily. We obtain
the data in Figure 7.8. To describe the linear relationship between juice drinking and
doctor visits, (two ratio variables,) we compute r.

Table 7.1 shows a good way to organize your computations. In addition to the
columns for and , create columns containing , , and . Sum all columns.
Then square and .©Y©X

XYY 2X 2YX

1©Y 22©Y 2
1©X 22©X2

1©X 21©X 2
©XY

FIGURE 7.8

The relationship between number of glasses of orange juice consumed daily and number of yearly doctor visits.

Juice Scores: Doctor Visits:
Participant X Y

1 0 8
2 0 7
3 1 7
4 1 6
5 1 5
6 2 4
7 2 4
8 3 4
9 3 2

10 4 0  
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Putting these quantities in the formula for r we get

In the numerator, multiplying 10 times 52 is 520. Also, 17 times 47 is 799. Now we
have

Complete the numerator: 799 from 520 is 279. (Note the negative sign.)
In the denominator, first perform the operations within each bracket. In the left

bracket, 10 times 45 is 450. From that subtract 289, obtaining 161. In the right bracket,
10 times 275 is 2750. From that subtract 2209, obtaining 541. We have

Now multiply the quantities in the brackets together: 161 times 541 equals 87,101.
After taking the square root we have

Divide and there you have it:
Thus, the correlation coefficient between orange juice drinks and doctor visits is

(Note: We usually round the coefficient to two decimals.) Had this been a posi-
tive relationship, r would not be negative and we would include the sign. Instead, on
a scale of 0 to , a indicates that this is an extremely strong, negative linear re-
lationship. Therefore, we envision a very narrow, downward slanting scatterplot like
that back in Figure 7.8. We know that each amount of orange juice is associated with a
very small range of doctor visits, and as juice scores increase, doctor visits consistently
decrease. Further, based on participants’ juice scores, we can very accurately predict
their doctor visits. (Orange juice is an extremely good “predictor” of doctor visits,

2.95;1
1

2.95.

r 5 2.95.

r 5
2279

295 .129

r 5
2279

2 3161 4 3541 4

2

r 5
520 2 799

2 310145 2 2 289 4 3101275 2 2 2209 4

5
10152 2 2 117 2 147 2

2 310145 2 2 289 4 3101275 2 2 2209 4
r 5

N1©XY 2 2 1©X 2 1©Y 2

 2 3N1©X2 2 2 1©X 22 4 3N1©Y 2 2 2 1©Y 22 4
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Glasses of Juice per Day Doctor Visits per Year

Participant

1 0 0 8 64 0
2 0 0 7 49 0
3 1 1 7 49 7
4 1 1 6 36 6
5 1 1 5 25 5
6 2 4 4 16 8
7 2 4 4 16 8
8 3 9 4 16 12
9 3 9 2 4 6

10 4 16 0 0 0

17 45 47 275 52

1©Y 22 5 22091©X 22 5 289

©XY 5©Y 2 5©Y 5  ©X 2 5©X 5  N 5 10

XYY2YX 2X

TABLE 7.1

Sample Data for
Computing the r
Between Orange Juice
Consumed (the 
X variable) and Doctor
Visits (the Y variable)



accounting for a substantial portion of the variance in these scores.) Of course if the
correlation were this large in real life, we’d all be drinking a lot more orange juice,
incorrectly thinking that this would cause fewer doctor visits.

REMEMBER Compute the Pearson correlation coefficient to describe the lin-
ear relationship between interval and/or ratio variables.

Recognize that this correlation coefficient describes the relationship in our sample.
Ultimately we will want to describe the laws of nature, inferring the correlation coeffi-
cient we would expect to find if we could measure everyone in the population. How-
ever, before we can do this, we must perform the appropriate inferential procedure
(discussed in Chapter 11). Only if our sample correlation coefficient passes the infer-
ential test will we then talk about how this relationship occurs in nature.

Y
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A  Q U I C K  R E V I E W

■ The Pearson correlation coefficient (r) describes the
linear relationship between two interval and/or ratio
variables.

MORE EXAMPLES

X Y

1 3
1 2
2 4
2 5
3 5
3 6

To compute r for the above scores:

, , , ,
, , and 

In the numerator, 6 times 56 is 336, and 12 times 25 is
300, so

 r 5
136

2 36128 2 2 144 4 361115 2 2 625 4

 r 5
336 2 300

2 3 16128 2 2 144 4 361115 2 2 625 4

 r 5
6156 2 2 112 2 125 2

2 36128 2 2 144 4 361115 2 2 625 4

 r 5
N1©XY 2 2 1©X 2 1©Y 2

2 3N1©X2 2 2 1©X 22 4 3N1©Y 2 2 2 1©Y 22 4

N 5 6©XY 5 56©Y 2 5 1551©Y 22 5 625
©Y 5 25©X2 2 281©X 22 5 144©X 5 12

In the denominator, 6 times 28 is 168; 6 times 115
is 690, so

For Practice

Compute r for the following:

X Y

1 1
1 3
2 2
2 4
3 4

Answer

 5
114

2 314 4 334 4
5 1.64

 r 5
5128 2 2 19 2 114 2

2 35119 2 2 81 4 35146 2 2 196 4

 r 5
136

21560
5

136

39.497
5 1.91

 r 5
136

2 3168 2 144 4 3690 2 625 4
5

136

2 324 4 365 4



THE SPEARMAN RANK-ORDER CORRELATION COEFFICIENT

Another very common correlation coefficient is used when we have ordinal scores
(when we have the equivalent of 1st, 2nd, 3rd, etc., on each variable). The Spearman
rank-order correlation coefficient describes the linear relationship between two vari-
ables when measured by ranked scores. The symbol for the Spearman correlation coef-
ficient is . (The subscript s stands for Spearman.)

Sometimes we compute because we have initially assigned each participant a rank
on each of two variables. Or, if we want to correlate one ranked variable with one inter-
val or ratio variable, we transform the interval or ratio scores into ranked scores (we
might give the participant with the highest score a 1, the next highest score is ranked 2,
and so on). Either way that we obtain the ranks, tells us the extent to which the ranks
on one variable consistently match the ranks on the other variable to form a linear rela-
tionship. If every participant has the same rank on both variables, will equal 1. If
everyone’s rank on one variable is the opposite of his or her rank on the other variable,

will equal 1. With only some degree of consistent pairing of the ranks, will be
between 0 and 1. If there is no consistent pairing, will equal 0.

Ranked scores often occur in behavioral research because a variable is difficult to
measure quantitatively. Instead we must evaluate participants by asking observers to
make subjective judgments that are then used to rank order the participants. For exam-
ple, say that we ask two observers to judge how aggressively children behave while
playing. Each observer assigns the rank of 1 to the most aggressive child, 2 to the sec-
ond-most aggressive child, and so on. Because describes the consistency with which
rankings match, one use of is to determine the extent to which the two observers’
rankings agree.

Figure 7.9 shows the ranked scores and the resulting scatterplot that the two ob-
servers might produce for nine children. Notice that we treat each observer as a vari-
able. Judging from the scatterplot, it appears that they form a positive relationship. To
describe this relationship, we compute . 

Note: If you have any “tied ranks” (when two or more participants receive the same
score on the same variable) you must first adjust them as described in the section
“Resolving Tied Ranks” in Chapter 15. 

rS

rS

rS

rS;
rS2rS

1rS

rS

rS

rS
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FIGURE 7.9

Sample data for computing rS between rankings assigned to children by observer A and observer B

Observer A: Observer B:
Participant X Y

1 4 3
2 1 2
3 9 8
4 8 6
5 3 5
6 5 4
7 6 7
8 2 1
9 7 9 0

Observer A’s rankings
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The logic of the formula here is similar to that in the previous Pearson formula, ex-
cept that accommodates the peculiarities of ranks (e.g., zero cannot occur). This is
why the formula always contains the 6 in the numerator. The D in the numerator stands
for the difference between the two ranks in each X–Y pair, and N is the number of pairs
of ranks. Note that after dealing with the fraction, the final step is to subtract from 1.

A good way to organize your computations is shown in Table 7.2. For the column
labeled , either subtract every from its paired or, as shown, every from its .
Then compute by squaring the difference in each pair. Finally, determine the sum of
the squared differences, (here is 18). You will also need , the number of
X–Y pairs (here 9), and (here 81). Filling in the formula gives

In the numerator, 6 times 18 is 108. In the denominator, is 80, and 9 times 80 is
720. Now

After dividing

Subtracting yields

rS 5 1.85

rS 5 1 2 .15

rS 5 1 2
108

720

81 2 1

rS 5 1 2
61©D2 2

N1N2 2 1 2
5 1 2

6118 2

9181 2 1 2

N2
N©D2©D2

D2
XYYXD

rS
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TABLE 7.2

Data Arrangement 
for Computing rS

Observer A: Observer B:
Participant X Y D

1 4 3 1 1
2 1 2 1
3 9 8 1 1
4 8 6 2 4
5 3 5 4
6 5 4 1 1
7 6 7 1
8 2 1 1 1
9 7 9 4

2 5 18©D

22

21

22

21

D2

The computational formula for the Spearman rank-order
correlation coefficient is

rS 5 1 2
61©D2 2

N1N2 2 1 2

Here is the formula for .rS



THE RESTRICTION OF RANGE PROBLEM

As you learn about conducting research, you’ll learn of potential mistakes to avoid that
otherwise can lead to problems with your statistical conclusions. One important
mistake to avoid with all correlation coefficients is called the restriction of range
problem. It occurs when we have data in which the range between the lowest and high-
est scores on one or both variables is limited. This will produce a correlation coefficient
that is smaller than it would be if the range were not restricted. Here’s why.

The Restriction of Range Problem 153

■ The Spearman correlation coefficient describes
the type and strength of the linear relationship
between two sets of ranks.

MORE EXAMPLES

To determine for the following ranks, find the D of
each X–Y pair, and then D2 and N.

X Y D

1 1 0 0
2 2 0 0
4 3 1 1
3 6 9
6 5 1 1
5 4 1 1

 5 1 2
72

210
5 1 2 .343 5 1.66

 rs 5 1 2
61©D2 2

N1N2 2 1 2
5 1 2

6112 2

6136 2 1 2

N 5 6
©D2 5 12

5
5

235
5
5
5

D2

rS

1rS 2 For Practice

1. When do we compute ?

2. The first step in computing is to compute each
____?

For the ranks:

X Y

1 2
2 1
3 3
4 5
5 4

3. The ____ and _____?

4. The ____?

Answers
1. When we have ordinal scores.
2. D
3.
4. rS 5 1.80

©D2 5 4; N 5 5

rS 5

N 5©D2 5

rS

rS

A  Q U I C K  R E V I E W

Thus, on a scale of 0 to , these rankings form a consistent linear relationship to
the extent that . This tells us that a child receiving a particular rank from
one observer tended to receive very close to the same rank from the other observer.
Therefore, the data form a rather narrow scatterplot that tends to hug the regression
line. (The must also pass the inferential test in Chapter 11 before we can draw any
inferences about it.)

REMEMBER Compute the Spearman correlation coefficient to describe the
linear relationship between two ordinal variables.

rS

rS 5    1  .85
;1



In Figure 7.10, first consider the entire scatterplot
showing the full (unrestricted) range of and scores.
We see a different batch of similar scores occurring
as increases, producing an elongated, relatively nar-
row ellipse that clearly slants upwards. Therefore, the
correlation coefficient will be relatively large, and we
will correctly conclude that there is a strong linear
relationship between these variables.

However, say that instead we restricted the range of
when measuring the data, giving us only the scatter-

plot located between the lines labeled A and B in
Figure 7.10. Now, we are seeing virtually the same
batch of scores as these few scores increase. This
produces a scatterplot that looks relatively fat and more
horizontal. Therefore, the correlation coefficient from

these data will be very close to 0, so we will conclude that there is a very weak—if
any—linear relationship here. This would be wrong, however, because without us
restricting the range, we would have seen that nature actually produces a much stronger
relationship. (Because either variable can be the or variable, restricting the range of

has the same effect.)

REMEMBER Restricting the range of or scores leads to an underestimate
of the true strength of the relationship between the variables.

How do you avoid restricting the range? Generally, restriction of range occurs
when researchers are too selective when obtaining participants. Thus, if you study
the relationship between participants’ high school grades and their subsequent
salaries, don’t restrict the range of grades by testing only honor students: Measure all
students to get the entire range of grades. Or, if you’re correlating personality types
with degree of emotional problems, don’t study only college students. People with
severe emotional problems tend not to be in college, so you won’t have their scores.
Instead, include the full range of people from the general population. Likewise, any
task you give participants should not be too easy (because then everyone scores in a
narrow range of very high scores), nor should the task be too difficult (because then
everyone obtains virtually the same low score). In all cases, the goal is to allow a
wide range of scores to occur on both variables so that you have a complete descrip-
tion of the relationship.

STATISTICS IN PUBLISHED RESEARCH: CORRELATION COEFFICIENTS

In APA-style publications, the Pearson correlation coefficient is symbolized by r,
and the Spearman coefficient is symbolized by . Later we’ll also see other coeffi-
cients that are designed for other types of scores, and you may find additional, ad-
vanced coefficients in published research. However, all coefficients are interpreted
in the same ways that we have discussed: the coefficient will have an absolute value
between 0 and 1, with 0 indicating no relationship and 1 indicating a perfectly con-
sistent relationship.

In real research, however, a correlation coefficient near simply does not occur.
Recall from Chapter 2 that individual differences and extraneous environmental vari-
ables produce inconsistency in behaviors, which results in inconsistent relationships.

;1
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Y
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X
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FIGURE 7.10

Scatterplot showing
restriction of range in 
X scores



Therefore, adjust your expectations: Most research produces coefficients with absolute
values in the neighborhood of only .30 to .50. Thus, coefficients below .20 tend to be
considered very weak and often negligible. Coefficients around .40 are described as
strong and coefficients above .60 are uncommon and considered very strong. A corre-
lation near 1 is most likely a computational error.

Chapter Summary 155

It should be obvious why you should compute a correlation coefficient whenever you
have a relationship to summarize. It is the one number that allows you to envision and
summarize the important information in a scatterplot. For example, in our study on nerv-
ousness and the amount of coffee consumed, say that I tell you that the r in the study
equals .50. Without even seeing the data, you know this is a positive linear relationship
such that as coffee consumption increases, nervousness also tends to increase. Also, you
know that it is a rather consistent relationship so there are similar scores paired with an

, producing a narrow, elliptical scatterplot that hugs the regression line. And, you know
that coffee consumption is a reasonably good predictor of nervousness so, given some-
one’s coffee score, you’ll have considerable accuracy in predicting his or her nervousness
score. No other type of statistic so directly summarizes a relationship. Therefore, as you’ll
see in later chapters, even when you conduct an experiment, always think “correlation co-
efficient” to describe the strength and type of relationship you’ve observed.

Using the SPSS Appendix As shown in Appendix B.4, the SPSS program will calcu-
late the Pearson r, as well as computing the mean and standard deviation of the 
scores and of the scores. SPSS will also compute the Spearman (even if your data
contains tied ranks.) Also, you may enter interval or ratio scores and the program will
first convert them to ranks and then compute .

CHAPTER SUMMARY

1. A scatterplot is a graph that shows the location of each pair of X–Y scores in the
data. An outlier is a data point that lies outside of the general pattern in the
scatterplot. It is produced when a participant has an unusual or score.

2. The regression line summarizes a relationship by passing through the center of the
scatterplot.

3. In a linear relationship, as the scores increase, the scores tend to change in
only one direction. In a positive linear relationship, as the scores increase, the 
scores tend to increase. In a negative linear relationship, as the scores increase,
the scores tend to decrease. In a nonlinear, or curvilinear, relationship, as the 
scores increase, the scores do not only increase or only decrease.

4. Circular or elliptical scatterplots that produce horizontal regression lines indicate
no relationship. Scatterplots with regression lines sloping up as increases indi-
cate a positive linear relationship. Scatterplots with regression lines sloping down
as increases indicate a negative linear relationship. Scatterplots producing wavy
regression lines indicate curvilinear relationships.

5. A correlation coefficient describes the type of relationship (the direction scores
change) and the strength of the relationship (the extent to which one value of is
consistently paired with one value of ).X
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6. A smaller absolute value of the correlation coefficient indicates a weaker, less
consistent relationship, with greater variability in scores at each , greater
vertical spread in the scatterplot, and less accuracy in predicting scores based
on correlated scores.

7. The Pearson correlation coefficient (r) describes the type (either positive or nega-
tive) and the strength of the linear relationship between two interval and/or ratio
variables.

8. The Spearman rank-order correlation coefficient ( ) describes the type and
strength of the linear relationship between two ordinal variables.

9. The restriction of range problem occurs when the range of scores from one or
both variables is limited. Then the correlation coefficient underestimates the
strength of the relationship that would be found if the range were not restricted.

10. Because a stronger relationship allows for greater accuracy in predicting scores,
researchers say the variable is a better predictor of scores, allowing us to ac-
count for more variance in .Y

YX
Y

rS

X
Y

XY
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r    
correlation coefficient 136
curvilinear relationship 141
linear relationship 139
negative linear relationship 141
nonlinear relationship 141
outlier 138
Pearson correlation coefficient 147

rS©XY positive linear relationship 140
regression line 140
restriction of range 153
scatterplot 138
Spearman rank-order correlation

coefficient 152
strength of a relationship 142
type of relationship 139

KEY TERMS

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. What is the difference between an experiment and a correlational study in terms
of how the researcher (a) collects the data? (b) examines the relationship?

2. (a) You have collected data that you think show a relationship. What do you do
next? (b) What is the advantage of computing a correlation coefficient? (c) What
two characteristics of a linear relationship are described by a correlation
coefficient?

3. What are the two reasons why you can’t conclude you have demonstrated a causal
relationship based on correlational research?

4. (a) When do you compute a Pearson correlation coefficient? (b) When do you
compute a Spearman coefficient?

5. (a) What is a scatterplot? (b) What is an outlier? (c) What is a regression line?
6. Why can’t you obtain a correlation coefficient greater than ?;1



7. (a) Define a positive linear relationship. (b) Define a negative linear relationship.
(c) Define a curvilinear relationship.

8. As the value of r approaches , what does it indicate about the following? 
(a) The consistency in the X–Y pairs; (b) the variability of the scores at each ;
(c) the closeness of scores to the regression line; (d) the accuracy with which we
can predict if is known.

9. What does a correlation coefficient equal to 0 indicate about the four characteris-
tics in question 8?

10. (a) What is the restriction of range problem? (b) What produces a restricted
range? (c) How is it avoided?

11. (a) What does a researcher mean when he states that a particular variable is a 
“a good predictor?” (b) What does a researcher mean when she says an variable
accounts for little of the variance in ?

APPLICATION QUESTIONS

12. For each of the following, indicate whether it is a positive linear, negative linear,
or nonlinear relationship: (a) Quality of performance increases with increased
arousal up to an optimal level; then quality of performance decreases with
increased arousal. (b) Overweight people are less healthy . (c) As number
of minutes of exercise increases each week , dieting individuals lose more
pounds . (d) The number of bears in an area decreases as the area becomes
increasingly populated by humans .

13. Poindexter sees the data in question 12d and concludes, “We should stop people
from moving into bear country so that we can preserve our bear population.”
What is the problem with Poindexter’s conclusion?

14. For each of the following, give the symbol for the correlation coefficient you
should compute. You measure (a) SAT scores and IQ scores; (b) taste rankings of
tea by experts and those by novices; (c) finishing position in a race and amount of
liquid consumed during the race.

15. Poindexter finds that between the variables of number of hours 
studied and number of errors on a statistics test (Y ). He also finds that 

between the variables of time spent taking the statistics test and 
the number of errors on the test. He concludes that the time spent taking a test
forms a stronger relationship with the number of errors than does the amount 
of study time. (a) Describe the relative shapes of the two scatterplots. 
(b) Describe the relative amount of variability in scores at each in each 
study. (c) Describe the relative closeness of scores to the regression line 
in each study. (d) Is Poindexter correct in his conclusion? If not, what’s his 
mistake?

16. In question 15, (a) which variable is a better predictor of test errors and how do
you know this? (b) Which variable accounts for more of the variance in test errors
and how do you know this?

17. Foofy and Poindexter study the relationship between IQ score and high school
grade average, measuring a large sample of students from PEST (the Program 
for Exceptionally Smart Teenagers), and compute . They conclude 
that there is virtually no relationship between IQ and grade average. Should 
you agree or disagree with this conclusion? Is there a problem with their study?

r 5 1.03
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r 5 1.36
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19. You want to know if a nurse’s absences from work in one month can be
predicted by knowing her score on a test of psychological “burnout” . 
What do you conclude from the following ratio data?

1X 2
1Y 2
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Errors Satisfaction
Participant X Y

1 9 3
2 8 2
3 4 8
4 6 5
5 7 4
6 10 2
7 5 7

Burnout Absences
Participant X Y

1 2 4
2 1 7
3 2 6
4 3 9
5 4 6
6 4 8
7 7 7
8 7 10
9 8 11

20. In the following data, the scores reflect participants’ rankings in a freshman
class, and the scores reflect their rankings in a sophomore class. To what extent
do these data form a linear relationship?

Y
X

Fresh. Soph.
Participant X Y

1 2 3
2 9 7
3 1 2
4 5 9
5 3 1
6 7 8
7 4 4
8 6 5
9 8 6

18. A researcher measures the following scores for a group of people. The 
variable is the number of errors on a math test, and the variable is the
person’s level of satisfaction with his/her performance. (a) With such 
ratio scores, what should the researcher conclude about this relationship?
(Hint: Compute something!) (b) How well will he be able to predict satisfac-
tion scores using this relationship?

Y
X



INTEGRATION QUESTIONS

22. In an experiment, (a) which variable is assumed to be the causal variable? (b)
Which variable is assumed to be caused? (c) Which variable does the researcher
manipulate? (d) Which variable occurs first? (Ch. 2)

23. In a correlational study, we measure participants’ creativity and their intelligence.
(a) Which variable does the researcher manipulate? (b) Which variable is the
causal variable? (c) Which variable occurred first? (d) Which variable is called the
independent variable? (Chs. 2, 7)

24. In question 23, (a) How would you determine which variable to call ? (b) In a
different study, my title is “Creativity as a function of Intelligence.” Which
variable is my variable? Why? (Ch. 2)

25. Indicate which of the following is a correlational design and the correlation coeffi-
cient to compute. (a) We measure participants’ age and their daily cell phone us-
age. (b) We separate participants into three age groups, and then observe their cell
phone usage during a one hour period. (c) A teacher uses students’ grades on their
first exam to predict their final exam grades. (d) We ask whether a website rated
as most attractive has more visitors than one rated as second most attractive, and
so on, for the top ten websites. (e) We compare performance on an attention test
of people who were and were not given an energy drink. (Chs. 2, 7)

X

X
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21. A researcher observes the behavior of a group of monkeys in the jungle. He deter-
mines each monkey’s relative position in the dominance hierarchy of the group
(1 being most dominant) and also notes each monkey’s relative weight (1 being
the lightest). What is the relationship between dominance rankings and weight
rankings in these data?

Dominance Weight
Participant X Y

1 1 10
2 2 8
3 5 6
4 4 7
5 9 5
6 7 3
7 3 9
8 6 4
9 8 1

10 10 2

■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for the Pearson r is

r 5
N1©XY 2 2 1©X 2 1©Y 2

2 3N1©X 2 2 2 1©X 22 4 3N1©Y 2 2 2 1©Y 22 4

2. The formula for the Spearman is

rS 5 1 2
61©D2 2

N1N2 2 1 2

rS



Recall that, in a relationship, particular scores are naturally paired with certain 
scores. Therefore, if we know an individual’s score and the relationship between 
and , we can predict the individual’s score. The statistical procedure for making
such predictions is called linear regression. In the following sections, we’ll examine
the logic behind regression and see how to use it to predict scores. Then we’ll look at
ways of measuring the errors in prediction.

NEW STATISTICAL NOTATION

We use the following symbols for distinguishing participants’ actual scores from the scores
that we predict for them: As usual, stands for a participant’s actual score. The symbol
for a predicted score is . The “ ” is called prime, so this symbol is pronounced 
“ prime.”

Also, for a sample of scores, we will discuss the mean , sample variance ,
and sample standard deviation . These involve the same formulas we used previ-
ously, except now we plug in scores.

Thus,

and and SY 5
R

©Y2 2
1©Y 22
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N
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Y 5

©Y2 2
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GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 5, that when the mean is the predicted score, the variance 
reflects the “average error” in predictions. 

■ From Chapter 7, that the larger an , the more consistent the relationship, so the
closer the scores are to each other at an , and the closer they are to the
regression line. Also, the larger an , the better we can predict scores and
“account for variance.”

Your goals in this chapter are to learn

■ How a regression line summarizes a scatterplot.

■ How the regression equation is used to predict the Y scores at a given X.

■ How the standard error of the estimate measures the errors in prediction.

■ How the strength of the relationship determines our accuracy in predicting 
Y scores.

■ What the proportion of variance accounted for tells us and how to compute it.

Yr
XY

r
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WHY IS IT IMPORTANT TO KNOW ABOUT LINEAR REGRESSION?

A goal of research is to be able to predict when different behaviors will occur. This
translates into predicting when someone has one score on a variable and when they
have a different score. We use relationships to make these predictions. It’s important
that you know about linear regression because it is the statistical procedure for using a
relationship to predict scores. Linear regression is commonly used in basic and applied
research, particularly in educational, industrial and clinical settings. For example, the
reason that students take the Scholastic Aptitude Test (SAT) when applying to some
colleges is because, from previous research we know that SAT scores are somewhat
positively correlated with college grades. Therefore, through regression techniques, the
SAT scores of applying students are used to predict their future college performance. If
the predicted grades are too low, the student is not admitted to the college. This
approach is also used when people take a test when applying for a job so that the
employer can predict who will be better workers, or when clinical patients are tested to
identify those at risk of developing emotional problems.

REMEMBER The importance of linear regression is that it is used to predict
unknown scores based on the scores from a correlated variable.

UNDERSTANDING LINEAR REGRESSION

Regression procedures center around drawing the linear regression line, the summary
line drawn through a scatterplot. We use regression procedures in conjunction with the
Pearson correlation. While is the statistic that summarizes the linear relationship, the
regression line is the line on the scatterplot that summarizes the relationship. Always
compute first to determine whether a relationship exists. If the correlation coefficient
is not 0 and passes the inferential test, then perform linear regression to further summa-
rize the relationship.

An easy way to understand a regression line is to compare it to a line graph of an
experiment. In Chapter 4, we created a line graph by plotting the mean of the scores
for each condition—each —and then connecting adjacent data points with straight
lines. The left-hand graph in Figure 8.1 shows the scatterplot and line graph of an
experiment containing four conditions. Thus, for example, the arrows indicate that the
mean of at is 3. Because the mean is the central score, we assume that those
participants at scored around a of 3, so (1) 3 is our best single description of their
scores, and (2) 3 is our best prediction for anyone else at that 

It is difficult, however, to see the linear (straight-line) relationship in these data
because the means do not fall on a straight line. Therefore, as in the right-hand graph in
Figure 8.1, we summarize the linear relationship by drawing a regression line. Think of
the regression line as a straightened-out version of the line graph: It is drawn so that it
comes as close as possible to connecting the mean of at each while still producing a
straight line. Although not all means are on the line, the distance that some means are
above the line averages out with the distance that other means are below the line. Thus,
the regression line is called the best-fitting line because “on average” it passes through
the center of the various means. Because each mean is located in the center of the cor-
responding scores, the regression line also passes through the center of the scores.
Thus, the linear regression line is the straight line that summarizes the linear relation-
ship in a scatterplot by, on average, passing through the center of the scores at each .XY
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As usual, this is another descriptive procedure that allows us to summarize and envi-
sion data. Think of the regression line as reflecting the linear relationship hidden in the
data. Because the actual scores fall above and below the line, the data only more or
less fit this line. But we have no system for drawing a “more or less” linear relation-
ship. Therefore, the regression line is how we envision what a perfect version of the
linear relationship in the data would look like.

You should read the regression line in the same way that you read any graph: Travel
vertically from an until you intercept the regression line. Then travel horizontally
until you intercept the axis. For example, the arrows in the right-hand graph of 
Figure 8.1 show that the value of at is now 4. The symbol for this value is and
it is our predicted score. A is a summary of the scores for that , based on the
entire linear relationship. Therefore, considering the entire relationship in Figure 8.1,
those participants at scored around 4, so 4 is our best prediction for anyone scoring
that . Likewise, any is our best prediction of the scores at a corresponding ,
based on the linear relationship that is summarized by the regression line.

Recognize that the at any is the value of falling on the regression line. The
regression line therefore consists of the data points formed by pairing each possible
value of with its corresponding value of . If you think of the line as reflecting a per-
fect version of the linear relationship hidden in the data, then each is the score
everyone would have at a particular if a perfect relationship were present.

REMEMBER The linear regression line summarizes the linear relationship in
a sample and is used to obtain the at any .

Now you can see how regression techniques are used to predict unknown scores.
First, we establish the relationship in a sample. Then we use the regression line to
determine the for each . This is the around which everyone scored when at an 
in our sample. For anyone else at that , we’d assume they too would score around 
that Therefore, we can measure the scores of individuals who were not in our
sample, and the corresponding is our best prediction of their scores.

The emphasis on prediction in correlation and regression leads to two important
terms. We’ll discuss using the variable to predict scores. (There are procedures out
there for predicting scores from .) Therefore, as mentioned in the previous chapter,
the variable is called the predictor variable. The variable is called the criterion
variable. Thus, when SAT scores are used to predict a student’s future college grades,
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SAT scores are the predictor variable, and college grade average is the criterion vari-
able. (To remember criterion, remember that your predicted grades must meet a certain
criterion for you to be admitted to the college.)

The first step in using regression techniques is to create the regression line. For that
we use the linear regression equation.

THE LINEAR REGRESSION EQUATION

To draw a regression line, we don’t simply eyeball the scatterplot and sketch in some-
thing that looks good. Instead, we use the linear regression equation. The linear
regression equation is the equation for a straight line that produces the value of at
each and thus defines the straight line that summarizes a relationship. When we plot
the data points formed by the X–Y pairs and draw a line connecting them, we have the
regression line. The regression equation describes two characteristics of the regression
line: its slope and its intercept.

The slope is a number that indicates how slanted the regression line is and the direc-
tion in which it slants. Figure 8.2 shows examples of regression lines having different
slopes. When no relationship is present, the regression line is horizontal, such as line A,
and the slope is zero. A positive linear relationship produces regression lines such as
B and C; each of these has a slope that is a positive number. Because line C is steeper,
its slope is a larger positive number. A negative linear relationship, such as line D, yields
a slope that is a negative number.

The intercept is the value of at the point where the regression line intercepts, or
crosses, the axis. In other words, the intercept is the value of when equals 0. In
Figure 8.2, line B intercepts the axis at , so the intercept is . If we extended
line C, it would intercept the axis at a point below the axis, so its intercept is a
negative score. Because line D reflects a negative relationship, its intercept is the
relatively high score of 9. Finally, line A exhibits no relationship, and its intercept
equals . Notice that here the predicted score for every is always .

When there is no relationship, the regression line is flat and every 
equals the intercept.

The regression equation works like this: The slope indicates the direction in which
the change as increases and the rate at which they change. In Figure 8.2, the
steeply sloped line C reflects a relatively large increase in for each increase in , asXY
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compared to, line B. The intercept indicates the starting point from which the 
scores begin to change. Thus, together, the slope and intercept describe how, starting at
a particular score, the scores tend to change by a specific amount as the scores
increase. The summary of the new scores at each is 

The symbol for the slope of the regression line is . The symbol for the intercept
is . Thena

Yb
Y¿.XY

XYY

YY

This formula says that to find the value of for a given , multiply the slope (b) times
and then add the intercept (a).
As an example, say that we have developed a test to identify (predict) those indi-

viduals who will be good or bad workers at a factory that makes “widgets.” The first
step is to determine the relationship between test scores and “widget-making.”
Therefore, say that we give the test to an unrealistically small of 11 people and
then measure the number of widgets each makes in an hour. Figure 8.3 shows the
raw scores and resulting scatterplot. The predictor (X ) variable is participants’
scores on the widget test, and the criterion (Y ) variable is the number of widgets
they produced.

The first step is to find :

so

The result is . This is a very strong, positive linear relationship, and so the test
will be what researchers call “a good predictor” of widget-making. Therefore, the next
step is to compute the linear regression equation. To do that, we compute the slope and
the intercept.

Compute the slope first.

Computing the Slope

Y

r 5 1.74

r 5
111171 2 2 129 2 158 2

2 311189 2 2 841 4 3111354 2 2 3364 4

r 5
N 1©XY 2 2 1©X 2 1©Y 2

2 3N1©X2 2 2 1©X 22 4 3N1©Y2 2 2 1©Y 22 4

r

N

YX
XY¿

The linear regression equation is

Y¿ 5 bX 1 a

The formula for the slope of the linear regression line is

b 5
N 1©XY 2 2 1©X 2 1©Y 2

N1©X2 2 2 1©X 22



is the number of pairs of scores in the sample, and and are the scores in the
sample. This is not a difficult formula because we typically compute the Pearson 
first. The numerator of the formula for is the same as the numerator in the
formula for , and the denominator of the formula for is the left-hand quantity in
the denominator of the formula for . [An alternative formula for the slope is

For the widget study, substituting the appropriate values into the formula gives

After multiplying and subtracting in the numerator,

After completing the denominator,

b 5
199

138
5 11.44

b 5
199

11189 2 2 841

b 5
N1©XY 2 2 1©X 2 1©Y 2

N1©X22 2 1©X 22
5

111171 2 2 129 2 158 2

11189 2 2 841

b 5 1r 2 1SY>SX 2 . 4
r
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FIGURE 8.3

Scatterplot and data 
for widget study

Widget Test Score: Widgets per Hour:
Participant X Y XY

1 1 2 2
2 1 4 4
3 2 4 8
4 2 6 12
5 2 2 4
6 3 4 12
7 3 7 21
8 3 8 24
9 4 6 24

10 4 8 32
11 4 7 28

 Y 5 58>11 5  5.27 X 5 29>11 5 2.64
 1©Y 22 5 3364 1©X 22 5 841

 ©Y 2 5 354 ©X2 5 89
©XY 5 171 ©Y 5 58 ©X 5 29N 5 11
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Thus, the slope of the regression line for the widget study is . This positive slope
indicates a positive relationship, which fits with the positive of . Had the rela-
tionship been negative, the formula would have produced a negative number here.

We are not finished yet. Now compute the intercept.

Computing the Y Intercept

Y

1.74r
11.44

The formula for the Y intercept of the linear regression line is

a 5 Y 2 1b 2 1X 2

First, multiply the mean of all scores times the slope of the regression line. Then
subtract that quantity from the mean of all scores.

For the widget study, is , and from the data in Figure 8.3, is 5.27 and is
2.64. Filling in the above formula gives

After multiplying,

Thus, the intercept of the regression line for the widget study is .
We’re still not finished!

Describing the Linear Regression Equation

Once you have computed the intercept and the slope, rewrite the regression equation,
substituting the computed values for and . Thus, for the widget study,

This is the finished regression equation that describes the linear regression line for the
relationship between widget test scores and widgets-per-hour scores.

We’re still not finished. Next we plot the regression line.

Plotting the Regression Line

We use the finished regression equation to plot our linear regression line. To draw a
line, we need at least two data points, so choose a low and high score, insert each into
the regression equation, and compute the for that . (Or, an easy low to use is 0
because then equals the intercept.) We’ll use the widget test scores of 1 and 4. We
begin with our finished regression equation:

For , we have

Multiplying times 1 and adding 1.47 yields a of 2.91. Likewise, for 
.Y¿ 5 11.4414 2 1 1.47 5 5.76 1 1.47 5 7.23

X 5 4,Y¿11.44

Y¿ 5 11.4411 2 1 1.47 5 2.91

X 5 1

Y¿ 5 11.44X 1 1.47

YY¿
XXY¿

X

Y¿ 5 11.44X 1 1.47

ba
Y

11.47Y

a 5 5.27 2 113.80 2 5 11.47

a 5 5.27 2 111.44 2 12.64 2

XY11.44b
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To graph the regression line, plot the data points for the previous X–Y pairs and
draw the line. As shown in Figure 8.4, our widget regression line passes through the
center of the original scatterplot, showing the straight-line relationship hidden in the
data.

(We’re almost there!)

Computing Predicted Y Scores

Remember that the regression line consists of all possible X–Y pairs. Therefore, we
also use the finished regression equation to predict anyone’s score if we know their 

score. Thus, as we computed above, we will predict a of 2.91 for anyone scoring
an of 1, and a of 7.23 for anyone scoring an of 4. Likewise, for the test scores of
2 and 3, we compute the scores of 4.35 and 5.79, respectively. As shown in Figure
8.4, these data points also fall on the regression. In fact, computing any using the
equation is the equivalent of going to the graph and traveling vertically from the 

score up to the regression line and then left to the value of on the axis.
We can compute for any value of that falls within the range of in our data,

even if it’s a score not found in the original sample: No one scored an of 1.5, but
entering this in the regression equation yields a predicted score of 3.63. Do not, how-
ever, make predictions using scores beyond the original scores. Our regression equa-
tion is based only on widget test scores between 1 and 4, so we shouldn’t predict a 
for an of, for example, 6. This is because we can’t be sure what the nature of the
relationship is at 6—maybe it’s curvilinear or has a steeper slope.

Now we are finished (really). Putting all of this together, the preceding computations
are summarized in Table 8.1.
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1. Compute .

2. Compute the slope, , where 

3. Compute the intercept, , where 
4. Substitute the values of a and b into the formula for the regression equation:

5. Plot the regression line.
6. Compute the predicted score for any . XY¿

Y¿ 5 1b 2 1X 2 1 a

a 5 Y 2 1b 2 1X 2aY

b 5
N1©XY 2 2 1©X 2 1©Y 2

N1©X2 2 2 1©X 22
b
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Summary of steps in
Linear Regression
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Regression line for
widget study

Widget Predicted
Test Widgets

Scores: per Hour:
X Y

1 2.91
2 4.35
3 5.79
4 7.23 
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DESCRIBING ERRORS IN PREDICTION

Not all relationships are the same and so not all variables are “good predictors.” There-
fore, a complete description of a relationship includes the descriptive statistics that sum-
marize the error we have when using the relationship to predict scores. To describe the
amount of prediction error we expect when predicting unknown scores, we first determine
how well we can predict the actual scores in our sample: We pretend we don’t know
the scores, predict them, and then compare the predicted scores to the actual scores.

The error in a single prediction is the amount that a participant’s score differs from
the corresponding predicted score: In symbols this is , and it is literally the dif-
ference between the score a participant got and the score we predict he or she got. The
predictions for some participants will be closer to their actual scores than for others,
so we would like to compute something like the average error across all predictions.

To find the average error, we first compute for everyone in the sample and sub-
tract their from their actual score. Statisticians equate errors with deviations, soYY¿

Y¿

Y

Y 2 Y¿Y¿
Y

YY¿
Y

Y

X

■ The linear regression equation is used to predict 
scores based on scores from a correlated

variable and to draw the linear regression line.
■ The regression equation is , where is

the slope and is the intercept.

MORE EXAMPLES

To use to predict in these scores,

X Y

1 3
1 2
2 4
2 5
3 5
3 6

Compute b:
and .

Compute , , and .

After rounding Y¿ 5 11.5X 1 1.17.

a 5 Y 2 1b 2 1X 2 5 4.167 2 111.5 2 12 2 5 1.167

Y 5 4.167X 5 2a: b 5 11.5

 5
336 2 300

168 2 144
5 11.5

b 5
N1©XY 2 2 1©X 2 1©Y 2

N1©X2 2 2 1©X 22
5

6156 2 2 112 2 125 2

6128 2 2 112 22

N 5 6©XY 5 56,
©X2 5 28,©Y 5 25,©X 5 12,

YX

Ya
bY¿ 5 bX 1 a

XY¿
Say we want to predict for when . The is

.

For Practice

1. We use linear regression when we want to ______.

2. The components of the regression equation to
compute first are the ______ and ______.

3. Compute b for the following scores:

X Y

1 5
1 3
2 4
2 3
3 2
4 1

4. Compute for these scores.

5. What is the predicted score for an of 2?

Answers
1. predict scores using the relationship with 
2. slope and intercept

3.

4.

5. Y¿ 2 121.024 2 12 2 1 5.219 5 13.171
5 3 2 122.2.19 2 5 15.219

a 5 Y 2 1b 2 1X 2 5 3 2 121.024 2 12.167 2

b 5
6132 2 2 113 2 118 2

6135 2 2 113 22
5 21.024

Y
XY

XY

a

Y¿ 5 11.512 2 1 1.17 5 3 1 1.17 5 4.17

Y¿X 5 2Y

A  Q U I C K  R E V I E W
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equals the amount that deviates from To get the average error, we would
like to simply sum these deviations and then find the average, but we cannot. Recall
that the regression line is in the center of the scatterplot. Therefore, the are equally
spread out around their scores, in the same way that previously we saw that are
spread out around their Because of this, like with the mean, the positive and nega-
tive deviations with Y will cancel out, always producing a sum equal to zero. Therefore,
the average deviation—the average error—will always equal zero.

To solve this problem, we square each deviation. The sum of the squared deviations
of is not necessarily zero, so neither is the average squared deviation. (Does this
sound familiar?) When we find the average of the squared deviations, the answer is a
type of variance that describes the “average” spread of the actual scores around—
above and below—their predicted scores.

Computing the Variance of the Y Scores Around Y

The variance of the scores around is the average squared difference between the
actual scores and their corresponding predicted scores. The symbol for this sam-
ple variance is . The indicates sample variance or error, and the subscript indi-
cates that it is the error associated with using to predict scores. The formula that
defines the variance of the scores around is

Like other definitional formulas we’ve seen, this formula is important because it shows
the core calculation involved: We subtract the predicted for each participant from his
or her actual score giving us a measure of our error. Then we square each deviation,
sum the squared deviations, and divide by . The answer is one way to measure roughly
the “average” amount of error we have when we use linear regression to predict scores.

Note: Among the approaches we might use, the regression procedures described in
this chapter produce the smallest error in predictions possible, thereby producing the
smallest sum of squared deviations possible. Researchers call this regression technique
the “least-squares method.” To get this name, they shorten “sum of squared deviations”
to squares, and this method produces a sum that is the least it can be.

REMEMBER The variance of the scores around is one way to
describe the average error when using linear regression to predict scores.

Using the above definitional formula for is very time consuming. Thankfully,
there is a better way. In the defining formula, we can replace with the formulas for
finding (for finding a, b, and so on). Among all of these formulas we’ll find the com-
ponents for the following computational formula.

Y¿
Y¿

S2
Y¿

Y
1S2

Y¿ 2Y¿Y

Y
N

Y
Y¿

S2
Y¿ 5

© 1Y 2 Y¿ 22

N

Y¿Y
YY¿

Y¿S2S2
Y¿

Y¿Y
Y¿Y

9

Y¿
Y

Y 2 Y¿

X.
XsY¿

Ys

Y¿.YY 2 Y¿

The computational formula for the variance of the Y scores
around Y is

S2
Y¿ 5 S2

Y 11 2 r2 2

9

Much better! This formula uses (which we compute before doing regression anyway)
and, in computing , we compute the and needed for finding the variance in©Y2©Yr

r
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the scores. Therefore, finish the computations of using the formula at the begin-
ning of this chapter. Then this formula says to square and subtract the answer from 1.
Multiply the result times . The answer is .

In the widget study, the data back in Figure 8.3 produced , with 
, and Therefore, we find that is

Then the above formula gives

After squaring and subtracting the result from 1, we have

Thus, we are “off” by something like an “average” of 2.01 when we predict partici-
pants’ widget-per-hour scores (Y ) based on their widget test scores (X ).

Although this variance is a legitimate way to compute the error in our predictions, it
is only somewhat like the “average” error, because of the usual problems when
interpreting variance. First, squaring each difference between and produces an
unrealistically large number, inflating our error. Second, squaring produces error that is
measured in squared units, so our predictions above are off by 2.01 squared widgets.
(This must sound familiar!) The solution is to find the square root of the variance, and
the result is a type of standard deviation. To distinguish the standard deviation found in
regression, we call it the standard error of the estimate.

Computing the Standard Error of the Estimate

The standard error of the estimate is similar to a standard deviation of the scores
around their scores. It is the clearest way to describe the “average error” when using

to predict scores. The symbol for the standard error of the estimate is . (Remem-
ber, measures the error in the sample, and is our estimate of a participant’s 

score.) The definitional formula for the standard error of the estimate is

This is the same formula used previously for the variance of scores around , except
with the added square root sign. By computing the square root, the answer is a more
realistic number and we are no longer dealing with a squared variable. The core calcu-
lation, however, is still to find the error between participants’ actual scores and their
predicted scores, and this is as close as we will come to computing the “average
error” in our predictions.

To create a computational formula for the standard error of the estimate, we find the
square root of each component of the previous computational formula for the variance
of around and haveY¿Y

Y¿
Y

Y¿Y

SY¿ 5
B

© 1Y 2 Y¿ 22

N

Y
Y¿S

SY¿YY¿
Y¿

Y

Y¿Y

S2
Y¿ 5 4.3801.458 2 5 2.01

1.736

S2
Y¿ 5 4.38011 2 .7362 2

S2
Y 5

©Y2 2
1©Y 22

N

N
5

354 2
158 22

11

11
5

354 2 2305.818

11
5 4.380

S2
YN 5 11.©Y2 5 354

©Y 5 58,r 5 1.736
S2

Y¿S2
Y

r
S2

YY

The computational formula for the standard error of the 
estimate is

SY¿ 5 SY21 2 r2
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Here we first compute the standard deviation of all scores using the formula at
the beginning of this chapter. Then we find the square root of the quantity and
then multiply it times the standard deviation of all scores.

For the widget study, we computed that was and that the variance of all 
scores was 4.380. The standard deviation of the scores is the square root of

the variance, so Filling in the above formula gives

Squaring yields , which subtracted from 1 gives . The square root of
is . Thus,

The standard error of the estimate is 1.42. Therefore, we conclude that when using the
regression equation to predict the number of widgets produced per hour based on a per-
son’s widget test score, when we are wrong, we will be wrong by an “average” of about

widgets per hour.

REMEMBER The standard error of the estimate is interpreted as describing
the “average error” in our predictions when we use to predict scores.

It is appropriate to compute the standard error of the estimate anytime you compute
a correlation coefficient, even if you do not perform regression—it’s still important to
know the average prediction error that your relationship would produce.

YY¿
1SY¿ 2

1 .42

SY¿ 5 2.0931.677 2 5 1.42

.677.458
.458.5421.736

SY¿ 5 2.09321 2 .7362

SY 5 24.380 5 2.093.
Y1S2

Y 2Y
1.736r

Y
1 2 r2

1SY 2Y

■ The variance of the scores around and the
standard error of the estimate measure the
errors in prediction when using regression, which
are the differences between participants’ and 

scores.

MORE EXAMPLES

To compute first compute and . Say that

and . Then 

Using this relation-
ship produces an “average error” of 3.16. The variance
of the scores around is , or 9.986.13.16 22S2

Y¿Y¿Y

5 13.6 2 1.877 2 5 3.1572 5 3.16.
3.62.76963.621 2 .2304 53.621 2 12.482 2 5

SY¿ 5 SY21 2 r2 5r 5 2.48SY 5 3.6

rSYSY¿

Y¿
Y

1SY¿ 2
1S2

Y¿ 2Y¿Y For Practice

1. The symbol for the variance of the scores around
is ______.

2. The symbol for the standard error of the estimate
is ______.

3. The statistic we interpret as the “average error” in
our predictions when using regression is ______.

4. If and , then equals ______.

Answers
1.
2.
3. The standard error of the estimate, 

4. SY¿ 5 2.821 2 1.342 2 5 2.82.8844 5 2.63

SY¿

SY¿

S2
Y¿

SY¿r 5 1.34SY 5 2.8

Y¿
Y

A  Q U I C K  R E V I E W

Interpreting the Standard Error of the Estimate

In order for (and ) to accurately describe our prediction error, and for to accu-
rately describe the relationship, you should be able to assume that your data generally
meet two requirements.

First, we assume homoscedasticity. Homoscedasticity occurs when the scores are
spread out to the same degree at every . The left-hand scatterplot in Figure 8.5 showsX

Y

rS 2
Y¿SY¿
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homoscedastic data. Because the vertical spread of the scores is constant at every ,
the strength of the relationship is relatively constant at both low and at high , so 
will accurately describe the relationship for all . Further, the vertical distance sepa-
rating a data point above or below the regression line on the scatterplot is a way to
visualize the difference between someone’s and the we predict. When the spread
is constant, the standard error of the estimate will accurately describe our average
error, regardless of whether predictions are based on low or high .

Conversely, the right-hand scatterplot in Figure 8.5 shows an example of het-
eroscedastic data. Heteroscedasticity occurs when the spread in is not equal
throughout the relationship. Now part of the relationship is very strong (forming a nar-
row ellipse) while part is much weaker (forming a fat ellipse). Therefore, will not
accurately describe the strength of the relationship for all . Likewise the will not
accurately describe our average error for predictions from both low and high 

Second, we assume that the scores at each form an approximately normal distri-
bution. That is, if we constructed a frequency polygon of the scores at each , we
should have a normal distribution centered around Figure 8.6 illustrates this for the
widget study. Meeting this assumption is important because is like a standard devi-
ation. Recall that in a normal distribution approximately 68% of the scores fall between

standard deviation from the mean. Therefore, approximately 68% of all scoresY;1
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FIGURE 8.5

Illustrations of homoscedastic and heteroscedastic data
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will be between from the regression line. In the widget study, is 1.42, so we
expect approximately 68% of the actual scores to be between from each value
of . Thus, we know the size of over two-thirds of our errors.

The Strength of a Relationship and Prediction Error

Finally, although the standard error of the estimate is the way to quantify our “average”
prediction error, be sure you understand why this error is communicated by the size
of A larger indicates a stronger relationship and the strength of a relationship
determines the amount of prediction error that occurs. This is because the strength of a
relationship is the amount of variability—spread—in the scores at each For exam-
ple, the left-hand scatterplot in Figure 8.7 shows a relatively strong relationship, with 
close to Thus, there is small vertical spread in the at each , so the data points
are close to the regression line. When the data points are close to the regression line it
means that participants’ actual scores are relatively close to their corresponding 

scores. Therefore, we will find relatively small differences between the participants’
scores and the we predict for them, so we will have small error, and and 

will be small.
Conversely, the right-hand scatterplot in Figure 8.7 shows a weaker relationship,

with closer to 0. This indicates that the scores are more spread out vertically around
the regression line. Therefore, more often, participants’ actual scores are farther from
their scores, so we will have greater error, and and will be larger.

Thus, the size of and is inversely related to the size of . This is why, as we
saw in the previous chapter, the size of allows us to describe the variable as a good
or poor “predictor” for predicting scores. When is large, our prediction error, as
measured by or is small, and so the variable is a good predictor. However,
when is smaller, our error and or will be larger, so the variable is a poorer
predictor.

REMEMBER As the strength of the relationship increases, the actual scores
are closer to their corresponding scores, producing less prediction error
and smaller values of and .S2
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In science we need to be more precise than using only terms such as good or poor
predictor. The next section shows how we can quantify how effective a predictor vari-
able is by computing the statistic with the strange name of the “proportion of variance
accounted for.”

COMPUTING THE PROPORTION OF VARIANCE ACCOUNTED FOR

The proportion of variance accounted for is the proportional improvement in the ac-
curacy of our predictions produced by using a relationship to predict scores, compared
to our accuracy when we do not use the relationship to predict scores. Understand that
the term proportion of variance accounted for is a shortened version of “the proportion
of variance in scores that is accounted for by the relationship with .” We “account”
for variance in to the extent that the relationship allows us to accurately predict when
different scores occur, resulting in less prediction error. Therefore, we will compute
our “average” prediction error when we use regression and the relationship with to
predict scores as we’ve discussed. We will compare this error to our “average” error
when we do not use regression and the relationship with to predict .

To understand this, consider the scatterplots in Figure 8.8. In the graph on the left,
we’ll ignore that there is relationship with for the moment. Without the relationship,
our fall-back position is to compute the overall mean of all scores and predict 
it as everyone’s score. Here . On the graph, the mean is centered vertically
among all scores, so it is as if we have the horizontal line shown: At any , we travel
vertically to the line and then horizontally to the predicted score, which in every case
will be the of 4.

In Chapter 5 we saw that when we predict the mean score for everyone in a sample,
our error in predictions is measured by computing the sample variance. Our error in
one prediction is the difference between the actual score a participant obtains and the

that we predict was obtained. In symbols, this error is . Then the sample vari-
ance of the scores is somewhat like the average error in these predictions. On
the left-hand graph in Figure 8.8, each error is the vertical distance a data point is above
or below the horizontal line. The distance that all scores are spread out above and
below the horizontal line determines the size of Researchers can always measure a
sample of scores, compute the mean, and use it to predict scores. Therefore, the 
is the largest error we are forced to accept. Because this variance is the worst that we
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can do, anything that improves the accuracy of our predictions is measured relative to
this variance. This is the variance we “account for.”

REMEMBER When we do not use the relationship to predict scores, our error
is which is computed by finding each , the difference between the 
score a participant actually obtained and the score we predict is obtained.

Now, let’s use the relationship with to predict scores, as in the right-hand scatter-
plot back in Figure 8.8. Here, we have the actual regression line and, for each , we
travel up to it and then over to the score. Now our error is the difference between the 
actual scores that participants obtained and the that we predict they obtained. In
symbols, this is for each participant. Based on this, as we saw earlier in this
chapter, a way to measure our “average error” is the variance of scores around or

In the graph, our error will equal the distance the scores are vertically spread out
around each on the regression line.

REMEMBER When we do use the relationship to predict scores, our error is
, which is computed by finding each , the difference between the 

score a participant actually obtained and the we predict is obtained.

Notice that our error when using the relationship is always less than the error when
we don’t use the relationship. When we do not use the relationship, we cannot predict
any of the differences among the scores, because we continuously predict the same 

for everyone. Our error is always smaller when we use the relationship because then
we predict different scores for different participants: We can, at least, predict a lower 
score for those who tend to have lower , a medium score for those scoring medium,
and so on. Therefore, to some extent, we’re closer to predicting when participants have
one score and when they have different scores. You can see this in Figure 8.8
because most data points tend to be vertically closer to the actual regression line (and
closer to their ) than to the horizontal line that represents predicting the of 4 each
time. Further, the stronger the relationship, the closer the scores will be to the regres-
sion line so the greater the advantage of using the relationship to predict scores. There-
fore, the stronger the relationship, the greater the proportion of variance accounted for.

We compute the proportion of variance accounted for by comparing the error
produced when using the relationship (the ) to the error produced when not using
the relationship (the ). First, we will do this using the definitional formula. The defi-
nitional formula for the proportion of variance accounted for is

The formula says to first make a ratio of . From the widget-making data back
in Table 8.3, we know that when we predict the overall mean of for participants, our
“average error” is the of 4.38. But, when we predict for participants, the “average
error” is the of 2.01. Forming this ratio gives

As shown, this is the ratio of our error when using the relationship to predict scores com-
pared to our error when not using the relationship. The resulting proportion indicates
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how much of the error that occurs when not using the relationship is still present when
we use the relationship. Here, of the error remains when we use the relationship.

But, if of the error remains, then using the relationship eliminates of the error
that occurs when not using the relationship. As in the formula, this proportion is found
by subtracting the ratio from 1. Altogether,

Thus, using this relationship eliminates .54, or 54%, of the error that we’d have when
not using the relationship, so we are 54% more accurate with it. Essentially, this tells
us that, in the graphs back in Figure 8.8, the data points are, on average, 54% closer to
the regression line (and ) than they are to the horizontal line (and ). Therefore, if we
know participants’ score and use this relationship to predict their scores, we are
“on average” 54% closer to their actual scores than if we don’t use this relationship.
In statistical terms, we describe this as the proportion of variance accounted for, and so
here we account for of the variance in widget-making (Y ) scores.

REMEMBER The proportion of variance accounted for is the proportional
improvement in accuracy when using the relationship with to predict 
scores, compared to our accuracy when using the to predict scores.

Using r to Compute the Proportion of Variance Accounted For

Using the above definitional formula is rather time consuming. However, we’ve seen
that the size of is related to the error in our predictions by the formula for the stan-
dard error of the estimate:

In fact, this formula contains all of the components of the previous definitional formula
for the proportion of variance accounted for. Rearranging them gives

On the right is the definitional formula for the proportion of variance accounted for, so

r2 5 1 2
S2
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Y 11 2 r2 2
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1 2
2.01

4.38
5 1 2 .46 5 .54

.54.46
.46

The computational formula for the proportion of variance
accounted for is

Proportion of variance accounted for 5 r 2

Not too tough! All you do is compute (which you would anyway) and then square it.
This gives you the proportion of variance in scores that is accounted for by the rela-
tionship with 

In the widget study, the was . Therefore, the proportion of variance
accounted for is , which is again .

Thus, although describes the overall consistency with which the scores are paired
with the scores, is slightly different. It reflects how much the differences amongr2X

Yr
.541.736 22

1.736r
X.

Y
r



Computing the Proportion of Variance Accounted For 177

the scores match with the different scores, showing how much closer we get to
knowing each different score when we know a participant’s . The can be as low
as 0 (when ), indicating that the relationship in no way helps us to predict 
scores. Or, may be as high as 1 (when ), indicating that, whatever our errors
might be without the relationship, 100% of that error is eliminated when using the rela-
tionship, because then we predict scores with 100% accuracy.

REMEMBER Compute whenever you find a relationship. This indicates the
proportion of variance accounted for, which is the proportional improvement
in accuracy achieved by using the relationship to predict scores, compared
to not using the relationship.

Note: Sometimes is called the coefficient of determination. The proportion of
variance not accounted for is called the coefficient of alienation.

r2

Y

r2

Y

r 5 ;1r2
Yr 5 0

r2XY
XY

The computational formula for the proportion of variance 
not accounted for is

Proportion of variance not accounted for 5 1 2 r 2

This is the proportion of the error we have without using the relationship that still
remains when we use the relationship. In the widget study, , so we still cannot
account for of the variance in the scores.

Notice that describes the proportion of variance accounted for by the sample rela-
tionship. If the passes the inferential statistical test, then is a rough estimate of the
proportion of variance accounted for by the relationship in the population. Thus, we’d
expect to be roughly 54% more accurate if we use the relationship and widget test
scores to predict any other, unknown widget-making scores in the population.

Applying the Proportion of Variance Accounted For

The reason we make such a big deal out of the proportion of variance accounted for is
that it is the statistical measure of how “important” a particular relationship is. Remem-
ber that scores reflect behavior, so when we accurately predict different score, we are
actually predicting different behaviors. The goal of behavioral research is to understand
and predict differences in behavior. Therefore, the greater the proportion of variance
accounted for, the more that the relationship enables us to do this, so the more scientif-
ically important and informative the relationship is.

Thus, we can now complete our evaluation of the widget-making relationship,
where was and was 1.42. With equal to , we are , or 54%, better off
using this relationship than if we did not. And, our average prediction error of 1.42 is
54% less than we’d have without using this relationship. This would be deemed an
especially useful relationship in real research because, as we discussed in Chapter 7,
we usually find between to . Squaring these translates into accounting for
between only and of the variance. Therefore, is very large, so this is an
important relationship, and the widget test should prove valuable for identifying
successful widget makers.

.54.25.09
; .50; .30rs
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We also use when comparing different relationships to see which is more informa-
tive. Say that we find a relationship between the length of a person’s hair and his or her
creativity, but is only . Yes, this indicates a relationship, but such a weak one is
virtually useless. The fact that indicates that knowing someone’s hair length
improves our knowledge about their creativity by only four-hundredths of one percent!
However, say that we also find a relationship between age and creativity, and here is

. This relationship is more important, at least in a statistical sense, because
. Age is the more important variable because knowing participants’ ages gets

us 16% closer to accurately predicting their creativity. Knowing their hair length gets
us only closer to predicting their creativity.

The logic of is applied to any relationship. For example, in the previous chapter,
we discussed . Squaring this coefficient also indicates the proportion of variance
accounted for. (It is as if we performed the appropriate regression analysis, computed

and so on.) Likewise, in later chapters, we will determine the proportion of variance
accounted for in experiments. In all cases the answer indicates how useful the relation-
ship is.

REMEMBER Computing the proportion of variance accounted for is the way
to evaluate the scientific importance of any relationship.
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.04%

r2 5 .16
1.40

r

r2 5 .0004
r1.02r
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■ is the proportion of variance accounted for: the
proportional improvement in accuracy produced by
using a relationship to predict scores.

■ The larger the proportion of variance accounted 
for, the greater the scientific importance of the
relationship.

MORE EXAMPLES

We correlate students’ scores on the first exam with
their scores on the final exam: , so 

To predict final exam scores, we can ig-
nore the relationship and predict that everyone scored
at the mean of the final exam. Or we can use this rela-
tionship and regression techniques to compute for
each student. By using the relationship, we will be “on
average” 16% closer to each student’s actual final
exam score.

For Practice

Relationship A has ; relationship B has
.r 5 2.60

r 5 1.30

Y¿

1.40 22 5 .16.
r2 5r 5 1 .40

Y

r2 1. The relationship with the scatterplot that hugs the
regression line more is _____.

2. The relationship with scores closest to the 
scores that we’ll predict for them is ______.

3. As compared to predicting the for participants,
relationship A produces scores that are ______
closer to the scores.

4. As compared to predicting the for participants,
relationship B produces scores that are ______
closer to the scores.

5. Using relationship B to predict scores will improve
our accuracy by ______ times as much as will
using relationship A.

Answers
1. B
2. B
3.
4.
5. 4

.36

.09
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A WORD ABOUT MULTIPLE CORRELATION AND REGRESSION

Sometimes we discover several variables that each help us to more accurately predict
a variable. For example, a positive correlation exists between height and ability to
shoot baskets in basketball: The taller people are, the more baskets they tend to make.
Also, a positive correlation exists between how much people practice basketball and
their ability to shoot baskets: The more they practice, the more baskets they tend to
make. Obviously, to be as accurate as possible in predicting how well people will shoot
baskets, we should consider both how tall they are and how much they practice. This
example has two predictor variables (height and practice) that predict one criterion
variable (basket shooting). When we wish to simultaneously consider multiple predic-
tor variables for one criterion variable, we use the statistical procedures known as mul-
tiple correlation and multiple regression. Although the computations involved in these
procedures are beyond this text, understand that the multiple correlation coefficient,
called the multiple , indicates the strength of the relationship between the multiple
predictors taken together, and the criterion variable. The multiple regression equation
allows us to predict someone’s score by simultaneously considering his or her scores
on all variables. The squared multiple R is the proportion of variance in the vari-
able accounted for by using the relationship to predict scores.

STATISTICS IN PUBLISHED RESEARCH: LINEAR REGRESSION

In addition to multiple correlation, you may encounter studies that use other, advanced
versions of correlation and regression. Understand that the basic approach in these pro-
cedures is also to summarize the strength and type of relationship that is present, and to
use an score to predict a central, summary score.

In reports of a regression analysis, you will sometimes see our , but you may also
see the symbol . Our other symbols are generally also found in publications, but a vari-
ation of the slope—b—may be referred to as “beta” and “ ” Also, when researchers
discuss measures of prediction error, they often use the term residual. Finally, you may
not always see scatterplots in published reports. Instead a graph showing only the
regression line may be included, and from the size of and , you must envision the
general scatterplot.

SY¿r
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This and the previous chapter introduced many new symbols and concepts. However,
they boil down to four major topics:

1. The correlation coefficient: The correlation coefficient communicates the type and
strength of a relationship. The larger the coefficient, the stronger is the relationship:
the more consistently one value of is paired with one value of and the closer the
data come to forming a perfect straight-line relationship.

2. The regression equation: The regression equation allows you to draw the regression
line through the scatterplot and to use the relationship with to predict any individ-
ual’s score.

3. Errors in prediction: The standard error of the estimate indicates the “average”
amount your predictions will be in error when using a particular relationship. 

Y
X

XY

PUTTING IT 
ALL TOGETHER
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4. The proportion of variance accounted for: By squaring a correlation coefficient, 
you know how much smaller the errors in predicting scores are when you use the
relationship, compared to if you do not use the relationship.

Using the SPSS Appendix Appendix B.4 explains how to compute the components
of the linear regression equation as well as the standard error of the estimate (although
it is an estimated population version—as if in our defining formula for we divided
by instead of ).

CHAPTER SUMMARY

1. Linear regression is the procedure for predicting unknown scores based on
correlated scores. It produces the linear regression line, which is the best-fitting
straight line that summarizes a linear relationship.

2. The linear regression equation includes the slope, indicating how much and in
what direction the regression line slants, and the intercept, indicating the value
of when the line crosses the axis.

3. For each , the regression equation produces , which is the predicted score for
that 

4. The standard error of the estimate is interpreted as the “average error” when
using to predict scores. This error is also summarized by the variance of the

scores around

5. With regression we assume that (1) the scores are homoscedastic, meaning that
the spread in the scores around all scores is the same, and (2) the scores at
each are normally distributed around their corresponding value of 

6. The stronger the relationship, the smaller are the values of and because then
the scores are closer to and so the smaller the difference between and 

7. The proportion of variance accounted for is the proportional improvement in
accuracy that is achieved by using the relationship to predict scores, compared
to using to predict scores. This coefficient of determination is computed by
squaring the correlation coefficient.

8. The proportion of variance not accounted for—the coefficient of alienation—is
the proportion of the prediction error that is not eliminated when is the
predicted score instead of 

9. The proportion of variance accounted for indicates the statistical importance of a
relationship.

10. Multiple correlation and multiple regression are procedures for describing the
relationship when multiple predictor variables are simultaneously used to
predict scores on one criterion variable. 1Y 2

1X 2
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KEY TERMS  

coefficient of alienation 177
coefficient of determination 177
criterion variable 162
heteroscedasticity 172
homoscedasticity 171
linear regression equation 163
linear regression line 161
multiple correlation coefficient 179

r2SY¿S2
Y¿abY¿ multiple regression equation 179

predicted score 161
predictor variable 162
proportion of variance accounted 174
slope 163
standard error of the estimate 170
variance of the scores around 169

intercept 163Y
Y¿Y

Y

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. What is the linear regression line?
2. What is the linear regression procedure used for?
3. What is and how do you obtain it?
4. What is the general form of the linear regression equation? Identify its 

component symbols.
5. (a) What does the intercept indicate? (b) What does the slope indicate?
6. Distinguish between the predictor variable and the criterion variable in linear

regression.
7. (a) What is the name for ? (b) What does tell you about the spread in the 

scores? (c) What does tell you about your errors in prediction?
8. (a) What two assumptions must you make about the data in order for the standard

error of the estimate to be accurate, and what does each mean? (b) How does
heteroscedasticity lead to an inaccurate description of the data?

9. How is the value of related to the size of ? Why?
10. When are multiple regression procedures used?
11. (a) What are the two statistical names for ? (b) How do you interpret ?

APPLICATION QUESTIONS

12. What research steps must you go through to use the relationship between a
person’s intelligence and grade average in high school so that, if you know a
person’s IQ, you can more accurately predict the person’s grade average?

13. We find that the correlation between math ability (X ) and musical aptitude scores
(Y ) is . The standard error of the estimate is . Bubbles has a
math score of 60 and Foofy a score of 72. (a) Based on their math scores, who is
predicted to have the higher music score and why? (b) What procedure would we
use to predict their music scores? (c) If our predictions are wrong, what is the
“average” amount we expect to be “off”? (d) How much smaller is this error than
if we don’t use math scores to predict music scores? (e) What is you answer in
part (d) called?

SY¿ 5 3.90r 5 1.44

r2r2

rSY¿
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14. (a) Explain conceptually why the proportion of variance accounted for equals
1.0 with a perfect correlation. (b) Why should you expect most relationships to
account for only about 9% to 25% of the variance?

15. What do you know about a research project when you read that it employed
multiple correlation and regression procedures?

16. Poindexter finds when correlating number of hours studied and number
of errors made on a statistics test. He also finds between speed of taking
the test and number of errors on the test. He concludes that hours studied forms
twice as strong a relationship and is therefore twice as important as the speed of
taking the test. (a) Why is he correct or incorrect? (b) Compare these relationships
and draw the correct conclusion.

17. (a) In question 16 what advanced statistical procedures can Poindexter employ to
improve his predictions about test errors even more? (b) Say that the resulting
correlation coefficient is . Using the proportion of variance accounted for,
explain what this means.

18. A researcher finds that the correlation between variable A and variable B is
. She also finds that the correlation between variable C and variable B is
. Which relationship is scientifically more useful and by how much?

19. You measure how much people are initially attracted to a person of the opposite
sex and how anxious they become during their first date. For the following ratio
data, answer the questions below.

Attraction Anxiety 
Participant X Y

1 2 8
2 6 14
3 1 5
4 3 8
5 6 10
6 9 15
7 6 8
8 6 8
9 4 7

10 2 6

(a) Compute the statistic that describes the relationship here. (b) Compute the
linear regression equation. (c) What anxiety score do you predict for a person who
has an attraction score of 9? (d) When using this relationship, what is the
“average” amount of error you should expect in your predictions?

20. (a) For the relationship in question 19, what is the proportion of variance
accounted for? (b) What is the proportion of variance not accounted for? 
(c) Why is or is not this a valuable relationship?

21. In question 19 of the Application Questions in Chapter 7, we correlated “burnout”
scores with absenteeism scores Using those data: (a) Compute the linear
regression equation. (b) Compute the standard error of the estimate. (c) For a
burnout of 4, what absence score is predicted? (d) How useful is knowing burnout
scores for predicting absenteeism?

1Y 2 .1X 2

r 5 2.40
r 5 1.20

.67

r 5 1.40
r 5 2.80
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22. A researcher measures how positive a person’s mood is and how creative he or she
is, obtaining the following interval scores:

Mood Creativity
Participant X Y

1 10 7
2 8 6
3 9 11
4 6 4
5 5 5
6 3 7
7 7 4
8 2 5
9 4 6

10 1 4

(a) Compute the statistic that summarizes this relationship. (b) What is the
predicted creativity score for anyone scoring 3 on mood? (c) If your prediction is in
error, what is the amount of error you expect to have? (d) How much smaller will
your error be if you use the regression equation than if you merely used the overall
mean creativity score as the predicted score for all participants?

23. Dorcas complains that it is unfair to use SAT scores to determine college admittance
because she might do much better in college than predicted. (a) What statistic(s) will
indicate whether her complaint is likely to be correct? (b) In reality, the positive cor-
relation coefficient between SAT scores and college performance is only moderate.
What does this tell you about how useful the SAT is for predicting college success?

INTEGRATION QUESTIONS

24. (a) How are experiments and correlational designs similar in their purpose? 
(b) What is the distinguishing characteristic between an experiment and a
correlational study? (Chs. 2, 7)

25. In the typical experiment, (a) Do we group the scores to summarize them, and if
so how? (b) What are the two descriptive statistics we compute for the summary?
(Chs. 4, 5)

26. In the typical correlational design, (a) Do we group the scores to summarize them,
and if so how? (b) What are the three descriptive statistics we compute for the
summary? (Chs. 7, 8)

27. In a typical experiment, a researcher says she has found a good predictor (a) What
name do we give to this variable? (b) Scores on which variable are being predicted?
(c) For particular participants, what score will be used as the predicted score? 
(d) What statistic describes the “average” error in predictions? (Chs. 4, 5)

28. In a typical correlational study, a researcher says he has found a good predictor 
(a) What name do we give to this variable? (b) Scores on which variable are being
predicted? (c) For a particular participant, what score will be the predicted score?
(d) What statistic describes the “average” error in predictions? (Chs. 7, 8)

29. You know that a relationship accounts for a substantial amount of variance. What
does this tell you about (a) its strength? (b) the consistency that a particular is
paired with only one , (c) the variability in scores at each ? (d) how closely
the scatterplot hugs the regression line? (e) the size of the correlation coefficient?
(f) how well we can predict scores? (Chs. 7, 8)Y

XYX
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■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for the linear regression equation is

2. The formula for the slope of the linear 
regression line is

3. The formula for the intercept of the linear
regression line is

4. The formula for the variance of scores around
is

S2
Y¿ 5 S2

Y 11 2 r2 2

Y¿
Y

a 5 Y 2 1b 2 1X 2

Y

b 5
N1©XY 2 2 1©X 2 1©Y 2

N1©X2 2 2  1©X 22

Y¿ 5 bX 1 a

5. The formula for the standard error of the
estimate is

6. The formula for the proportion of variance
accounted for is 

7. The formula for the proportion of variance not
accounted for is

Coefficient of determination 5 1 2 r2

Coefficient of determination 5 r2

SY¿ 5 SY21 2 r2



You now know the common descriptive statistics used in behavioral research. There-
fore, you are ready to learn the other type of procedures, called inferential statistics.
Later chapters will show you the different procedures that are used with different
research designs. This chapter sets the foundation for all inferential procedures by
introducing you to the wonderful world of probability. Don’t worry, though. The
discussion is rather simple, and there is little in the way of formulas. However, you
do need to understand the basics of probability. In the following sections, we discuss
(1) what probability is, (2) how we determine probability, and (3) how to use probabil-
ity to draw conclusions about samples.

NEW STATISTICAL NOTATION

In daily conversation, the words chances, odds, and probability are used interchange-
ably. In statistics, however, they have different meanings. Odds are expressed as
fractions or ratios (“The odds of winning are 1 in 2”). Chance is expressed as a per-
centage (“There is a 50% chance of winning”). Probability is expressed as a decimal
(“The probability of winning is .50”). For inferential procedures, always express the
answers you compute as probabilities.

185

Using Probability to Make
Decisions about Data9

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 3, that relative frequency is the proportion of time that scores
occur.

■ From Chapter 6, that by using z-scores we can determine the proportion of the
area under the normal curve for particular scores and thereby determine their
relative frequency.

■ Also from Chapter 6, that by using a sampling distribution of means and
z-scores we can determine the proportion of the area under the normal curve 
for particular sample means and thereby determine their relative frequency.

Your goals in this chapter are to learn

■ What probability is and how it is computed.

■ How to compute the probability of raw scores and sample means using z-scores.

■ How random sampling and sampling error may or may not produce
representative samples.

■ How to use a sampling distribution of means to determine whether a sample
represents a particular population.
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The symbol for probability is p. The probability of a particular event—such as event
A—is  p(A), which is pronounced “p of A” or “the probability of A.”

WHY IS IT IMPORTANT TO KNOW ABOUT PROBABILITY?

Recall that ultimately we want to draw inferences about relationships in nature—in
what we call the population. However, even though we may find a relationship in our
sample data, we can never “prove” that this relationship is found in the population. We
must measure the entire population to know what occurs, but if we could measure the
(infinite) population, we wouldn’t need samples to begin with. Thus, we will always
have some uncertainty about whether the relationship in our sample is found in the pop-
ulation. The best that we can do is to describe what we think is likely to be found. This
is where inferential statistics come into play. Recall from Chapter 2 that inferential
statistics are for deciding whether our sample data accurately represent the relation-
ship found in the population (in nature). Essentially, we use probability and inferential
procedures to make an intelligent bet about whether we would find the sample’s rela-
tionship if we could study everyone in the population. Therefore, it is important that
you understand the basics of probability so that you understand how we make these
bets. This is especially so, because we always have this uncertainty about the popula-
tion, so we perform inferential statistics in every study. Therefore, using probability—
and making bets—is an integral part of all behavioral research.

THE LOGIC OF PROBABILITY

Probability is used to describe random, or chance, events. People often mistakenly believe
that the definition of random is that events occur in a way that produces no pattern. How-
ever, the events may form a pattern, so, for example, a lottery might produce the random
sequence of 1, 2, 3, 4, 5. Rather, an event is random if it is uncontrolled, so that the events
occur naturally without any influence from us. That is, we allow nature to be fair, with no
bias toward one event over another (no rigged roulette wheels or loaded dice). Thus, a ran-
dom event occurs or does not occur merely because of the luck of the draw. Probability is
our way of mathematically describing how luck operates to produce an event.

Using statistical terminology, the event that does occur in a given situation is a sam-
ple. The larger collection of all possible events that might occur in this situation is the
population. Thus, the event might be drawing a particular playing card from the popu-
lation of a deck of cards, or tossing a coin and obtaining a particular sample of heads
and tails from the population of possible heads and tails. In research, the event is
obtaining a particular sample that contains particular participants or scores.

Because probability deals only with random events, we compute the probability only
of samples obtained through random sampling. Random sampling is selecting a sam-
ple in such a way that all elements or individuals in the population have an equal
chance of being selected. Thus, in research, random sampling is anything akin to
blindly drawing names from a large hat. In all cases, a particular random sample occurs
or does not occur simply because of the luck of the draw.

But how can we describe an event that happens only by chance? By paying attention
to how often the event occurs when chance is operating. The probability of any event is
based on how often the event occurs over the long run. Intuitively, we use this logic all
the time: If event A happens frequently over the long run, then we think it is likely to
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happen again now, and we say that it has a high probability. If event B happens infre-
quently, then we think it is unlikely, and we say that it has a low probability.

When we decide that an event happens frequently, we are making a relative judgment,
describing the event’s relative frequency. This is the proportion of time that the event
occurs out of all events that might occur from the population. This is also the event’s
probability. The probability of an event is equal to the event’s relative frequency in the
population of possible events that can occur. An event’s relative frequency is a number
between 0 and 1, so the event’s probability is from 0 to 1.

REMEMBER The probability of an event equals the event’s relative frequency
in the population.

Probability is essentially a system for expressing our confidence that a particular ran-
dom event will occur. First, we assume that an event’s past relative frequency will con-
tinue over the long run in the future. Then we express our confidence that the event will
occur in any single sample by expressing the relative frequency as a probability
between 0 and 1. For example, I am a rotten typist, and I randomly make typos 80% of
the time. This means that in the population of my typing, typos occur with a relative
frequency of .80. We expect the relative frequency of my typos to continue at a rate of
.80 in anything I type. This expected relative frequency is expressed as a probability:
the probability is .80 that I will make a typo when I type the next woid.

Likewise, all probabilities communicate our confidence. If event A has a relative fre-
quency of zero in a particular situation, then the probability of event A is zero. This
means that we do not expect A to occur in this situation because it never does. But if
event A has a relative frequency of .10 in this situation, then A has a probability of .10:
Because we expect it to occur in only 10% of our samples, we have some—but not
much—confidence that A will occur in the next sample. On the other hand, if A has a
probability of .95, we are confident that it will occur: It occurs 95% of the time in the
population, we expect it in 95% of our samples, and so our confidence is at .95 that it
will occur now. At the most extreme, an event’s relative frequency can be 1: It is 100%
of the population, so its probability is 1. Here, we are positive it will occur in this situa-
tion because it always does.

All possible events together constitute 100% of the population. This means that the
relative frequencies of all events must add up to 1, so the probabilities must also add up
to 1. Thus, if the probability of my making a typo is .80, then because ,
the likelihood that I will type error-free words is 

Understand that except when equals either 0 or 1, it is up to chance whether a partic-
ular sample contains the event. For example, even though I make typos 80% of the time,
I may go for quite a while without making one. That 20% of the time I make no typos has
to occur sometime. Thus, although the probability is that I will make a typo in each
word, it is only over the long run that we expect to see precisely 80% typos.

People who fail to understand that probability implies over the long run fall victim
to the “gambler’s fallacy.” For example, after observing my errorless typing for a while,
the fallacy is thinking that errors “must” occur now, essentially concluding that errors
have become more likely. Or, say we are flipping a coin and get seven heads in a row.
The fallacy is thinking that a head is now less likely to occur because it’s already
occurred too often (as if the coin says, “Hold it. That’s enough heads for a while!”).
The mistake of the gambler’s fallacy is failing to recognize that whether an event
occurs or not in a sample does not alter its probability because probability is deter-
mined by what happens “over the long run.”

.80

p
p 5 .20.

1 2 .80 5 .20
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COMPUTING PROBABILITY

Computing the probability of an event is simple: We need only determine its relative
frequency in the population. When we know the relative frequency of all events, we
have a probability distribution. A probability distribution indicates the probability of
all events in a population.

Creating Probability Distributions

We have two ways to create a probability distribution. One way is to observe the rela-
tive frequency of the events, creating an empirical probability distribution. Typically,
we cannot observe the entire population, so we observe samples from the population.
We assume that the relative frequencies in the samples represent the relative frequen-
cies in the population.

For example, say that Dr. Fraud is sometimes very cranky, and apparently his cranki-
ness is random. We observe him on 18 days and he is cranky on 6 of them. Relative fre-
quency equals , so the relative frequency of Dr. Fraud’s crankiness is , or .33.
We expect him to continue to be cranky 33% of the time, so that he will be
cranky today. Conversely, he was not cranky on 12 of the 18 days, which is ,
or .67. Thus, that he will not be cranky today. Because his cranky days plus 
his noncranky days constitute all possibilities here, we have the complete probability
distribution for his crankiness.

Statistical procedures usually rely on the other way to create a probability distribu-
tion. A theoretical probability distribution is a theoretical model of the relative frequen-
cies of events in a population, based on how we assume nature distributes the events.
From such a model, we determine the expected relative frequency of each event, which
is then the probability of each event.

For example, when tossing a coin, we assume that nature has no bias toward heads
or tails, so over the long run we expect the relative frequency of heads to be .50 and the
relative frequency of tails to be .50. Because relative frequency in the population is
probability, we have a theoretical probability distribution for coin tosses: The probabil-
ity of a head on any toss is , and the probability of a tail is 

Or, consider a deck of 52 playing cards. The deck is actually the population, so each
card occurs once out of 52 draws. Therefore, the probability of you drawing any partic-
ular card from a full deck is Likewise, with 4 “Kings” in a full deck, the
probability of you selecting one is 

Finally, if the numbers you select for your state’s lottery drawing have a 1 in 17 million
chance of winning, it’s because there are 17 million different possible combinations of
numbers to select from. We expect to draw all 17 million combinations equally often over
the long run. Therefore, we’ll draw your selection at a rate of once out of every 17 million
draws, so your chance of winning on today’s draw is 1 in 17 million.

And that is the logic of probability. First, we either theoretically or empirically
devise a model of the expected relative frequency of each event in the population. Then,
an event’s relative frequency equals its probability (our confidence) that it will occur in
a particular sample.

Factors Affecting the Probability of an Event

Not all random events are the same, and their characteristics influence their probability.
First, events may be either independent or dependent. Two events are independent
events when the probability of one is not influenced by the occurrence of the other.

4>52 5 .077.
1>52 5 .019.

p 5 .50.p 5 .50

p 5 .67
12>18

p 5 .33
6>18f>N
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For example, contrary to popular belief, washing your car does not make it rain. These
are independent events, so the probability of rain does not change when you wash your
car. On the other hand, two events are dependent events when the probability of one is
influenced by the occurrence of the other. For example, whether you pass an exam usu-
ally depends on whether you study: The probability of passing increases or decreases
depending on whether studying occurs.

An event’s probability is also affected by the type of sampling we perform. When
sampling with replacement, any previously selected individuals or events are
replaced back into the population before drawing additional ones. For example, say
we will select two playing cards. Sampling with replacement occurs if, after drawing 
the first card, we return it to the deck before drawing the second card. Notice that the
probabilities on each draw are based on 52 possible outcomes, and so they stay con-
stant. On the other hand, when sampling without replacement, previously selected
individuals or events are not replaced into the population before selecting again. Thus,
sampling without replacement occurs if, after a card is drawn, it is discarded. Now the
probability of selecting a particular card on the first draw is based on 52 possible out-
comes, but the probability of selecting a card on the second draw is different because
it is based on only 51 outcomes.

■ An event’s probability equals its relative frequency
in the population.

■ A probability distribution indicates all probabilities
for a population, and is influenced by whether the
events are independent or dependent and whether
sampling is with or without replacement.

MORE EXAMPLES

One hundred raffle tickets are sold each week.
Assuming that all tickets are equally likely to be
drawn, each should be selected at a rate of 1 out of
100 draws over the long run. Therefore, the probabil-
ity that you hold the winning ticket this week is
p 5 1>100 5 .01.

For Practice

1. The probability of any event equals its ____ in
the ____.

2. As the of an event decreases, the event’s relative
frequency in this situation ____.

3. As the of an event increases, our confidence that
the event will occur ____.

4. Tossing a coin (heads or tails) is sampling ____
replacement.

Answers
1. relative frequency; population.
2. decreases
3. increases
4. with

p

p

A  Q U I C K  R E V I E W

OBTAINING PROBABILITY FROM THE STANDARD NORMAL CURVE

The reason we discuss probability is not because we have an uncontrollable urge to flip
coins and draw cards. In research, the random events that we are interested in are
scores. For our discussions, pretend that we’ve already measured everyone’s score in a
particular situation so that we can randomly select directly from the population of
scores. Further, we will assume that scores are independent (whether someone else
scores high on a test does not influence the that you’ll score high) and sampled with
replacement (the selection of a particular score does not remove it from the population).
Then our theoretical probability distribution is usually based on the standard normal
curve. Here’s how it works.

p
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Determining the Probability of Individual Scores

In Chapter 6, you used z-scores to find the proportion of the total area under the
normal curve in any part of a distribution. This proportion corresponds to the relative
frequency of the scores in that part of the population. Now, however, you know that 
the relative frequency of scores in the population is their probability. Therefore, the
proportion of the total area under the curve for particular scores equals the probability
of those scores.

For example, Figure 9.1 shows the distribution for a set of scores. Say that we seek
the probability of randomly selecting a score below the mean of 59. To answer this,
think first in terms of z-scores. Raw scores below the mean produce negative z-scores,
so the question becomes “What is the probability of randomly selecting a negative 
z-score?” Negative z-scores constitute 50% of the area under the curve and thus have a
relative frequency of .50. Therefore, the probability is .50 that we will select a negative
z-score. (Using our “parking lot” view of the curve, 50% of the parking lot holds 
people with negative z-scores. If we put the names of everyone in the lot in a hat and
started selecting, we’d expect to draw someone with a negative z-score 50% of 
the time: therefore, of getting one on a single draw.) Now think raw scores:
Because negative z-scores correspond to raw scores below 59, the probability is also .50
that we will select a raw score below 59.

Likewise, say that we seek the of selecting a score between 59 and 69. In Figure 9.1,
a raw score of 69 has a From column B of the z-tables in Appendix C, z-scores
between the mean and a of occur .3413 of the time. Thus, the probability is .3413
that we will select one of these z-scores, so the probability is also .3413 that we will
select a raw score between 59 and 69.

Or, say that we seek the probability of selecting a raw score above 79. Figure 9.1
shows that a raw score of 79 is at a z-score of From column C of the z-table, the rel-
ative frequency of scores beyond a is .0228. Therefore, the probability is .0228
that we will select a raw score above 79.

Finally, understand what we mean when a score is beyond a of plus or minus some
amount. For example, beyond z-scores of means that we seek scores in the tail
above or in the tail below We saw that beyond is .0228 of the curve
and so, beyond is also .0228. The word or indicates that we don’t distinguish
between the tails, so we add the two areas together. In total, , or .0456,
of the area under the curve contains the scores we seek. In Figure 9.1, a raw score of
39 is at , and 79 is at Thus, that we will select a raw score
below 39 or above 79.

Researchers seldom determine the probability of an individual score. However, by
understanding the preceding, you can understand a major part of inferential statistics,
which is to determine the probability of obtaining particular sample means.

p 5 .0456z 5 12.z 5 22

.0228 1 .0228
z 5 22

z 5 1222.12
;2

z

z of 12
12.

11z
z 5 11.

p

p 5 .5
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Determining the Probability of Sample Means

In Chapter 6, we conceptualized the sampling distribution of means as the frequency dis-
tribution of all possible sample means—the population—that would result if our bored
statistician randomly sampled a raw score population an infinite number of times using a
particular For example, Figure 9.2 shows the sampling distribution of means produced
from the population of SAT scores when Recognize that the different values 
of occur here simply because of the luck of the draw of which scores are selected for a
sample. Because many raw scores are near 500, the bored statistician frequently selects
samples with means at 500. But sometimes a sample mean somewhat higher than 500
occurs because, by chance, she happened to select scores that are predominantly above
500. Sample means that are far above 500, however, occur less frequently because chance
seldom produces only scores very far above 500. Likewise, sometimes she obtains scores
that produce means somewhat below 500, while less frequently will luck produce means
far below 500. Thus, the sampling distribution provides a picture of how often different
sample means occur due to chance when sampling this underlying SAT raw score popula-
tion. Therefore, the sampling distribution is a theoretical probability distribution.

We use the sampling distribution to determine the probability of sample means in the
same way that we previously determined the probability of raw scores. First, as in
Chapter 6, we compute the mean’s z-score. To do this, recall that we first compute the
standard error of the mean using the formula

Then we compute a z-score for the sample mean using the formula

Then, by applying the standard normal curve model and z-table, we can determine the
probability of particular sample means.

For example, in Figure 9.2, our and , so the standard error of the
mean is 20. Say that we’re interested in the sample means between the of 500 and the

of 520. First, the mean’s z-score is Thus, in other words,
we’re interested in means having z-scores between 0 and The relative frequency of
such z-scores is .3413. Therefore, that we will randomly select a sample
mean with a z-score between 0 and Likewise, the probability is .3413 that we will
select a sample mean that is between 500 and 520.

Think about this: Randomly selecting a sample mean is the same as selecting a sample
of raw scores that produce that mean. Also, randomly selecting a sample of raw scores is
the same as selecting a sample of participants who then produce these scores. Therefore,
when we use the sampling distribution to determine the probability of selecting particular

11.
p 5 .3413

11.
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sample means, we are actually finding the probability that we will select a sample of par-
ticipants whose scores will produce those means. Thus, we can rephrase our finding above:
When we randomly select 25 participants from the SAT population, the probability is
.3413 that we will select a sample that produces a mean between 500 and 520. 

Likewise, we can find probabilities in other parts of the sampling distribution. For
example, back in Figure 9.2, a mean of 540 has , and we’ve seen that the rela-
tive frequency of scores beyond this is .0228. Therefore, that we will select
a sample of SAT scores that produce a mean above 540. Or, we might seek the proba-
bility of means below 460 or above 540. In Figure 9.2, these means translate into 
z-scores of With .0228 of the area under the curve beyond each z, a total of .0456
of the curve is beyond Thus, the probability is only .0456 that we will select a sam-
ple that produces a mean below 460 or above 540.

REMEMBER Determine the probability of particular sample means by com-
puting their z-score on the sampling distribution.

As with individual raw scores, computing the exact probability of sample means will
not be a big part of what we do. Instead, you should understand the general logic of how
z-scores and a sampling distribution indicate the likelihood of various sample means. In
particular, as in Figure 9.2, see how a small z-score indicates that we are generally close
to the center of the sampling distribution, where samples having such means are rela-
tively frequent. Therefore, samples that produce means near � are relatively likely to
occur. Conversely, the larger a z-score, the farther into the tail of the sampling distribu-
tion we are, so samples having these means are relatively infrequent. Samples that
produce means in the tails of the sampling distribution are unlikely to occur. Thus, for
example, an SAT mean of 560 has a z-score of We—or the bored statistician—are
extremely unlikely to randomly select a sample having such a mean because such
samples (and means) hardly ever occur, even over the long run.

REMEMBER The larger the z-score, the less likely the corresponding sample
mean is to occur.

13.

;2.
;2.

p 5 .0228z
z 5 12

■ To find the probability of particular sample means,
we envision the sampling distribution, compute the
z-score, and apply the z-tables.

■ The farther into the tail of the sampling distribution
that a sample mean falls, the less likely it is to
occur.

MORE EXAMPLES

In a population, and What is the proba-
bility of obtaining a sample with a mean
above ? To compute the z-score, first compute
the standard error of the mean:

Then 
The means above 38.3 are in the upper tail 

of the distribution, so from column C of the z-table, sam-
ple means above 38.3 have a p 5 .0495.

5 11.65.
z 5 1X 2 � 2 >σX 5 138.3 2 35 2 >28>116 5 2.

σX 5 σX˛˛˛˛˛ 
>1N 5

X 5 38.3
1N 5 16 2

σX 5 8.� 5 35

For Practice

1. With , , and , what is the
probability of selecting a above 530?

2. Approximately, what is the probability of selecting
an SAT sample mean having a z-score between ?

3. If , are we more likely to obtain a sample
mean that is close to 100 or a mean that is very
different from 100?

4. The farther that sample means are into the tail of
the sampling distribution, the lower/higher their
probability.

Answers
1. ; 

2. With about 68% of the distribution,
3. A mean close to 100 is more likely.
4. lower

p 5 .68.
p 5 .0668

z 5 1530 2 500 2 >20 5 11.5;σX 5 100>125 5 20

� 5 100

;1

X
N 5 25σX 5 100� 5 500
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RANDOM SAMPLING AND SAMPLING ERROR

Computing the probability of sample means as we’ve described forms the basis for
all inferential statistics. Why do we need such procedures? Recall that in research
we want to conclude that the way our sample behaves is also the way the entire pop-
ulation would behave. However, we need inferential statistics because there is no
guarantee that the sample accurately reflects the population. In other words, we are
never certain that a sample is representative. In a representative sample, the char-
acteristics of the individuals and scores in the sample accurately reflect the charac-
teristics of individuals and scores found in the population. Thus, if 55% of the
population is female, then a sample will be representative if it is also 55% female. If
20% of the population scored 475, then a sample is representative if 20% of the
sample’s scores are 475. And so on, so that the proportions of the sample made up
by the various individuals and their scores equal the proportions found in the popu-
lation. Thus, to put it simply, a representative sample is a miniature version of the
population. This is why, if the in the SAT population is 500, then the in a repre-
sentative sample will be 500.

To produce representative samples, researchers select participants using random
sampling. A random sample should be representative because, by being unselective in
choosing participants, we allow the characteristics of the population to occur naturally
in the sample, in the same ways that they occur in the population. Thus, if 55% of the
population is female, then 55% of a random sample should be female because that is
how often we will encounter females. In the same way, random sampling should pro-
duce a sample having all of the characteristics of the population.

At least we hope it works that way! A random sample “should” be representative, but
nothing forces this to occur. The problem is that, just by the luck of the draw, we can
obtain a sample whose characteristics do not match those of the population. However,
representativeness is not all or nothing. Depending on the individuals and scores
selected, a sample can be somewhat representative, only somewhat matching the popu-
lation. For example, 20% of the population may score at 475, but simply through the
luck of who is selected, this score might occur 10% or 30% of the time in our sample.
If so, the sample will have characteristics that are only somewhat similar to those of the
population, and although may be 500, the sample mean will not be 500. In the same
way, depending on the scores we happen to select, any sample may not be perfectly
representative of the population from which it is selected, so the sample mean will not
equal the population mean it is representing.

The statistical term for communicating that chance produced an unrepresentative
sample is to say that the sample reflects sampling error. Sampling error occurs when
random chance produces a sample statistic (such as ) that is not equal to the popula-
tion parameter it represents (such as ). Sampling error conveys that the reason a sam-
ple mean is different from is because, by chance, the sample is unrepresentative of
the population. That is, because of the luck of the draw, the sample contains too many
high scores or too many low scores relative to the population, so the sample is in error
in representing the population.

REMEMBER Sampling error results when, by chance, the scores that are
selected produce a sample statistic that is different from the population
parameter it represents.

Here then, is the central problem for researchers and the reason for inferential
statistics: When sampling error produces a sample that is different from the
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population that it comes from and represents, it has the characteristics of some
other population. The problem is that then the sample appears to come from and
represent that other population. Thus, although a sample always represents some
population, we are never sure which population it represents: Through sampling
error the sample may poorly represent one population although it doesn’t look like
it represents that one, or the sample may accurately represent some other popula-
tion altogether.

REMEMBER Any sample may poorly represent one population, or it may
accurately represent a different population.

For example, say that we return to the SAT scores of Prunepit University and find
that a random sample obtains a mean score of 550. This is surprising because the
ordinary, national population of SAT scores has a of 500. Therefore, we should
have obtained a sample mean of 500 if our sample was perfectly representative of
this population. How do we explain a sample mean of 550? On the one hand, maybe
we simply have sampling error. Maybe because of the luck of the draw, we selected
too many students with high scores and not enough with low scores so that the sam-
ple mean came out to be 550 instead of 500. Thus, it’s possible that chance produced
a less than perfectly representative sample, but the population being represented is
still that ordinary population where is 500. On the other hand, perhaps the sample
does not come from and represent the ordinary population of SAT scores. After 
all, these are Prunepit students, so they may belong to a very different population 
of students, having some other For example, maybe Prunepit students belong 
to the population where is 550, and their sample is perfectly representing this 
population.

The solution to this dilemma is to use inferential statistics to make a decision about
the population being represented by our sample. The next chapter puts all of this into a
research context, but in the following sections we’ll examine the basics of deciding
whether a sample represents a particular population.

DECIDING WHETHER A SAMPLE REPRESENTS A POPULATION

We deal with the possibility of sampling error in this way: Because we rely on random
sampling, how representative a sample is depends on random chance—the luck of the
draw of which individuals and scores are selected. Therefore, we can determine
whether our sample is likely to come from and thus represent a particular population. 
If chance is likely to produce our sample from the population, then we decide that 
our sample does come from and represent that population, although maybe with a 
little sampling error. However, if chance is unlikely to produce our sample from the
population, then we decide that the sample does not represent that population, and
instead represents some other population.

Here’s a non-math example. You obtain a paragraph of someone’s typing, but you
don’t know whose. Is it mine? Does it represent the population of my typing? Say there
are zero typos in the paragraph. It’s possible that some quirk of chance produced such
an unrepresentative sample, but it’s not likely: I type errorless words only 20% of the
time, so the probability of an errorless paragraph is extremely small. Thus, because
chance is unlikely to produce such a sample from the population of my typing, you
should conclude that the sample represents the population of a competent typist where
such a sample is more likely.
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On the other hand, say that there are typos in 75% of the words in the paragraph.
This is consistent with what you would expect if the sample represents my typing, but
we have a little sampling error. Although you expect 80% typos from me over the long
run, you would not expect precisely 80% typos in every sample. Rather, a sample with
75% errors seems likely to occur simply by chance when the population of my typing
is sampled. Therefore, you can accept that this paragraph represents my typing, albeit
somewhat poorly.

We will use the same logic to decide whether our Prunepit sample represents the
population of SAT scores where is 500: we will determine the probability of
obtaining a sample mean of 550 from this population. As you’ve seen, we determine
the probability of a sample mean by computing its z-score on the sampling distribu-
tion of means. Thus, we first envision the sampling distribution showing the differ-
ent means that the bored statistician would obtain if, using our , she randomly
sampled the ordinary SAT population an infinite number of times. This is shown in
Figure 9.3.

Notice, the statistician is definitely representing the SAT population where is 500,
so whether she obtained a particular mean that was high, low, or in-between depends
purely on the luck of the draw of which scores she happened to select. Therefore, think
of a sampling distribution as a “picture of chance,” showing how often chance produces
different sample means when we sample a particular raw score population. Essentially,
it shows how often different degrees of sampling error occur.

The next step is to calculate the z-score for our sample mean of 550 so that we can
determine its likelihood. In reality we would not always expect a perfectly represen-
tative sample, so we would not expect a sample mean of precisely 500 every time.
Instead, if our sample is representing this population, then the sample mean should
be close to 500. For example, say that the z-score for our mean is at location A in
Figure 9.3. Read what the frequency distribution indicates by following the dotted
line: This mean has a very high relative frequency and thus is very likely when we are
drawing a sample from the ordinary SAT population. By being “close” to , this tells
us that samples are often unrepresentative to this extent, and so the bored statistician
frequently encountered this mean when she was representing the SAT population.
Thus, this is a mean that we’d expect to see if we are representing this population. In
fact, to put it simply, we obtained an expected mean that happens often with this pop-
ulation. Therefore, we will conclude it is a good bet that our sample comes from and
represents the ordinary SAT population, even though it doesn’t look like it represents
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that population. We assume the discrepancy is due to sampling error where, by
chance, we obtained a few too many high scores so our turned out to equal 550
instead of 500.

However, say that, instead, our sample has a z-score at location B back in Figure 9.3.
Following the dashed line shows that this is a very infrequent and unlikely mean. By
being “far” from , this tells us that samples are seldom unrepresentative to this
extent, and so the bored statistician almost never encountered such an extreme case
of sampling error when she was representing this SAT population. Thus, this is a
mean we would not expect to see if we are representing this population. To put it
simply, we obtained an unexpected mean that almost never happens with this
population! Therefore, because it is a bad bet that our sample comes from and rep-
resents the ordinary SAT population, we will reject that we are representing this
population, rejecting that the discrepancy between our and 500 reflects sampling
error. Instead, it makes more sense to conclude that the sample represents and comes
from some other raw score population (having some other ), where this sample is
more likely.

Be sure you understand the above logic before proceeding, because it is used in
all inferential procedures. We will always have a known, underlying raw score
population that a sample may or may not represent. From that raw score population
we envision the sampling distribution of means that would be produced. Then we
determine the location of our sample mean on the sampling distribution. The
farther into the tail of the sampling distribution the sample mean is, the less likely
that the sample comes from and represents the original underlying raw score
population.

�

X

�

X

■ If the z-score shows that a sample mean is unlikely
in the sampling distribution, reject that the sample
is merely poorly representing the underlying raw
score population.

■ If the z-score shows that a sample mean is likely in
the sampling distribution, conclude that the sample
represents the underlying raw score population,
albeit somewhat poorly.

MORE EXAMPLES

On the sampling distribution created from body
weights in the United States, an produces !
Such a mean is so unlikely when representing this
population that we reject that our sample represents
this population. However, another produced

Such a mean is close to and thus very
likely, so this sample is likely to represent this
population.

�z 5 2.02.
X

z 5 15X

For Practice

1. ____ communicates that a sample mean is differ-
ent from the it represents.

2. Sampling error occurs because of ____.

3. A sample mean has on the sampling
distribution created from the population of
psychology majors. Is this likely to be a sample
of psychology majors?

4. A sample mean has on the above
sampling distribution. Is this likely to be a sample
of psychology majors?

Answers
1. Sampling error
2. Random chance
3. Yes
4. No

z 5 24.0

z 5 11
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Setup of sampling distribution of SAT means showing the region of rejection and critical values

Setting Up the Sampling Distribution

To decide if our Prunepit sample represents the ordinary SAT population (with 500),
we must perform two tasks: (1) Determine the probability of obtaining our sample from
the ordinary SAT population and (2) decide whether the sample is unlikely to be repre-
senting this population. We perform both tasks simultaneously by setting up the sampling
distribution.

In Figure 9.4, we have the sampling distribution of means from the ordinary SAT pop-
ulation. (The axis is labeled twice, showing the sample means and their corresponding
-scores.) The first step in setting up the sampling distribution is to create the shaded

areas in the tails of the distribution. We saw in the previous section that, at some point,
an SAT sample mean could be so far above 500 in the upper tail of the sampling distri-
bution that we could not believe that it represents the underlying raw score population.
Recognize that any sample mean lying beyond that point, farther into the tail, would also
be unbelievable. Therefore, we will draw a line in the upper tail of the sampling distri-
bution creating the shaded area that encompasses all of these means. Likewise, an SAT
sample mean could be so far below 500 in the lower tail of the sampling distribution that
we would also not believe that it represents the underlying population. And, any sam-
ples beyond that point, farther into the tail, would also be unbelievable. We draw a line
in the lower tail of the distribution to create the shaded area that encompasses these
means. In statistical terms, the shaded areas are each called the region of rejection. As
shown, very infrequently are samples so poor at representing the SAT population that
they have means lying in the region of rejection. In fact,

Samples with means in the region of rejection are so unrepresentative of the
underlying raw score population that it’s a better bet they represent some
other population.

Thus, the region of rejection contains means that are so unlikely to be representing
the underlying population, that if ours is one of them, we reject that it represents that
population. Essentially, we “shouldn’t” get an SAT sample mean that lies in the
region of rejection if we’re representing the ordinary SAT population because such
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means almost never occur with this population. Therefore, if we do get such a mean,
we probably are not representing this population: We reject that the sample repre-
sents the underlying raw score population and decide that it represents some other
population.

Conversely, if our sample mean is not in the region of rejection, then the sample is
not unlikely to be representing the ordinary SAT population. In fact, by our definition,
samples not in the region of rejection are likely to represent this population, although
with some sampling error. In such cases, we retain the idea that the sample is simply
poorly representing this population of SAT scores.

How do we know where to draw the line that starts the region of rejection? By defin-
ing our criterion probability. The criterion probability is the probability that defines
samples as too unlikely for us to accept as representing a particular population.
Researchers usually use .05 as their default criterion probability. By this criterion, those
sample means that together would occur only 5% of the time when representing the
ordinary SAT population are so unlikely that if we get any one of them, we’ll reject that
our sample represents this population.

The criterion that we select determines the size of the region of rejection. The sam-
ple means that occur 5% of the time are those that make up the extreme 5% of the sam-
pling distribution. However, we consider the means that are above or below 500 that
together are a total of 5% of the curve, so we divide the 5% in half. Therefore, as 
Figure 9.4 showed, the extreme 2.5% of the curve in each tail of the sampling distribu-
tion forms our region of rejection.

REMEMBER The criterion probability that defines samples as unlikely—and
also determines the size of the region of rejection—is usually 

Now the task is simply to determine if our sample mean falls into the region of rejec-
tion. To do this, we will compare the sample’s z-score to the critical value.

Identifying the Critical Value

Figure 9.4 also showed our critical values. These are the z-scores at the lines that mark
the beginning of the upper and lower regions of rejection. Because z-scores get larger
as we go farther into the tails, if the z-score for our sample mean is greater than the crit-
ical value, then we know that our sample mean lies in the region of rejection. Thus, a
critical value marks the inner edge of the region of rejection and therefore defines the
value required for a sample to fall into the region of rejection. Essentially, it is the
minimum z-score that defines a sample as too unlikely.

REMEMBER The critical value of defines the minimum value of a sample
must have in order to be in the region of rejection.

How do we determine the critical value? By considering our criterion. With a
criterion of .05, we set up the region of rejection in Figure 9.4 so that in each tail is
the extreme 2.5%, or .025, of the total area under the curve. Then from the z-table in
Appendix C, we see that .025 of the curve lies beyond the z-score of 1.96. There-
fore, in each tail, the region of rejection begins at 1.96, so is our critical value
of 

Thus, back in Figure 9.4, labeling the inner edges of the region of rejection with
completes how you should set up the sampling distribution. (Note: In the next 

chapter, using both tails like this is called a “two-tailed test.”) We’ll use Figure 9.4 to
;1.96

z.
;1.96

zz

p 5 .05.
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determine whether our Prunepit sample mean lies in the region of rejection by compar-
ing the sample’s z-score to the critical value. We will use this rule:

A sample mean lies in the region of rejection only if its z-score is beyond the
critical value.

Thus, if our Prunepit mean has a z-score that is larger than , then the sample lies
in the region of rejection. If the z-score is smaller than or equal to the critical value,
then the sample is not in the region of rejection.

Deciding If the Sample Represents the Population

Now, at long last, we can evaluate our sample mean of 550 from Prunepit U. First, we
compute the sample’s z-score on the sampling distribution created from the ordinary
SAT population. With and , the standard error of the mean is

Then the z-score is

Think about this z-score. If the sample represents the ordinary SAT population, it’s
doing a very poor job of it. With a population mean of 500, a perfectly representative
sample would have a mean of 500 and thus have a z-score of 0. Good old Prunepit pro-
duced a z-score of !

To confirm our suspicions, we compare the sample’s z-score to the critical 
value of Locating the sample’s z-score on the sampling distribution gives us the
complete picture, which is shown in Figure 9.5. (When performing this procedure
yourself, you should draw the complete picture, too.) The sample’s of —and 
the underlying sample mean of 550—lies in the region of rejection. This tells us that a
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sample mean of 550 is among those means that are extremely unlikely when someone
is representing the ordinary population of SAT scores. In other words, very seldom
does chance—the luck of the draw—produce such unrepresentative samples from this
population, so it is not a good bet that chance produced our sample from this popula-
tion. Therefore, we say that we “reject” that our sample represents the population of
SAT scores having a of 500.

Notice that we make a definitive, yes-or-no decision. Because our sample is so
unlikely to represent the SAT raw score population where is 500, we decide that no,
it does not represent this population.

We wrap up our conclusions in this way: If the sample does not represent the ordi-
nary SAT population, then it must represent some other population. For example, per-
haps the Prunepit students obtained the high mean of 550 because they lied about their
scores, so they may represent the population of students who lie about the SAT. What-
ever the reason, having rejected that the sample represents the population where is
500, we use the sample mean to estimate the of the population that the sample does
represent. A sample having a mean of 550 is most likely to come from a population
having a  of 550. Therefore, our best estimate is that the Prunepit sample represents
an SAT population that has a of 550.

On the other hand, say that our original sample mean had been 474, resulting in a 
z-score of Because does not lie beyond the critical
value of 1.96, this sample mean is not in the region of rejection. Looking back at 
Figure 9.5, we see that when sampling the underlying SAT population, this sample
mean is relatively frequent and thus likely. Because of this, we say that we “retain” the
idea that random chance produced a less than perfectly representative sample but that it
probably represents and comes from the SAT population where is 500.

REMEMBER When a sample’s z-score is beyond the critical value, reject that
the sample represents the underlying raw score population. When the z-score
is not beyond the critical value, retain the idea that the sample represents the
underlying raw score population.

Other Ways to Set Up the Sampling Distribution

Previously, the region of rejection was in both tails of the distribution because we
wanted to identify unrepresentative sample means that were either too far above or too
far below 500. Instead, however, we can place the region of rejection in only one tail of
the distribution. (In the next chapter, you’ll find out why you would want to use this
“one-tailed” test.)

Say that we are interested only in sample means that are less than 500, having
negative z-scores. Our criterion is still .05, but now we place the entire region 
of rejection in the lower, left-hand tail of the sampling distribution, as shown in
Figure 9.6. This produces a different critical value. From the z-table (and using the
interpolation procedures described in Appendix A.2), the extreme lower 5% of a dis-
tribution lies beyond a z-score of Therefore, the z-score for our sample must
lie beyond the critical value of for it to be in the region of rejection. If it
does, we will again conclude that the sample is so unlikely to be representing the
SAT population where that we’ll reject that the sample represents this pop-
ulation. However, if the z-score is anywhere else on the sampling distribution, even
far into the upper tail, we will not reject that the sample represents the SAT popula-
tion where � 5 500.

� 5 500

21.645
21.645.

�

;
21.301474 2 500 2 >20 5 21.30.

�
�

�
�

�
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FIGURE 9.6

Setup of SAT sampling distribution to test negative z-scores

f

μ 

Critical value = +1.645

440
–3

460
–2

480
–1

500
0

520
+1

540
+2

560
+3

Region of rejection
equals 5%

Sample means
z-scores

FIGURE 9.7

Setup of SAT sampling distribution to test positive z-scores

On the other hand, say that we’re interested only in sample means greater than 500,
having positive z-scores. Here, we place the entire region of rejection in the upper,
right-hand tail of the sampling distribution, as shown in Figure 9.7. Now the critical
value is plus , so only if our sample’s z-score is beyond does the sample
mean lie in the region of rejection. Only then do we reject the idea that the sample rep-
resents the underlying raw score population.

REMEMBER When using one tail of the distribution and a criterion of 
.05, we use only the critical value of or only the critical value 
of 21.645.

11.645

11.6451.645
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The decision-making process discussed in this chapter is the essence of all inferential
statistics. The basic question is always “Do the sample data represent a specified raw
score population?” The sample may not look like it represents the population, but that
may simply be sampling error or the sample may represent some other population. To
decide, we

1. Draw a sampling distribution for the specified underlying raw score population.

2. Select the criterion probability, determine the critical value, and label your
distribution, showing the region of rejection.

3. Compute a z-score for the sample mean.

4. If is beyond the critical value, it is in the region of rejection. Therefore, the
sample is unlikely to represent the underlying raw score population, so reject that
it does. Conclude that the sample represents another population that is more likely
to produce such data.

5. If is not beyond the critical value, then the sample is not in the region of
rejection and is likely to merely reflect sampling error. Therefore, retain the idea
that the sample represents the specified population, although somewhat poorly.

With these steps, we make an intelligent bet about the population that our sample rep-
resents. Recognize that, as with any bet, our decisions might be wrong. (We’ll discuss
this in the next chapter.) Such errors are not likely, however, and that is why we per-
form inferential procedures. By incorporating probability into our decision making, we

z

z

■ To decide if a sample represents a particular raw
score population, compute the sample mean’s 
z-score and compare it to the critical value on the
sampling distribution.

MORE EXAMPLES

A sample of SAT scores produces 
Does the sample represent the SAT population where

and ? Compute 
; 

With a criterion of .05 and the region of rejec-
tion in both tails, the critical value is The 
sampling distribution is like Figure 9.5. The of 
is beyond , so it is in the region of rejection.
Conclusion: The sample does not represent this SAT
population.

For Practice

1. The region of rejection contains those samples
considered to be likely/unlikely to represent the
underlying raw score population.

21.96
22z

;1.96.
22.0.

z 5 1X 2 � 2>σX 5 1460 2 500 2>20 5100>125 5 20
z: σX 5 σX>1N 5σX 5 100� 5 500

X 5 460.1N 5 25 2

2. The ____ defines the z-score that is required for a
sample to be in the region of rejection.

3. For a sample to be in the region of rejection, its 
z-score must be smaller/larger than the critical
value.

4. On a test, and A sample
produces Using the .05 

criterion and both tails, does this sample 
represent this population?

Answers
1. unlikely
2. critical value
3. larger (beyond)
4. ; 

this is beyond , so reject that the sample
represents this population; it’s likely to represent the
population with � 5 65.

;1.96z
z 5 165 2 60 2 >1.80 5 12.78.σX 5 18>2100 5 1.80

X 5 65.1N 5 100 2
σX 5 18.� 5 60

A  Q U I C K  R E V I E W
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CHAPTER SUMMARY

1. Probability indicates the likelihood of an event when random chance is operating.

2. Random sampling is selecting a sample so that all elements or individuals in the
population have an equal chance of being selected.

3. The probability of an event is equal to its relative frequency in the population.

4. Two events are independent if the probability of one event is not influenced by the
occurrence of the other. Two events are dependent if the probability of one event
is influenced by the occurrence of the other.

5. Sampling with replacement is replacing individuals or events back into the
population before selecting again. Sampling without replacement is not replacing
individuals or events back into the population before selecting again.

6. The standard normal curve is a theoretical probability distribution. The proportion
of the area under the curve for particular z-scores is also the probability of the
corresponding raw scores or sample means.

7. In a representative sample, the individuals and scores in the sample accurately
reflect the types of individuals and scores found in the population.

8. Sampling error results when chance produces a sample statistic (such as ) that is
different from the population parameter (such as ) that it represents.

9. The region of rejection is in the extreme tail or tails of a sampling distribution.
Sample means here are unlikely to represent the underlying raw score population.

10. The criterion probability is the probability (usually .05) that defines samples as
unlikely to represent the underlying raw score population.

11. The critical value is the minimum z-score needed for a sample mean to lie in the
region of rejection.

�
X

1p 2

KEY TERMS

p
criterion probability 198
critical value 198
dependent event 189
independent event 188
inferential statistics 186
probability 187

probability distribution 188
random sampling 186
region of rejection 197
representative sample 193
sampling error 193
sampling with replacement 189
sampling without replacement 189

are confident that over the long run we will correctly identify the population that a
sample represents. In the context of research, therefore, we have greater confidence that
we are interpreting our data correctly.
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REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. (a) What does probability convey about an event’s occurence in a sample? 
(b) What is the probability of a random event based on?

2. What is random sampling?
3. (a) What is sampling with replacement? (b) What is sampling without

replacement? (c) How does sampling without replacement affect the probability of
events, compared to sampling with replacement?

4. (a) When are events independent? (b) When are they dependent?
5. What does the term sampling error indicate?
6. When testing the representativeness of a sample mean, (a) What is the criterion

probability? (b) What is the region of rejection? (c) What is the critical value?
7. What does comparing a sample’s z-score to the critical value indicate?
8. What is the difference between using both tails versus one tail of the sampling

distribution in terms of (a) the size of the region of rejection? (b) the critical
value?

APPLICATION QUESTIONS

9. Poindexter’s uncle is building a house on land that has been devastated by
hurricanes 160 times in the past 200 years. However, there hasn’t been a major
storm there in 13 years, so his uncle says this is a safe investment. His nephew
argues that he is wrong because a hurricane must be due soon. What are the
fallacies in the reasoning of both men?

10. Four airplanes from different airlines have crashed in the past two weeks. This
terrifies Bubbles, who must travel on a plane. Her travel agent claims that the
probability of a plane crash is minuscule. Who is correctly interpreting the
situation? Why?

11. Foofy conducts a survey to learn who will be elected class president and
concludes that Poindexter will win. It turns out that Dorcas wins. What is the
statistical explanation for Foofy’s erroneous prediction?

12. (a) Why does random sampling produce representative samples? (b) Why does
random sampling produce unrepresentative samples?

13. In the population of typical college students, on a statistics final exam
For 25 students who studied statistics using a new technique,

Using two tails of the sampling distribution and the .05 criterion:
(a) What is the critical value? (b) Is this sample in the region of rejection? 
How do you know? (c) Should we conclude that the sample represents the 
population of typical students? (d) Why?

14. In a population, and A sample has Using
two tails of the sampling distribution and the .05 criterion: (a) What is the critical
value? (b) Is this sample in the region of rejection? How do you know? (c) What
does this indicate about the likelihood of this sample occurring in this population?
(d) What should we conclude about the sample?

15. The mean of a population of raw scores is Use the criterion of
.05 and the upper tail of the sampling distribution to test whether a sample with

represents this population. (a) What is the critical value? 
(b) Is the sample in the region of rejection? How do you know? (c) What does this
X 5 36.8 1N 5 30 2

33 1σX 5 12 2 .

X 5 102.1N 5 150 2σX 5 25.� 5 100

X 5 72.1.
1σX 5 6.4 2 .

� 5 75
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indicate about the likelihood of this sample occurring in this population? (d) What
should we conclude about the sample?

16. We obtain a which may represent the population where
Using the criterion of .05 and the lower tail of the sampling dis-

tribution: (a) What is our critical value? (b) Is this sample in the region of rejection?
How do you know? (c) What should we conclude about the sample? (d) Why?

17. The mean of a population of raw scores is Your is 34 (with
Using the .05 criterion with the region of rejection in both tails of the

sampling distribution, should you consider the sample to be representative of this
population? Why?

18. The mean of a population of raw scores is Your is 44 (with
Using the .05 criterion with the region of rejection in both tails of the

distribution, should you consider the sample to be representative of this
population? Why?

19. A couple with eight daughters decides to have one more baby, because they think
this time they are sure to have boy! Is this reasoning accurate?

20. On a standard test of motor coordination, a sports psychologist found that the
population of average bowlers had a mean score of 24, with a standard deviation
of 6. She tested a random sample of 30 bowlers at Fred’s Bowling Alley and
found a sample mean of 26. A second random sample of 30 bowlers at Ethel’s
Bowling Alley had a mean of 18. Using the criterion of and both tails of
the sampling distribution, what should she conclude about each sample’s
representativeness of the population of average bowlers?

21. (a) In question 20, if a particular sample does not represent the population of
average bowlers, what is your best estimate of the of the population it does
represent? (b) Explain the logic behind this conclusion.

22. Foofy computes the from data that her professor says is a random sample from
population Q. She correctly computes that this mean has a z-score of on the
sampling distribution for population Q. Foofy claims she has proven that this could
not be a random sample from population Q. Do you agree or disagree? why?

INTEGRATION QUESTIONS

23. In a study you obtain the following data representing the aggressive tendencies of
some football players:

40 30 39 40 41 39 31 28 33

(a) Researchers have found that in the population of nonfootball players, is 30
Using both tails of the sampling distribution, determine whether your

football players represent a different population. (b) What do you conclude about
the population of football players and its ? (Chs. 4, 6, 9)

24. We reject that a sample, with , is merely poorly representing the population
where (a) What is our best estimate of the population that the sample
is representing? (b) Why can we claim this value of ? (Ch. 4)

25. For a distribution in which and , using z-scores, what is the relative
frequency of (a) scores below 27? (b) Scores above 51? (c) A score between 42
and 44? (d) A score below 33 or above 49? (e) For each of the questions above,
what is the probability of randomly selecting participants who have these scores?
(Chs. 6, 9)

SX 5 8X 5 43
�

�� 5 100.
X 5 95

�

1σX 5 5. 2
�

141
X

�

p 5 .05

N 5 40 2 .
X48 1σX 5 16 2 .

N 5 35 2 .
X28 1σX 5 9 2 .

� 5 50 1σX 5 11 2 .
X 5 46.8 1N 5 15 2
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26. When we compute the z-score of a sample mean, (a) What must you compute
first? (b) What is its formula? (c) What is the formula for the z-score of a sample
mean? (d) It describes the mean’s location among other means on what
distribution? (e) What does this distribution show? (Chs. 6, 9)

27. The mean of a population of raw scores is (a) Using the z-table,
what is the relative frequency of sample means below 46 when ? 
(b) What is the probability of randomly selecting a sample of 40 scores 
having a below 46? (Chs. 6, 9)

28. The mean of a population of raw scores is (a) Using the z-table,
what is the relative frequency of sample means above 24 when ? (b) What
is the probability of randomly selecting a sample of 30 participants whose scores
produce a mean above 24? (Chs. 6, 9)

N 5 30
18 1σX 5 12 2 .

X

N 5 40
50 1σX 5 18 2 .

■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for transforming a sample mean into
a z-score is

z 5
X 2 �

σX

where the standard error of the mean is

σX 5
σX
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Introduction to 
Hypothesis Testing10

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 2, what the conditions of an independent variable are and what
the dependent variable is.

■ From Chapter 4, that a relationship in the population occurs when different
means from the conditions represent different and thus different distributions
of dependent scores.

■ From Chapter 9, that when a sample’s z-score falls into the region of rejection,
the sample is unlikely to represent the underlying raw score population.

Your goals in this chapter are to learn

■ Why the possibility of sampling error causes researchers to perform inferential
statistical procedures.

■ When experimental hypotheses lead to either a one-tailed or a two-tailed test.

■ How to create the null and alternative hypotheses.

■ How to perform the z-test.

■ How to interpret significant and nonsignificant results.

■ What Type I errors, Type II errors, and power are.

�s

From the previous chapter, you know the basic logic of all inferential statistics. 
Now we will put these procedures into a research context and present the statistical
language and symbols used to describe them. Until further notice, we’ll be talking
about experiments. This chapter shows (1) how to set up an inferential procedure, 
(2) how to perform the z-test, (3) how to interpret the results of an inferential proce-
dure, and (4) the way to describe potential errors in our conclusions.

NEW STATISTICAL NOTATION

Five new symbols will be used in stating mathematical relationships.

1. The symbol for greater than is . Thus, means that is greater than . 

2. The symbol for less than is , so means that is less than .

3. The symbol for greater than or equal to is , so indicates that is greater
than or equal to .

4. The symbol for less than or equal to is , so indicates that is less than
or equal to .

5. The symbol for not equal to is so means that is different from .BAA ? B?,

A
BB # A#

A
BB $ A$

ABB 6 A6
BAA 7 B7
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Also, the introduction of each inferential statistical procedure will include a check-
list of the procedure’s assumptions. The assumptions are the rules for when to use it:
they tell you that a procedure is appropriate assuming that your design and your data
meet certain requirements. (Note: Select your inferential procedure and check its
assumptions prior to actually collecting data. Otherwise, your data may fit no proce-
dure, in which case the study is useless.)   

WHY IS IT IMPORTANT TO KNOW ABOUT THE z-TEST?

The z-test is one of the simplest inferential statistics around, so it is a good starting
point for learning these procedures. Also, when reading behavioral research, you may
encounter a study that employs it, so you should understand how it works. Most impor-
tantly, the discussion will introduce the formal system researchers use in all inferential
procedures. Therefore, understand the general steps and terminology involved here
because you’ll see them again and again.

THE ROLE OF INFERENTIAL STATISTICS IN RESEARCH

As you saw in the previous chapter, a random sample may be more or less representa-
tive of a population because, just by the luck of the draw, the sample may contain too
many high scores or too many low scores relative to the population. Because the sam-
ple is not perfectly representative, it reflects sampling error, and so the sample mean
does not equal the population mean.

Here is how sampling error can impact on an experiment. Recall that in experiments,
we hope to see a relationship in which, as we change the conditions of the independent
variable, scores on the dependent variable change in a consistent fashion. Therefore, if
the means for the conditions are different from each other, we infer that if we measured
the entire population, we would find a different population of scores located around a
different for each condition. But here is where sampling error comes in. Maybe the
sample means for the conditions differ because of sampling error, and actually they all
poorly represent the same population. If so, then the relationship does not exist: We’d
find the same population of scores, having the same , in each condition. Or because
of sampling error, perhaps the actual relationship in the population is different from the
relationship in our sample data.   

For example, say that we compare men and women on the dependent variable of cre-
ativity. In nature, men and women don’t really differ on this variable, so their are
equal. However, through sampling error—the luck of the draw—we might end up with
some female participants who are more creative than our male participants, or vice
versa. Then sampling error will mislead us into thinking that this relationship exists,
even though it really does not. Or, say that we measure the heights of some men and
women and, by chance, obtain a sample of relatively short men and a sample of tall
women. If we didn’t already know that men are taller, sampling error would mislead us
into concluding that women are taller.   

Researchers perform inferential statistics in every study, because it is always possi-
ble that we are being misled by sampling error so that the relationship we see in our
sample data is not the relationship found in nature.

Previously we’ve said that inferential statistics are used to decide if sample data
represent a particular relationship in the population. Using the process discussed in
the previous chapter, the decision boils down to this: (1) Should we believe that the

�s

�

�
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relationship we see in the sample data is generally the same as the relationship we
would find if we tested the entire population? or (2) Should we conclude that 
the relationship in the sample is a coincidence produced by sampling error, and that
the sample does not accurately represent the populations and relationship found 
in nature?

The specific inferential procedure employed in a given research situation depends
upon the research design and on the scale of measurement used when measuring the
dependent variable. We have, however, two general categories of inferential statistics:
Parametric statistics are procedures that require specific assumptions about the char-
acteristics of our populations. (Remember parametric by recalling that a population’s
characteristics are called parameters.) Two assumptions common to all parametric
procedures are (1) the population of dependent scores forms a normal distribution, and
(2) the scores are interval or ratio scores. Thus, parametric procedures are used when it
is appropriate to compute the mean in each condition. In this and upcoming chapters,
we’ll focus on parametric procedures.

The other category is nonparametric statistics, which are inferential procedures
that do not require stringent assumptions about our populations. These procedures are
used with nominal or ordinal scores or with skewed interval or ratio distributions (when
it is appropriate to calculate the median or mode). Chapter 15 presents nonparametric
procedures.   

REMEMBER Parametric and nonparametric inferential statistics are for
deciding if the data accurately represent a relationship in nature, or if sam-
pling error is misleading us into thinking there is this relationship.

As we’ll see, parametric procedures are often preferable, so typically we use non-
parametric procedures only when the data clearly violate the assumptions of paramet-
ric procedures. Instead, we can use a parametric procedure if the data come close to
meeting its assumptions. For example, if our population is approximately normally dis-
tributed, we can still use a parametric procedure.   

As you’ll see, both parametric and nonparametric procedures are performed in the
same way. The first step is setting up the procedure.   

SETTING UP INFERENTIAL PROCEDURES

Researchers follow four steps when setting up an experiment: Create the experimental
hypotheses, design the experiment to test these hypotheses, translate the experimental
hypotheses into statistical hypotheses, and select and set up the appropriate statistical pro-
cedure to test the statistical hypotheses.

Creating the Experimental Hypotheses

Recognize that the purpose of all experiments is to obtain data that will help us to
resolve the simplest of debates: maybe my independent variable works as I think it does
versus maybe it does not. From this, we first create two experimental hypotheses.
Experimental hypotheses describe the predicted relationship we may or may not find.
One hypothesis states that we will demonstrate the predicted relationship (manipulat-
ing the independent variable will work as expected). The other hypothesis states that
we will not demonstrate the predicted relationship (manipulating the independent vari-
able will not work as expected).
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However we can predict a relationship in one of two ways. Sometimes we expect a
relationship, but we are not sure whether scores will increase or decrease as we change
the independent variable. This leads to a two-tailed statistical procedure. A two-tailed
test is used when we predict a relationship but do not predict the direction in which scores
will change. Notice that a two-tailed test occurs when we predict that one group will pro-
duce different dependent scores than the other group, without saying which group will
score higher. For example, we have a two-tailed test if we propose that “men and women
differ in creativity” or that “higher anxiety levels will alter participants’ test scores.”

At other times, we do predict the direction in which the dependent scores will
change. A one-tailed test is used when we predict the direction in which scores will
change. We may predict that as we change the independent variable, the dependent
scores will only increase, or we may predict that they will only decrease. Notice that a
one-tailed test occurs when we predict which group will have the higher dependent
scores. For example, we have a one-tailed test if we predict that “men are more creative
than women” or that “higher anxiety levels will lower test scores.”   

REMEMBER A two-tailed test is used when you do not predict the direction
that scores will change. A one-tailed test is used when you do predict the
direction that scores will change.

Let’s first examine a study involving a two-tailed test. Say that we’ve discovered a
chemical that is related to intelligence, which we are ready to test on humans in an “IQ
pill.” The amount of the pill is our independent variable, and a person’s resulting IQ is
the dependent variable. We believe that this pill will affect IQ, but we are not sure
whether it will make people smarter or dumber. Therefore, here are our two-tailed
experimental hypotheses:

1. We will demonstrate that the pill works by either increasing or decreasing IQ
scores.

2. We will not demonstrate that the pill works, because IQ scores will not change.

Remember, however, that ultimately researchers want to describe what occurs in
nature, in what we call the population. Therefore, although we must first see that the
independent variable works as predicted in our sample, the real issue is whether we can
conclude that it works in the population.   

Designing a One-Sample Experiment

There are many ways we might design a study to test our pill, but the simplest way is
as a one-sample experiment. We will randomly select one sample of participants and
give each person, say, one pill. Then we’ll give participants an IQ test. The sample will
represent the population of people who have taken one pill, and the sample will rep-
resent the population .

To demonstrate a relationship, however, we must demonstrate that different amounts
of the pill produce different populations of IQ scores, having different s. Therefore,
we must compare the population represented by our sample to some other population
receiving some other amount of the pill. To perform a one-sample experiment, we must
already know the population mean under some other condition of the independent vari-
able. Here our independent variable is the amount of the pill taken, and one amount that
we already know about is zero amount. The IQ test has been given to many people 
over the years who have not taken the pill, and let’s say this population has a of 100.�

�

�
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X
Low IQ scores

IQ scores

f

High IQ scores

No pill One pill

X X X X X X X X X X X X X X X X X

μ =100 μ >100

FIGURE 10.1

Relationship in the
population if the IQ pill
increases IQ scores  

We will compare this population that has not taken the pill to the population that has taken
the pill that is represented by our sample. If the population without the pill has a different

than the population with the pill, then we will have demonstrated a relationship.   

Creating the Statistical Hypotheses

So that we can apply statistical procedures, we translate our experimental hypotheses
into statistical hypotheses. We are still debating whether our independent variable
works, but now we state this in terms of the corresponding statistical outcomes. Statis-
tical hypotheses describe the population parameters that the sample data represent if
the predicted relationship does or does not exist. The two statistical hypotheses are the
alternative hypothesis and the null hypothesis.

The Alternative Hypothesis It is easier to create the alternative hypothesis first
because it corresponds to the experimental hypothesis that the experiment does work as
predicted. The alternative hypothesis describes the population parameters that the
sample data represent if the predicted relationship exists. The alternative hypothesis is
always the hypothesis of a difference; it says that changing the independent variable
produces the predicted difference in the populations.

For example, Figure 10.1 shows the populations we’d find if the pill increases IQ.
This shows a relationship because everyone’s IQ score is increased so that the distribu-
tion moves to the right, over to the higher scores. We don’t know how much scores will
increase, so we do not know the value of the new with the pill. But we do know that
the of the population with the pill will be greater than 100 because 100 is the of
the population without the pill.

On the other hand, Figure 10.2 shows the populations if the pill decreases IQ. Here,
the pill moves the distribution to the left, over to the lower scores. Again, we don’t
know how much the pill will decrease scores, but we do know that the of the popula-
tion with the pill will be less than 100.   

The alternative hypothesis is a shorthand way of communicating all of the above. If
the pill works as predicted, then the population with the pill will have a that is either
greater than or less than 100. In other words, the population mean with the pill will not
equal 100. The symbol for the alternative hypothesis is . (The stands for hypothe-
sis and the subscript a stands for alternative.) Our alternative hypothesis in this study is  

Ha: � ? 100

HHa
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IQ scores
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FIGURE 10.2

Relationship in the population if the IQ pill decreases IQ scores  

f

Low IQ scores
IQ scores

High IQ scores
X X X X X X X X X X X

μ = 100 
with or 

without pill

FIGURE 10.3

Population of scores if
the IQ pill does not 
affect IQ scores  

This proposes that the sample mean produced by our pill represents a not equal to
100. Because the without the pill is 100, implies that a relationship exists in the
population. Thus, we can interpret as stating that our independent variable works as
predicted.

The Null Hypothesis The statistical hypothesis corresponding to the experimental
hypothesis that the independent variable does not work as predicted is called the null
hypothesis. The null hypothesis describes the population parameters that the sample
data represent if the predicted relationship does not exist. It is the hypothesis of “no dif-
ference,” saying that changing the independent variable does not produce the predicted
difference in the population.

If the IQ pill does not work, then it would be as if the pill were not present. We
already know that the population of IQ scores without the pill has a of 100. There-
fore, if the pill does not work, the population of scores will be unchanged and will
still be 100. Thus, if we measured the population with and without the pill, we would
have one population of scores, located at the of 100, as shown in Figure 10.3.�

�
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The null hypothesis is a shorthand way of communicating the above. The symbol for
the null hypothesis is . (The subscript is 0 because null means zero, as in zero rela-
tionship.) The null hypothesis for the IQ pill study is

This proposes that our sample comes from and represents the population where is
100. Because this is the same population found without the pill, implies that the pre-
dicted relationship does not exist in nature (that the independent variable does not
work).

REMEMBER The alternative hypothesis says the sample data represent
a and population that reflects the predicted relationship. The null hypothe-
sis says the data represent the and population that is found when the
predicted relationship does not occur in nature.

�1H0 2
�

1Ha 2

H0

�

H0: � 5 100

H0

■ The null hypothesis shows the value of that our 
represents if the predicted relationship does not exist.

■ The alternative hypothesis shows the value of that
our represents if the predicted relationship does
exist.

MORE EXAMPLES

In an experiment, we compare a sample of men to the
population of women who have a of 75. We predict
simply that men are different from women, so this is 
a two-tailed test. The alternative hypothesis is that 
our men represent a different population, so their is
not 75; thus, . The null hypothesis is that
men are the same as women, so the men’s is also 75,
so .

For Practice

1. A ____ test is used when we do not predict the
direction that scores will change; a ____ test is

H0: � 5 75
�

Ha: � ? 75
�

�

X
�

X� used when we do predict the direction that scores
will change.

2. The ____ hypothesis says that the sample data rep-
resent a population where the predicted relationship
exists. The ____ hypothesis says that the sample
data represent a population where the predicted
relationship does not exist.

3. The for adults on a personality test is 140. We
test a sample of children to see if they are different
from adults. What are and ?

4. The for days absent among workers is . We
train a sample of new workers and ask whether the
training changes worker absenteeism. What are 
and ?

Answers
1. two-tailed; one-tailed
2. alternative; null
3.
4. Ha: � ? 15.6; H0: � 5 15.6

Ha: � ? 140; H0: � 5 140

H0

Ha

15 .6�

H0Ha

�
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The Logic of Statistical Hypothesis Testing

The statistical hypotheses for the IQ pill study are and .
Remember, these are hypotheses—guesses—about the population that our sample may
represent. Notice that, together, and include all possibilities because the after
everyone has taken the pill would either equal or not equal 100. We use inferential pro-
cedures to test (choose between) these hypotheses. (Inferential procedures are also
called statistical hypothesis testing.)

�HaH0

Ha: � ? 100H0: � 5 100
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Say that we randomly selected a sample of 36 people, gave them the pill, measured
their IQ, and found that their mean score was 105. On the one hand, the obvious
interpretation is this: People who have not taken this pill have a mean IQ of 100, so if
the pill did not work, then the sample mean “should” have been 100. Therefore, a sam-
ple mean of 105 suggests that the pill does work, raising IQ scores about 5 points. If
the pill does this for the sample, it should do this for the population. Therefore, our
results appear to support our alternative hypothesis, : If we measured
everyone in the population with and without the pill, we would have the two distribu-
tions shown back in Figure 10.1, with the population that received the pill located at
the of 105. Conclusion: It seems that the pill works. We appear to have evidence of
a relationship in nature where increased amounts of the pill are associated with
increased IQ scores.   

But hold on! Remember sampling error? We just assumed that our sample is per-
fectly representative of the population it represents. But what if there was sampling
error? Maybe we obtained a mean of 105 not because the pill works, but because we
inaccurately represented the situation where the pill does not work. Maybe the pill does
nothing, but by chance we happened to select too many participants who already had
an above-average IQ and too few with a low IQ, so that our mean is 105 instead of 100.
Thus, maybe the null hypothesis is correct. Even though it doesn’t look like it, maybe
our sample actually represents the population where is 100. Maybe we have not
demonstrated that the pill works.   

In fact, we can never know whether our pill works based on the results of one study.
Whether the sample mean is 105, 1050, or 105,000, it is still possible that the sample
mean is different from 100 simply because of sampling error. As this illustrates, one
side of the debate (that we’re calling the null hypothesis) is to always argue that the
independent variable does not work as predicted, regardless of what our sample data
seem to show. Instead, it is always possible that the data poorly represent the situation
where the predicted relationship does not occur in nature.

REMEMBER The null hypothesis always implies that if our sample data show
the predicted relationship, we are being misled by sampling error and there
really is not that relationship in nature. 

Thus, we cannot automatically infer that the relationship exists in the population
when our sample data show the predicted relationship because two things can pro-
duce such data: sampling error or our independent variable. Maybe is correct
because sampling error produced our sample data, the independent variable really
does not work as predicted, and thus the we’re representing is 100. Or maybe is
correct because a relationship in nature produced our sample data, so we can believe
that the independent variable does work as predicted, and thus the we’re represent-
ing is not 100.

The only way to resolve this dilemma for certain would be to give the pill to the
entire population and see whether was 100 or 105. We cannot do that so we can never
prove whether the null hypothesis is true. However, we can determine how likely it is to
be true. That is, we can determine the probability that sampling error would produce a
sample mean of 105 when the sample actually comes from and represents the popula-
tion where is 100. If such a mean is very unlikely, we’ll reject the that our sample
represents this population.    

If this sounds familiar, it’s because it is the procedure discussed in the previous
chapter. In fact, that procedure is a parametric inferential procedure called the z-test.
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PERFORMING THE z-TEST

The z-test is the procedure for computing a z-score for a sample mean on the sampling
distribution of means. The formula for the z-test is the formula we used in Chapters 6
and 9 (and we’ll see it again in a moment). The z-test is used in a one-sample experi-
ment when we can meet these four assumptions:

1. We have randomly selected one sample.

2. The dependent variable is at least approximately normally distributed in the popu-
lation, and involves an interval or ratio scale.

3. We know the mean of the population of raw scores under some other condition of
the independent variable.

4. We know the true standard deviation of the above population.

Say that from past research, we know that in the IQ population where is 100, the
standard deviation is 15. Therefore, the z-test is appropriate for our study.

REMEMBER The z-test is used only if the raw score population’s is
known.

Setting Up the Sampling Distribution for a Two-Tailed Test

We always test by examining the sampling distribution created from the raw score
population that says we are representing. Here says that the sample represents a
population with . Therefore, it is as if we again hired our (very) bored statisti-
cian. Using the of 36 that we used, she infinitely samples the raw score population of
IQ scores without the pill where is 100. This produces a sampling distribution of
means with a of 100, as in Figure 10.4. Notice, the of the sampling distribution
always equals the value of given in the null hypothesis.

REMEMBER The mean of the sampling distribution always equals the of
the raw score population that says we are representing.

A sampling distribution always describes the situation when is true. Here it shows
the sample means that occur when we are drawing samples from the IQ population
where is 100. Any sample mean not equal to 100 occurs solely because of sampling
error—the luck of the draw that produced an unrepresentative sample. Thus, you can
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FIGURE 10.4

Sampling distribution of
IQ means for a two-tailed
test

A region of rejection is in
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marked by the critical values
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think of the sampling distribution as showing the frequency of all s we might get
through sampling error when the pill doesn’t work. (Always add the phrase “when 
is true” to any information you get from a sampling distribution.)

Next we set up the sampling distribution as we did in the previous chapter: Deter-
mine the size and location of the region of rejection and then identify the critical value.
However, we have some new symbols and terms.   

1. Choose alpha: Recall that the criterion probability defines sample means as being
too unlikely to represent the underlying raw score population, which in turn
defines the size of the region of rejection. The symbol for the criterion probability
is , the Greek letter alpha. Usually the criterion is , so in code, a .

2. Locate the region of rejection: Recall that the region of rejection may be in both
tails or only one tail of the sampling distribution. To decide, consider your
hypotheses. With our pill, we created two-tailed hypotheses for a two-tailed test
because we predicted the pill might raise or lower IQ scores. We will be correct if
our sample mean is either above 100 or below 100 and we can reject that it repre-
sents the no-pill population. Thus, back in Figure 10.4, with a two-tailed test, we
placed a region of rejection in each tail.

3. Determine the critical value: We’ll abbreviate the critical value of as . With
, the total region of rejection is , of the curve, so the region in each tail

is of the curve. From the z-table, a z-score of 1.96 demarcates this region,
and so we complete Figure 10.4 by adding that is .

Now the test of boils down to comparing the z-score for our sample mean to the
of . Therefore, it’s time to compute the z-score for the sample.   

Computing z

Here is some more code. The z-score we compute is “obtained” from the data, so we’ll
call it obtained, which we abbreviate as . You know how to compute this from pre-
vious chapters.

zobtz

;1.96zcrit

H0

;1.96zcrit

.025
.05� 5 .05

zcritz

� 5 .05.05�

H0

X

First, we compute the standard error of the mean In the formula, is the num-
ber of scores in the sample and is the true population standard deviation. For our IQ
pill study, is 15 and is 36, so    
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The formula for the z-test is

where
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Next we compute . In the formula, the value of is the of the sampling distri-
bution, which is also the of the underlying raw score population that says the sam-
ple represents. The is computed from our sample. The is the standard error of the
mean. Thus, our , , and , so   

Our is .. The final step is to interpret this by comparing it to .

Comparing the Obtained z to the Critical Value

Figure 10.5 shows the location of our (and sample mean) on the sampling distribu-
tion. Remember that the sampling distribution describes the situation when is true:
Here it shows all possible means that occur when, as our claims happened to us, sam-
ples are drawn from the population where is 100. If we are to believe , the sampling
distribution should show that a mean of 105 occurs relatively frequently and is thus
likely in this situation. However, Figure 10.5 shows just the opposite.

A of tells us that the bored statistician hardly ever obtained a sample mean
of 105 when drawing samples from the population where is 100. This makes it diffi-
cult to believe that our sample came from this population. In fact, because a of 
is beyond the of , our sample is in the region of rejection. Therefore, we con-
clude that our sample is unlikely to have come from and represent the population where

, rejecting that our sample is poorly representing this population.   
In statistical terms, we have “rejected” the null hypothesis. If we reject , then we

are left with , and so we “accept .” Here, is , so we accept that our
sample represents a population where is not 100. Thus, in sum, we have determined
that the sample is unlikely to represent the population where is 100, so we conclude
that it is likely to represent a population where is not 100.   

REMEMBER When a sample statistic falls beyond the critical value, the sta-
tistic lies in the region of rejection, so we reject and accept .

Once we have made a decision about the statistical hypotheses , we then
make a decision about the corresponding original experimental hypothesis. We rejected

, so we will also reject the experimental hypothesis that our independent variable doesH0

1H0 and Ha 2
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not work as predicted. Therefore, we will reject that our pill does not work. If this makes
your head spin, it may be because the logic actually involves a “double negative.” When
our sample falls in the region of rejection, we say “no” to the that says we’re repre-
senting the population with . But says this as a way of saying there is “no
relationship” involving our pill. By rejecting ,we are saying no to “no relationship.”
This is actually saying yes, there is a relationship involving our pill, which is what 
says. Therefore, by rejecting and accepting , we also accept the corresponding
experimental hypothesis that the independent variable does work as predicted. Here, it
appears that we have demonstrated a relationship in nature such that the pill would
change the population of IQ scores. In fact, we can be more specific: A sample mean of
105 is most likely to represent the population where is 105. Thus, without the pill, the
population is 100, but with the pill, we expect that scores would increase to a of
around 105.   

INTERPRETING SIGNIFICANT RESULTS

The shorthand way to communicate that we have rejected and accepted is to
say that the results are significant. (Statistical hypothesis testing is sometimes called
“significance testing.”) Significant does not mean important or impressive. Signifi-
cant indicates that our results are unlikely to occur if the predicted relationship does
not exist in the population. Therefore, we imply that the relationship found in the
experiment is “believable,” representing a “real” relationship found in nature, and
that it was not produced by sampling error from the situation in which the relation-
ship does not exist.

REMEMBER The term significant means that we have rejected the null
hypothesis and believe that the data reflect a relationship found in nature.

Notice that your decision is simply either yes, reject , or no, do not reject . All
z-scores in the region of rejection are treated the same, so one cannot be “more sig-
nificant” than another. Likewise, there is no such thing as “very significant” or “highly
significant.” (That’s like saying “very yes” or “highly yes.”) If is beyond ,
regardless of how far it is beyond, the results are simply significant, period!   

Although we accept that a relationship exists, we have three very important restric-
tions on how far we can go when interpreting significant results in any experiment.

First, we did not prove that is false. With our pill, the only thing we have
“proven” is that a sample mean of 105 is unlikely to come from a population where

. However, the sampling distribution shows that means of 105 do occur once
in a while when we are representing this population. Maybe our sample was one of
them. Maybe the pill did not work, and our sample was very unrepresentative of this.   

Second, we did not prove it was our independent variable that caused the scores to
change. Although our pill might have caused the higher IQ scores, some other, hid-
den variable also might have produced them. Maybe our participants cheated on the
IQ test, or there was something in the air that made them smarter, or there were
sunspots, or who-knows-what! If we’ve performed a good experiment and can elimi-
nate such factors, then we can argue that it is our independent variable that changed
the scores.

Finally, the represented by our sample may not equal our . Even assuming that
our pill does increase IQ, the population is probably not exactly 105. Our sample may
reflect (you guessed it) sampling error! That is, the sample may accurately reflect that
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the pill increases IQ, but it may not perfectly represent how much the pill increases
scores. Therefore, if we gave the pill to the population, we might find a of 104, or
106, or any other value. However, a sample mean of 105 is most likely when the popu-
lation is 105, so we would conclude that the resulting from our pill is probably
around 105.   

Bearing these qualifications in mind, we interpret the of 105 the way we wanted
to several pages back: Apparently, the pill increases IQ scores by about 5 points. But
now, because the results are significant, we are confident that we are not being misled
by sampling error. Therefore, we are more confident that we have discovered a rela-
tionship in nature. (But stay tuned, we could be wrong.) At this point, we return to
being behavioral researchers and interpret the results “psychologically”: We describe
how the ingredients in the pill affect intelligence, what brain mechanisms are
involved, and so on.

INTERPRETING NONSIGNIFICANT RESULTS

Let’s say that the IQ pill had instead produced a sample mean of 99. Now the z-score
for the sample is

As in Figure 10.6, a of is not beyond the of , so the sample is not in
the region of rejection. This indicates that we will frequently obtain a sample mean of
99 when sampling the population where . Therefore, the null hypothesis is rea-
sonable: our sample is likely to be a poor representation of the population where is
100. So we will not reject . Sampling error from this population can explain our
results just fine, thank you, so we will not reject this explanation. In such situations, we
say that we have “failed to reject ” or that we “retain .”

When we retain , we also retain the experimental hypothesis that our independent
variable does not work as predicted. We’ve found that our sample mean was likely to
occur if we were representing the situation where the pill is not present. Therefore, it
makes no sense to conclude that the pill works if our results were likely to occur without
the pill. Likewise, we never conclude that an independent variable works if the results
were likely to be due to sampling error from the situation where it does not work.
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The shorthand way to communicate all of this is to say that the results are not signif-
icant or that they are nonsignificant. (Don’t say insignificant.) Nonsignificant indicates
that the results are likely to reflect chance, sampling error, without there being a rela-
tionship in nature.   

REMEMBER Nonsignificant indicates that we have failed to reject 
because the results are not in the region of rejection and are thus likely to
occur when there is not the predicted relationship in nature.

When we retain , we also retain the experimental hypothesis that the independent
variable does not work as predicted. However, we have not proven that is true, so
we have not proven that our independent variable does not work. We have simply failed
to find convincing evidence that it does work. The only thing we’re sure of is that sam-
pling error could have produced our data. Therefore, we still have two hypotheses that
are both viable: (1) , that the data do not really represent a relationship, and (2) ,
that the data do represent a relationship. Thus, maybe in fact the pill does not work. Or
maybe the pill does work, but our sample poorly represents this. We simply don’t know
whether the pill works or not.   

Thus, with nonsignificant results, you should not say anything about whether the
independent variable influences behavior or not, and do not even begin to interpret 
the results “psychologically.” All that you can say is that you failed to demonstrate that
the predicted relationship exists   

REMEMBER Nonsignificant results provide no convincing evidence—one
way or the other—as to whether a relationship exists in nature.

For this reason, you cannot design a study to show that a relationship does not exist.
For example, you could not set out to show that the IQ pill does not work. At best,
you’ll end up retaining both and , and at worst, you’ll end up rejecting , show-
ing that it does work.   

SUMMARY OF THE z-TEST

Altogether, the preceding discussion can be summarized as the following four steps.
For a one-sample experiment that meets the assumptions of the z-test:

1. Determine the experimental hypotheses and create the statistical hypothesis: Pre-
dict the relationship the study will or will not demonstrate. Then describes the

that the represents if the predicted relationship does not exist. describes
the that the represents if the relationship does exist.

2. Compute , compute , and then compute . In the formula for , the value of 
is the of the sampling distribution, which is also the of the raw score popula-
tion that says is being represented.

3. Set up the sampling distribution: Select , locate the region of rejection, and
determine the critical value.

4. Compare to : If lies beyond , then reject , accept , and the
results are “significant.” Then interpret the relationship. If does not lie beyond

, do not reject and the results are “nonsignificant.” Do not draw any conclu-
sions about the relationship.
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THE ONE-TAILED TEST

Recall that a one-tailed test is used when we predict the direction in which scores will
change. The statistical hypotheses and sampling distribution are different in a one-
tailed test.

The One-Tailed Test for Increasing Scores

Say that we had developed a “smart” pill, so the experimental hypotheses are (1) the pill
makes people smarter by increasing IQ scores, or (2) the pill does not make people
smarter. For the statistical hypotheses, start with the alternative hypothesis: People with-
out the pill produce , so if the pill makes them smarter, their will be greater
than 100. Therefore, our alternative hypothesis is that our sample represents this popula-
tion, so . On the other hand, if the pill does not work as predicted, either it
will leave IQ scores unchanged or it will decrease them (making people dumber). Then

will either equal 100 or be less than 100. Therefore, our null hypothesis is that our
sample represents one of these populations, so .

We again test , and we do so by testing whether the sample represents the raw
score population in which equals 100. This is because first the pill must make the
sample smarter, producing a above 100, or we have no evidence that the “smart” pillX

�
H0

H0: � # 100
�

Ha: � 7 100

�� 5 100

■ If lies beyond , reject , the results are
significant, and conclude there is evidence for the
predicted relationship. Otherwise, the results are 
not significant, and we make no conclusion about
the relationship.

MORE EXAMPLES

We test a new technique for teaching reading. Without
it, the on a reading test is 220, with . An 
of 25 participants has . Then:

1. With a two-tailed test, .

2. Compute 

.

3. With , is , and the sampling dis-
tribution is like Figure 10.6.

4. The of is beyond the of , 
so the results are significant: the data reflect a
relationship, with the of the population using 
the technique at around , while for those 
not using it at .

Above a different mean produced . This
is not beyond the so the results are not signifi-zcritzobt
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H0zcritzobt cant: Make no conclusion about the influence of the
technique on reading.   

For Practice

We test whether a sample of 36 successful dieters are
more or less satisfied with their appearance than in the
population of nondieters, where .

1. What are and ?

2. The for dieters is 45. Compute .

3. Set up the sampling distribution.

4. What should we conclude?

Answers
1.
2.
3. With the sampling distribution has a region 

of rejection in each tail, with (as in 
Figure 10.6).

4. The of is beyond of , so the results
are significant: The population of dieters are more satis-
fied (at a around 45) than the population of nondieters
(at ).� 5 40
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Sampling distribution of
IQ means for a one-tailed
test of whether scores
increase

The region of rejection is
entirely in the upper tail.  

works. If we then conclude that the population is above 100, then it is automatically
above any value less than 100.   

REMEMBER A one-tailed null hypothesis always includes a population with
equal to some value. Test by testing whether the sample data represent

that population.

Thus, as in Figure 10.7, the sampling distribution again shows the means that occur
when sampling the population where is 100. We again set , but because we
have a one-tailed test, the region of rejection is in one tail of the sampling distribution.
You can identify which tail by identifying the result you must see to claim that your
independent variable works as predicted (to support ). For us to believe that the smart
pill works, we must conclude that the is significantly larger than 100. On the sam-
pling distribution, the means that are significantly larger than 100 are in the region of
rejection in the upper tail of the sampling distribution. Therefore, the entire region is in
the upper tail of the distribution. Then, as in the previous chapter, the region of rejec-
tion is 5% of the curve, so is .   

Say that after testing the pill we find . The sampling distribution
is still based on the IQ population with and , so .
Then . As in Figure 10.7, this is beyond , so
it is in the region of rejection. Therefore, the sample mean is unlikely to represent the
population having . If the sample is unlikely to represent the population where

is 100, it is even less likely to represent a population where is below 100. Therefore,
we reject the null hypothesis that , and accept the alternative hypothesis that

. We conclude that the pill produces a significant increase in IQ scores and esti-
mate that would equal about (keeping in mind all of the cautions and qualifica-
tions for interpreting significant results that we discussed previously).

Notice that a one-tailed is significant only if it lies beyond and has the same
sign. Thus, if had not been in our region of rejection, we would retain and have
no evidence whether the pill works or not. This would be the case even if we 
had obtained very low scores producing a very large negative z-score. We have no
region of rejection in the lower tail for this study and, no, you cannot move the region
of rejection to make the results significant. Remember, which tail you use is determined
by your experimental hypothesis. After years of developing a “smart pill,” it would
make no sense to suddenly say, “Whoops, I meant to call it a dumb pill.” Likewise, you
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zcrit = –1.645
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z-scores

FIGURE 10.8

Sampling distribution of
IQ means for a one-tailed
test of whether scores
decrease

The region of rejection is
entirely in the lower tail.  

cannot switch from a one-tailed to a two-tailed test. Therefore, use a one-tailed test
only when confident of the direction in which the dependent scores will change. When
in doubt, use a two-tailed test.   

The One-Tailed Test for Decreasing Scores

Say that we had created a pill to lower IQ scores. If the pill works, then would be less
than 100, so . But, if the pill does not work, it would produce the same
scores as no pill (with ), or it would make people smarter (with ). So

.
We again test using the previous sampling distribution. Now, however, to conclude

that the pill lowers IQ, our sample mean must be significantly less than 100. Therefore,
the region of rejection is in the lower tail of the distribution, as in Figure 10.8.

With , is now minus . If the sample produces a negative beyond
(for example, ), then we reject the that the sample mean repre-

sents a equal to or greater than 100 and accept the that the sample represents a 
less than 100. However, if does not fall in the region of rejection (for example, if

), we do not reject , and we have no evidence as to whether the pill
works or not.   

H0zobt 5 21.25
zobt�

Ha�
H0zobt 5 21.6921.645

zobt1.645zcrit� 5 .05
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H0: � $ 100
� 7 100� 5 100

Ha: � 6 100
�

■ Perform a one-tailed test when predicting the direc-
tion the scores will change.

■ When predicting that will be higher than , the
region of rejection is in the upper tail of the
sampling distribution. When predicting that will
be lower than , the region of rejection is in the
lower tail.

MORE EXAMPLES

We predict that learning statistics will increase a stu-
dent’s IQ. Those not learning statistics have 
and . For 25 statistics students, .X 5 108.6σX 5 15

� 5 100

�
X

�X

1. With a one-tailed test, .

2. Compute 

3. With , is �1.645. The sampling distri-
bution is as in Figure 10.7.

4. The of is beyond , so the results are
significant: Learning statistics gives a around

, whereas people not learning statistics have
.

Say that a different mean produced .
This is not beyond , so it is not significant. We’d
have no evidence that learning statistics raises IQ.   
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STATISTICS IN PUBLISHED RESEARCH: REPORTING SIGNIFICANCE TESTS

Every study must indicate whether the results are significant or nonsignificant. With
our IQ pill, a report might say, “The pill produced a significant difference in IQ scores.”
This indicates that the difference between the sample mean and the without the pill
is too large to accept as being due to sampling error. Or a report might say that we
obtained a “significant ”: The is beyond the . Or we might observe a “signifi-
cant effect of the pill”: The change in IQ scores reflected by the sample mean is
unlikely to be caused by sampling error, so presumably it is the effect of—caused by—
changing the conditions of the independent variable.

Whether any result is significant depends on how we have defined unlikely. We do
not always use , so you must always report the used. The APA format for
reporting a result is to indicate the symbol for the statistic, the obtained value, and then
the alpha level. For example to report a significant of , we write: ,

. Notice that instead of using we use (for probability), and with significant
results, we say that is less than . (We’ll discuss the reason for this shortly.) For a
nonsignificant of say, , we report , . Notice, with nonsignifi-
cant results, is greater than .   

ERRORS IN STATISTICAL DECISION MAKING

We have one other issue to consider, and it involves potential errors in our decisions:
Regardless of whether we conclude that the sample does or does not represent the pre-
dicted relationship, we may be wrong.

Type I Errors: Rejecting H0 When H0 Is True

Sometimes, the variables we investigate are not related in nature, so is really true.
When in this situation, if we obtain data that cause us to reject , then we make an
error. A Type I error is defined as rejecting when is true. In other words, we
conclude that the independent variable works when it really doesn’t.

Thus, when we rejected and claimed that the pill worked, it’s possible that it did
not work and we made a Type I error. How could this happen? Because our sample was
exactly what the sampling distribution indicated it was: a very unlikely and unrepre-
sentative sample from the population having a of 100. In fact, the sample so poorly
represented the situation where the pill did not work, we mistakenly thought that 
the pill did work. In a Type I error, there is so much sampling error that we—and our

�
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For Practice

You test the effectiveness of a new weight-loss diet.

1. Why is this a one-tailed test?

2. For the population of nondieters, . What
are and ?

3. In which tail is the region of rejection?

4. With , the for the sample of dieters is
. What do you conclude?21.86

zobt� 5 .05

H0Ha

� 5 155

Answers
1. Because a successful diet lowers weight scores
2. and 
3. The left-hand tail
4. The is beyond of , so it is significant:

The for dieters will be less than the of 155 for
nondieters.

��
21.645zcritzobt

H0: � $ 155Ha: � 6 155
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FIGURE 10.9

Sampling distribution of
sample means showing
that 5% of all sample
means fall into the
region of rejection 
when H0 is true  

statistical procedures—are fooled into concluding that the predicted relationship exists
when it really does not.   

Any time researchers discuss Type I errors, it is a given that is true. Think of it as
being in the “Type I situation” whenever you discuss the situation in which the pre-
dicted relationship does not exist. If you reject in this situation, then you’ve made a
Type I error. If you retain in this situation, then you’ve avoided a Type I error: By
not concluding that the pill works, you’ve made the correct decision because, in reality,
the pill doesn’t work.   

We never know if we’re making a Type I error because only nature knows if the
variables are related. However, we do know that the theoretical probability of a Type I
error equals our . Here’s why. Assume that the IQ pill does not work, so we’re in the
Type I situation. Therefore, we can only obtain IQ scores from the population where 
is 100. If we repeated this experiment many times, then the sampling distribution in
Figure 10.9 shows the different means we’d obtain over the long run. With a ,
the total region of rejection is 5% of the distribution, so sample means in the region of
rejection would occur 5% of the time in this situation. These means would cause us to
reject even though is true. Rejecting when it is true is a Type I error, so over
the long run, the relative frequency of Type I errors would be . Therefore, anytime
we reject , the theoretical probability that we’ve just made a Type I error is . (The
same is true in a one-tailed test.)   

You either will or will not make the correct decision when is true, so the proba-
bility of avoiding a Type I error, is . This is because, if 5% of the time samples
are in the region of rejection when is true, then 95% of the time they are not in the
region of rejection when is true. Therefore, 95% of the time we will not obtain sam-
ple means that cause us to erroneously reject : Anytime you retain , the theoreti-
cal probability is that you’ve avoided a Type I error.   

Although the theoretical probability of a Type I error equals , the actual probabil-
ity is slightly less than . This is because the region of rejection includes the critical
value. Yet to reject , the must be larger than . We cannot determine the pre-
cise area under the curve at , so we can’t remove it from our 5%. We can only say
that the region of rejection is slightly less than 5% of the curve. Therefore, the actual
probability of a Type I error is also slightly less than .   

Thus, in our examples when we rejected , the probability that we made a 
Type I error was slightly less than . That is why we report a significant result using

. This is code for “the probability of a Type I error is less than .” The reason
you must always report your alpha level is so that you indicate the probability of mak-
ing a Type I error.   
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On the other hand, we reported a nonsignificant result using . This commu-
nicates that we did not call this result significant because to do so would require a
region greater than 5% of the curve. But then the probability of a Type I error would be
greater than our of , and that’s unacceptable.   

Typically, researchers do not use an larger than because then it is too likely that
they will make a Type I error. This may not sound like a big deal, but the next time you
fly in an airplane, consider that the designer’s belief that the wings will stay on may
actually be a Type I error: He’s been misled by sampling error into erroneously think-
ing the wings will stay on. A 5% chance of this is scary enough—we certainly don’t
want more than a 5% chance that the wings will fall off. In science, we are skeptical
and careful, so we want to be convinced that sampling error did not produce our results.
Having only a 5% chance that it did is reasonably convincing.   

Type I errors are the reason a study must meet the assumptions of a statistical proce-
dure. If we violate the assumptions, then the true probability of a Type I error will be
larger than our (so it’s larger than we think it is). Thus, if we severely violate a pro-
cedure’s assumptions, we may think that is when in fact it is, say, ! But recall
that with parametric tests we can violate the assumptions somewhat. This is allowed
because the probability of a Type I error will still be close to (it will be only, say, 
when we’ve set at ).   

Sometimes making a Type I error is so dangerous that we want to reduce its proba-
bility even further. Then we usually set alpha at . For example, say that the smart pill
had some dangerous side effects. We would not want to needlessly expose the public to
such dangers, so would make us even less likely to conclude that the pill works
when it does not. When is , the region of rejection is the extreme 1% of the sam-
pling distribution, so the probability of making a Type I error is now .

However, we use the term significant in an all-or-nothing fashion: A result is not
“more” significant when than when . If lies in the region of rejec-
tion that was used to define significant, then the result is significant, period! The only
difference is that when the probability that we’ve made a Type I error is
smaller.

Finally, computer programs such as SPSS compute the exact probability of a Type I
error. For example, we might see . This indicates that the lies in the extreme
2% of the sampling distribution, and thus the probability of a Type I error here is . If
our is , then this result is significant. However, we might see , which indi-
cates that to call this result significant we’d need a region of rejection that is the
extreme 7% of the sampling distribution. This implies an of , which is greater than

, and thus this result is not significant.

REMEMBER When is true: Rejecting is a Type I error, and its probabil-
ity is ; retaining is avoiding a Type I error, and its probability is .

Type II Errors: Retaining H0 When H0 Is False

It is also possible to make a totally different kind of error. Sometimes the variables we
investigate really are related in nature, and so really is false. When in this situation,
if we obtain data that cause us to retain , then we make a Type II error. A Type II
error is defined as retaining when is false (and is true). In other words, here
we fail to identify that the independent variable really does work.

Thus, when our IQ sample mean of 99 caused us to retain and not claim the pill
worked, it’s possible that the pill did work and we made a Type II error. How could this
happen? Because the sample mean of 99 was so close to 100 (the without the pill)�
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that the difference could easily be explained as sampling error, so we weren’t
convinced the pill worked. Or perhaps the pill would actually increase IQ greatly, 
say to a of 105, but we obtained an unrepresentative sample of this. Either way, in a
Type II error, the sample mean is so close to the described by that we—and 
our statistics—are fooled into concluding that the predicted relationship does not exist
when it really does.   

Anytime we discuss Type II errors, it’s a given that is false and is true. That is,
we’re in the “Type II situation,” in which the predicted relationship does exist. If we
retain in this situation, then we’ve made a Type II error. If we reject in this situa-
tion, then we’ve avoided a Type II error: We’ve made the correct decision because we
concluded that the pill works and it does work.   

We never know when we make a Type II error, but we can determine its probability.
The computations of this are beyond the introductory level, but you should know that the
symbol for the theoretical probability of a Type II error is , the Greek letter beta. When-
ever you retain , is the probability that you’ve made a Type II error. On the other
hand, is the probability of avoiding a Type II error. Thus, anytime you reject ,
the probability is that you’ve made the correct decision and rejected a false .   

REMEMBER When is false: Retaining is a Type II error, and its proba-
bility is ; rejecting is avoiding a Type II error, and its probability is .

Comparing Type I and Type II Errors

You probably think that Type I and Type II errors are two of the most confusing inven-
tions ever devised. So, first recognie that if there’s a possibility you’ve made one type
of error, then there is no chance that you’ve made the other type of error. Remember: In
the Type I situation, is really true (the variables are not related in nature). In the
Type II situation, is really false (the variables are related in nature). You can’t be in
both situations simultaneously. Second, if you don’t make one type of error, then you
are not automatically making the other error because you might be making a correct
decision. Therefore, look at it this way: The type of error you can potentially make is
determined by your situation—what nature “says” about whether there is a relation-
ship. Then, whether you actually make the error depends on whether you agree or dis-
agree with nature.

Thus, four outcomes are possible in any study. Look at Table 10.1. As in the upper
row of the table, sometimes is really true: Then if we reject , we make a Type I
error (with a ). If we retain , we avoid a Type I error and make the correctH0p 5 �
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Our Decision

We Reject H0 We Retain H0
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H0 is true Type I error a voiding a Type I error
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The truth 
about H0

Type II situation: We are correct, We make a Type II error 
H0 is false avoiding a Type
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decision (with ). But, as in the lower row of the table, sometimes is really
false: Then if we retain , we make a Type II error (with ), and if we reject ,
we avoid a Type II error and make the correct decision (with ).

In any experiment, the results of your inferential procedure will place you in one of
the columns of Table 10.1. If you reject , then either you’ve made a Type I error, or
you’ve made the correct decision and avoided a Type II error. If you retain , then
either you’ve made a Type II error or you’ve made the correct decision and avoided a
Type I error.   

The most serious error is a Type I, concluding that an independent variable works
when really it does not. For example, concluding that new drugs, surgical techniques,
or engineering procedures work when they really do not can cause untold damage. For
this reason, researchers always use a small to minimize the likelihood of these errors.
On the other hand, a Type II error is not as harmful because it is merely failing to iden-
tify an independent variable that works. We have faith that future research will eventu-
ally discover the variable. However, we still prefer to avoid Type II errors, and for that
we need power.

Power

Of the various outcomes back in Table 10.1, the goal of research is to reject when it
is false: We conclude that the pill works, and the truth is that the pill does work. Not
only have we avoided any errors, but we have learned about a relationship in nature.
This ability has a special name: Power is the probability that we will reject when it
is false, correctly concluding that the sample data represent a relationship. In other
words, power is the probability of not making a Type II error, so power equals 

Power is important because, after all, why bother to conduct a study if we’re unlikely
to reject the null hypothesis even when there is a relationship present? Therefore,
power is a concern anytime we do not reject because we wonder, “Did we just miss
a relationship?” For example, previously, when we did not find a significant effect of
the pill, maybe the problem was that we lacked power: Maybe we were unlikely to
reject even if the pill really worked.   

To avoid this doubt, we strive to maximize the power of a study (maximizing the size
of ). Then we’ll have confidence in our decision if we do ultimately retain null.
Essentially, the idea is to do everything we can to ensure that in case we end up in the
Type II situation where there is a relationship in nature, we—and our statistics—will
not miss the relationship. If we still end up retaining , we know that it’s not for lack
of trying. We’re confident that if the relationship was there, we would have found it, 
so it must be that the relationship is not there. Therefore, we are confident in the deci-
sion to retain , and, in statistical lingo, we say that we’re confident we have avoided
a Type II error.

REMEMBER We seek to maximize power so that, if we retain , we are con-
fident we are not making a Type II error.

The time to build in power is when we design a study. We’re talking about being in
the Type II situation here, so it’s a given that the relationship exists in nature. We can’t
do anything to ensure that we’re in this situation (that’s up to nature), but assuming we
are, then the goal is to have significant results. Therefore, we increase power by
increasing the likelihood that our results will be significant. Results are significant if

is larger than , so anything that increases the size of the obtained value relative
to the critical value increases power.   
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Essentially, the purpose of inferential statistics is to minimie the probability of making
Type I and Type II errors. If we had not performed the z-test in our initial IQ pill study,
we might have made a Type I error: We might have erroneously concluded that the pill
raises IQ to around 105 when, in fact, we were being misled by sampling error. We
would have no idea if this had occurred, nor even the chances that it had occurred. After
finding a significant result, however, we are confident that we did not make a Type I
error because the probability of doing so is less than . Likewise, if the results were
not significant, through power we minimize the probability of a Type II error, so we’d
be confident that we did not miss a pill that actually works.

.05

PUTTING IT 
ALL TOGETHER
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We influence power first through the statistics we use. It is better to design a study so
that you can use parametric procedures because parametric procedures are more power-
ful than nonparametric ones: Analyzing data using a parametric test is more likely to
produce significant results than analyzing the same data using a nonparametric test.
Then, in case we’re in the situation where is false, we won’t miss the relationship.

Also, when we can predict the direction of the relationship, using a one-tailed test is
more powerful than a two-tailed test. This is because the for a one-tailed test
(1.645) is smaller than the for a two-tailed test (1.96). All other things being equal,
a is more likely to be beyond , so it’s more likely to be significant.   

In later chapters, you’ll see additional ways to maximize power. Do not think that we
are somehow “rigging” the decisions here. We are simply protecting ourselves against
errors. Setting at or less protects us if we end up in the situation where is true
(limiting Type I errors). Maximizing power protects us if we end up in the situation
where is false (limiting Type II errors). Together, these strategies minimize our
errors, regardless of whether or not there is really a relationship.

REMEMBER When discussing power, it is a given that is false. Power is
increased by increasing the size of the obtained value relative to the critical
value so that the results are more likely to be significant.
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■ A Type I error is rejecting a true . A Type II error
is retaining a false .

■ Power is the probability of not making a Type II
error.

MORE EXAMPLES

When is true, there is no relationship: If the data
cause us to reject , we make a Type I error. To
decrease the likelihood of this, we keep alpha small. If
the data cause us to retain , we avoid this error.
When is false, there is a relationship: If the data
cause us to retain , we make a Type II error. If the
data cause us to reject , we avoid this error. To
increase the likelihood of this, we increase power.
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H0 For Practice

1. Claiming that an independent variable works
although in nature it does not is a ____ error.

2. Failing to conclude that an independent variable
works although in nature it does is a ____ error.

3. If we reject , we cannot make a ____ error.

4. If we retain , we cannot make a ____ error.

5. To be confident in a decision to retain , our
power should be ____.

Answers
1. Type I
2. Type II
3. Type II
4. Type I
5. high
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All parametric and nonparametric inferential procedures follow the logic described
here: is the hypothesis that says your data represent the populations you would find
if the predicted relationship does not exist; says that your data represent the
predicted relationship. You then compute something like a z-score for your data on 
the sampling distribution when is true. If the z-score is larger than the critical value,
the results are unlikely to represent the populations described by , so we reject 
and accept . The results are called significant, meaning essentially that they are
“believable“: The relationship depicted in the sample data can be believed as existing
in nature rather than being a chance pattern resulting from sampling error. That’s it!
That’s inferential statistics (well, not quite).

CHAPTER SUMMARY

1. Inferential statistics are procedures for deciding whether sample data represent a
particular relationship in the population.

2. Parametric inferential procedures require assumptions about the raw score
populations being represented. They are performed when we compute the mean.

3. Nonparametric inferential procedures do not require stringent assumptions about
the populations being represented. They are performed when we compute the
median or mode.

4. The alternative hypothesis is the statistical hypothesis that describes the
population being represented if the predicted relationship exists.

5. The null hypothesis is the statistical hypothesis that describes the population
being represented if the predicted relationship does not exist.

6. A two-tailed test is used when we do not predict the direction in which the
dependent scores will change. A one-tailed test is used when the direction of the
relationship is predicted.

7. The z-test is the parametric procedure used in a one-sample experiment if 
(a) the population contains normally distributed interval or ratio scores and 
(b) the standard deviation of the population is known.

8. If lies beyond , then the corresponding sample mean is unlikely to occur
when sampling from the population described by . Therefore, we reject and
accept . This is a significant result and is evidence of the predicted relationship
in the population.

9. If does not lie beyond , then the corresponding sample mean is likely 
to occur when sampling the population described by . Therefore, we retain . 
This is a nonsignificant result and is not evidence for or against the predicted
relationship.

10. A Type I error occurs when a true is rejected. Its theoretical probability equals .
If a result is significant, the probability of a Type I error is . The theoretical
probability of avoiding a Type I error when retaining is .

11. A Type II error occurs when a false is retained. Its theoretical probability is .
The theoretical probability of avoiding a Type II error when rejecting is .

12. Power is the probability of rejecting a false , and it equals .1 – �H0
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REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. Why does the possibility of sampling error present a problem to researchers when
inferring a relationship in the population?

2. What are inferential statistics used for?
3. What does stand for, and what two things does it determine?
4. (a) What are the two major categories of inferential procedures? (b) What charac-

teristics of your data determine which you should use? (c) What happens if you
seriously violate the assumptions of a procedure? (d) What is a statistical reason
to design a study so you can use parametric procedures?

5. What are experimental hypotheses?
6. (a) What does communicate? (b) What does communicate?
7. (a) When do you use a one-tailed test? (b) When do you use a two-tailed test?
8. (a) What does “significant” convey about the results of an experiment? (b) Why is

obtaining significant results a goal of behavioral research? (c) Why is declaring
the results significant not the final step in a study?

9. (a) What is power? (b) Why do researchers want to maximize power? (c) What
result makes us worry whether we have sufficient power? (d) Why is a one-tailed
test more powerful than a two-tailed test?

10. (a) What are the advantage and disadvantage of two-tailed tests? (b) What are the
advantage and disadvantage of one-tailed tests?

HaH0

�

APPLICATION QUESTIONS

11. Describe the experimental hypotheses and the independent and dependent variables
when we study: (a) whether the amount of pizza consumed by college students dur-
ing finals week increases relative to the rest of the semester, (b) whether breathing
exercises alter blood pressure, (c) whether sensitivity to pain is affected by increased
hormone levels, and (d) whether frequency of day-dreaming decreases as a function
of more light in the room.

12. For each study in question 11, indicate whether a one- or a two-tailed test should
be used and state the and . Assume that when the amount of the
independent variable is zero.

13. Listening to music while taking a test may be relaxing or distracting. We test 49
participants while listening to music, and they produce an . The meanX 5 54.36

� 5 50HaH0
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of the population taking this test without music is 50 . (a) Is this a one-
tailed or two-tailed test? Why? (b) What are our and ? (c) Compute . 
(d) With , what is ? (e) Do we have evidence of a relationship in the
population? If so, describe the relationship.

14. We ask whether attending a private school leads to higher or lower performance
on a test of social skills. A sample of 100 students from a private school produces
a mean of 71.30 on the test, and the national mean for students from public
schools is 75.62 . (a) Should we use a one-tailed or a two-tailed test?
Why? (b) What are and ? (c) Compute . (d) With , what is ?
(e) What should we conclude about this relationship?

15. (a) In question 13, what is the probability that we made a Type I error? What
would be the error in terms of the independent and dependent variables? (b) What
is the probability that we made a Type II error? What would be the error in terms
of the independent and dependent variables?

16. (a) In question 14, what is the probability that we made a Type I error? What
would be the error in terms of the independent and dependent variables? (b) What
is the probability that we made a Type II error? What would be the error in terms
of the independent and dependent variables?

17. Foofy claims that a one-tailed test is cheating because we use a smaller , and
therefore it is easier to reject than with a two-tailed test. If the independent
variable doesn’t work, she claims, we are more likely to make a Type I error. 
Why is she correct or incorrect?

18. Poindexter claims that the real cheating occurs when we increase power by
increasing the likelihood that results will be significant. He reasons that if we are
more likely to reject , then we are more likely to do so when is true. There-
fore, we are more likely to make a Type I error. Why is he correct or incorrect?

19. Bubbles reads that in study A the . She also reads that in
study B the . (a) She concludes that the results of study
B are way beyond the critical value used in study A, falling into a region of rejec-
tion containing only .0001 of the sampling distribution. Why is she correct or
incorrect? (b) She concludes that the results of study B are more significant than
those of study A, both because the is so much larger and because is so much
smaller. Why is she correct or incorrect? (c) In terms of their conclusions, what is
the difference between the two studies?

20. Researcher A finds a significant relationship between increasing stress level and
ability to concentrate. Researcher B replicates this study but finds a nonsignificant
relationship. Identify the statistical error that each researcher may have made.

21. A report indicates that brand X toothpaste significantly reduced tooth decay rela-
tive to other brands, with . (a) What does “significant” indicate about the
researcher’s decision about brand X? (b) What makes you suspicious of the claim
that brand X works better than other brands?

22. We ask if the attitudes toward fuel costs of 100 owners of hybrid electric cars
are different from those on a national survey of owners of non-hybrid cars

. Higher scores indicate a more positive attitude. (a) Is this a one-
or two-tailed test? (b) In words what is and ? (c) Perform the z-test. (d) What
do you conclude about attitudes here? (e) Report your results in the correct format.

23. We ask if visual memory ability for a sample of 25 art majors is better
than that of engineers who, on a nationwide test, scored and .
Higher scores indicate a better memory. (a) Is this a one- or two-tailed test? (b) In
words what is and ? (c) Perform the z-test. (d) What do you conclude about
memory ability here? (e) Report your results in the correct format.

HaH0

σX 5 14� 5 45
1X 5 49 2

HaH0

1� 5 65, σX 5 24 2
1X 5 76 2

p 6 .44

�zobt

zobt 5 114.21, p 6 .0001
zobt 5 11.97, p 6 .05

H0H0

H0

zcrit

zcrit� 5 .05zobtHaH0

1σX 5 28.0 2

zcrit� 5 .05
zobtHaH0

1σX 5 12 2



Integration Questions 233

INTEGRATION QUESTIONS

24. We measure the self-esteem scores of a sample of statistics students, reasoning
that this course may lower their self-esteem relative to that of the typical college
student . We obtain these scores:

44 55 39 17 27 38 36 24 36

(a) Summarize your sample data. (b) Is this a one-tailed or two-tailed test? Why?
(c) What are and ? (d) Compute . (e) With , what is ? (f)
What should we conclude about the relationship here? (Chs. 4, 5, 10)

25. (a) What is the difference between the independent variable and the dependent
variable in an experiment? (b) When the assumptions of a procedure require nor-
mally distributed interval/ratio scores, are we referring to scores on the independ-
ent or dependent variable? (c) What distinguishes an interval and ratio variable
from nominal or ordinal variables? (d) What distinguishes a skewed versus a
normal distribution? (Chs. 2, 3, 4, 10)

26. For the following, identify the independent variable and the dependent variable
and explain why we should use a parametric or nonparametric procedure? 
(a) When ranking the intelligence of a group of people given a smart pill. 
(b) When comparing the median income for a group of college professors to that
of the national population of all incomes. (c) When comparing the mean reading
speed for a sample of hearing-impaired children to the average reading speed in
the population of hearing children. (d) When measuring interval scores from a
personality test given to a group of emotionally troubled people and comparing
them to the population for emotionally healthy people. (Chs. 2, 4, 10)

27. We have a of 40 under the condition of people tested in the morning versus a 
of 60 for people tested in the evening. Assuming they accurately represent their
populations, how do you envision this relationship in the population? (Chs. 4, 10)

28. (a) What does a sampling distribution of means show? (b) A mean having a z
beyond is where? (c) How often do means in the region of rejection occur
when dealing with a particular raw score population? (d) What does this tell you
about your mean? (Chs. 6, 9, 10)

29. (a) Why do researchers want to discover relationships? (b) What is the difference
between a real relationship and one produced by sampling error? (c) What does a
relationship produced by sampling error tell us about nature? (Chs. 2, 10)

30. (a) Why can no statistical result prove that changing the independent variable
causes the dependent scores to change? (b) What one thing does a significant
result prove? (Chs. 2, 10)
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GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 5, that is the estimated population standard deviation, that 
is the estimated population variance, and that both involve degrees of

freedom, or , which equals .

■ From Chapter 7, the uses and interpretation of and .

■ From Chapter 10, the basics of significance testing, including one- and 
two-tailed tests, and , Type I and Type II errors, and power.

Your goals in this chapter are to learn

■ When and how to perform the t-test.

■ How the t-distribution and degrees of freedom are used.

■ What is meant by the confidence interval for m and how it is computed.

■ How to perform significance testing of and .

■ How to increase the power of a study.
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Performing the One-Sample 
t-Test and Testing Correlation
Coefficients

234

The logic of hypothesis testing discussed in the previous chapter is common to all infer-
ential statistical procedures. Your goal now is to learn how slightly different procedures
are applied to different research designs. This chapter begins the process by introducing
the t-test, which is very similar to the z-test. The chapter presents (1) when and how to
perform the t-test, (2) how to use a similar procedure to test correlation coefficients, and
(3) a new procedure—called the confidence interval—that is used to estimate .

WHY IS IT IMPORTANT TO KNOW ABOUT t-TESTS?

The t-test is important because, like the z-test, the t-test is used for significance testing
in a one-sample experiment. In fact, the t-test and the “t-distribution” are used more
often in behavioral research. That’s because with the z-test we must know the standard
deviation of the raw score population . However, usually researchers do not know
such things because they’re exploring uncharted areas of behavior. Instead, we usually
estimate by using the sample data to compute the unbiased, estimated population
standard deviation . Then we compute something like a z-score for our sample
mean. However, because we are estimating, we are computing . The one-sample t-test
is the parametric inferential procedure for a one-sample experiment when the standard
deviation of the raw score population must be estimated.

REMEMBER Use the z-test when is known; use the t-test when is not
known.

σXσX

t
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Further, t-tests are important because they form the basis for several other procedures
that we’ll see in this and later chapters.

PERFORMING THE ONE-SAMPLE t-TEST

The one-sample t-test is applied when we have a one-sample experiment. Here’s an
example: Say that one of those “home-and-gardening/good-housekeeper” magazines
describes a test of housekeeping abilities. The magazine is targeted at women, and it
reports that the national average score for women is 75 (so their is 75), but it does
not report the standard deviation. Our question is, “How do men score on this test?” To
answer this, we’ll give the test to a random sample of men and use their to estimate
the for the population of all men. Then we can compare the for men to the of 75
for women. If we can conclude that men produce one population of scores located at
one , but women produce a different population of scores at a different , then we’ve
found a relationship in which, as gender changes, test scores change.

As usual, we first set up the statistical test.

1. The statistical hypotheses: Say that we’re being open minded and look for 
any kind of difference, so we have a two-tailed test. If men are different from
women, then the for men will not equal the for women of 75, so is

. If men are not different, then their will equal that of women, so 
is .

2. Alpha: We select alpha; sounds good.

3. Check the assumptions: The one-sample t-test is appropriate if we can assume the
following about the dependent variable:

a. We have one random sample of interval or ratio scores.

b. The raw score population forms a normal distribution.

c. The standard deviation of the raw score population is estimated by 
computing .

Based on similar research that we’ve read, our test scores meet these assumptions, so
we proceed. For simplicity, we test nine men. (For power, you should never collect so
few scores.) Say that the sample produces a . Based on this, we might con-
clude that the population of men has a of 65.67, while women have a of 75. On the
other hand, maybe we are being misled by sampling error: Maybe by chance we
selected some exceptionally sloppy men for our sample, but men in the population are
not different from women, and so our sample actually poorly represents that the male
population also has a .

To test this null hypothesis, we use the logic that we’ve used previously: says that
the men’s mean represents a population where is 75, so we will create a sampling dis-
tribution showing the means that occur by chance when representing this population.
Then using the formula for the t-test, we will compute , which will locate our sam-
ple mean on this sampling distribution in the same way that z-scores did. The larger the
absolute value of , the farther our sample mean is into the tail of the sampling distri-
bution. Therefore, we will compare to the critical value, called . If is beyond

, our sample mean lies in the region of rejection, so we’ll reject that the sample
poorly represents the population where is 75.

The only novelty here is that is calculated differently than and comes
from the t-distribution.
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Computing 

The computation of consists of three steps that parallel the three steps in the z-test.
After computing our sample mean, the first step in the z-test was to determine the stan-
dard deviation of the raw score population. For the t-test, we could compute the
estimated standard deviation , but to make your computations simpler, we’ll use the
estimated population variance . Recall that the formula for the estimated popula-
tion variance is

The second step of the z-test was to compute the standard error of the mean ,
which is like the “standard deviation” of the sampling distribution. However, because
now we are estimating the population variability, we compute the estimated standard
error of the mean, which is an estimate of the “standard deviation” of the sampling
distribution of means. The symbol for the estimated standard error of the mean is .
(The lowercase s stands for an estimate of the population, and the subscript indicates
that it is for a population of means.)

Previously we computed by dividing by . We could use a similar formula
here so that equals divided by . However, recall that to get any standard devi-
ation we first compute the variance and then find its square root. Thus, buried in the
above is the extra step of finding the square root of the variance that we then divide by

. Instead, by using the variance, we only need to take the square root once.1N

1NsXsX

1NσXσX

X
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This says to divide the estimated population variance by the of our sample and then
find the square root.

The third step in the z-test was to compute using the formula

This says to find the difference between our sample mean and the in and then divide
by the standard error. Likewise, the final step in computing is to use this formula:tobt
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The formula for the estimated standard error of the 
mean is
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The formula for the one-sample t-test is
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Here, the is our sample mean, is the mean of the sampling distribution (which
equals the value of described in the null hypothesis), and is the estimated standard
error of the mean. The is like a z-score, however, indicating how far our sample
mean is from the of the sampling distribution, when measured in estimated standard
error units.

For our housekeeping study, say that we obtained the data in Table 11.1. First, com-
pute . Substituting the data into the formula gives

Thus, the estimated variance of the population of housekeeping scores is 60.
Next, compute the estimated standard error of the mean. With and ,

Finally, compute . Our sample mean is 65.67, the that says we’re represent-
ing is 75, and the estimated standard error of the mean is 2.582. Therefore,

Our is .23.61tobt
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sX
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Subject Grades (X) X2

1 50 2,500
2 75 5,625
3 65 4,225
4 72 5,184
5 68 4,624
6 65 4,225
7 73 5,329
8 59 3,481
9 64 4,096

X 5 65.67
1©X 22 5 349,281

©X 2 5 39,289©X 5 591N 5 9

TABLE 11.1

Test Scores of Nine Men

■ Perform the one-sample t-test in a one-sample
experiment when you do not know the population
standard deviation.

MORE EXAMPLES

In a study, is that . To compute , say that
, , and .N 5 36s2

X 5 25X 5 62
tobt� 5 60H0

 tobt 5
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For Practice

In a study, is that . The data are 6, 7, 9, 8,
and 8.

1. To compute the , what two descriptive statistics
are computed first?

2. What do you compute next?

3. Compute the .tobt

tobt

� 5 10H0

Answers
1. and 
2.

3.

tobt 5 17.6 2 10 2 >.51 5 24.71

X 5 7.6, s2
X 5 1.30, N 5 5; sX 5 11.3>5 5 .51;
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–3 –2 –1 0 +3+2+1Values of t

FIGURE 11.1

Example of a t-distribution of random sample means

The t-Distribution and Degrees of Freedom

In our housekeeping study, the sample mean produced a of on the sampling
distribution of means in which . The question is, “Is this significant?” 
To answer this, the final step is to compare to , and for that we examine the 
t-distribution.

Think of the t-distribution in the following way. One last time we hire our very bored
statistician. She infinitely draws samples having our from the raw score population
described by . For each sample she computes , but she also computes and, ulti-
mately, . Then she plots the usual sampling distribution—a frequency distribution of
the sample means—but also labels the axis using each . Thus, the t-distribution is
the distribution of all possible values of t computed for random sample means selected
from the raw score population described by . For our example, the t-distribution
essentially shows all sample means—and their corresponding values of —that occur
when men and women belong to the same population of housekeeping scores.

You can envision the t-distribution as in Figure 11.1. As with z-scores, increasing
positive values of are located farther to the right of , and increasing negative val-
ues of are located farther to the left of . If places our mean close to the center
of the distribution, then this mean is frequent and thus likely when is true. (So in
our example, our sample of men is likely to be representing the population where is
75, the same population as for women.) But, if places our sample mean far into a
tail of the sampling distribution, then this mean is infrequent and thus unlikely when

is true. (Our sample is unlikely to represent the population where is 75, so it is
unlikely that men and women have the same population of scores.) To determine if our
mean is far enough into a tail, we find and create the region of rejection.tcrit
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X

f
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Critical value = +2.5
for Distribution A

Distribution A

Distribution B

–4 –3 –2 –1 0 +2+1 +3 +4

Means 

Values of t

Critical value = –2.5
for Distribution A

FIGURE 11.2

Comparison of two t-distributions based on different sample Ns

But we have one important novelty here: There are actually many versions of the 
t-distribution, each having a slightly different shape. The shape of a particular distribu-
tion depends on the sample size that is used when creating it. If the statistician uses
small samples, the t-distribution will be only a rough approximation to the normal
curve. This is because small samples will often contain large sampling error, so often
each estimate of the population variability will be very different from the next and
from the true population variability. This inconsistency produces a t-distribution that is
only approximately normal. However, large samples are more representative of the
population, so each estimate of the population variability will be very close to the true
population variability. As we saw when computing the z-test, using the true population
variability produces a sampling distribution that forms a normal curve. In-
between, as sample size increases, each t-distribution will be a successively closer
approximation to the normal curve.

However, in this context, the size of a sample is determined by the quantity ,
what we call the degrees of freedom, or . Because we compute the estimated popula-
tion standard deviation using , it is our that determines how close we are to 
the true population variability, and thus it is the that determines the shape of the 
t-distribution. The larger the , the closer the t-distribution comes to forming a normal
curve. However, a tremendously large sample is not required to produce a perfect nor-
mal t-distribution. When is greater than 120, the t-distribution is virtually identical
to the standard normal curve. But when is between 1 and 120 (which is often the case
in research), a differently shaped t-distribution will occur for each .

The fact that t-distributions are differently shaped is important for one reason: Our
region of rejection should contain precisely that portion of the area under the curve
defined by our . If , then we want to mark off precisely 5% of the area under
the curve. On distributions that are shaped differently, we mark off that 5% at different
locations. Because the location of the region of rejection is marked off by the critical
value, with differently shaped t-distributions we will have different critical values. For
example, Figure 11.2 shows two t-distributions. Notice the size of the (blue) region of
rejection in a tail of Distribution A. Say that this corresponds to the extreme 5% of
Distribution A and is beyond the of . However, if we also use as
on Distribution B, the region of rejection is larger, containing more than 5% of the
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distribution. Conversely, the marking off 5% of Distribution B will mark off less
than 5% of Distribution A. (The same problem exists for a one-tailed test.)

This issue is important because is not only the size of the region of rejection, but it is
also the probability of a Type I error. Unless we use the appropriate , the actual proba-
bility of a Type I error will not equal our and that’s not supposed to happen! Thus, there
is only one version of the t-distribution to use when testing a particular : the one that
the bored statistician would create by using the same as in our sample. Therefore, we
are no longer automatically using the critical values of 1.96 or 1.645. Instead, when your

is between 1 and 120, use the to first identify the appropriate sampling distribution
for your study. The on that distribution will accurately mark off the region of rejec-
tion so that the probability of a Type I error equals your . Thus, in the housekeeping
study with an of 9, we will use the from the t-distribution for . In a different
study, however, where might be 25, we would use the different from the t-distribu-
tion for . And so on.

REMEMBER The appropriate for the one-sample t-test comes from the 
t-distribution that has equal to , where is the number of scores in
the sample.

Using the t-Tables

We obtain the different values of from Table 2 in Appendix C, entitled “Critical
Values of t.” In these “t-tables,” you’ll find separate tables for two-tailed and one-tailed
tests. Table 11.2 contains a portion of the two-tailed table.

To find the appropriate , first locate the appropriate column for your (either 
or ). Then find the value of in the row at the for your sample. For example, in
the housekeeping study, is 9, so is . For a two-tailed test with 
and , is 2.306.

Here’s another example: In a different study, is 61. Therefore, the 
Look in Table 2 of Appendix C to find the two-tailed with . It is 2.000. The
one-tailed here is 1.671.

The table contains no positive or negative signs. In a two-tailed test, you add the 
“ ,” and, in a one-tailed test, you supply the appropriate “ ” or “ .” Also, the table
uses the symbol for infinity for greater than 120. With this , using the esti-
mated population standard deviation is virtually the same as using the true population
standard deviation. Therefore, the t-distribution matches the standard normal curve,
and the critical values are those of the z-test.

Interpreting the t-Test

Once you’ve calculated and identified , you can make a
decision about your results. In our housekeeping study, we must
decide whether or not the men’s mean of 65.67 represents the same
population of scores that women have. Our is , and is

, producing the sampling distribution in Figure 11.3.
Remember, this can be interpreted as showing the frequency of all
means that occur by chance when is true. Essentially, here the
distribution shows all sample means that occur when the men’s
population of scores is the same as the women’s population, with a

of 75. Our lies beyond , so the results are significant: Ourtcrittobt�
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2 4.303 9.925
3 3.182 5.841
4 2.776 4.604
5 2.571 4.032
6 2.447 3.707
7 2.365 3.499
8 2.306 3.355
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TABLE 11.2

A Portion of the t-Tables
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tobt = –3.61
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FIGURE 11.3

Two-tailed t-distribution
for df 8 when H0 is
true and 75� 5

5

sample mean is so unlikely to occur if it had been representing the population in which
is 75, that we reject the that it represents this population.
We interpret significant results using the same rules as discussed in the previous

chapter. Thus, although we consider whether we’ve made a Type I error, with a sample
mean of 65.67, our best estimate is that the for men is around 65.67. Because we
expect a different population for women located at 75, we conclude that the results
demonstrate a relationship in the population between gender and test scores. Then we
return to being a researcher and interpret the relationship in psychological or sociologi-
cal terms: What do the scores and relationship indicate about the underlying behaviors
and their causes? Are men really more ignorant about housekeeping than women, and
if so, why? Do men merely pretend to be ignorant, and if so, why? And so on.

Conversely, if was not beyond (for example, if ), it would not be
significant. Then we would have no evidence for a relationship between gender and test
scores, one way or the other. We would, however, consider whether we had sufficient
power so that we were not making a Type II error.

The One-Tailed t-Test

As usual, we perform one-tailed tests when we predict the direction of the difference
between our conditions. Thus, if we had predicted that men score higher than women

would be that the sample represents a population with greater than 75
. would be that is less than or equal to 75 . We then

examine the sampling distribution that occurs when (as we did in the two-
tailed test). We find the one-tailed from the t-tables for our and . To decide in
which tail of the sampling distribution to put the region of rejection, we determine
what’s needed to support . Here, for the sample to represent a population of higher
scores, the must be greater than 75 and be significant. As shown in the left-hand
graph in Figure 11.4, such means are in the upper tail, which is where we place the
region of rejection, and is positive.

However, predicting that men score lower than women would produce the sampling
distribution on the right in Figure 11.4. Now is that is less than 75, and is that

is greater than or equal to 75. Because we seek a that is significant and lower than
75, the region of rejection is in the lower tail, and is negative.

In either case, calculate using the previous formulas. If the absolute value of 
is larger than and has the same sign, then the is unlikely to be representing a 
described by . Therefore, reject , accept , and the results are significant.HaH0H0
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FIGURE 11.4

H0 sampling distributions of t for one-tailed tests

■ Perform the one-sample t-test when is 
unknown.

MORE EXAMPLES

In a study, is 40. We predict our condition will
change scores relative to this . . This is a
two-tailed test, so ; . Then
compute .

The scores produce and .s2
X 5 196X 5 46

tobt

Ha: � ? 40H0: � 5 40
N 5 25�

�

σX

Find : With and , .
The lies beyond the . Conclusion: The inde-

pendent variable significantly increases scores from a
of 40 to a around 46.��

tcrittobt

tcrit 5 ;2.064df 5 24� 5 .05tcrit

 tobt 5
X 2 �

sX
5

46 2 40

2.80
5 12.14

 sX 5
B

s2
X

N
5
B

196

25
5 2.80

A  Q U I C K  R E V I E W

Some Help When Using the t-Tables

In the t-tables, you will not find a critical value for every between 1 and 120. When
the of your sample does not appear in the table, you can take one of two approaches.

First, remember that all you need to know is whether is beyond , but you do
not need to know how far beyond it is. Often you can determine this by examining the
critical values given in the table for the immediately above and below your . For
example, say that we perform a one-tailed t-test at with 49 . The t-tables give
a of 1.684 for 40 and a of 1.671 for 60 . Arrange the values like this:

60 49 40

1.671 ? 1.684

nonsignificant less than 1.671 greater than 1.684 significant

Because 49 lies between 40 and 60 , our unknown is a number larger than
1.671 but smaller than 1.684. Therefore, any that is beyond 1.684 is already beyond
the smaller unknown , and so it is significant. On the other hand, any that is not
beyond 1.671 will not be beyond the larger unknown , and so it is not significant.

The second approach is used when falls between the two critical values given in
the tables. Then you must compute the exact by performing “linear interpolation,”
as described in Appendix A.2.

tcrit

tobt

tcrit

tobttcrit

tobt

tcritdfdfdf

Sd

tcrit

df

dftcritdftcrit

df� 5 .05
dfdf

tcrittobt

df
df

(continued)
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ESTIMATING � BY COMPUTING A CONFIDENCE INTERVAL

As you’ve seen, after rejecting , we estimate the population that the sample mean
represents. There are two ways to estimate .

The first way is point estimation, in which we describe a point on the variable at
which the is expected to fall. Earlier we estimated that the of the population of men
is located on the variable of housekeeping scores at the point identified as 65.67. How-
ever, if we actually tested the entire population, would probably not be exactly 65.67.
The problem with point estimation is that it is extremely vulnerable to sampling error.
Our sample probably does not perfectly represent the population of men, so we can say
only that the is around 65.67.

The other, better way to estimate is to include the possibility of sampling error and
perform interval estimation. With interval estimation, we specify a range of values
within which we expect the population parameter to fall. You often encounter such
intervals in real life, although they are usually phrased in terms of “plus or minus”
some amount (called the margin of error). For example, the evening news may report
that a sample survey showed that 45% of the voters support the president, with a mar-
gin of error of plus or minus 3%. This means that the pollsters expect that, if they asked
the entire population, the result would be within of 45%: They believe that the
true portion of the population that supports the president is inside the interval that is
between 42% and 48%.

We will perform interval estimation in a similar way by creating a confidence inter-
val. Confidence intervals can be used to describe various population parameters, but
the most common is for a single . The confidence interval for a single describes a
range of values of , one of which our sample mean is likely to represent. Thus, when
we say that our sample of men represents a around 65.67, a confidence interval is the
way to define around. To do so, we’ll identify those values of above and below 65.67
that the sample mean is likely to represent, as shown here:

values of , one of which is likely to be
represented by our sample mean

The is the lowest value of that our sample mean is likely to represent, and 
is the highest value of that the mean is likely to represent. When we compute these
two values, we will have the confidence interval.

�
�high��low

�

�low . . . � � � � 65.67 � � � � . . . �high

�
�

�
��

;3%

�
�

�

��

�
�H0

For Practice

We test if artificial sunlight during the winter months
lowers one’s depression. Without the light, a depres-
sion test has . With the light, our sample scored
4, 5, 6, 7, and 8.

1. What are the hypotheses?

2. Compute .

3. What is ?

4. What is the conclusion?

tcrit

tobt

� 5 8

Answers
1. To “lower” is a one-tailed test: ; .
2.

3. With and .
4. is beyond . Conclusion: Artificial sunlight signif-

icantly lowers depression scores from a of 8 to a 
around 6.

��
tcrittobt

df 5 4, tcrit 5 22.132� 5 .05
tobt 5 16 2 8 2 >.707 5 22.83
X 5 6; s2

X 5 2.5; sX 5 12.5>5 5 .707;
H0: � $ 8Ha: � 6 8

x
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When is a sample mean likely to represent a particular ? It depends on sampling
error. For example, intuitively we know that sampling error is unlikely to produce a
sample mean of 65.67 if is, say, 500. In other words, 65.67 is significantly different
from 500. But sampling error is likely to produce a sample mean of 65.67 if, for exam-
ple, is 65 or 66. In other words, 65.67 is not significantly different from these .
Thus, a sample mean is likely to represent any that the mean is not significantly dif-
ferent from. The logic behind a confidence interval is to compute the highest and low-
est values of that are not significantly different from the sample mean. All 
between these two values are also not significantly different from the sample mean, so
the mean is likely to represent one of them.

REMEMBER A confidence interval describes the highest and lowest values
of that are not significantly different from our sample mean, and so the
mean is likely to represent one of them.

We usually compute a confidence interval only after finding a significant . This is
because we must be sure that our sample is not representing the described in 
before we estimate any other that it might represent.

Computing the Confidence Interval

The t-test forms the basis for the confidence interval, and here’s what’s behind the for-
mula for it. We seek the highest and lowest values of that are not significantly differ-
ent from the sample mean. The most that can differ from a sample mean and still not
be significant is when equals . We can state this using the formula for the t-test:

To find the largest and smallest values of that do not differ significantly from our
sample mean, we determine the values of that we can put into this formula along with
our and . Because we are describing the above and below the sample mean, we
use the two-tailed value of . Then by rearranging the above formula, we create the
formula for finding the value of to put in the t-test so that the answer equals .
We also rearrange this formula to find the value of to put in so that the answer equals

. Our sample mean represents a between these two , so we combine these
rearranged formulas to produce:

�s�1tcrit

�
2tcrit�

tcrit

�sXX
�

�

tcrit 5
X 2 �

sX

tcrittobt

�
�

�
H0�

tobt

�

�s�

�
�s�

�

�

The symbol stands for the unknown value represented by the sample mean. The 
and are computed from your data. Find the two-tailed value of in the t-tables at
your for , where is the sample .NNdf 5 N 2 1�

tcritsX

X�

The formula for the confidence interval for a single is

1sX 2 12tcrit 2 1 X # � # 1sX 2 11tcrit 2 1 X

�
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REMEMBER Use the two-tailed critical value when computing a confidence
interval, even if you performed a one-tailed t-test.

For our housekeeping study, the and . The two-tailed for
and is . Filling in the formula, we have

After multiplying 2.582 times and times , we have

The formula at this point tells us that our mean represents a of 65.67, plus or minus
5.954.

After adding to 65.67, we have

This is the finished confidence interval. Returning to our previous diagram, we replace
the symbols and with the numbers 59.72 and 71.62, respectively.

values of , one of which is likely to be
represented by our sample mean

As shown, our sample mean probably represents a around 65.67, meaning that is
greater than or equal to 59.72, but less than or equal to 71.62.

Because we created this interval using the for an of , there is a 5% chance
that we are in error and the being represented by our mean is outside of this interval.
On the other hand, there is a 95% chance that the being represented
is within this interval. Therefore, we have created what is called the 95% confidence
interval: We are 95% confident that the interval between 59.72 and 71.62 contains the

represented by our sample mean.
For greater confidence, we could have used the for . Then we would cre-

ate the 99% confidence interval of . Notice, however, that greater
confidence comes at the cost of less precision: This interval spans a wider range of val-
ues than did the 95% interval, so we have less precisely identified the value of . Usu-
ally, researchers compromise between precision and confidence by creating the 95%
confidence interval.

Thus, we conclude our one-sample t-test by saying, with 95% confidence, that our
sample of men represents a between 59.72 and 71.62. Because the center of the inter-
val is at 65.67, we still communicate that is around 65.67, but we have much more
information than if we merely said that is somewhere around 65.67. In fact, there-
fore, you should compute a confidence interval anytime you are describing the repre-
sented by the mean of a condition in any significant experiment.1

�
�

�
�

�

57.01 # � # 74.33
� 5 .01tcrit

�

�3 11 2 � 2 1100 2 4
�

.05�tcrit

��

�

59.72 . . . � � � � 65.67 � � � � . . . 71.62

�high�low

59.72 # � # 71.62

;5.954

�

25.954 1 65.67 # � # 15.954 1 65.67

12.30622.306

12.582 2 122.306 2 1 65.67 # � # 12.582 2 112.306 2 1 65.67

;2.306� 5 .05df 5 8
tcritsX 5 2.582X 5 65.67

1You can also compute a confidence interval when performing the z-test. Use the formula above, except use
the critical values of z. If , then . If , then .zcrit 5 ;2.575� 5 .01zcrit 5 ;1.96� 5 .05

x
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■ A confidence interval for provides a range of ,
any one of which our is likely to represent.

MORE EXAMPLES

A is significant with , , and,
. To compute the 95% confidence interval,

, so the two-tailed . Then,

For Practice

1. What does this 95% confidence indicate:
?15 # � # 20

 40.16 # � # 59.84
 129.837 2 1 50 # � # 119.837 2 1 50

 14.7 2 122.093 2 1 50 # � # 14.7 2 112.093 2 1 50
 1sX 2 12tcrit 2 1 X # � # 1sX 2 11tcrit 2 1 X

tcrit 5 ;2.093df 5 19
sX 5 4.7

N 5 20X 5 50tobt

X
�s� 2. With , you perform a one-tailed test

What is for computing the
confidence interval?

3. The is significant when , , and
. Compute the 95% confidence interval.

Answers
1. We are 95% confident that our represents a between

15 and 20.
2. With , the two-tailed
3.

28.07 # � # 41.93
13.33 2 122.080 2 1 35 # � # 13.33 2 112.080 2 1 35 5

tcrit 5 ;2.080df 5 21

�X

N 5 22
sX 5 3.33X 5 35tobt

tcrit1� 5 .05. 2
N 5 22

A  Q U I C K  R E V I E W

Summary of the One-Sample t-Test

All of the preceding boils down to the following steps for the t-test.

1. Check that the experiment meets the assumptions.

2. Create the hypotheses: Create either the two-tailed or one-tailed and .

3. Compute : From the sample data, compute , compute , and then 
compute .

4. Find the appropriate : Use the that equal .

5. If is beyond : Reject , the results are significant, and so interpret the
relationship “psychologically.”

6. If is not beyond : the results are not significant. Draw no conclusion.

7. Compute the confidence interval: For significant results, use the two-tailed 
to describe the represented by your .

STATISTICS IN PUBLISHED RESEARCH: REPORTING THE t-TEST

Report the results of a t-test in the same way that you reported the z-test, but also include
the . For our housekeeping study, we had 8 , the was , and it was signifi-
cant. We always include the descriptive statistics too, so in a report you might read: “the
national average for women is 75, although this sample of men scored lower

. This difference was significant, with ”
First, note the in parentheses. Also note that the results are significant because the

probability is less than our alpha of that we are making a Type I error. (Had these
results not been significant, we’d report )

In the t-tables, when is , the is , so our of would also 
be significant if we had used the level. Therefore, instead of saying , we
would provide more information by reporting that , because this communicatesp 6 .01

p 6 .05.01
23.47tobt;3.355tcrit.01�

t18 2 5 23.47, p 7 .05.
.05

df
t18 2 5 23.47, p 6 .05.1M 5 65.67, SD 5 7.75 2

23.47tobtdfdf

X�
tcrit

tcrittobt

H0tcrittobt

N 2 1dftcrit

tobt

sXs2
Xtobt

HaH0
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that the probability of a Type I error is not in the neighborhood of . For
this reason, researchers usually report the smallest values of alpha at which a result is
significant.

Usually, confidence intervals are reported in sentence form (and not symbols), but
we always indicate the confidence level used. Thus, in a report you might see: “The
95% confidence interval for this mean was between 59.72 and 71.62.”

SIGNIFICANCE TESTS FOR CORRELATION COEFFICIENTS

It’s time to shift mental gears and consider that other type of one-sample study—a cor-
relational study. Here’s a new example: We examine the relationship between a man’s
age and his housekeeping score in a correlational design. We measure the test scores
and the ages of a sample of 25 men and determine that the Pearson correlation coeffi-
cient is appropriate. Say that, using the formula from Chapter 7, we compute an

, indicating that the older a man is, the lower his housekeeping score is.
Although this correlation coefficient describes the relationship in the sample, ultimately,

we want to describe the relationship in the population. That is, we seek the correlation
coefficient that would be produced if we could measure everyone’s and scores in the
population. Of course, we cannot do that, so instead we use the sample coefficient to esti-
mate the correlation that we’d expect to find if we could measure the entire population.

Recall that symbols for population parameters involve the Greek alphabet, so we
need a new symbol:

The symbol for the Pearson correlation coefficient in the population is the
Greek letter called “rho,” which looks like this: .

We interpret in the same way as : It is a number between 0 and , indicating
either a positive or a negative linear relationship in the population. The larger the
absolute value of , the stronger the relationship: The more that one value of is asso-
ciated with each , the more closely the scatterplot for the population hugs the regres-
sion line, and the better we can predict unknown scores by using scores.

Thus, using the sample in our study of , we might estimate that would
equal if we measured the ages and housekeeping scores of the entire population
of men.

But hold on, there’s a problem here: That’s right, sampling error. The problem of
sampling error applies to all statistics. Here the idea is that, because of the luck of the
draw of who was selected for the sample, their scores happened to produce this corre-
lation. But, in the population—in nature—there is no relationship, and so is really
zero. So, here we go again! For any correlation coefficient you compute, you must
determine whether it is significant.

REMEMBER Never accept that a sample correlation coefficient reflects a real
relationship in nature unless it is significant.

Testing the Pearson r

As usual, the first step is to make sure that a study meets the assumptions of the statis-
tical procedure. The Pearson correlation coefficient has three assumptions:

1. We have a random sample of pairs of and scores, and each variable is an inter-
val or ratio variable.

YX

�

2.45
�2.45r

XY
X

Y�

;1.0r�

r

YX

r 5 2.45

.04, .03, or .02
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FIGURE 11.5

Scatterplot of a popula-
tion for which 0, as
described by H0

Any r is a result of 
sampling error when 
selecting a sample from 
this scatterplot.

� 5

2. The and scores each represent a normal distribution. Further, they represent a
bivariate normal distribution. This means that the scores at each form a nor-
mal distribution and the scores at each form a normal distribution. (If is
larger than 25, however, violating this assumption is of little consequence.)

3. The null hypothesis is that in the population there is zero correlation. This is the
most common approach and the one that we’ll use. (However, you can also test
the that your sample represents a nonzero . Consult an advanced statistics
book for the details.)

Our housekeeping and age scores meet these assumptions, so we set at and test
. First, we create the statistical hypotheses. You can perform either a one- or a two-

tailed test. Use a two-tailed test if you do not predict the direction of the relationship.
For example, let’s say that we are unsure whether men produce higher or lower scores
as they age. This is a two-tailed test because we’re predicting either a positive or a neg-
ative correlation. For our alternative hypothesis, if the correlation in the population is
either positive or negative, then does not equal zero. Therefore we have

On the other hand, the null hypothesis is always that the predicted relationship does
not exist, so here it says that the correlation in the population is zero. Thus,

This implies that if does not equal zero, it’s because of sampling error. You can under-
stand this by looking at Figure 11.5. It shows the scatterplot in the population that 
says we would find: There is no relationship here, so equals 0. Recall, however, that a
slanting elliptical scatterplot reflects an that is not equal to zero. Thus, implies
that, by chance, we selected an elliptical sample scatterplot from this population plot.
Therefore, it says, although age and housekeeping scores are not really related, the
scores in our sample happen to pair up so that it looks like they’re related. Conversely,

implies that the population’s scatterplot would not look like Figure 11.5, but rather
it would be similar to our sample’s scatterplot.
Ha

H0r
�

H0

r
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r
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FIGURE 11.6

Sampling distribution of r

It is an approximately normal
distribution, with values of r
plotted along the X axis.

The Sampling Distribution of r We test by determining the likelihood of
obtaining our sample from the population where is zero. To do so, we envision the
sampling distribution of .

The bored statistician quit! By now, however, you could create the sampling distri-
bution yourself: Using the same as in our study, you would select an infinite number
of samples of pairs from the population where (as if you pulled each sam-
ple from the scatterplot in Figure 11.5). Each time, you would compute . If you then
plotted the frequency of the various values of , you would have the sampling distribu-
tion of . The sampling distribution of r is a frequency distribution showing all possi-
ble values of that occur by chance when samples are drawn from a population in
which is zero. Such a distribution is shown in Figure 11.6.

The only novelty here is that along the axis are now different values of . When
, the most frequent sample is also 0, so the mean of the sampling distribution—

the average —is 0. Because of sampling error, however, sometimes we’ll obtain a pos-
itive and sometimes a negative . Most often the will be relatively small and close 
to 0. But, less frequently, we’ll obtain a larger that falls into a tail of the distribution.
Thus, the larger the (whether positive or negative), the less likely it is to occur when
the sample actually represents a population in which 

To test , we determine where our lies on this distribution. To do so, we could per-
form a variation of the t-test, but luckily that is not necessary. Instead, directly com-
municates its location on the sampling distribution. The mean of the sampling
distribution is always zero, so, for example, our of is a distance of below the
mean. Therefore, we test simply by examining our obtained , which is . To
determine whether is in the region of rejection, we compare it to .

As with the t-distribution, the shape of the sampling distribution of is slightly dif-
ferent for each , so there is a different value of for each . But, here’s a new one:
With the Pearson correlation coefficient, the degrees of freedom equals , where

is the number of pairs of scores in the sample.

REMEMBER For the Pearson , the degrees of freedom equals , where
is the number of pairs of scores.

Table 3 in Appendix C gives the critical values of the Pearson correlation coefficient.
Use these “r-tables” in the same way that you’ve used the t-tables: Find for either a
one- or a two-tailed test at the appropriate and . For the housekeeping correlation,

was 25, so , and, for a two-tailed test with , is . We set up;.396rcrit� 5 .05df 5 23N
df�
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N
N 2 2r

N
N 2 2

dfrcritdf
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robt = –.45
–rcrit = –.396 +rcrit = +.396

FIGURE 11.7

H0 sampling distribution
of r

For the two-tailed test, there
is a region of rejection for
positive values of and for
negative values of .robt

robt

the sampling distribution in Figure 11.7. Our of is beyond the of ,
so it is in the region of rejection. As usual, this means that the results are significant:
This is so unlikely to occur if we had been representing the population where is 0,
that we reject the that we were representing this population. We conclude that the

is “significantly different from 0.”

Interpreting r The rules for interpreting a significant result here are the same as
before. Remember that rejecting does not prove anything. In particular, this was a
correlational study, so we have not proven that changes in age cause test scores to
change. In fact, we have not even proven that the relationship exists because we may
have made a Type I error. Here, a Type I error is rejecting the that there is zero cor-
relation in the population, when in fact there is zero correlation in the population. As
usual, though, with , the probability that we have made a Type I error is slightly
less than .

Report the Pearson correlation coefficient using the same format as with previous
statistics. Our of was significant with 23 , so in a published report we’d say
that , . As usual, our is in parentheses and because 
and the coefficient is significant, we indicate that the probability is less than that
we’ve made a Type I error.

Because the sample is , our best estimate is that, in this population, equals
. However, recognizing that the sample may contain sampling error, we expect

that is probably around . (We could more precisely describe by computing a
confidence interval. However, this is computed using a very different procedure from
the one discussed previously.)

In Chapter 8, you saw that we further describe a relationship by computing the
regression equation and the proportion of variance accounted for. However, do this only
when is significant! Only then are we confident that we’re describing a “real” rela-
tionship. Thus, for the housekeeping study, we would now compute the linear regres-
sion equation for predicting test scores if we know a man’s age. We would also
compute , which is or . Recall, this is the proportion of variance in 
scores that is accounted for by the relationship with . Here, an of tells us that
we are 20% more accurate when we use the relationship with age to predict housekeep-
ing scores than when we do not use the relationship.

Remember that it is and not “significance” that determines how important a
relationship is. Significant indicates only that the sample relationship is unlikely to 
be a fluke of chance. The indicates the importance of a relationship because it indi-
cates the extent to which knowing participants’ scores improves our accuracy in
predicting and understanding differences in their scores. This allows us to understandY

X
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FIGURE 11.8

H0 sampling distribution of r where 0 for one-tailed test� 5

differences in their behavior, and so the larger the , the greater is the importance of
the relationship.

Thus, a relationship must be significant to be even potentially important (because it
must first be believable). But, a significant relationship is not necessarily important.
For example, an of might be significant, but it is not statistically important:

is only , so this relationship accounts for only 1% of the variance and so is
virtually useless in explaining differences in scores. (We’re only 1% better off with it
than without it.) Thus, although this relationship is unlikely to occur through sampling
error, it is also an unimportant relationship.

After describing the relationship, as usual the final step is to interpret it in terms of
behaviors. For example, perhaps our correlation coefficient reflects socialization
processes, with older men scoring lower on the housekeeping test because they come
from generations in which wives typically did the housekeeping, while men were the
“breadwinners.”

Of course, if does not lie beyond , then you would retain and conclude that
the correlation is not significant. In this case, make no claims about the relationship that
may or may not exist, and do not compute the regression equation or .

One-Tailed Tests of r If we had predicted only a positive correlation or only a neg-
ative correlation, then we would have performed a one-tailed test. When we predict a
positive relationship, we are predicting a positive (a number greater than 0) so our
alternative hypothesis is . The says that we’re wrong (that is 0 or less
than 0), so . On the other hand, when we predict a negative relationship, we
are predicting a negative (a number less than 0) so we have . The says
we’re wrong (that is 0 or greater than 0) so .

We test each by again testing whether the sample represents a population in which
there is zero relationship—so again we examine the sampling distribution for .
From the -tables in Appendix C, find the one-tailed critical value for and . Then set
up one of the sampling distributions shown in Figure 11.8. When predicting a positive
correlation, use the left-hand distribution: is significant if it is positive and falls
beyond the positive . When predicting a negative correlation, use the right-hand
distribution: is significant if it is negative and falls beyond the negative .rcritrobt

rcrit

robt

�dfr
� 5 0

H0

H0: � $ 0�
H0Ha: � 6 0�

H0: � # 0
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Critical rs = +.600 Obtained rs = +.85

FIGURE 11.9

One-tailed H0 sampling
distribution of values 
of rs when H0 is �s 5 0

Testing the Spearman 

We also use the above logic when testing the Spearman correlation coefficient .
Recall that describes the linear relationship in a sample when and are both
ordinal (ranked) scores. Again our ultimate goal is to use the sample coefficient to
estimate the correlation coefficient we would see if we could measure everyone in the
population.

The symbol for the Spearman correlation coefficient in the population is �S.

However, before we can use to estimate , we must first deal with the usual prob-
lem: That’s right, maybe our merely reflects sampling error. Perhaps if we measured
the population, we’d find that is 0. Therefore, before we can conclude that the corre-
lation reflects a relationship in nature, we must perform hypothesis testing. So, we

1. Set alpha: how about ?

2. Consider the assumptions of the test: The requires a random sample of pairs of
ranked (ordinal) scores. (Note: Because of the data involved and the lack of para-
metric assumptions, is technically a nonparametric procedure.)

3. Create the statistical hypotheses: You can test the one- or two-tailed hypotheses
that we saw previously with , except now use the symbol .

The only new aspect of testing is the sampling distribution. The sampling distri-
bution of is a frequency distribution showing all possible values of that occur
when samples are drawn from a population in which is zero. This creates a new fam-
ily of sampling distributions and a different table of critical values. Table 4 in Appen-
dix C, entitled “Critical Values of the Spearman Rank-Order Correlation Coefficient,”
contains the critical values for one- and two-tailed tests of . Obtain critical values as
in previous tables, except here use , not degrees of freedom. (Note the instructions at
the top of this table for when your is not listed.)

REMEMBER The critical value of is obtained using , the number of pairs
of scores in the sample.

Here’s an example. In Chapter 7, we correlated the aggressiveness rankings given to
nine children by two observers and found that . We had assumed that the
observers’ rankings would agree, predicting a positive correlation. Therefore, we have
a one-tailed test with the hypotheses and . From Table 4 in
Appendix C, with and , the one-tailed critical value is . This pro-
duces the sampling distribution shown in Figure 11.9.
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■ Always perform hypothesis testing on a correlation
coefficient so that we are confident it is not due to
sampling error.

MORE EXAMPLES

We compute an . We predicted
some kind of relationship, so ; .
With and , the two-tailed

. The is beyond , so it is signifi-
cant: We expect the population correlation coefficient

to be around .
We compute an , using . With

, the two-tailed critical value is . The 
is not in the region of rejection and is not significant.

rS;.409� 5 .05
N 5 24rS 5 2.22

1.321� 2

rcritrobtrcrit 5 ;.304
df 5 42 2 2 5 40� 5 .05

Ha: � ? 0H0: � 5 0
r 5 1.32 1N 5 42 2

For Practice

We predict a negative relationship and obtain
.

1. What are and ?

2. With and , what is ?

3. What is the conclusion about ?

4. What is the conclusion about the relationship in
the population and ?

Answers
1.
2.
3. Not significant
4. Make no conclusion and do not compute .r 2

df 5 8, rcrit 5 2.549
H0: � $ 0; Ha: � 6 0

r2

robt

rcritN 5 10� 5 .05

HaH0

robt 5 2.44

A  Q U I C K  R E V I E W

Because an of is beyond the critical value of , we reject . Thus, our
is significantly different from zero, and we estimate that in the population of such

rankings is around . In a publication, this would be reported as ,
. Note that the of the sample is given in parentheses. We would also compute

the squared to determine the proportion of variance accounted for. Then interpret
these results as we have done previously. (With different predictions, we might have
performed the other one-tailed test or a two-tailed test.)

Summary of Testing a Correlation Coefficient

All of the preceding boil down to the following steps:

1. Check the assumptions of or .

2. Create the hypotheses: Create either the two-tailed or one-tailed and .

3. Compute the correlation coefficient.

4. Obtain the critical value from Appendix C: The critical value for is in Table 3,
using . The critical value for is in Table 4, using .

5. Compare the obtained to the critical value: If the obtained coefficient is beyond
the critical value, the results are significant. If the coefficient is not beyond the
critical value, the results are not significant.

6. For significant results, compute the proportion of variance accounted for by
squaring the obtained coefficient. For , compute the linear regression equation.r

df 5 NrSdf 5 N 2 2
r

HaH0
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Np 6 .05
rS19 2 5 1.851.85
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MAXIMIZING THE POWER OF STATISTICAL TESTS

The t-test is our first design in which we—the researcher—have some control over all
components of our data, because we are not stuck with a given . Therefore, it is
appropriate to revisit the topic of power, so that you can understand how researchers
use this control to increase the power of a study. Recall that power is the probability of
not committing a Type II error. We’re talking about those times when really is false,H0

σX
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and the error would be to retain . Instead, we should reject , correctly concluding
that the predicted relationship exists in nature. Essentially, power is the probability that
we will not miss a relationship that really exists in nature. We maximize power by
doing everything we can to reject so that we don’t miss the relationship. If we still
end up retaining , we can be confident that we did not do so incorrectly and miss a
relationship that exists, but rather that the relationship does not exist.

We maximize power by the way that we design an experiment or correlational
study.2 We’re talking about those times when we should reject the null hypothesis, so
maximizing power boils down to maximizing the probability that our results will be
significant. This translates into designing the study to maximize the size of our
obtained statistic relative to the critical value, so that the obtained will be significant.

For the one-sample t-test, three aspects of the design produce a relatively larger 
and thus increase power. (These also apply to other types of experiments that we will
discuss.) Look at the formulas:

First, larger differences produced by changing the independent variable increase
power. In the housekeeping study, the greater the difference between the sample mean
for men and the for women, the greater the power. Logically, the greater the differ-
ence between men and women, the less likely we are to miss that a difference exists.
Statistically, in the formula this translates to a larger difference between and that
produces a larger numerator, which results in a larger that is more likely to be sig-
nificant. Therefore, when designing any experiment, the rule is to select conditions that
are substantially different from one another, so that we produce a big difference in
dependent scores between the conditions.

Second, smaller variability in the raw scores increases power. Recall that variability
refers to the differences among the scores. Logically, smaller variability indicates more
consistent behavior and a more consistent, stronger relationship. This makes a clearer
pattern that we are less likely to miss. Statistically, in the formula, smaller variability pro-
duces a smaller estimated variance , which produces a smaller standard error .
Then in the t-test, dividing by a smaller denominator produces a larger . We will see
smaller variability in scores the more that all participants experience the study in the same
way. Therefore, the rule is to conduct any study in a consistent way that minimizes the
variability of scores within each condition.

Third, a larger increases power. Logically, a larger provides a more accurate
representation of the population, so we are less likely to make any type of error. Statis-
tically, dividing by a larger produces a smaller , which results in a larger .
Also, a larger produces larger , which produces a smaller . Then our is more
likely to be significant. Therefore, the rule is to design any experiment with the largest
practical . However, this is for small samples. Generally, an of 30 per condition is
needed for minimal power, and increasing up to 121 adds substantially to it. How-
ever, an of, say, 500 is not substantially more powerful than an of, say, 450.

REMEMBER Increase power in an experiment by maximizing differences in
dependent scores between conditions, minimizing differences among scores
within conditions, and testing a larger .N
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2More advanced textbooks contain procedures for determining the amount of power that is present in a given
study.



In one sense, I hope that you found this chapter rather boring—not because it is bor-
ing, but because, for each statistic, we performed virtually the same operations. In
testing any statistic, we ultimately do and say the same things. In all cases, if the
obtained statistic is out there far enough in the sampling distribution, it is too
unlikely for us to accept as representing the situation, so we reject . Any 
implies that the sample does not represent the predicted relationship, so rejecting 
increases our confidence that the data do represent the predicted relationship. We’re
especially confident because the probability is less than that we’ve made an error
in this decision. If we fail to reject , then hopefully we have sufficient power, so
that we’re unlikely to have made an error here, too. These are the fundamentals of all
inferential statistics.

Using the SPSS Appendix As described in Appendix B.5, SPSS will compute the
one-sample . It also indicates the smallest two-tailed region of rejection (and alpha
level) for which your is significant. Further, it computes the and for the sample
and it computes the 95% confidence interval.

As part of computing the Pearson or the Spearman , SPSS automatically per-
forms a one- or two-tailed significance test. This includes indicating the smallest alpha
level at which the coefficient is significant.

CHAPTER SUMMARY

1. The one-sample t-test is for testing a one-sample experiment when the standard
deviation of the raw score population is not known.

2. A t-distribution is a theoretical sampling distribution of all possible values 
of t when a raw score population is infinitely sampled using a particular .
A t-distribution that more or less forms a perfect normal curve will occur 
depending on the degrees of freedom of the samples used to create it.

3. In point estimation, a is assumed to be at a point on the variable equal 
to . Because the sample probably contains sampling error, a point estimate 
is likely to be incorrect. In interval estimation, a is assumed to lie within a 
specified interval. Interval estimation is performed by computing a confidence
interval.
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PUTTING IT 
ALL TOGETHER

Chapter Summary 255

Likewise, we maximize the power of a correlational study by maximizing the size of
the correlation coefficient relative to the critical value. Three aspects will increase the
power of a correlation coefficient. First, avoiding a restricted range increases power.
Recall from Chapter 7 that having a small range of scores on the or variable pro-
duces a coefficient that is smaller than it would be without a restricted range. There-
fore, always measure the full range of possible and scores. Second, minimizing 
the variability of the scores at each increases power. Recall that the smaller the
variability in scores at each , the larger the correlation coefficient. Therefore,
always test participants in a consistent fashion to minimize the variability in scores
at each . Third, increasing increases power. With a larger , the are larger, so the
critical value is smaller, and thus a given coefficient is more likely to be significant.

REMEMBER Increase power in a correlation coefficient by avoiding a
restricted range, minimizing the variability in scores, and increasing .NY
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4. The confidence interval for a single m describes a range of , one of which the
sample mean is likely to represent. The interval contains the highest and lowest
values of that are not significantly different from the sample mean.

5. The symbol for the Pearson correlation coefficient in the population is (called
rho). The symbol for the Spearman correlation coefficient in the population is .

6. The sampling distribution of the Pearson is a frequency distribution showing all
possible values of that occur when samples are drawn from a population in
which is zero.

7. The sampling distribution of the Spearman is a frequency distribution showing
all possible values of that occur when samples are drawn from a population in
which is zero.

8. Only when a correlation coefficient is significant is it appropriate to compute the
linear regression equation and the proportion of variance accounted for.

9. Maximize the power of experiments by (a) creating large differences in scores
between the conditions of the independent variable, (b) minimizing the variability
of the scores within each condition, and (c) increasing the of small samples.

10. Maximize the power of a correlation coefficient by (a) avoiding a restricted range,
(b) minimizing the variability in at each , and (c) increasing the of small
samples.
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REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. A scientist has conducted a one-sample experiment. (a) What two parametric pro-
cedures are available to her? (b) What is the deciding factor for selecting between
them? (c) What are the other assumptions of the t-test?

2. In this chapter, you learned how to perform four different statistical procedures.
List them.

3. (a) What is the difference between and ? (b) How is their use the same?
4. (a) Why are there different values of when samples have different ? 

(b) What must you compute in order to find ?
5. (a) What is the symbol for the Pearson correlation coefficient in the population?

(b) What is the symbol for the Spearman correlation coefficient in the population?
(c) Summarize the steps involved in analyzing a Pearson correlational study.
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6. Summarize the steps involved in analyzing the results of a one-sample
experiment.

7. What is the final step when results are significant in any study?
8. Say that you have a sample mean of 44 in a study. (a) Estimate the corresponding

using point estimation. (b) What would a confidence interval for this tell you?
(c) Why is computing a confidence interval better than using a point estimate? 
(d) What is the difference between reporting an estimate of using a margin of
error versus using a confidence interval?

9. (a) What is power? (b) What outcome should cause you to worry about having
sufficient power? (c) Why? (d) At what stage do you build in power?

10. (a) What are the three aspects of maximizing the power of a t-test? (b) What are
the three aspects of maximizing the power of a correlation coefficient?

APPLICATION QUESTIONS

11. We ask whether a new version of our textbook is beneficial or detrimental to students
learning statistics. On a national statistics exam, for students using other
textbooks. A sample of students using this book has the following scores:

64 69 92 77 71 99 82 74 69 88

(a) What are and for this study? (b) Compute . (c) With , what 
is ? (d) What do you conclude about the use of this book? (e) Compute the 
confidence interval for .

12. A researcher predicts that smoking cigarettes decreases a person’s sense of smell.
On a test of olfactory sensitivity, the for nonsmokers is 18.4. A sample of peo-
ple who smoke a pack a day produces these scores:

16 14 19 17 16 18 17 15 18 19 12 14

(a) What are and for this study? (b) Compute . (c) With , 
what is ? (d) What should the researcher conclude about this relationship? 
(e) Compute the confidence interval for .

13. Foofy studies if hearing an argument in favor of an issue alters participants’
attitudes toward the issue one way or the other. She presents a 30-second
argument to 8 people. In a national survey about this issue, . She obtains

and . (a) What are and ? (b) What is ? (c) With
, what is ? (d) If appropriate, compute the confidence interval for . 

(e) What conclusions should Foofy draw about the relationship?
14. In question 13, (a) What statistical principle should Foofy be concerned with? 

(b) Identify three problems with her study from a statistical perspective. 
(c) Why would correcting these problems improve her study?

15. Poindexter examined the relationship between ratio scores measuring the 
quality of sneakers worn by volleyball players and their average number of 
points scored per game. Studying 10 people who owned sneakers of good to
excellent quality, he computed . Without further ado, he immediately
claimed to have support for the notion that better-quality sneakers are related to
better performance on a somewhat consistent basis. He then computed and the
regression equation. Do you agree or disagree with his approach? Why?

16. Eventually, for the study in question 15, Poindexter reported that ,
. (a) What should he conclude about this relationship? (b) What otherp 7 .05
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computations should he perform to describe the relationship in these data? 
(c) What statistical goal described in this chapter should he be concerned with?
(d) Identify three problems with his study. (e) Why will correcting these problems
improve his study?

17. A scientist suspects that as a person’s stress level changes, so does the amount of
his or her impulse buying. With , his is . (a) What are and ?
(b) With , what is ? (c) Report these results using the correct format.
(d) What conclusions should he draw? (e) What other calculations should be per-
formed to describe the relationship in these data?

18. Foofy computes the correlation between an individual’s physical strength and his
or her college grade point average. Using a computer, the correlation for a sample
of 2000 people is , . She claims this is a useful tool
for predicting which college applicants are likely to succeed academically. Do you
agree or disagree? Why?

19. We study the influence of wearing uniforms in middle school on attitudes toward
achieving good grades. On a national survey, the average attitude score for
students who do not wear uniforms is . A sample of students who wear
uniforms has scores of 8, 12, 10, 9, 6, and 7. Perform all parts of the t-test and
draw the appropriate conclusions.

20. A newspaper article claims that the academic rank of a college is negatively 
related to the rank of its football team. From a sample of 28 colleges, you obtain a
correlation coefficient of . (a) Which type of correlation coefficient did you
compute? (b) What are and ? (c) With , what is the critical value?
(d) What should you conclude about the accuracy of the newspaper’s claim? 
(e) In predicting a particular school’s academic ranking in your sample, how
important is it that you look at the school’s football ranking?

21. (a) How would you report your results if , , and is
significant? (b) How would you report your results if , , and

is not significant?
22. While reading a published research report, you encounter the following statements.

For each, identify the , the procedure performed and the outcome, the relationship,
and the type of error possibly being made. (a) “When we examined the perceptual
skills data, the mean of 55 for the sample of adolescents differed significantly from
the population mean of 70 for adults, .” (b) “The correlation
between personality type and emotionality, however, was not significantly different
from zero, with , .”

23. You wish to compute the 95% confidence interval for a sample with a of 80.
Using interpolation, determine the that you should use.

24. In a two-tailed test, is 35. (a) Is the of significant? (b) Is the of
significant?

INTEGRATION QUESTIONS

25. (a) Why must a relationship be significant to be important? (b) Why can a
relationship be significant and still be unimportant? (Chs. 8, 10, 11)

26. (a) What is the difference between the purpose of descriptive and inferential
statistics? (b) When should you should use a parametric versus a nonparametric
inferential procedure? (Chs. 2, 10)

27. What is the design of the study when we compute the z-test and t-test versus when
we compute a correlation coefficient? (Chs. 2, 7, 10, 11)
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28. (a) What does a correlation coefficient tell you? (b) When do you compute ? 
(c) When do you compute ? (d) When is linear regression used? (Chs. 7, 8, 11)

29. (a) Study A reports a result with . Study B reports results with .
What is the difference between the results of A and B in terms of (a) how signifi-
cant they are? (b) Their critical values? (c) Their region of rejection? (d) The
probability of a statistical error? (Chs. 9, 10, 11)

30. (a) What do we mean by the restriction of range? (b) Why is it a problem for the
size of correlation coefficient? (c) Why is it a problem for the power of a correla-
tion coefficient? (Chs. 7, 11)

31. For the following, specify which descriptive and inferential procedures should be
performed, explain what is being compared, and identify the key to answering the
researcher’s question. (a) A researcher measures a group of participants using stan-
dard tests of “social nervousness” and “introversion” to determine if introversion is
a good predictor of nervousness. (Scores are interval scores.) (b) The average
worker at a calculator plant can assemble 106 calculators in his or her first hour of
work. During their final hour, a sample of workers produced an average of only
97.4 calculators . Should we conclude that performance decreases dur-
ing the final hour for all workers? (c) For 20 years the basketball coach recorded
his team’s performance when making free throws, with and . 
A sports psychologist trained 20 players on this year’s team to visualize each shot
beforehand. They shot an average of 77.6 for the year. Is visualization a way to
improve the performance of all players? (Chs. 4, 5, 7, 8, 10, 11)
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1. To perform the one-sample t-test,

Values of are found in Table 2 of Appendix
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2. The formula for a confidence interval for a single
is

where is the two-tailed value for .

3. Critical values of the Pearson are found in
Table 3 of Appendix C, using ,
where is the number of pairs.

4. Critical values of the Spearman are found in
Table 4 of Appendix C, using , the number of
pairs.
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GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 2, what the terms condition, independent variable, and 
dependent variable refer to.

■ From Chapter 4, how to graph the results of experiments.

■ From Chapter 8, how to interpret the proportion of variance 
accounted for.

■ From Chapter 11, what a confidence interval indicates and what you’ve 
learned about inferential statistics.

Your goals in this chapter are to learn

■ The logic of a two-sample experiment.

■ The difference between independent samples and related samples.

■ How to perform the independent-samples t-test and related-samples t-test.

■ How to compute a confidence interval for the difference between two ms 
and for the of difference scores.

■ How is used to describe effect size in a two-sample experiment.r2
pb

�

The Two-Sample t-TEST12

260

This chapter presents the two-sample t-test, which is the major parametric procedure
used when an experiment involves two samples. As the name implies, this test is simi-
lar to the one-sample t-test you saw in Chapter 11, except that a two-sample design
requires that we use slightly different formulas. This chapter discusses (1) one version
of this t-test, called the independent-samples t-test, and its confidence interval; (2) the
other version of this t-test, called the related-samples t-test, and its confidence interval;
and (3) procedures for summarizing the results of any two-sample experiment.

NEW STATISTICAL NOTATION

So far, has stood for the number of scores in a sample. Actually, indicates the total
number of scores in the study, but with only one condition, was also the number of scores
in the sample. However, now we will be discuss experiments with two conditions, so the
lowercase with a subscript will stand for the number of scores in each sample. Thus, 
is the number of scores in condition 1, and is the number of scores in condition 2. is
the total number of scores in the experiment, so adding the together equals .

REMEMBER stands for the total number of scores in an experiment; 
stands for the number of scores in a condition.n
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X
Low scores

Dependent scores

f

High scores

Condition 1

X X X X X X X X X X X X X X X X X

Condition 2

X1 ⇒ μ1  X2 ⇒ μ1  

FIGURE 12.1

Relationship in the population in a two-sample experiment

As the conditions change, scores in the population tend to change.

WHY IS IT IMPORTANT TO KNOW ABOUT THE TWO-SAMPLE t-TEST?

The one-sample experiments discussed in previous chapters are not often found in real
research, because they require that we know under one condition of the independent
variable. Usually, however, researchers explore new behaviors and variables, so they
do not know any beforehand. Instead, the usual approach is to measure a sample of
participants under each condition of the independent variable and to use the sample
mean to estimate the corresponding population that would be found. Often we test
only two conditions, and then our inferential procedures involve two-sample t-tests.
Thus, it is important for you to know about these procedures because they apply to a
more realistic and common way of conducting experiments that you’ll often encounter.
Further, by understanding studies with two conditions, you will understand the more
complicated designs and analyses that we’ll discuss in the remaining chapters and that
also are common in the literature.

UNDERSTANDING THE TWO-SAMPLE EXPERIMENT

In a two-sample experiment, we measure participants’ scores under two conditions of
the independent variable. Condition 1 produces that represents , the we would
find if we tested everyone in the population under condition 1. Condition 2 produces

that represents , the we would find if we tested everyone in the population
under condition 2. A possible outcome from such an experiment is shown in Figure
12.1. If each sample mean represents a different population and for each condition,
then the experiment has demonstrated a relationship in nature.

However, there is the usual problem of sampling error. Even though we may have
different sample means, the relationship may not exist in the population. Instead, if we
tested the population, we might find the same population of scores under both condi-
tions. In Figure 12.1 we might find only the lower or upper distribution, or we might
find one in-between. Then there would be only one value of : Call it or , it
wouldn’t matter because it’s the same Therefore, before we make any conclusions
about the experiment, we must determine whether the difference between the sample
means reflects sampling error.
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The parametric statistical procedure for determining whether the results of a two-
sample experiment are significant is the two-sample t-test. However, we have two differ-
ent ways to create the samples, so we have two different versions of the t-test: One is
called the independent-samples t-test and the other is called the related-samples t-test.

REMEMBER The two ways to calculate the two-sample t-test are the
independent-samples t-test or the related-samples t-test.

THE INDEPENDENT-SAMPLES t-TEST

The independent-samples t-test is the parametric procedure for testing two sample
means from independent samples. Two samples are independent when we randomly
select participants for a sample, without regard to who else has been selected for either
sample. Then the scores are independent events, which, as in Chapter 9, means that the
probability of a particular score occurring in one sample is not influenced by the scores
that occur in the other sample. You can recognize independent samples by the absence
of anything fancy when selecting participants, such as creating pairs of participants or
repeatedly testing the same participants in both conditions.

Here is a study that calls for the independent-samples t-test. People who witness a
crime or other event may recall the event differently when they are hypnotized. We’ll
select two samples of participants who watch a videotape of a supposed robbery. Later,
one group will be hypnotized and then answer 30 questions about the event. The other
group will answer the questions without being hypnotized. Thus, the conditions of 
the independent variable are the presence or absence of hypnosis, and the dependent
variable is the amount of information correctly recalled. This design is shown in 
Table 12.1. After replacing the with the actual recall scores, we will compute the
mean of each condition (each column). If the means differ, we’ll have evidence of a
relationship where, as amount of hypnosis changes, recall scores also change.

First, as always, we check that the study meets the assumptions of the statistical test.
In addition to requiring independent samples, this t-test also requires

1. The dependent scores measure an interval or ratio variable.

2. The populations of raw scores form at least roughly normal distributions.

3. And here’s a new one: The populations have homogeneous variance. Homogene-
ity of variance means that the variances of the populations being represented are
equal. That is, we assume that if we computed for each population, we would
have the same answer each time.

4. It is not required that each condition have the same , but the should not be mas-
sively unequal—a difference in the neighborhood of 10 to 20 is best. (The more the

differ from each other, the more important it is to have homogeneity of variance.)

You’ll know if you meet these assumptions by seeing how the vari-
ables are treated in previously published research related to your study.

Statistical Hypotheses for the 
Independent-Samples t-Test

As usual, we may have a one- or a two-tailed test. For now, say that
we don’t predict whether hypnosis will increase or decrease recall
scores so we have a two-tailed test.

ns

nsn

σ2
X

Xs

No Hypnosis Hypnosis

Recall X X
Scores X X

➝ X X
X X
X X

XX

TABLE 12.1

Diagram of Hypnosis
Study using an 
Independent-Samples
Design

The independent variable
is amount of hypnosis,
and the dependent
variable is recall. 
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First, the alternative hypothesis: A relationship exists if one population mean is
larger or smaller than the other , producing two distributions, similar to that back in
Figure 12.1. In other words, should not equal . We could state this as 
, but there is a better way. If the two are not equal, then their difference does not equal
zero. Thus, the two-tailed alternative hypothesis for our study is

implies that the means from our two conditions each represent a different popula-
tion of recall scores having a different , so a relationship is present.

Of course, there’s also our old nemesis, the null hypothesis. Perhaps there is no rela-
tionship, so if we tested everyone under the two conditions, we would find the same
population and . In other words, equals . We could state this as ,
but, again, there is a better way. If the two are equal, then their difference is zero.
Thus, our two-tailed null hypothesis is

implies that both samples represent the same population of scores, having the same
, so a relationship is not present. If our sample means differ, it’s because of sampling

error in representing that one .
Notice that these hypotheses do not contain a specific value of . Therefore, these

are the two-tailed hypotheses for any independent-samples t-test, when you are testing
an that says there is zero difference between the populations. This is the most com-
mon approach and the one that we’ll use. (Consult an advanced statistics book to test
for nonzero differences.)

As usual, we test the null hypothesis, and to do that we examine the sampling 
distribution.

The Sampling Distribution for the 
Independent-Samples t-Test

To understand the sampling distribution here, say that we find a mean recall score of 20
in the no-hypnosis condition and a mean of 23 in the hypnosis condition. We can sum-
marize these results by looking at the difference between the means: Changing from no
hypnosis to hypnosis results in a difference in mean recall of 3 points. We always test

by finding the probability of obtaining our results when there is not a relationship,
so here we will determine the probability of obtaining a difference of 3 between two 
when they both actually represent the same .

REMEMBER The independent-samples t-test determines the probability of
obtaining our difference between when is true.

You can think of the sampling distribution as follows. Using the same as in our
study, we select two random samples from one raw score population. (Just like says
we did in our study.) We compute the two sample means and subtract one from the other.
The result is the difference between the means, which we symbolize by . We do
this an infinite number of times and plot a frequency distribution of these differences,
producing the sampling distribution of differences between means. This is the distri-
bution of all possible differences between two means when they are drawn from one raw
score population. You can envision this sampling distribution as shown in Figure 12.2.
On the axis, each score is the difference between two randomly selected sample
means. The axis is labeled twice, first using the symbols of and, beneath them,X1 2 X2

X

X1 2 X2

H0

ns

H0Xs

�
Xs

H0

H0

�
�

�
H0

H0: �1 2 �2 5 0

�s
H0: �1 5 �2�2�1�

�
Ha

Ha: �1 2 �2 ? 0

�s
Ha: �1 ? �2�2�1

1�2 2
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f

X1– X2 X1– X2 X1– X2 X1– X2 X1– X2X1– X2 X1– X2 X1– X2 X1– X2
Differences:
Values of t: . . .. . . –1 +1 +2 +3 +4 +5 +6 +7 +8–2–3–4–5–6–7–8 0

FIGURE 12.2

Sampling distribution of differences between means when H0: �1 �2 0

Each symbolizes the difference between two sample means. Larger differences are less likely when is true.H0X1 2 X2

52

actual differences we might find. The mean of the sampling distribution is zero because,
most often, both sample means will equal the of the population of raw scores, so their
difference will be zero. However, sometimes is larger, so the difference will be
a positive or negative amount. Small negative or positive differences will occur relatively
frequently, but larger differences occur less frequently. The larger the difference between
the means, the farther into the tail of the distribution it lies.

To test , we determine where our difference between means lies on this sampling dis-
tribution. To do so, we compute a new version of but it provides information similar to
previous t-tests: A difference of zero between , located at the of the distribu-
tion, produces a of zero. A positive difference produces a positive and a negative
difference produces a negative . Larger differences between the means are further into a
tail of the distribution and have a larger . Therefore, if the difference between our sam-
ple means produces a close to the center of the distribution, then our difference occurs
frequently when is true: In our example, our two samples are likely to represent the
same population of recall scores. But, if places our difference beyond , far into a
tail of the sampling distribution, then this difference is unlikely when is true: Our two
samples are unlikely to represent the same population of recall scores.

So now we compute .

Computing the Independent-Samples t-Test

In the previous chapter, you computed by computing and then performing three
steps: (1) estimating the variance of the raw score population, (2) computing the esti-
mated standard error of the sampling distribution, and (3) computing . For the two-
sample t-test, after computing and , you perform three similar steps.

Estimating the Population Variance First, calculate for each condition, using
the formula

Each time, use the from only one condition, and is the number of scores in that
condition.

nXs

s2
X 5

©X2 2
1©X 22

n

n 2 1

s2
X

X2X1

tobt

Xtobt

tobt

H0

tcrittobt

H0

tobt

tobt

tobt

tobttobt

�X1 and X2

tobt

H0

X1 or X2

�
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This will give us and , and each is an estimate of the population variance. How-
ever, each may contain sampling error. (Because of this, if does not equal , we
have not necessarily violated the assumption of homogeneity of variance.) To obtain
the best estimate, we compute a “weighted average” of the two variances. The
“weight” we give to each variance is based on the number of participants in a sample,
using each sample’s This weighted average is called the pooled variance, and its
symbol is .s2

pool

df.

s2
2s2

1

s2
2s2

1

This says to multiply the from each sample times for that sample. Then add
the results together and divide by the sum of .

For example, say that the hypnosis study produced the results shown in Table 12.2.
Let’s label the hypnosis condition as condition 1, so it produces , and . The 
no-hypnosis condition produces , , and . Filling in the above formula, we have

In the numerator, 16 times 9 is 144, and 14 times 7.5 is 105. In the denominator, 16 plus
14 is 30, so

Thus, we estimate that the variance of the population of recall scores represented by
our samples is 8.30.

Computing the Standard Error of the Difference The next step is to use 
to compute the standard error of the sampling distribution. It is called the standard error
of the difference. The standard error of the difference is the estimated “standard
deviation” of the sampling distribution of differences between the means. The symbol
for the standard error of the difference is . (The subscript indicates that we are
dealing with differences between pairs of means.)

In the previous chapter, we computed the standard error by dividing the variance by
and then taking the square root. However, instead of dividing by , we can multiplyNN

s
˛˛X12X2

s2
pool

s2
pool 5

144 1 105

30
5

249

30
5 8.30

s2
pool 5

117 2 1 29.0 1 115 2 1 27.5

117 2 1 2 1 115 2 1 2

n2s2
2X2

n1s2
1X1

1n1 2 1 2 1 1n2 2 1 2
n 2 1s2

X

Condition 1: Condition 2:
Hypnosis No Hypnosis

Mean details recalled

Number of participants

Estimated variance s2
2 5 7.5s2

1 5 9.0

n2 5 15n1 5 17

X2 5 20X1 5 23

TABLE 12.2

Data from the Hypnosis
Study

The formula for the pooled variance is

s2
pool 5

1n1 2 1 2s2
1 1 1n2 2 1 2s2

2

1n1 2 1 2 1 1n2 2 1 2



by . Then, for the two-sample t-test, we substitute the pooled variance and our two
, producing this formula:ns
1>N
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To use this formula, first reduce the fractions and to decimals. Then add them
together and multiply the sum times . Then find the square root.

For the hypnosis study, is 8.30, is 17, and is 15. Thus:

First, is .059 and is .067. Their sum is .126. Then

Thus, is 1.023.

Computing In previous chapters we found how far the result of the study 
was from the mean of the sampling distribution , measured in standard error
units. In general, this formula is

Now the “result of the study” is the difference between the two sample means, so in the
formula we will put in . Likewise, instead of one we have the difference
described by , so we put in Finally, we replace “standard error” with 
All together we have

sX12X2
.�1 2 �2.H0

�X1 2 X2

tobt 5
1result of the study 2 2 1mean of H0 sampling distribution 2

standard error

1� 2H0

1X 2tobt

sX12X2

sX12X2
5 18.31.126 2 5 11.046 5 1.023

1>151>17

sX12X2
5
B

8.3 a
1

17
1

1

15
b

n2n1s2
pool

s2
pool

1>n21>n1

Here, and are our sample means, is computed as above, and the value of
is the difference specified by the null hypothesis. This value is always 0

(unless you are testing for a nonzero difference.)
For the hypnosis study, our sample means were 23 and 20, the difference between
and is 0, and is 1.023. Therefore,

tobt 5
123 2 20 2 2 0

1.023
5
113.0 2 2 0

1.023
5

13.0

1.023
5 12.93

sX12X2
�2�1

�1 2 �2

sX12X2
X2X1

The formula for the standard error of the difference is

sX12X2
5
B
1s2

pool 2 a
1
n1

1
1
n2
b

The formula for the independent-samples tobt is

tobt 5
1X1 2 X2 2 2 1�1 2 �2 2

sX12X2



Our is . Thus, the difference of between our sample means is located at
something like a z-score of on the sampling distribution of differences produced
when both samples represent the same population.

12.93.
13.012.93tobt

To compute the independent-samples :
■ Compute , and ; , and .
■ Then compute the pooled variance .
■ Then compute the standard error of the difference

.
■ Then compute .

MORE EXAMPLES

An independent-samples study produced the follow-
ing data: , , , ,

, and .

 5
B

34.5 a
1

11
1

1

11
b 5 2.506

 sX12X2
5
B

s2
pool a

1
n1

1
1
n2
b

 5
110 236 1 110 233

10 1 10
5 34.5

 s2
pool 5

1n1 2 1 2s2
1 1 1n2 2 1 2s2

2

1n1 2 1 2 1 1n2 2 1 2

n2 5 11s2
2 5 33

X2 5 21n1 5 11s2
1 5 36X1 5 27

tobt

1s
 X12X2

2

1s2
pool 2

n2s2
2X2n1s2

1X1

tobt

For Practice

We find , , , ,
and .

1. Compute the pooled variance .

2. Compute the standard error of the difference
.

3. Compute .

Answers

1.

2.

3. tobt 5
133 2 27 2 2 0

1.18
5 15.08

sX12X2
5
B

14.5 a
1

21
1

1

21
b 5 1.18

s2
pool 5

120 216 1 120 213

20 1 20
5 14.5

tobt

1sX12X2
2

1s2
pool 2

n2 5 21s2
2 5 13

X2 5 27n1 5 21s2
1 5 16X1 5 33

 5 12.394

 tobt 5
1X1 2 X2 2 2 1�1 2 �2 2

sX12X2

5
127 2 21 2 2 0

2.506
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Interpreting the Independent-Samples t-Test

To determine if is significant, we compare it to , which is found in the t-tables
(Table 2 in Appendix C). As usual, we obtain using degrees of freedom, but with
two samples, the are computed differently: Now the degrees of freedom equals

.

REMEMBER Critical values of for the independent-samples t-test are found
for .

Another way of expressing this is .
For the hypnosis study, and , so .

With alpha at , the two-tailed is Figure 12.3 locates these values on the
sampling distribution of differences.

The sampling distribution shows the frequency of various differences between sam-
ple means that occur when the samples really represent no difference in the population.
Our says that the difference between our sample means is merely a poor representa-
tion of no difference. But, looking at the sampling distribution, we see that our differ-
ence of hardly ever occurs when the samples represent no difference. In fact our tobt13

H0

;2.042.tcrit.05
df 5 117 2 1 2 1 115 2 1 2 5 30n2 5 15n1 5 17

df 5 1n1 1 n2 2 2 2

df 5 1n1 2 1 2 1 1n2 2 1 2
t

1n1 2 1 2 1 1n2 2 1 2
df

tcrit

tcrittobt
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f

μ 

X1– X2 0
–3.0 –2.0 –1.0 0 +1.0 +2.0 +3.0

X1– X2 X1– X2 X1– X2 X1– X2 X1– X2 X1– X2 X1– X2

–tcrit = –2.042 +tcrit = +2.042 +tobt = +2.93

Differences:
Values of t:

FIGURE 12.3

H0 sampling distribution of differences between means when . A larger t indicates a larger
difference between means.

The shows the location of a difference of 3.01tobt

�1 2 �2 5 0

of �2.93 lies beyond , so the results are significant: Our difference of is so
unlikely to occur if our samples were representing no difference in the population that
we reject that this is what they represent. Therefore, we reject and accept the that
we are representing a difference between that is not zero.

We can say that our difference of is significantly different from 0. Or we can say
that our two means differ significantly from each other. Here, the mean for hypnosis
(23) is larger than the mean for no hypnosis (20), so we can conclude that increasing
the amount of hypnosis leads to significantly higher recall scores.

If was not beyond , we would not reject , and we would have no evidence
for or against a relationship between hypnosis and recall. Then we would consider if
we had sufficient power to prevent a Type II error (retaining a false ). As in the pre-
vious chapter, we maximize power here by designing the study to (1) maximize the size
of the difference between the means, (2) minimize the variability of scores within each
condition, and (3) maximize the size of . These steps will maximize the size of 
relative to so that we are unlikely to miss the relationship if it really exists.

Because we did find a significant result, we describe and interpret the relationship.
First, from our sample means, we expect the for no hypnosis to be around 20 and the

for hypnosis to be around 23. To more precisely describe these , we could com-
pute a confidence interval for each. To do so, we would use the formula for a confi-
dence interval in the previous chapter, looking at only one condition at a time, using
only one and , and computing a new standard error and Then we’d know the
range of values of likely to be represented by each of our means.

However, another way to describe the populations represented by our samples is to
create a confidence interval for the difference between the .

Confidence Interval for the Difference between Two s

Above we found a difference of between our sample means, so if we could exam-
ine the corresponding and , we’d expect their difference would be around
To more precisely define “around,” we can compute a confidence interval for this
difference. We will compute the largest and smallest difference between that our
difference between sample means is likely to represent. Then we will have a range of

�s
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�
tcrit.Xs2
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�s�
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tcrit

tobtN

H0

H0tcrittobt

13
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HaH0

13tcrit



differences between the population that our difference between may represent.

The confidence interval for the difference between two �s describes a range of dif-
ferences between two , one of which is likely to be represented by the difference
between our two sample means.

�s

Xs�s

Here, stands for the unknown difference we are estimating. The is the two-
tailed value found for the appropriate at . The values of

and are computed in the t-test.
In the hypnosis study, the two-tailed for and is ,

, and . Filling in the formula gives

Multiplying 1.023 times gives

So, finally,

Because , this is the 95% confidence interval: We are 95% confident that the
interval between and 5.089 contains the difference we’d find between the for
no hypnosis and hypnosis. In essence, if someone asked us how big a difference hyp-
nosis makes for everyone in the population when recalling information in our study,
we’d be 95% confident that the difference is, on average, between about and 5.09
correct answers.

Performing One-Tailed Tests with Independent Samples

As usual, we perform a one-tailed test whenever we predict the specific direction in
which the dependent scores will change. Thus, we would have performed a one-tailed
test if we had predicted that hypnosis would increase recall scores. Everything dis-
cussed previously applies here, but to prevent confusion, we’ll use the subscript h for
hypnosis and n for no hypnosis. Then follow these steps:

1. Decide which and corresponding is expected to be larger. (We predict the 
for hypnosis is larger.)

2. Arbitrarily decide which condition to subtract from the other. (We’ll subtract no
hypnosis from hypnosis.)

3. Decide whether the predicted difference will be positive or negative. (Subtracting
the smaller from the larger should produce a positive difference, greater
than zero.)

4. Create and to match this prediction. (Our is that ; is 
that .)�h 2 �n # 0

H0�h 2 �n 7 0HaH0Ha

�h�n

�h�X

.91

�s.911
� 5 .05

.911 # �1 2 �2 # 5.089

22.089 1 113 2 # �1 2 �2 # 12.089 1 113 2

;2.042

11.023 2 122.042 2 1 113 2 # �1 2 �2 # 11.023 2 112.042 2 1 113 2

X1 2 X2 5 13sX12X2
5 1.023

;2.042� 5 .05df 5 30tcrit

1X1 2 X2 2sX12X2

df 5 1n1 2 1 2 1 1n2 2 1 2�
tcrit�1 2 �2

The formula for the confidence interval for the difference 
between two �s is

1sX12X2
2 12tcrit 2 1 1X1 2 X2 2 # �1 2 �2 # 1sX12X2

2 11tcrit 2 1 1X1 2 X2 2
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5. Envision the same sampling distribution that we used in the two-tailed test. Obtain
the one-tailed from Table 2 in Appendix C. Locate the region of rejection
based on your prediction. If we expect a positive difference, it is in the right-hand
tail of the sampling distribution, so is positive. If we predict a negative differ-
ence, it is in the left-hand tail and is negative.

6. Compute as we did previously, but be sure to subtract the in the same way
as in . (We used , so we’d compute .)

Conversely, if we had predicted that hypnosis would decrease scores, subtracting
, we would have and , and would be

negative.

SUMMARY OF THE INDEPENDENT-SAMPLES t-TEST

After checking that the study meets the assumptions, the independent-samples t-test
involves the following:

1. Create either the two-tailed or one-tailed H0 and Ha.

2. Compute :

a. Compute , , and ; , , and .

b. Compute the pooled variance .

c. Compute the standard error of the difference .

d. Compute .

3. Find : In the t-tables, use .

4. Compare to : If is beyond , the results are significant; describe the
relationship. If is not beyond , the results are not significant; make no
conclusion about the relationship.

5. Compute the confidence interval: Describe the represented by each condition
and/or the difference between the .�s
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■ Perform the independent-samples t-test in
experiments that test two independent samples.

MORE EXAMPLES

We perform a two-tailed experiment, so : 

and . The ,

, , , , and .
Then
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(continued)



THE RELATED-SAMPLES t-TEST

Now we will discuss the other version of the two-sample t-test. The related-samples 
t-test is the parametric procedure used with two related samples. Related samples
occur when we pair each score in one sample with a particular score in the other sam-
ple. Researchers create related samples to have more equivalent and thus more compa-
rable samples. Two types of research designs produce related samples. They are
matched-samples designs and repeated-measures designs.

In a matched-samples design, we match each participant in one condition with a
participant in the other condition. For example, say that we want to measure how well
people shoot baskets when using either a standard basketball or a new type of ball (one
with handles). If, however, by luck, one condition contained taller people than the
other, then differences in basket shooting could be due to the differences in height
instead of the different balls. The solution is to create two samples containing people
who are the same height. We do this by matching pairs of people who are the same
height and assigning a member of the pair to each condition. Thus, if two participants
are 6 feet tall, one will be assigned to each condition. Likewise, a 4-foot person in one
condition is matched with a 4-footer in the other condition, and so on. This will pro-
duce two samples that, overall, are equivalent in height, so any differences in basket
shooting between them cannot be due to differences in height. Likewise, we might
match participants using age, or physical ability, or we might use naturally occurring
pairs such as roommates or identical twins.

The other, more common, way of producing related samples is called repeated meas-
ures. In a repeated-measures design, each participant is tested under all conditions of
the independent variable. For example, we might first test people when they use the
standard basketball and then measure the same people again when they use the new
ball. (Although we have one sample of participants, we have two samples of scores.)
Here, any differences in basket shooting between the samples cannot be due to differ-
ences in height or to any other attribute of the participants.

to be around 24 and to be around 21. The confi-
dence interval for the difference between the is

(1.111)(�2.048) � 3 � �1 � �2 �
(1.111)(�2.048) � 3

For Practice

We test whether “cramming” for an exam is harmful
to grades. Condition 1 crams for a pretend exam, 
but condition 2 does not. Each , the cramming

is 43 , and the no-cramming is 48
.1s2

X 5 83.6 2
X1s2

X 5 64 2X
n 5 31

0.725 # �1 2 �2 # 5.275

 1sX12X2
2 11tcrit 2 1 1X1 2 X2 2

 1sX12X2
2 12tcrit 2 1 1X1 2 X2 2 # �1 2 �2 #

�s
�2 1. Subtracting cramming from no cramming, what

are and ?

2. Will be positive or negative?

3. Compute .

4. What do you conclude about this relationship?

5. Compute the confidence interval between .

Answers
1. ; 
2. Positive
3. ;

;

4. With and , , is signifi-
cant: is around 43; is around 48.

5. (2.19)(�2.00) � 5 � �1 � �2 � (2.19)(�2.000) � 5
� 0.62 � �1 � �2 � 9.38
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Matched-groups and repeated-measures designs are analyzed in the same way be-
cause both produce related samples. Related samples are also called dependent sam-
ples. In Chapter 9, two events were dependent when the probability of one is influenced
by the occurrence of the other. Related samples are dependent because the probability
that a score in a pair is a particular value is influenced by the paired score. For exam-
ple, if I make zero baskets in one condition, I’ll probably make close to zero in the
other condition. This is not the case with independent samples: In the hypnosis study,
whether someone scores 0 in the no-hypnosis condition will not influence the probabil-
ity of anyone scoring 0 in the hypnosis condition.

We cannot use the independent-samples t-test in such situations because its sampling
distribution describes the probability of differences between means from independent
samples. With related samples, we must compute this probability differently, so we cre-
ate the sampling distribution differently and we compute differently. However,
except for requiring related samples, the assumptions of the related-samples t-test are
the same as those for the independent-samples t-test: (1) The dependent variable
involves an interval or ratio scale, (2) the raw score populations are at least approxi-
mately normally distributed, and (3) the populations have homogeneous variance.
Because related samples form pairs of scores, the in the two samples must be equal.

The Logic of Hypotheses Testing in the 
Related-Samples t-Test

Let’s say that we are interested in phobias (irrational fears of objects or events). We
have a new therapy we want to test on spider-phobics—people who are overly fright-
ened by spiders. From the local phobia club, we randomly select the unpowerful of
five spider-phobics and test our therapy using repeated measures of two conditions:
before therapy and after therapy. Before therapy we measure each person’s fear
response to a picture of a spider by measuring heart rate, perspiration, and so on. Then
we compute a “fear” score between 0 (no fear) and 20 (holy terror!). After providing
the therapy, we again measure the person’s fear response to the picture. (A before-and-
after, or pretest/posttest, design such as this always uses the related-samples t-test.)

Say that we obtained the raw scores shown on the left side of Table 12.3. First, com-
pute the mean of each condition (each column). Before therapy the mean fear score is
14.80, but after therapy the mean is 11.20. Apparently, the therapy reduced fear scores
by an average of points. But, on the other hand, maybe therapy
does nothing; maybe this difference is solely the result of sampling error from the one
population of fear scores we’d have with or without therapy.

14.80 2 11.20 5 3.6

N

n

tobt

Before After
Participant Therapy � Therapy � D D2

1 (Foofy) 11 � 8 � �3 9
2 (Biff) 16 � 11 � �5 25
3 (Cleo) 20 � 15 � �5 25
4 (Attila) 17 � 11 � �6 36
5 (Slug) 10 � 11 � �1 1��� ��� ���� ���

14.80 11.20 D � �18 D2 � 96
N � 5 �3.6D 5

©©X 5X 5

TABLE 12.3

Finding the Difference
Scores in the Phobia
Study

Each D � Before � After



To test these hypotheses, we first transform the data and then perform a t-test on
the transformed scores. As shown in Table 12.3, we transform the data by first find-
ing the difference between the two raw scores for each participant. This difference
score is symbolized by Here, we subtracted after therapy from before therapy. You
could subtract in the reverse order, but subtract all scores in the same way. If this
were a matched-samples design, we’d subtract the scores from each pair of matched
participants.

Next, compute the mean difference, symbolized as . Add the positive and negative
differences to find the sum of the differences, symbolized by . Then divide by , the
number of difference scores. In Table 12.3, equals , which is . Notice that
this is also the difference between our original means of 14.80 and 11.20. Anyway you
approach it, the before scores were, on average, 3.6 points higher than the after scores.
(As in the far right-hand column of Table 12.3, later we’ll need to square each differ-
ence and then find the sum, finding .)

Now here’s the strange part: Forget about the before and after scores for the
moment and consider only the difference scores. We have one sample mean from 
one random sample of scores. As in the previous chapter, with one sample we perform
the one-sample t-test! The fact that we have difference scores is irrelevant, so we cre-
ate the statistical hypotheses and test them in virtually the same way that we did with
the one-sample t-test.

REMEMBER The related-samples t-test is performed by applying the one-
sample t-test to the difference scores.

STATISTICAL HYPOTHESES FOR THE RELATED-SAMPLES t-TEST

Our sample of difference scores represents the population of difference scores that
would result if we could measure the population’s fear scores under each condition and
then subtract the scores in one population from the corresponding scores in the other
population. The population of difference scores has a that we identify as To cre-
ate the statistical hypotheses, we determine the predicted values of in and .

In reality, we expect the therapy to reduce fear scores, but let’s first perform a two-
tailed test. always says no relationship is present, so it says the population of before-
scores is the same as the population of after-scores. However, when we subtract them
as we did in the sample, not every will equal zero because, due to random physiolog-
ical or psychological fluctuations, some participants will not score identically when
tested before and after. Therefore, we will have a population of different , as shown
on the left in Figure 12.4.

On average, the positive and negative differences should cancel out to produce a
. This is the population that says that our sample of represents, and that

our somewhat poorly represents this . Therefore, .
For the alternative hypothesis, if the therapy alters fear scores in the population, then

either the before scores or the after scores will be consistently higher. Then, after sub-
tracting them, the population of will tend to contain only positive or only negative
scores. Therefore, the average difference will be a positive or negative number,
and not zero. Thus, .

We test by examining the sampling distribution, which here is the sampling
distribution of mean differences. Shown on the right side of Figure 12.4, it is as if we
infinitely sampled the population of on the left that says our sample represents.H0Ds

H0

Ha: �D ? 0
1�D 2

Ds

H0: �D 5 0�DD
DsH0�D 5 0

Ds

D

H0

HaH0�D

�D.�
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D
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FIGURE 12.4

Population of difference scores described by H0 and the resulting sampling distribution of mean differences

The sampling distribution of mean differences shows all possible values of that
occur when samples are drawn from a population of difference scores where .
For the phobia study, it essentially shows all values of we might get by chance when
the therapy does not work. The that are farther into the tails of the distribution are
less likely to occur if was true and the therapy did not work.

Notice that the hypotheses and and the above sampling dis-
tribution are appropriate for the two-tailed test for any study when testing whether the
data represent zero difference between your conditions. This is the most common
approach and the one that we’ll discuss. (Consult an advanced statistics book to test for
nonzero differences.)

We test our by determining where on the sampling distribution our is located.
To do so, we compute .

Computing the Related-Samples t-Test

Computing here is identical to computing the one-sample t-test discussed in 
Chapter 11—only the symbols have been changed from to There, we first com-
puted the estimated population variance , then the standard error of the mean ,
and then . We perform the same three steps here.

First, find , which is the estimated population variance of the difference scores.s2
D

tobt

1sX 21s2
X 2

DX
tobt

tobt

DH0

Ha: �D ? 0H0: �D 5 0
H0

Ds
D

�D 5 0
D

(Note: For all computations in this t-test, equals the number of difference scores.)
Using the data from the phobia study in Table 12.3, we have

s2
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The formula for is
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Second, find . This is the standard error of the mean difference, or the “stan-
dard deviation” of the sampling distribution of . (Just as was the standard deviation
of the sampling distribution when we called the mean .)X

sXD
sD

Divide by and then find the square root. For the phobia study, and
, so

Third, find .tobt

sD 5
B

s2
D

N
5
B

7.80

5
5 21.56 5 1.249

N 5 5
s2

D 5 7.80Ns2
D

Here, is the mean of your difference scores, is computed as above, and is the
value given in : It is always zero (unless you are testing a nonzero difference). Then,
as usual, is like a z-score, indicating how far our is from the of the sampling
distribution when measured in standard error units.

For the phobia study, , and . Filling in the formula, we
have

Thus, .

Interpreting the Related-Samples t-Test

Interpret by comparing it to from the t-tables in Appendix C. Here, .

REMEMBER The degrees of freedom in the related-samples t-test are
, where is the number of difference scores.

For the phobia study, with and , the two-tailed is .
The completed sampling distribution is shown in Figure 12.5. The is in the region
of rejection, so the results are significant: Our sample with is so unlikely 
to be representing the population of where that we reject the that ourH0�D 5 0Ds

D 5 13.6
tobt

;2.776tcritdf 5 5–1 5 4� 5 .05

Ndf 5 N 2 1

df 5 N 2 1tcrittobt

tobt 5 12.88

tobt 5
D 2 �D

sD
5

13.6 2 0

1.249
5 12.88

�D 5 0sD 5 1.249D 5 3.6

�DDtobt
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The formula for the standard error of the mean difference is

sD 5
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The formula for the related-samples t-test is

tobt 5
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FIGURE 12.5

Two-tailed sampling
distribution of 
when 0�D 5

Ds

sample represents this population. Because this population has a , we conclude
that our of is significantly different from zero. Therefore, we accept , con-
cluding that the sample represents a population of having a that is not zero, with

probably around .
Now we work backwards to our original fear scores. Recall that our of also

equals the difference between the original mean fear score before therapy (14.80) and
the mean fear score after therapy (11.20): Any way you approach it, the therapy
reduced fear scores by an average of . Because we have determined that this
reduction is significant using , we can also conclude that this reduction is significant
using our original fear scores. Therefore, we conclude that the means of 14.80 and
11.20 differ significantly from each other, and are unlikely to represent the same popu-
lation of fear scores. Instead, we conclude that our therapy works, with the sample data
representing a relationship in the population of spider-phobics such that fear scores go
from a around 14.80 before therapy to a around 11.20 after therapy.

If had not been beyond , the results would not be significant. Then we’d want
to have maximized our power in the same ways as discussed previously: We maximize
the differences between the conditions, minimize the variability in the scores within the
conditions, and maximize . Note: A related-samples t-test is intrinsically more pow-
erful than an independent-samples t-test because the will be less variable than the
original raw scores. For example, back in Table 12.3, Biff and Cleo show variability
between their before scores and between their after scores, but they have the same dif-
ference scores. Thus, by designing a study that uses related samples, we will tend to
have greater power than when we design a similar study that uses independent samples.

REMEMBER A related-samples t-test is intrinsically more powerful than an
independent-samples t-test.

With significant results, we use the sample means to estimate the of the fear scores
for each condition as described above. It would be nice to compute a confidence inter-
val for each , as in the previous chapter, but we cannot do that. That procedure
assumes each mean comes from an independent sample. We can, however, compute a
confidence interval for .�D

�

�

Ds
N
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D
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Computing the Confidence Interval for 

Because our is , we assume that if we measured the entire population before
and after therapy, the population of difference scores would have a around .
To better define “around,” we compute a confidence interval. The confidence interval
for describes a range of values of , one of which our sample mean is likely to
represent.

�D�D

13.6�D

13.6D

�D

This is the same formula used in Chapter 11, except that the symbol has been
replaced by . The is the two-tailed value for , where is the number
of difference scores, is the standard error of the mean difference computed as above,
and is the mean of the difference scores.

In the phobia study, and , and with and , is
. Filling in the formula gives

which becomes

Thus, we are 95% confident that our of represents a population within this
interval. In other words, we would expect the average difference in before and after
scores in the population to be between 0.13 and 7.07.

Performing One-Tailed Tests with Related Samples

As usual, we perform a one-tailed test when we predict the direction of the difference
between our two conditions. Realistically, in the phobia study, we would predict we’d
find lower scores in the after-therapy condition. Then to create , first arbitrarily
decide which condition to subtract from which and what the differences should be. We
subtracted the predicted lower after-scores from the predicted higher before-scores, so
this should produce that are positive. Then should be positive, representing a pop-
ulation that has a positive . Therefore, . Then .

We again examine the sampling distribution that occurs when . Obtain the
one-tailed from Table 2 in Appendix C. Then locate the region of rejection based
on your prediction: Our should be positive and, as in Figure 12.6, the positive values
of are in the right-hand tail, and so is positive.

Had we predicted higher scores in the after-therapy condition then, by subtracting
before from after, the and should be negative, representing a negative . Thus,

and . Now the region of rejection is in the lower tail of the
sampling distribution, and is negative.

Compute using the previous formula. But subtract to get your in the same way
as when you created your hypotheses.

Dstobt

tcrit

H0: �D $ 0Ha: �D 6 0
�DDDs

tcritD
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0.13 # �D # 7.07
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The formula for the confidence interval for �D is
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One-Tailed Sampling Distribution of When 0�D 5Ds

■ Perform the related-samples t-test with a matched-
groups or repeated-measures design.

MORE EXAMPLES

In a two-tailed study, we compare husband-and-wife
pairs, with and . Subtracting
wife – husband produces

Ha: �D ? 0H0: �D 5 0

Wife Husband D

4 6 �2
5 8 �3
3 9 �6
5 8 �3��� ��� ���

X� � 4.25 X� � 7.75 D� � �3.5

A  Q U I C K  R E V I E W

SUMMARY OF THE RELATED-SAMPLES t-TEST

After checking that the design is matched samples or repeated measures and meets the
assumptions, the related-samples t-test involves the following:

1. Create either the two-tailed or one-tailed and .

2. Compute :

a. Compute the difference score for each pair of scores.

b. Compute and .

c. Compute .

d. Compute .

3. Find : In the t-tables, use .

4. Compare to : If is beyond , the results are significant; describe the
populations of raw scores and interpret the relationship. If is not beyond ,
the results are not significant; make no conclusion about the relationship.

5. Compute the confidence interval for m .D

tcrittobt

tcrittobttcrittobt

df 5 N 2 1tcrit

tobt

sD

s2
DD

tobt

HaH0

(continued)



DESCRIBING THE RELATIONSHIP IN A TWO-SAMPLE EXPERIMENT

In either two-sample t-test, the fact that is significant is not the end of the story. If
you stop after hypothesis testing, then you’ve found a relationship, but you have not
described it. Instead, whenever (and only) when you have significant results, you
should fully describe the relationship in your sample data. This involves two steps—
graphing the results and computing “effect size.”

Graphing the Results of a Two-Sample Experiment

From Chapter 4, you know that we plot the mean of each condition on the axis and
the conditions of the independent variable on the axis. The results of our previous
studies are shown in Figure 12.7. Notice that for the phobia study the means of the orig-
inal fear scores from the before and after conditions are plotted, not the .Ds

X
Y

tobt

With and , is The is
significant. For wives, we expect is 4.25, and for
husbands, we expect is 7.75. For the confidence
interval of ,
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A two-tailed study with repeated 
measures gives

A B

8 7
10 5
9 6
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11 6

1. What are and ?

2. Subtracting A – B, perform the 
t-test.

3. Compute the confidence interval of .

4. Subtracting A – B, what are and if we pre-
dicted that B would produce lower scores?

Answers
1. ; 
2. ; : ;

With , 
and is significant.

3.

4. ; Ha: �D 7 0H0: �D # 0
1.324 # �D # 5.476
1.748 2 122.776 2 1 3.4 # �D # 1.748 2 112.776 2 1 3.4 5

tobttcrit 5 ;2.776
� 5 0.5tobt 5 13.4 2 0 2 >.748 5 14.55.

sD 5 12.8>5 5 .748s2
D 5 2.8D 5 17>5 5 13.4

Ha: �D ? 0H0: �D 5 0

HaH0

�D

HaH0

Degree of hypnosis

24
23
22
21
20
19

15
14
13
12
11
10

9

Before
Therapy

Mean recall score as a function
of degree of hypnosis

Mean fear score as a function
of before-and-after therapy

After

M
ea

n 
fe

ar
 s

co
re

M
ea

n 
re

ca
ll 

sc
or

e

No hypnosis Hypnosis

FIGURE 12.7

Line graphs of the results
of the hypnosis study
and the phobia study
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From each graph, you can first discern the type—direction—of the relationship:
The hypnosis graph shows a positive linear relationship, and the phobia graph shows a
negative relationship. Further, recall that the regression line summarizes a relationship
by running through the center of the scatterplot. With only two conditions, the line
graph is the regression line. Therefore, we can envision the scatterplot in each graph
as being around the line, with participants’ data points located above and below each
mean’s data point. Finally, recall that we use the regression line to predict scores
based on . Therefore, for participants in a particular condition, we travel vertically to
the line and then horizontally to , predicting that they scored at the mean score for
that condition.

What’s missing is that we don’t know the nature of each relationship. Recall that
some relationships are stronger (more consistent) than others. Likewise, some inde-
pendent variables have a greater impact on a behavior than others. Researchers address
these issues by computing a measure of effect size.

Measuring Effect Size in the Two-Sample Experiment

An important statistic for describing the results of an experiment is called a measure of
effect size. The “effect” is from cause and effect, because in an experiment we assume
that changing the independent variable “causes” the dependent scores to change. (The
quotes are used because there’s always a chance that something else was the cause.)
However, not all independent variables will cause scores to change to the same degree,
so we need to know the influence that a particular variable has. Effect size indicates
the amount of influence that changing the conditions of the independent variable had
on dependent scores. Thus, for example, the extent to which changing hypnosis influ-
enced recall scores is the effect size of hypnosis.

The larger the effect size, the greater is the independent variable’s impact in deter-
mining participants’ scores. We want to study those variables that most influence the
behavior measured by these scores, so the larger the effect size, the more scientifi-
cally important the independent variable is. Remember that significant does not
mean important, but only that the sample relationship is unlikely to reflect sampling
error. Although a relationship must be significant to be potentially important, it can be
significant and still be unimportant. Thus, you should always compute a measure of
effect size for any significant result, because this is the only way to determine whether
your independent variable is important in influencing a behavior. In fact, the American
Psychological Association requires published research to report effect size.

REMEMBER The larger the effect size, the greater the influence that an inde-
pendent variable has on dependent scores and thus the more important the
variable is.

We will discuss two methods for measuring effect size. The first is to compute
Cohen’s d.

Effect Size Using Cohen’s d One way to describe the impact of an independent
variable is in terms of how big a difference we see between the means of our condi-
tions. For example, we saw that the presence/absence of hypnosis produced a differ-
ence in recall scores of 3. However, the problem is that we don’t know whether, in the
grand scheme of things, 3 is large, small, or in between. We need a frame of reference,
and here we use the estimated population standard deviation. Recall that the standard
deviation reflects the “average” amount that scores differ from the mean and from 

Y
X

Y



each other. Individual scores always differ much more than their means, but this still
provides a frame of reference. For example, if individual scores differ by an “average”
of 20, then we know that many large differences among scores occur in this situation.
Therefore, a difference of 3 between two samples of such scores is not all that impres-
sive. However, say that scores differ by an “average” of only 5. Because smaller differ-
ences occur in this situation, a difference between conditions of 3 is more impressive.

Thus, we standardize the difference between our sample means by comparing it to
the population standard deviation. This is the logic behind the measure of effect size
known as Cohen’s d: It measures effect size as the magnitude of the difference between
the conditions, relative to the population standard deviation. We have two versions of
how it is computed.

1Cohen, J. (1988) Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum
Associates.

For the independent-samples t-test, the difference between the conditions is meas-
ured as and the standard deviation comes from the square root of the pooled
variance. For our hypnosis study, the means were 23 and 20, and was 8.3, so

This tells us that the effect of changing our conditions was to change scores by an
amount that is slightly larger than one standard deviation.

For the related-samples t-test, the difference between the conditions is measured by
and the standard deviation comes from finding the square root of the estimated vari-

ance In our phobia study, and , so

Thus, the effect size of the therapy was 1.29.
We can interpret the above in two ways. First, the larger the absolute size of , the

larger the impact of the independent variable. In fact, Cohen1 proposed the following
interpretations when is the neighborhood of the following amounts:

Values of d Interpretation of Effect Size

Small effect
Medium effect
Large effectd 5 .8

d 5 .5
d 5 .2

d

dds
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The formulas for Cohen’s d are:

Independent-samples t-test Related-samples t-test
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D

3s2
D

d 5
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Thus, above we found two very large effects. Second, we can compare the relative
size of different to determine the relative impact of a variable. Above, the for
hypnosis was 1.04, but for therapy it was 1.29. Therefore, the therapy manipulation
had a slightly larger impact. (Note: The difference between the conditions may pro-
duce a that some researchers use to indicate the direction the scores change.
Others think of as the amount of impact the independent variable has, which can-
not be negative.)

Another way to measure effect size is by computing the proportion of variance
accounted for.

Effect Size Using Proportion of Variance Accounted For This approach
measures effect size, not in terms of the size of the changes in scores but in terms of
how consistently the scores change. Here, a variable has a greater impact, the more it
“causes” everyone to behave in the same way, producing virtually the same score for
everyone in a particular condition. This then is an important variable, because by
itself, it pretty much controls the score (and behavior) that everyone exhibits. A vari-
able is more minor if it exhibits less control of a behavior and scores.

We measure this effect by measuring the “proportion of variance accounted for.”
Recall from Chapter 5 that variance reflects differences in scores and that when we
predict scores, we “account for variance.” In Chapter 8, we saw that the proportion
of variance accounted for was the proportional improvement achieved when we use
a relationship to predict scores compared to when we do not use the relationship to
predict scores. In an experiment, the scores we predict are the means of the condi-
tions. Thus, in an experiment, the proportion of variance accounted for is the pro-
portional improvement achieved when we use the mean of a condition as the
predicted score of participants tested in that condition compared to when we do not
use this approach. Put simply it is the extent to which individual scores in each con-
dition are close to the mean of the condition, so if we predict the mean for someone,
we are close to his or her actual score. When the independent variable has more con-
trol of a behavior, everyone in a condition will score more consistently. Then scores
will be closer to the mean, so we will have a greater improvement in accurately pre-
dicting the scores, producing a larger proportion of variance accounted for. On the
other hand, when the variable produces very different, inconsistent scores in each
condition, our ability to predict them is not improved by much, and so little of the
variance will be accounted for.

REMEMBER The larger the proportion of variance accounted for, the greater
the effect size of the independent variable in terms of consistently changing
scores, so the more important the variable is.

In Chapter 8, we saw that the computations for the proportion of variance
accounted for are performed by computing the squared correlation coefficient. For
the two-sample experiment, we compute a new correlation coefficient and then
square it. The squared point-biserial correlation coefficient indicates the propor-
tion of variance accounted for in a two-sample experiment. Its symbol is . This
can produce a proportion as a low as 0 (when the variable has no effect) to as high
as 1.0 (when the variable perfectly controls scores so that we can accurately predict
100% of them). In real research, however, a variable typically accounts for between
about 10% and 30% of the variance, with more than 30% being a very substantial
amount.

r2
pb

d
1 or 2

dds



This formula is used with either the independent-samples or related-samples t-test. In
either case, start with your significant and square it. Then, for independent samples,

For related samples, .
In our hypnosis study, with , so,

Thus, on average, we are 22% closer to predicting participants’ recall scores when we
predict the mean of each hypnosis condition for them, compared to when we ignore this
relationship. Hypnosis is not of major importance here, because scores are not consis-
tently very close to the mean in each condition. Further, these inconsistent scores have
a cause, so other, hidden variables must be causing them (perhaps IQ, memory ability,
or motivation are operating). Therefore, hypnosis is only one of a number of variables
that play a role here, and, thus, it is only somewhat important in determining recall.

On the other hand, in the phobia study, and , so

Thus, the presence/absence of therapy accounts for 67% of the variance in fear scores.
This variable plays a substantial role in determining these scores. Further, fewer other
variables need to be considered in order to completely predict scores, so this is an
important relationship for understanding phobias and the therapy.

We also use the proportion of variance accounted for to compare the relationships from
different studies. Thus, the role of therapy in determining fear scores (at 67%) is about three
times larger than the role of hypnosis in determining recall scores (which was only 22%).

REMEMBER Compute effect size by computing or to determine the size
of the impact of an independent variable on dependent scores.

STATISTICS IN PUBLISHED RESEARCH: THE TWO-SAMPLE EXPERIMENT

Report the results of either two-sample t-test using the same format used previously,
but, remember, we also report the mean and standard deviation of each group, the con-
fidence interval, and effect size. Thus, a published report of our independent-samples
hypnosis study might say,

“The hypnosis group ( , ) produced significantly higher
recall scores than did the control group ( , ), with 

( ) , < . The 95% confidence interval for the difference is 0.91
to 5.09. The effect size of the hypnosis manipulation was ”

For the phobia study, you would see a similar statement that included the means of
the raw fear scores in each condition.
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Remember that one of your goals in this course is to learn when to use different statisti-
cal procedures. Obviously, you perform the independent-samples t-test if you’ve cre-
ated two independent samples and the related-samples t-test if you’ve created two
related samples.

In both procedures, if is not significant, consider whether you have sufficient
power. If is significant, then focus on the means from each condition so that you
summarize the typical score—and typical behavior—found in each condition. Use
effect size to gauge how big a role the independent variable plays in determining the
behaviors. Finally, interpret the relationship in terms of the underlying behaviors and
causes that it reflects. (This last step will become easier as you learn more about the
behavioral sciences in your other courses.)

Using the SPSS Appendix See Appendix B.6 to use SPSS to perform the independ-
ent-samples t-test or the related-samples t-test (but it is called the “paired-samples” 
t-test). For either, the program indicates the at which is significant, but for a 
two-tailed test only. It also computes the descriptive statistics for each condition and
automatically computes the confidence interval for either or The program
does not compute or 

CHAPTER SUMMARY

1. Two samples are independent when participants are randomly selected for each,
without regard to who else has been selected, and each participant is in only one
condition.

2. The independent-samples t-test requires (a) two independent samples, 
(b) normally distributed interval or ratio scores, and (c) homogeneous variance.

3. Homogeneity of variance means that the variances in the populations being
represented are equal.

4. The confidence interval for the difference between two ms contains a range of
differences between two , one of which is likely to be represented by the
difference between our two sample means.

5. Two samples are related either when we match each participant in one condition
to a participant in the other condition, or when we use repeated measures of one
group of participants tested under both conditions.

6. The confidence interval for m contains a range of values of , any one of which
is likely to be represented by the sample’s .

7. The power of a two-sample t-test increases with (a) larger differences in scores
between the conditions, (b) smaller variability of scores within each condition, 
and (c) larger The related-samples t-test is more powerful than the
independent-samples t-test.

8. Effect size indicates the amount of influence that changing the conditions of the
independent variable had on the dependent scores.
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9. Cohen’s measures effect size as the magnitude of the difference between the
conditions.

10. The proportion of variance accounted for (computed as ) measures effect 
size as the consistency of scores produced within each condition. The larger the
proportion, the more accurately the mean of a condition predicts individual scores
in that condition.
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REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. A scientist has conducted a two-sample experiment. (a) What two parametric
procedures are available to him? (b) What is the deciding factor for selecting
between them?

2. How do you create independent samples?
3. (a) What are the two ways to create related samples? (b) What other assumptions

must be met before using either two-sample t-test?
4. What is homogeneity of variance?
5. (a) What is ? (b) What is ? (c) What is the difference between and ?
6. All other things being equal, should you create a related-samples or an 

independent-samples design? Why?
7. What does the confidence interval for indicate?
8. What does a confidence interval for the difference between two 

indicate?
9. (a) What does effect size indicate? (b) What does indicate? (c) What does 

indicate?
10. (a) What is the final step when completing an experiment? (b) Why is effect size

useful at this stage?
11. Foofy obtained a statistically significant two-sample . What three things should

she do to complete her analysis?
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APPLICATION QUESTIONS

12. For the following, which type of t-test is required? (a) Studying the effects of a
memory drug on Alzheimer’s patients, testing a group of patients before and after
administration of the drug. (b) Studying whether men and women rate the persua-
siveness of an argument delivered by a female speaker differently. (c) The study
described in part (b), but with the added requirement that for each man of a partic-
ular age, there is a woman of the same age.

13. We study the relationship between hot or cold baths and the amount of relaxation
they produce. The relaxation scores from two independent samples are

Sample 1 (hot): , , 
Sample 2 (cold): , , 

(a) What are and ? (b) Compute (c) With , what is ? 
(d) What should we conclude about this relationship? (e) Compute the 
confidence interval for the difference between the (f) Using our two
approaches, how big of an effect does bath temperature have on relaxation? 
(g) Describe how you would graph these results.

14. We investigate if a period of time feels longer or shorter when people are bored
compared to when they are not bored. Using independent samples, we obtain
these estimates of the time period (in minutes):

Sample 1 (bored): , , 
Sample 2 (not bored): , , 

(a) What are and ? (b) Compute (c) With , what is ? 
(d) What should the researcher conclude about this relationship? (e) Compute 
the confidence interval for the difference between the (f) Using our two
approaches, how important is boredom in determining how quickly time seems 
to pass?

15. A researcher asks if people score higher or lower on a questionnaire measuring
their well-being when they are exposed to much sunshine compared to when
they’re exposed to little sunshine. A sample of 8 people is measured under both
levels of sunshine and produces these well-being scores:

Low: 14 13 17 15 18 17 14 16
High: 18 12 20 19 22 19 19 16

(a) Subtracting low from high, what are and ? (b) Compute 
(c) With , what do you conclude about this study? (d) Compute the 
appropriate confidence interval. (e) What is the predicted well-being score for
someone when tested under low sunshine? Under high sunshine? (f) On average,
how much more accurate are these predictions than if you did not know how
much sunshine people experience? (g) How scientifically important are these
results?

16. A researcher investigates whether classical music is more or less soothing to air-
traffic controllers than modern music. She plays a classical selection to one group
and a modern selection to another. She gives each person an irritability question-
naire and obtains the following:

Sample A (classical): , , 
Sample B (modern): , , s2

X 5 11.6X 5 17.21n 5 6
s2

X 5 8.4X 5 14.69n 5 6
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n 5 15s2
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(a) Subtracting , what are and ? (b) What is ? (c) With ,
are the results significant? (d) Report the results using the correct format. 
(e) What should she conclude about the relationship in nature between type of
music and irritability? (f) What other statistics should be computed? (g) What
statistical flaw is likely in the experiment?

17. We predict that children exhibit more aggressive acts after watching a violent
television show. The scores for ten participants before and after watching the
show are

Sample 1 (After) Sample 2 (Before)  

5 4
6 6
4 3
4 2
7 4
3 1
2 0
1 0
4 5
3 2

(a) Subtracting before from after, what are and ? (b) Compute 
(c) With , what is ? (d) What should the researcher conclude about 
this relationship? (e) Compute the appropriate confidence interval. (f) How 
large is the effect of violence in terms of the difference it produces in 
aggression scores?

18. You investigate whether the older or younger male in pairs of brothers tends to be
more extroverted. You obtain the following extroversion scores:

Sample 1 (Younger) Sample 2 (Older)

10 18
11 17
18 19
12 16
15 15
13 19
19 13
15 20

(a) What are and ? (b) Compute (c) With , what is ? (d) What
should you conclude about this relationship? (e) Which of our approaches should
we use to determine if this a scientifically important relationship?

19. A rather dim student proposes testing the conditions of “male” and “female” using
a repeated-measures design. What’s wrong with this idea?

20. With and , a significant independent-samples was . 
How would you report this in the literature?

21. An experimenter investigated the effects of a sensitivity training course on a
policeman’s effectiveness at resolving domestic disputes (using independent

14.55tobtdf 5 40� 5 .05
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samples who had or had not completed the course). The dependent variable was
the ability to resolve a domestic dispute. These success scores were obtained:

No Course Course

11 13
14 16
10 14
12 17
8 11

15 14
12 15
13 18
9 12

11 11

(a) Should a one-tailed or a two-tailed test be used? (b) What are and ? 
(c) Subtracting course from no course, compute and determine whether it is
significant. (d) Compute the confidence interval for the difference between the 
(e) What conclusions can the experimenter draw from these results? (f) Using our
two approaches, compute the effect size and interpret it.

22. When reading a research article, you encounter the following statements. For
each, identify the , the design, the statistical procedure performed and the result,
the relationship, and if a Type I or Type II error is possibly being made.
(a) “The t-test indicated a significant difference between the mean for men

and for women , with , . Unfortunately,
the effect size was only .” (b) “The t-test indicated that participants’ weights
after three weeks of dieting were significantly reduced relative to the pretest
measure, with , , and .”

INTEGRATION QUESTIONS

23. How do you distinguish the independent variable from the dependent variable?
(Ch. 2)

24. What is the difference between an experiment versus a correlational study in
terms of (a) the design? (b) How we examine the relationship? (c) How sampling
error might play a role? (Chs. 2, 4, 7, 11, 12)

25. (a) When do you perform parametric inferential procedures in experiments? 
(b) What are the four parametric inferential procedures for experiments that we
have discussed and what is the design in which each is used? (Chs. 10, 11, 12)

26. In recent chapters, you have learned about three different versions of a confidence
interval. (a) What are they called? (b) How are all three similar in terms of what
they communicate? (c) What are the differences between them? (Chs. 11, 12)

27. (a) What does it mean to “account for variance”? (b) How do we predict scores in
an experiment? (c) Which variable in an experiment is potentially the good
predictor and important? (d) When does that occur? (Chs. 5, 7, 8, 12) 

28. (a) In an experiment, what are the three ways to try to maximize power? 
(b) What does maximizing power do in terms of our errors? (c) For what 
outcome is it most important for us to have maximum power and why? 
(Chs. 10, 11, 12)
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29. You have performed a one-tailed t-test. When computing a confidence interval,
should you use the one-tailed or two-tailed ? (Chs. 11, 12)

30. For the following, identify the inferential procedure to perform and the key infor-
mation for answering the research question. Note: If no inferential procedure is
appropriate, indicate why. (a) Ten students are tested for accuracy of distance esti-
mation when using one or both eyes. (b) We determine that the average number of
cell phone calls in a sample of college students is 7.2 per hour. We want to
describe the likely national average (�) for this population. (c) We compare chil-
dren who have siblings to those who do not, rank ordering the children in terms of
their willingness to share their toys. (d) Two gourmet chefs have rank ordered the
10 best restaurants in town. How consistently do they agree? (e) We measure the
influence of sleep deprivation on driving performance for groups having 4 or 8
hours sleep. (f) We test whether wearing black uniforms produces more
aggression by comparing the mean number of penalties a hockey team receives
per game when wearing black to the league average for teams with non-black
uniforms. (Chs. 11, 12)

tcrit

■ ■ ■ SUMMARY OF 
FORMULAS

1. To perform the independent samples t-test:

2. The formula for the confidence interval for the
difference between two ms is

3. To perform the related samples t-test:
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GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 5, variance indicates variability, which is the differences between
scores. Also, it is called “error variance.”

■ From Chapter 10, why we limit the probability of a Type I error to .

■ From Chapter 12, what independent and related samples are, how we “pool” the
sample variances to estimate the variance in the population, and what effect size
is and why it is important.

Your goals in this chapter are to learn

■ The terminology of analysis of variance.

■ When and how to compute 

■ Why should equal 1 if is true, and why it is greater than 1 if is false.

■ When to compute Fisher’s protected t-test or Tukey’s HSD.

■ How eta squared describes effect size.
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The One-Way Analysis 
of Variance13
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Believe it or not, we have only one more common inferential procedure to learn and
it is called the analysis of variance. This is the parametric procedure used in experi-
ments involving more than two conditions. This chapter will show you (1) the 
general logic behind the analysis of variance, (2) how to perform this procedure for
one common design, and (3) how to perform an additional analysis called post hoc
comparisons.

NEW STATISTICAL NOTATION

The analysis of variance has its own language that is also commonly used in research
publications:

1. Analysis of variance is abbreviated as ANOVA.

2. An independent variable is also called a factor.

3. Each condition of the independent variable is also called a level, or a treatment,
and differences in scores (and behavior) produced by the independent variable are
a treatment effect.

4. The symbol for the number of levels in a factor is k.
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WHY IS IT IMPORTANT TO KNOW ABOUT ANOVA?

It is important to know about analysis of variance because it is the most common infer-
ential statistical procedure used in experiments. Why? Because there are actually many
versions of ANOVA, so it can be used with many different designs: It can be applied to
an experiment involving independent samples or related samples, to an independent
variable involving any number of conditions, and to a study involving any number of
independent variables. Such complex designs are common because, first, the hypothe-
ses of the study may require comparing more than two conditions of an independent
variable. Second, researchers often add more conditions because, after all of the time
and effort involved in creating two conditions, little more is needed to test additional
conditions. Then we learn even more about a behavior (which is the purpose of
research). Therefore, you’ll often encounter the ANOVA when conducting your own
research or when reading about the research of others.

AN OVERVIEW OF ANOVA

Because different versions of ANOVA are used depending on the design of a study, we
have important terms for distinguishing among them. First, a one-way ANOVA is per-
formed when only one independent variable is tested in the experiment (a two-way
ANOVA is used with two independent variables, and so on). Further, different versions
of the ANOVA depend on whether participants were tested using independent or
related samples. However, in earlier times participants were called “subjects,” and in
ANOVA, they still are. Therefore, when an experiment tests a factor using independent
samples in all conditions, it is called a between-subjects factor and requires the
formulas from a between-subjects ANOVA. When a factor is studied using related
samples in all levels, it is called a within-subjects factor and involves a different set 
of formulas called a within-subjects ANOVA. In this chapter, we’ll discuss the one-
way, between-subjects ANOVA. (The slightly different formulas for a one-way, within-
subjects ANOVA are presented in Appendix A.3.)

As an example of this type of design, say we conduct an experiment to determine
how well people perform a task, depending on how difficult they believe the task will
be (the “perceived difficulty” of the task). We’ll create three conditions containing the
unpowerful of five participants each and provide them with the same easy ten math
problems. However, we will tell participants in condition 1 that the problems are easy,
in condition 2 that the problems are of medium difficulty, and in condition 3 that the
problems are difficult. Thus, we have three levels of the factor of perceived difficulty.
Our dependent variable is the number of problems that participants then correctly solve
within an allotted time. If participants are tested under only one condition and we do
not match them, then this is a one-way, between-subjects design.

The way to diagram a one-way ANOVA is shown in Table 13.1. Each column is a
level of the factor, containing the scores of participants tested under that condition (here
symbolized by ). The symbol stands for the number of scores in a condition, so here

per level. The mean of each level is the mean of the scores from that column.
With three levels in this factor, . (Notice that the general format is to label the fac-
tor as factor , with levels , , , and so on.) The total number of scores in the
experiment is , and here . Further, the overall mean of all scores in the experi-
ment is the mean of all 15 scores.

N 5 15N
A3A2A1A

k 5 3
n 5 5

nX

n
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Factor A: Independent Variable of
Perceived Difficulty

Level A1: Level A2: Level A3: Conditions
Easy Medium Difficult k � 3

X X X
X X X
X X X
X X X
X X X

Overall 
N 5 15n3 5 5n2 5 5n1 5 5

XX3X2X1

➝

TABLE 13.1

Diagram of a Study 
Having Three Levels 
of One Factor

Each column represents 
a condition of the
independent variable.

Although we now have three conditions, our purpose is still to demonstrate a relation-
ship between the independent variable and the dependent variable. Ideally, we’ll find a
different mean for each condition, suggesting that if we tested the entire population under
each level of difficulty, we would find three different populations of scores, located at three
different . However, it’s possible that we have the usual problem: Maybe the inde-
pendent variable really does nothing to scores, the differences between our means reflect
sampling error, and actually we would find the same population of scores, having the same

, for all levels of difficulty. Therefore, as usual, before we can conclude that a relation-
ship exists, we must eliminate the idea that our sample means poorly represent that no rela-
tionship exists. The analysis of variance is the parametric procedure for determining
whether significant differences occur in an experiment containing two or more conditions.
Thus, when you have only two conditions, you can use either a two-sample t-test or the
ANOVA: You’ll reach exactly the same conclusions, and both have the same probability
of making Type I and Type II errors. However, you must use ANOVA when you have more
than two conditions (or more than one independent variable).

Otherwise, the ANOVA has the same assumptions as previous parametric proce-
dures. Performing a one-way, between-subjects ANOVA is appropriate when

1. The experiment has only one independent variable and all conditions contain
independent samples.

2. The dependent variable measures normally distributed interval or ratio scores.

3. The variances of the populations are homogeneous.

Although the in all conditions need not be equal, violations of the assumptions are
less serious when the are equal. Also, the procedures are much easier to perform
with equal .

How ANOVA Controls the Experiment-Wise Error Rate

You might be wondering why we even need ANOVA. Couldn’t we use the independent-
samples t-test to test for significant differences among the three means above? That 
is, we might test whether differs from , then whether differs from , and 
finally whether differs from . We cannot use this approach because of the resulting
probability of making a Type I error (rejecting a true ).

To understand this, we must first distinguish between making a Type I error when
comparing a pair of means as in the t-test, and making a Type I error somewhere in the
experiment when there are more than two means. In our example, we have three means

H0

X3X1

X3X2X2X1
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so we can make a Type I error when comparing to , to , or to . Techni-
cally, when we set , it is the probability of making a Type I error when we 
make one comparison. However, it also defines what we consider to be an acceptable
probability of making a Type I error anywhere in an experiment. The probability of
making a Type I error anywhere among the comparisons in an experiment is called the
experiment-wise error rate.

We can use the t-test when comparing the only two means in an experiment because
with only one comparison, the experiment-wise error rate equals . But with more than
two means in the experiment, performing multiple t-tests results in an experiment-wise
error rate that is much larger than . Because of the importance of avoiding Type I
errors, however, we do not want the error rate to be larger than we think it is, and it
should never be larger than . Therefore, we perform ANOVA because then our
actual experiment-wise error rate will equal the alpha we’ve chosen.

REMEMBER The reason for performing ANOVA is that it keeps the experiment-
wise error rate equal to .

Statistical Hypotheses in ANOVA

ANOVA tests only two-tailed hypotheses. The null hypothesis is that there are no
differences between the populations represented by the conditions. Thus, for our
perceived difficulty study, with the three levels of easy, medium, and difficult, we have

In general, for any ANOVA with levels, the null hypothesis is 
The “ ” indicates that there are as many as there are levels.

You might think that the alternative hypothesis would be However, a
study may demonstrate differences between some but not all conditions. For example,
perceived difficulty may only show differences in the population between our easy and
difficult conditions. To communicate this idea, the alternative hypothesis is

: not all are equal

implies that a relationship is present because two or more of our levels represent dif-
ferent populations.

As usual, we test , so ANOVA always tests whether all of our level means repre-
sent the same .

The Order of Operations in ANOVA: The F Statistic 
and Post Hoc Comparisons

The statistic that forms the basis for ANOVA is . We compute , which we com-
pare to , to determine whether any of the means represent different .

When is not significant, it indicates no significant differences between any
means. Then the experiment has failed to demonstrate a relationship, we are finished
with the statistical analyses, and it’s back to the drawing board.

When is significant, it indicates only that somewhere among the means two or
more of them differ significantly. However, does not indicate which specific means
differ significantly. Thus, if for the perceived difficulty study is significant, we will
know that we have significant differences somewhere among the means of the easy,
medium, and difficult levels, but we won’t know where they are.
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■ The one-way ANOVA is performed when testing
two or more conditions from one independent 
variable.

■ A significant followed by post hoc comparisons
indicates which level means differ significantly, with
the experiment-wise error rate equal to .

MORE EXAMPLES

We measure the mood of participants after they have
won $0, $10, or $20 in a rigged card game. With one
independent variable, a one-way design is involved,
and the factor is the amount of money won. The levels
are $0, $10, or $20. If independent samples receive
each treatment, we perform the between-subjects
ANOVA. (Otherwise, perform the within-subjects
ANOVA.) A significant will indicate that at least
two of the conditions produced significant differences
in mean mood scores. Perform post hoc comparisons
to determine which levels differ significantly, compar-
ing the mean mood scores for $0 vs. $10, $0 vs. $20,
and $10 vs. $20. The probability of a Type I error in
the study—the experiment-wise error rate—equals .�

Fobt

�
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For Practice

1. A study involving one independent variable is a
____ design.

2. Perform the ____ when a study involves independ-
ent samples; perform the ____ when it involves
related samples.

3. An independent variable is also called a ____, and
a condition is also called a ____, or ____.

4. The ____ will indicate whether any of the
conditions differ, and then the ____ will indicate
which specific conditions differ.

5. The probability of a Type I error in the study is
called the ____.

Answers
1. one-way
2. between-subjects ANOVA; within-subjects ANOVA
3. factor; level; treatment
4. ; post hoc comparisons
5. experiment-wise error rate

Fobt

A  Q U I C K  R E V I E W

UNDERSTANDING THE ANOVA

The logic and components of all versions of the ANOVA are very similar. In each case,
the analysis of variance does exactly that—it “analyzes variance.” This is the same con-
cept of variance that we’ve talked about since Chapter 5. But we do not call it variance.

Therefore, when is significant we perform a second statistical procedure, called
post hoc comparisons. Post hoc comparisons are like t-tests in which we compare all
possible pairs of means from a factor, one pair at a time, to determine which means dif-
fer significantly. Thus, for the difficulty study, we’ll compare the means from easy and
medium, from easy and difficult, and from medium and difficult. Then we will know
which of our level means actually differ significantly from each other. By performing
post hoc comparisons after is significant, we ensure that the experiment-wise prob-
ability of a Type I error equals our .

REMEMBER If is significant, then perform post hoc comparisons to
determine which specific means differ significantly.

The one exception to this rule is when you have only two levels in the factor. Then
the significant difference indicated by must be between the only two means in the
study, so it is unnecessary to perform post hoc comparisons.

Fobt

Fobt

�
Fobt

Fobt
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Factor A

Level A1: Level A2: Level A3:

X X X
X X X
X X X
X X X
X X X

X3X2X1

TABLE 13.2

How to Conceptualize
the Computation of MSwn

Here, we find the
difference between each
score in a condition and
the mean of that
condition.

Instead, ANOVA has its own terminology. We begin with the formula for the estimated
population variance:

In the numerator we find the sum of the squared deviations between the mean and each
score. In ANOVA, the “sum of the squared deviations” is shortened to sum of squares,
which is abbreviated as . In the denominator we divide by , which is our
degrees of freedom or . Recall that dividing the sum of the squared deviations by 
produces something like the average or the mean of the squared deviations. In ANOVA,
this is shortened to mean square, which is symbolized as .

Thus, when we compute we are computing an estimate of the population vari-
ance. In the ANOVA we compute variance from two perspectives, called the mean
square within groups and the mean square between groups.

The Mean Square within Groups

The mean square within groups describes the variability of scores within the condi-
tions of an experiment. Its symbol is . You can conceptualize the computation of

as shown in Table 13.2: First, we find the variance in level 1 (finding how much
the scores in level 1 differ from ), then we find the variance of scores in level 2
around , and then we find the variance of scores in level 3 around . Although each
sample provides an estimate of the population variability, we obtain a better estimate
by averaging or “pooling” them together, like we did in the independent-samples t-test.
Thus, the is the “average” variability of the scores in each condition.

We compute by looking at the scores within one condition at a time, so the dif-
ferences among those scores are not influenced by our independent variable. Therefore,
the value of stays the same, regardless of whether is true or false. Either way,

is an estimate of the variance of scores in the population If is true and we
are representing one population, then estimates the of that population. If is
correct and we are representing more than one population, because of homogeneity of
variance, estimates the one value of that would occur in each population.

REMEMBER The is an estimate of the variability of individual scores
in the population.

The Mean Square between Groups

The other variance computed in ANOVA is the mean square between groups. 
The mean square between groups describes the variability between the means of our

MSwn

σ2
xMSwn

Haσ2
XMSwn

H01σ2
X 2 .MSwn

H0MSwn

MSwn

MSwn

X3X2

X1

MSwn

MSwn

MS
MS

dfdf
N 2 1SS

S2
X 5

© 1X 2 X 22

N 2 1
5

sum of squares

degrees of freedom
5

SS

df
5 mean square 5 MS
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levels. It is symbolized by . You can conceptualize the computation of as
shown in Table 13.3.

We compute variability as the differences between a set of scores and their mean, so
here, we treat the level means as scores, finding the “average” amount they deviate
from their mean, which is the overall mean of the experiment. In the same way that the
deviations of raw scores around the mean describe how different the scores are from
each other, the deviations of the sample means around the overall mean describe how
different the sample means are from each other.

Thus, is our way of measuring how much the means of our levels differ from
each other. This serves as an estimate of the differences between sample means that
would be found in one population. That is, we are testing the that our data all come
from the same, one population. If so, sample means from that population will not nec-
essarily equal or each other every time, because of sampling error. Therefore, when

is true, the differences between our means as measured by will not be zero.
Instead, is an estimate of the “average” amount that sample means from that one
population differ from each other due to chance, sampling error.

REMEMBER The describes the differences between our means as an
estimate of the differences between means found in the population.

As we’ll see, performing the ANOVA involves first using our data to compute the
and . The final step is to then compare them by computing .

Comparing the Mean Squares: The Logic of the F-Ratio

The test of is based on the fact that statisticians have shown that when samples of
scores are selected from one population, the size of the differences among the sample
means will equal the size of the differences among individual scores. This makes sense
because how much the sample means differ depends on how much the individual scores
differ. Say that the variability in the population is small so that all scores are very close
to each other. When we select samples of such scores, we will have little variety in
scores to choose from, so each sample will contain close to the same scores as the next
and their means also will be close to each other. However, if the variability is very
large, we have many different scores available. When we select samples of these scores,
we will often encounter a very different batch each time, so the means also will be very
different each time.

REMEMBER In one population, the variability of sample means will equal
the variability of individual scores.

H0

FobtMSbnMSwn

MSbn

MSbn

MSbnH0

�

H0

MSbn

MSbnMSbn

Factor A

Level A1: Level A2: Level A3:

X X X
X X X
X X X
X X X
X X X

Overall XX3X2X1

TABLE 13.3

How to Conceptualize
the Computation of MSbn

Here, we find the
difference between the
mean of each condition
and the overall mean of
the study.
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Here is the key: the estimates the variability of sample means in the population
and the estimates the variability of individual scores in the population. We’ve just
seen that when we are dealing with only one population, sample means and individual
scores will differ to the same degree. Therefore, when we are dealing with only one
population, the should equal : the answer we compute for should be
the same answer as for . Our always says that we are dealing with only one
population, so if is true for our study, then our should equal our .

An easy way to determine if two numbers are equal is to make a fraction out of them,
which is what we do when computing .Fobt

MSwnMSbnH0

H0MSwn

MSbnMSwnMSbn

MSwn

MSbn

This fraction is referred to as the -ratio. The -ratio equals the divided by the
. (The is always on top!)

If we place the same number in the numerator as in the denominator, the ratio will
equal 1. Thus, when is true and we are representing one population, the should
equal the , so should equal 1. Or, conversely, when equals 1, it tells us
that is true.

Of course may not equal 1 exactly when is true, because we may have
sampling error in either or That is, either the differences among our
individual scores and/or among our level means may be “off” in representing the cor-
responding differences in the population. Therefore, realistically, we expect that, if

is true, will equal 1 or at least will be close to 1. In fact, if is less than 1,
mathematically it can only be that is true and we have sampling error in represent-
ing this. (Each is a variance, in which we square differences, so cannot be
negative.)

It gets interesting, however, as becomes larger than 1. No matter what our data
show, implies that is “trying” to equal 1, and if it does not, it’s because of sam-
pling error. Let’s think about that. If , it is twice what says it should be,
although according to , we should conclude “No big deal—a little sampling error.”
Or, say that , so the is four times the size of (and is four times
what it should be). Yet, says that would have equaled but by chance we
happened to get a few unrepresentative scores. If is, say, 10, then it, and the ,
are ten times what says they should be! Still, says this is because we had a little
bad luck in representing the population.

As this illustrates, the larger the , the more difficult it is to believe that our data
are poorly representing the situation where is true. Of course, if sampling error
won’t explain so large an , then we need something else that will. The answer is
our independent variable. When is true so that changing our conditions produces
different populations of scores, will not equal , and will not equal 1.
Further, the more that changing the levels of our factor changes scores, the larger will
be the differences between our level means, and so the larger will be . However,
recall that the value of stays the same regardless of whether is true. 
Thus, greater differences produced by our factor will produce only a larger ,MSbn

H0MSwn

MSbn

FobtMSwnMSbn

Ha

Fobt

H0

Fobt

H0H0

MSbnFobt

MSwnMSbnH0

FobtMSwnMSbnFobt 5 4
H0

H0Fobt 5 2
FobtH0

Fobt

FobtMS
H0

FobtFobtH0

MSwn.MSbn

H0Fobt

H0

FobtFobtMSwn

MSbnH0

MSbnMSwn

MSbnFF

The formula for is

Fobt 5
MSbn

MSwn

Fobt
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which produces a larger . Turning this around, the larger the , the more it
appears that is true. Putting this all together:

The larger the , the less likely it is that H0 is true and the more likely it
is that Ha is true.

If our is large enough to be beyond , we will conclude that is so unlikely to
be true that we will reject and accept .

REMEMBER If is true, should equal 1 or be close to 1. The larger the
, the less likely that is true and the more likely that is true.

Before moving on to the computations, we will briefly discuss the underlying com-
ponents that represents in the population.

The Theoretical Components of the F-ratio

To fully understand the -ratio, we need to understand what and represent
in the population. We saw that estimates the variance of individual scores in the
population Statisticians also call this variance the error variance, symbolized by

. Thus, the is an estimate of (The is also referred to as the “error
term” in the -ratio.)

When is true and we have only one population, the also estimates . We saw
that with one population, the variability of sample means depends on the variability of indi-
vidual scores. Thus, although is computed using sample means, it ultimately reflects
the variability among the scores, which is . Therefore, when is true, the reason that

should equal is because both reflect the error variance in that one population.
In symbols then, here is what the -ratio represents in the population when is true.

Both mean squares are merely estimates of the one value of , so they should be
equal, and so their ratio equals 1.

On the other hand, if is false and is true, then more than one population is
involved. By measuring the differences between the means of our conditions, will
measure this treatment effect. Statisticians refer to the differences between the popula-
tions produced by a factor as the treatment variance, which is symbolized as .
Thus, is an estimate of .

However, even if a factor does produce different populations, our samples will not
perfectly represent them because of sampling error. Therefore, to some extent, the dif-
ferences between our means, as measured by the , will still reflect the variability
in scores, which we call error variance. Thus, estimates both treatment variance
plus error variance. Altogether, here is what the -ratio represents in the population
when is false and is true.

Sample Estimates Population

Fobt � �
M
M

S
S

w

bn

n
�

→
→ � F � 1

In the denominator, the is still the same estimate of . In the numerator, 
however, the larger the differences between the conditions, the larger is the σ2
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component, and so the larger will be . A larger numerator produces an that is
greater than 1. Thus, when is true, regardless of whether we have a positive, nega-
tive, or curvilinear relationship, simply will be larger than , so that is
greater than 1. This is why we test only two-tailed hypotheses. (Technically, this for-
mula is always used to describe what represents, even when is true. The 
always estimates the amount of that is present, but when is true, this amount is
zero. This produces the equivalent of the previous formula where .)

REMEMBER An equal to (or less than) 1 indicates that is true. An 
greater than 1 may result from sampling error, or it may indicate a treat-

ment effect in the population. A significant indicates that the means from
the conditions are likely to represent two or more .�s

Fobt

Fobt

H0Fobt

Fobt 5 1
H0σ2

treat

MSbnH0Fobt

FobtMSwnMSbn

Ha

FobtMSbn

■ The measures the differences among level
means (which may reflect treatment variance in the
population).

■ The measures the differences among individ-
ual scores (which reflects error variance in the pop-
ulation).

■ .

MORE EXAMPLES

In a study, , , and . The
equals the only when all samples belong

to the same population. Therefore, we retain the 
that all conditions represent the same population. Say,
instead, that , , and .
Because is so much larger than , at least
two conditions might represent different populations
(with reflecting ). If is beyond ,
these results are unlikely to be due to sampling error,
so we accept the that at least two conditions repre-
sent different populations.

Ha

FcritFobtσ2
treatMSbn

MSwnMSbn

Fobt 5 4MSwn 5 6MSbn 5 24

H0

MSwnMSbn

Fobt 5 1MSwn 5 6MSbn 5 6

Fobt 5
MSbn

MSwn

MSwn

MSbn For Practice

1. is the symbol for ____, and is the sym-
bol for _____.

2. Differences produced by the independent variable
are called the ____ effect, and in the population,
are measured as ____.

3. Differences among the scores in the data are meas-
ured by ____ in the sample to estimate the popula-
tion ____.

4. When is true, should equal ____.

5. When is false, will be ____.

Answers
1. mean square within groups; mean square between

groups
2. treatment; treatment variance or 
3. ; error variance, or 
4. 1 or close to 1
5. greater than 1

σ2
errorMSwn

σ2
treat

FobtH0

FobtH0

MSbnMSwn

A  Q U I C K  R E V I E W

PERFORMING THE ANOVA

Now we can discuss the computations involved in performing the ANOVA. Recall from
the beginning of this chapter that we changed the formula for the variance into comput-
ing a mean square by dividing the sum of squares by the degrees of freedom. In sym-
bols, this is

MS 5
SS

df
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Factor A: Perceived Difficulty

Level A1: Level A2: Level A3:
Easy Medium Difficult

9 4 1
12 6 3
4 8 4
8 2 5
7 10 2 Totals

�X � 40 �X � 30 �X � 15 �Xtot � 85
�X2 � 354 �X2 � 220 �X2 � 55 �X2

tot � 629
n1 � 5 n2 � 5 n3 � 5 N � 15
X�1 � 8 X�2 � 6 X�3 � 3 k � 3

TABLE 13.4

Data from Perceived 
Difficulty Experiment

Adding subscripts, we will compute the mean square between groups by com-
puting the sum of squares between groups and dividing by the degrees of freedom
between groups . Likewise, we will compute the mean square within groups 
by computing the sum of squares within groups and dividing by the degrees of
freedom within groups . Once we have and , we can compute .

If all this strikes you as the most confusing thing ever devised, you’ll find an ANOVA
summary table very helpful. Here is its general format:

Summary Table of One-Way ANOVA

Source Sum of Squares df Mean Square F

Between SSbn dfbn MSbn Fobt
Within SSwn dfwn MSwn
Total SStot dftot

The source column identifies each source of variation, either between, within, or total.
In the following sections, we’ll compute the components for the other columns.

Computing the 

Say that we performed the perceived difficulty study discussed earlier, telling partici-
pants that some math problems are easy, of medium difficulty, or difficult and then
measured the number of problems they solved. The data are presented in Table 13.4.
As shown in the following sections, there are four parts to computing , finding 
(1) the sum of squares, (2) the degrees of freedom, (3) the mean squares, and (4) 
So that you don’t get lost, fill in the ANOVA summary table as you complete each step.
(There will be a test later.)

Computing the Sums of Squares The first task is to compute the sum of squares.
Do this in four steps.

Step 1 Compute the sums and means. As in Table 13.4, compute , , and for
each level (each column). Then add together the from all levels to get the total, which
is . Also, add together the from all levels to get the total, which is .©X2

tot©X2s©Xtot

©Xs
X©X2©X

Fobt.
Fobt

Fobt

FobtMSwnMSbn1dfwn 2
1SSwn 2

1MSwn 21dfbn 2
1SSbn 2

1MSbn 2
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Step 2 Compute the total sum of squares .1SStot 2

The is the sum of all , and is the sum of all squared . is the total 
in the study.

Using the data from Table 13.4, , , and , so

so

and

Step 3 Compute the sum of squares between groups .1SSbn 2

SStot 5 629 2 481.67 5 147.33

SStot 5 629 2
7225

15

SStot 5 629 2
185 22

15

N 5 15©Xtot 5 85©X2
tot 5 629

NNXs©X2
totXs©Xtot

Back in Table 13.4, each column represents a level of the factor. Thus, find the 
for a level, square the , and then divide by the in that level. After doing this 
for all levels, add the results together and subtract the quantity Thus, 
we have

so

and

SSbn 5 545 2 481.67 5 63.33

SSbn 5 1320 1 180 1 45 2 2 481.67

SSbn 5 a
140 22

5
1
130 22

5
1
115 22

5
b 2 a

185 22

15
b

1©Xtot 2
2>N.

n©X
©X

The formula for the total sum of squares is

SStot 5 ©X2
tot 2 a

1©Xtot 2
2

N
b

The formula for the sum of squares between groups is

SSbn 5 © a
1Sum of scores in the column 22

n of scores in the column
b 2 a

1©Xtot 2
2

N
b
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In the example, is 147.33 and is 63.33, so

Filling in the first column of the ANOVA summary table, we have

Source Sum of Squares df Mean Square F

Between 63.33 dfbn MSbn Fobt
Within 84.00 dfwn MSwn
Total 147.33 dftot

As a double check, make sure that the total equals the between plus the within. Here,
.

Now compute the degrees of freedom.

Computing the Degrees of Freedom We compute , , and , so there
are three steps.

1. The degrees of freedom between groups equals , where is the number 
of levels in the factor. This is because when computing we essentially 
have a sample containing the means from our levels that we determine the vari-
ability of. For we reduce the number in the sample by 1, so out of means,

. In the example, with three levels of perceived difficulty, .
Thus, .

2. The degrees of freedom within groups equals , where is the total in the
experiment and is the number of levels in the factor. This is because when com-
puting we essentially find the estimated variance in each condition and pool
them. In each condition we compute the variance using , so out of the entire
experiment , we subtract one per condition, subtracting a total of In the
example, is 15 and is 3, so .

3. The degrees of freedom total equals , where is the total in the
experiment. This is because when computing the total we treat the experiment
as one sample. Then we have scores, so the is . In the example, is
15, so .

The Thus, to check our work, , which
equals 14, the .dftot

dfbn 1 dfwn 5 2 1 12dftot 5 dfbn 1 dfwn.

dftot 5 15 2 1 5 14
NN 2 1dfN

SS
NNN 2 1

dfwn 5 15–3 5 12kN
k.1N 2

n 2 1
MSwn

k
NNN 2 k

dfbn 5 2
k 5 3df 5 k 2 1
kdf

MSbn

kk 2 1

dftotdfwndfbn

63.33 1 84.00 5 147.33

SSwn 5 147.33–63.33 5 84.00

SSbnSStot

Step 4 Compute the sum of squares within groups . We use a shortcut to com-
pute . Mathematically, equals plus . Therefore, the total minus the
between leaves the within.

SSwnSSbnSStotSSwn

1SSwn 2

The formula for the sum of squares within groups is

SSwn 5 SStot 2 SSbn
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Adding the to the summary table, it looks like this:

Source Sum of Squares df Mean Square F

Between 63.33 2 MSbn Fobt
Within 84.00 12 MSwn
Total 147.33 14

Now find each mean square.

Computing the Mean Squares You can work directly from the summary table to
compute the mean squares. Any mean square equals the appropriate sum of squares
divided by the corresponding . Thus,df

df

From the summary table, we see that

MSbn 5
63.33

2
5 31.67

For the example,

Do not compute the mean square for because it has no use.
Now in the summary table we have

Source Sum of Squares df Mean Square F

Between 63.33 2 31.67 Fobt
Within 84.00 12 7.00
Total 147.33 14

SStot

MSwn 5
84

12
5 7.00

The formula for the mean square between groups is

MSbn 5
SSbn

dfbn

The formula for the mean square within groups is

MSwn 5
SSwn

dfwn
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Computing the F Finally, compute Fobt.

Notice that in the formula, is “over” , and this is how they are positioned
in the summary table. In our example, is 31.67 and is 7.00, so

Now the completed ANOVA summary table is

Source Sum of Squares df Mean Square F

Between 63.33 2 31.67 4.52
Within 84.00 12 7.00
Total 147.33 14

The is always placed in the row labeled “Between” because the is testing
for significant differences between our conditions. Also, in the source column you
may see (1) the name of the factor at “Between,” and (2) the word “Error” in place of
“Within.”

Interpreting 

We interpret by comparing it to , and for that we examine the -distribution.
The F-distribution is the sampling distribution showing the various values of that
occur when is true and all conditions represent one population. To create it, it is as
if, using our and , we select the scores for all of our conditions from one raw score
population (like says we did in our experiment) and compute , and then

. We do this an infinite number of times, and plotting the , produce the sampling
distribution, as shown in Figure 13.1.

The -distribution is skewed because there is no limit to how large can be, but it
cannot be less than zero. The mean of the distribution is 1 because, most often when 

is true, will equal , so will equal 1. The right-hand tail shows that
sometimes, by chance, is greater than 1. Because our can reflect a relationship in
the population only when it is greater than 1, the entire region of rejection is in this
upper tail of the -distribution. (That’s right, ANOVA involves two-tailed hypotheses,
but they are tested using only the upper tail of the sampling distribution.)

F

FobtF
FMSwnMSbnH0

FobtF

FsFobt

MSbnMSwnH0

kns
H0

F
FFcritFobt

Fobt

FobtFobt

Fobt 5
MSbn

MSwn
5

31.67

7.00
5 4.52

MSwnMSbn

MSwnMSbn

The formula for is

Fobt 5
MSbn

MSwn

Fobt
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f

Fcrit = 3.88

 α = .05

μ 

F0 1.0F FF F F F F F F F F F

Fobt = 4.52

FIGURE 13.1

Sampling distribution of
F when H0 is true for
dfbn 2 and dfwn 1255

There are actually many -distributions, each having a slightly different shape,
depending on our degrees of freedom. However, two values of determine the shape
of an -distribution: the used when computing the mean square between groups

and the used when computing the mean square within groups . There-
fore, to obtain , turn to Table 5 in Appendix C, entitled “Critical Values of .”
Across the top of the tables, the columns are labeled “Degrees of Freedom Between
Groups.” Along the left-hand side, the rows are labeled “Degrees of Freedom Within
Groups.” Locate the appropriate column and row, using the from your study. The
critical values in dark type are for , and those in light type are for . For
our example, and . For , the is 3.88. (If your are
not in the table, then for from 30 to 50, your is the average of the two critical
values shown for the bracketing that are given. For above 50, compare to the
two critical values for the in the table that bracket your , using the same strategy
we discussed for t-tests in Chapter 11.)

Thus, in our perceived difficulty study, is 4.52 and is 3.88 as above in Fig-
ure 13.1. Our says that is greater than 1 because of sampling error and that actu-
ally we are poorly representing no relationship in the population. However, our is
beyond , so we reject : Our is so unlikely to occur if our samples were rep-
resenting no difference in the population that we reject that this is what they represent.
Therefore, we conclude that the is significant and that the factor of perceived diffi-
culty produces a significant difference in mean performance scores.

Of course, had been less than , then the corresponding differences between
our means would not be too unlikely to occur when is true, so we would not reject

Then, as usual, we’d draw no conclusion about our independent variable, one way
or the other. We would also consider if we had sufficient power to prevent a Type II
error (missing the relationship). We increase the power of an ANOVA using the same
strategies discussed in previous chapters: maximize the differences in scores between
conditions, minimize variability within conditions, and maximize . (These strategies
also increase the power of post hoc comparisons.)

n

H0.
H0

FcritFobt

Fobt

FobtH0Fcrit

Fobt

FobtH0

FcritFobt

dfdf
Fobtdfdf

Fcritdf
dfwnFcrit� 5 .05dfwn 5 12dfbn 5 2

� 5 .01� 5 .05
dfs

FFcrit

1dfwn 2df1dfbn 2
dfF
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■ To compute , compute , , and and
, , and Dividing by gives

; dividing by gives Dividing
by gives Compare to 

MORE EXAMPLES

We test participants under conditions and 

4 6
5 8
3 9
5 8

1. Compute the sums of squares: 

SSwn 5 SStot 2 SSbn 5 32 2 24.5 5 7.5

 5 a
172

4
1

312

4
b 2 a

482

8
b 5 24.5

 SSbn 5 © a
1©X in column 22

n in column
b 2

1©Xtot 2
2

N

SStot 5 ©X2
tot 2

1©Xtot 2
2

N
5 320 2 a

482

8
b 5 32

N 5 8n2 5 4n1 5 4
©X2

tot 5 320©X2 5 245©X2 5 75
©Xtot 5 48©X 5 31©X 5 17

X 5 7.75X1 5 4.25

A2A1

A2.A1

Fcrit.FobtFobt.MSwnMSbn

MSwn.dfwnSSwnMSbn

dfbnSSbndfwn.dfbndftot

SSwnSSbnSStotFobt 2. Compute the degrees of freedom:

3. Compute the mean squares:

4. Compute :

5. Compare to : With , , 
and , The is beyond 

Therefore, the means of the conditions 
differ significantly.

For Practice

1. What two components are needed to compute any
mean square?

2. For between groups, to compute ____ we divide
____ by ____. For within groups, to compute ____
we divide ____ by ____.

3. Finally, equals ____ divided by ____.

Answers
1. The sums of squares and the 
2. , , ; , , 
3. , MSwnMSbn

dfwnSSwnMSwndfbnSSbnMSbn

df

Fobt

Fcrit.
FobtFcrit 5 5.99.dfwn 5 6

dfbn 5 1� 5 .05FcritFobt

Fobt 5 MSbn>MSwn 5 24.5>1.25 5 19.60

Fobt

MSwn 5 SSwn>dfwn 5 7.5>6 5 1.25

MSbn 5 SSbn>dfbn 5 24.5>1 5 24.5

dftot 5 N 2 1 5 8 2 1 5 7

dfwn 5 N 2 k 5 8 2 2 5 6

dfbn 5 k 2 1 5 2 2 1 5 1

A  Q U I C K  R E V I E W

PERFORMING POST HOC COMPARISONS

Because we rejected and accepted , we return to the means from the levels of our
factor:

Perceived Difficulty

Easy Medium Difficult

We are confident that these means represent a relationship in the population, in which
increasing perceived difficulty is associated with fewer problems solved. However, 
we do not know whether every increase in difficulty produces a significant drop in

X3 5 3X2 5 6X1 5 8

HaH0
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performance. Therefore, we must determine which specific means differ significantly,
and to do that, we perform post hoc comparisons.

Statisticians have developed a variety of post hoc procedures that differ in how likely
they are to produce Type I or Type II errors. We’ll discuss two procedures that have
acceptably low error rates. Depending on whether or not your are equal, perform
either Fisher’s protected t-test or Tukey’s HSD test.

Fisher’s Protected t-Test

Perform Fisher’s protected t-test when the in all levels are not equal.ns

ns

This is a variation of the independent-samples -test. We are testing ,
where and are the means for any two levels of the factor and and are the
corresponding ns in those levels. The is from our ANOVA.

It is not incorrect to perform the protected -test even when all are equal. For
example, we can compare the mean from our easy level (8) to the mean from our diffi-
cult level (3). Each is 5, and our is 7. Filling in the formula gives

Then

Next, we compare to , which we obtain from the -tables (Table 2 in 
Appendix C). The here equals the from the ANOVA. For the example, with

and , is . Because the of is beyond this , the
means from the easy and difficult levels differ significantly.

To complete these comparisons, perform the protected -test on all possible pairs of
means in the factor. Thus, we would also test the means from easy and medium, and
the means from medium and difficult.

If a factor contains many levels, the protected -test becomes very tedious. If you
think there must be an easier way, you’re right.

Tukey’s HSD Multiple Comparisons Test

Perform the Tukey HSD multiple comparisons test when the in all levels are equal.
The HSD is a rearrangement of the -test that computes the minimum difference between
two means that is required for the means to differ significantly (HSD stands for the hon-
estly significant difference). There are four steps to performing the HSD test.

t
ns

t

t

tcrit12.99tobt;2.179tcritdfwn 5 12� 5 .05
dfwndf

ttcrittobt

tobt 5
15

271.4 2
5

15

22.80
5

15

1.673
5 12.99

tobt 5
8 2 3

B
7 a

1

5
1

1

5
b

MSwnn

nst
MSwn

n2n1X2X1

H0: �1 2 �2 5 0t

The formula for Fisher’s protected t-test is

tobt 5
X1 2 X2

B
MSwn a

1
n1

1
1
n2
b
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Step 1 Find . Using the appropriate value of in the computations is what protects
the experiment-wise error for the number of means being compared. Find the value of

in Table 6 in Appendix C, entitled “Values of Studentized Range Statistic.” In the
table, locate the column labeled with the corresponding to the number of means in
your factor. Next, find the row labeled with the used to compute your . Then
find the value of for the appropriate .

For our study above, , , and , so .

Step 2 Compute the HSD.

qk 5 3.77� 5 .05dfwn 5 12k 5 3
�qk

Fobtdfwn

k
qk

qkqk

is from the ANOVA, and is the number of scores in each level of the factor.
In the example, was 7 and was 5, so

Step 3 Determine the differences between each pair of means. Subtract each mean
from every other mean. Ignore whether differences are positive or negative (for each
pair, this is a two-tailed test of ).

The differences for the perceived difficulty study can be diagramed as shown 
below:

Perceived Difficulty

Easy Medium Difficult

X�1 � 8 X�2 � 6 X�3 � 3

2 3
5

HSD � 4.46

On the line connecting any two levels is the absolute difference between their means.

Step 4 Compare each difference to the HSD. If the absolute difference between two
means is greater than the HSD, then these means differ significantly. (It’s as if you per-
formed a -test on these means and was significant.) If the absolute difference
between two means is less than or equal to the HSD, then it is not a significant differ-
ence (and would not produce a significant ).

Above, the HSD was 4.46. The means from the easy level (8) and the difficult level
(3) differ by more than 4.46, so they differ significantly. The mean from the medium
level (6), however, differs from the other means by less than 4.46, so it does not differ
significantly from them.

tobt

tobtt

H0: �1 2 �2 5 0

HSD 5 13.77 2 a
B

7

5
b 5 4.46

nMSwn

nMSwn

The formula for Tukey’s HSD test is

HSD 5 1qk 2 aB

MSwn

n
b
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■ Perform post hoc comparisons when is signifi-
cant to determine which levels differ significantly.

■ Perform Tukey’s HSD test when all are equal and
Fisther’s -test when are unequal.

MORE EXAMPLES

An is significant, with , , and
and , , and .

To compute Fisher’s -test on and ,

and These means do not
differ significantly.

To compute Tukey’s HSD, find For and
, . Then:

HSD 5 1qk 2 aB

MSwn

n
b 5 13.49 2 a

B

20.61

11
b 5 4.78

qk 5 3.49dfwn 5 30
k 5 3qk.

tcrit 5 ;2.042.tobt 5 21.446

 5
22.8

13.75

 tobt 5
X1 2 X2

B
MSwn a

1
n1

1
1
n2
b

5
4.0 2 6.8

B
20.61 a

1

11
1

1

11
b

X3X1t
dfwn 5 30MSwn 5 20.61n 5 11X3 5 6.8

X2 5 1.5X1 5 4.0Fobt

nst
ns

Fobt The differences are ;
; 

Comparing each difference to ,
only and differ significantly.

For Practice

We have , , and ,
with in each condition, , and

.

1. Which post hoc test should we perform?

2. What is here?

3. What is the HSD?

4. Which means differ significantly?

Answers
1. Tukey’s HSD
2. For and , 
3.
4. Only and differ significantly.X3X1

HSD 5 13.40 2 1163.44>21 2 5 5.91
qk 5 3.40.dfwn 5 60k 5 3

qk

dfwn 5 60
MSwn 5 63.44n 5 21

X3 5 8.92X2 5 11.50X1 5 16.50

X3X2

HSD 5 4.785 22.8.
X1 2 X3 5 4.0 2 6.8X2 2 X3 5 1.5 2 6.8 5 25.3

X1 2 X2 5 4.0 2 1.5 5 2.5

A  Q U I C K  R E V I E W

SUMMARY OF STEPS IN PERFORMING A ONE-WAY ANOVA

It’s been a long haul, but here is everything we do when performing a one-way,
between-subjects ANOVA.

1. Create the hypotheses. The null hypothesis is , and the
alternative hypothesis is : not all are equal.

2. Compute . Compute the sums of squares and the degrees of freedom. Then
compute and Then compute .

3. Compare to Find , using and If is larger than , 
then is significant, indicating that the means in at least two conditions differ
significantly.

Fobt

FcritFobtdfwn.dfbnFcritFcrit.Fobt

FobtMSwn.MSbn

Fobt

�sHa

H0: �1 5 �2 5 . . . �k

Thus, our final conclusion about this study is that we demonstrated a relationship
between scores and perceived difficulty, but only for the easy and difficult conditions. If
these two conditions were given to the population, we would expect to find one
population for easy with a around 8 and another population for difficult with a 
around 3. We cannot say anything about the medium level, however, because it did not
produce a significant difference. Finally, as usual, we would now interpret the results in
terms of the behaviors being studied, explaining why this manipulation worked as it did.

��
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4. Perform post hoc tests. If is significant and there are more than two levels of
the factor, determine which levels differ significantly by performing post hoc
comparisons. Perform Fisher’s -test if the ns are not equal or perform Tukey’s
HSD test if all are equal.

If you followed all of that, then congratulations, you’re getting good at this stuff. Of
course, all of this merely determines whether there is a relationship. Now you must
describe that relationship.

ADDITIONAL PROCEDURES IN THE ONE-WAY ANOVA

The following presents procedures for describing a significant relationship that we have
discussed in previous chapters, except that here they have been altered to accommodate
the computations in ANOVA.

The Confidence Interval for Each Population 

As usual, we can compute a confidence interval for the represented by the mean of any
condition. This is the same confidence interval for that was discussed in Chapter 11,
but the formula is slightly different.

�
�

�

ns
t

Fobt

The is the two-tailed value found in the -tables using the appropriate and using
from the ANOVA as the is also from the ANOVA. The and are from

the level we are describing.
For example, in the easy condition, , , , and .

The two-tailed (at and ) is Thus,

This becomes

and finally,

Thus, if we were to test the entire population under our easy condition, we are 95%
confident that the population mean would fall between 5.42 and 10.58.

Follow the same procedure to describe the from any other significant level of the
factor.

�

5.42 # � # 10.58

122.578 2 1 8.0 # � # 112.578 2 1 8.0

a
B

7.0

5
b 122.179 2 1 8.0 # � # a

B

7.0

5
b 112.179 2 1 8.0

;2.179.� 5 .05df 5 12tcrit

n 5 5dfwn 5 12MSwn 5 7.0X 5 8.0

nXMSwndf.dfwn

�ttcrit

The formula for the confidence interval for a single is

a
B

MSwn

n
b 12tcrit 2 1 X # � # a

B

MSwn

n
b 11tcrit 2 1 X

�
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FIGURE 13.2

Mean number of
problems correctly 
solved as a function of
perceived difficulty

Graphing the Results in ANOVA

As usual, graph your results by placing the dependent variable on the axis and the
independent variable on the axis. Then plot the mean for each condition. Figure 13.2
shows the line graph for the perceived difficulty study. Note that we include the

medium level of difficulty, even though it did not pro-
duce significant differences.

As usual, the line graph summarizes the relationship
that is present, and here it indicates a largely negative
linear relationship.

Describing Effect Size in 
the ANOVA

Recall that in an experiment we describe the effect
size, which tells us how large of an impact the inde-
pendent variable had on dependent scores. The way to
do this is to compute the proportion of variance
accounted for, which tells us the proportional improve-
ment in predicting participants’ scores that we achieve
by predicting the mean of their condition. In ANOVA,

we compute this by computing a new correlation coefficient, called eta (pronounced
“ay-tah”), and then squaring it: eta squared indicates the proportion of variance in the
dependent variable that is accounted for by changing the levels of a factor in an
ANOVA. The symbol for eta squared is .�2

X
Y

Both and are computed in the ANOVA. The reflects the differences
between the conditions. The reflects the total differences between all scores in the
experiment. Thus, reflects the proportion of all differences in scores that are associ-
ated with the different conditions.

For example, for our study, was 63.33 and was 147.33. So,

This is interpreted in the same way that we previously interpreted The larger
the , the more consistently the factor “caused” participants to have a particular
score in a particular condition, and thus the more scientifically important the factor is
for explaining and predicting differences in the underlying behavior. Thus, our 
of .43 indicates that we are 43% more accurate at predicting participants’ scores
when we predict for them the mean of the difficulty level they were tested under. In
other words, 43% of all differences in these scores are accounted for (“caused”) by

�2

�2
r2

pb.

�2 5
SSbn

SStot
5

63.33

147.33
5 .43
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The formula for eta squared is

�2 5
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When all is said and done, the -ratio is a convoluted way of measuring the differences
between the means of our conditions and then fitting those differences to a sampling
distribution. The larger the , the less likely that the means are representing the same

. A significant indicates that the means are unlikely to represent one population
mean. Then we determine which sample means actually differ significantly and
describe the relationship they form. That’s all there is to it.

There is, however, one other type of procedure that you should be aware of. All of
the research designs in this book involve one dependent variable, and the statistics we
perform are called univariate statistics. We can, however, measure participants on two
or more dependent variables in one experiment. Statistics for multiple dependent vari-
ables are called multivariate statistics. These include the multivariate -test and the
multivariate analysis of variance (MANOVA). Even though these are very complex
procedures, the basic logic still holds: The larger the or , the less likely it is that
the samples represent no relationship in the population. To discuss multivariates further
would require another book.

Using the SPSS Appendix As discussed in Appendix B.7, SPSS will perform the
one-way between-subjects ANOVA. This includes reporting the significance level of

Fobttobt

t

Fobt�
Fobt

FPUTTING IT 
ALL TOGETHER
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changing the levels of perceived difficulty. Because 43% is a very substantial
amount, this factor is important in determining participants’ performance, so it is
important for scientific study.

Recall that our other measure of effect size is Cohen’s , which describes the magni-
tude of the differences between our means. However, with three or more levels, the pro-
cedure is extremely complicated. Therefore, instead, is the preferred measure of
effect size in ANOVA.

STATISTICS IN PUBLISHED RESEARCH: REPORTING ANOVA

In research reports, the results of an ANOVA are reported in the same ways as with pre-
vious procedures. However, now we are getting to more complicated designs, so there
is an order and logic to the report. Typically, we report the means and standard devia-
tion from each condition first. (Rather than use an incredibly long sentence for this,
often a table is presented.) Then we describe the characteristics of the primary ANOVA
and report the results. Then we report any secondary procedures. Thus, for our per-
ceived difficulty study, you might see:

“A one-way, between-subjects ANOVA was performed on the scores from
the three levels of perceived difficulty. The results were significant,

, p< A Tukey HSD test revealed that only the means for
the easy and difficult conditions differed significantly (p< ). This
manipulation accounted for .43 of the variance in scores (using ). The
95% confidence interval for the easy condition is . . .”

Notice that for , we report and then We also indicate that the Tukey
test was performed, although usually the HSD value is not reported. The alpha 
level we used is reported (as ), as is a summary of the levels that differ sig-
nificantly. Then we report other secondary analyses, such as and confidence
intervals.

�2
p 6 .05

dfwn.dfbnFobt

�2
.05

.05F1212 25 4.52

�2

d



Chapter Summary 313

, performing the HSD test, and graphing the means. The program also computes,
the , , and 95% confidence interval for for each level. It does not compute .
(The “partial eta squared” is not what we’ve discussed.

Appendix B.11 describes using SPSS to perform the one-way, within-subjects
ANOVA (discussed in Appendix A.3). The program provides the same information as
above, except that it does not perform the HSD test.

CHAPTER SUMMARY

1. The general terms used previously and their corresponding ANOVA terms are
shown in this table:

General Term � ANOVA Term

independent variable � factor
condition � level of treatment
sum of squared deviations � sum of squares (SS)
variance (s2

X) � mean square (MS)
effect of independent variable � treatment effect

2. A one-way analysis of variance tests for significant differences between the
means from two or more levels of a factor. In a between-subjects factor, each
condition involves an independent sample. In a within-subjects factor, the 
conditions involve related samples.

3. The experiment-wise error rate is the probability that a Type I error will occur in
an experiment. ANOVA keeps the experiment-wise error rate equal to 

4. ANOVA tests the that all being represented are equal; is that not all 
are equal.

5. The mean square within groups ( ), measures the differences among the
scores within the conditions. The mean square between groups , measures
the differences among the level means.

6. When is true, and estimate the error variance. When is false,
also reflects added treatment variance.

7. is computed using the -ratio, which equals the mean square between groups
divided by the mean square within groups.

8. may be greater than 1 because either (a) there is no treatment effect, but the
sample data are not perfectly representative of this, or (b) two or more sample
means represent different population means.

9. If is significant with more than two levels, perform post hoc comparisons to
determine which means differ significantly. When the are not equal, perform
Fisher’s protected -test on each pair of means. If all are equal, perform Tukey’s
HSD test.

10. Eta squared describes the effect size—the proportion of variance in depen-
dent scores accounted for by the levels of the independent variable.

1�2 2
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KEY TERMS

HSD
analysis of variance 292
ANOVA 290
between-subjects ANOVA 291
between-subjects factor 291
error variance 298
eta squared 311
experiment-wise error rate 293
factor 290

-distribution 304
Fisher’s protected -test 307

-ratio 297
level 290
F

t
F

SSwnSSbn�2dfwndfbnσ2
treat

MSbnσ2
errorMSwnFcritFobtk mean square 295

mean square between groups 295
mean square within groups 295
multivariate statistics 312
one-way ANOVA 291
post hoc comparisons 294
sum of squares 295
treatment 290
treatment effect 290
treatment variance 298
Tukey’s HSD multiple comparisons 

test 307
univariate statistics 312
within-subjects ANOVA 291
within-subjects factor 291

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. What does each of the following terms mean? (a) ANOVA (b) one-way design 
(c) factor (d) level (e) treatment (f) between subjects (g) within subjects

2. (a) What is the difference between and ? (b) What does stand for?
3. What are two reasons for conducting a study with more than two levels of a

factor?
4. (a) What are error variance and treatment variance? (b) What are the two types of

mean squares, and what does each estimate?
5. (a) What is the experiment-wise error rate? (b) Why does ANOVA solve the prob-

lem with the experiment-wise error rate created by multiple -tests?
6. Summarize the steps involved in analyzing an experiment when 
7. (a) When is it necessary to perform post hoc comparisons? Why? (b) When is it

unnecessary to perform post hoc comparisons?
8. When do you use each of the two post hoc tests discussed in this chapter?
9. What does indicate?

10. (a) Why should equal 1 if the data represent the situation? (b) Why is 
greater than 1 when the data represent the situation? (c) What does a
significant indicate about differences between the levels of a factor?

11. A research article reports the results of a “multivariate” analysis. What does this
term communicate about the study?

APPLICATION QUESTIONS

12. A researcher conducts an experiment with three levels of the independent
variable. (a) Which two versions of a parametric procedure are available to her?
(b) How does she choose between them?

13. (a) In a study comparing four conditions, what is for the ANOVA? (b) What is
in the same study? (c) Describe in words what and say for this study.HaH0Ha

H0

Fobt
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FobtH0Fobt
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14. Foofy obtained a significant from an experiment with five levels. She
therefore concludes that changing each condition of the independent variable
results in a significant change in the dependent variable. (a) Is she correct? Why
or why not? (b) What must she now do?

15. (a) Poindexter computes an of .63. How should this be interpreted? (b) He
computes another of How should this be interpreted?

16. A report says that the between-subjects factor of participants’ salary produced sig-
nificant differences in self-esteem. (a) What does this tell you about the design?
(b) What does it tell you about the results?

17. A report says that a new diet led to a significant decrease in weight for a group of
participants. (a) What does this tell you about the design? (b) What do we call this
design?

18. A researcher investigated the number of viral infections people contract as a
function of the amount of stress they experienced during a 6-month period. 
She obtained the following data:

Amount of Stress

Negligible Minimal Moderate Severe
Stress Stress Stress Stress

2 4 6 5
1 3 5 7
4 2 7 8
1 3 5 4

(a) What are and ? (b) Compute and complete the ANOVA summary
table. (c) With what is ? (d) Report your statistical results. (e) Perform
the appropriate post hoc comparisons. (f) What do you conclude about this study?
(g) Describe the effect size and interpret it. (h) Estimate the value of that is likely
to be found in the severe stress condition.

19. Here are data from an experiment studying the effect of age on creativity scores:

Age 4 Age 6 Age 8 Age 10

3 9 9 7
5 11 12 7
7 14 9 6
4 10 8 4
3 10 9 5

(a) Compute and create an ANOVA summary table. (b) With what
do you conclude about ? (c) Perform the appropriate post hoc comparisons.
What should you conclude about this relationship? (d) Statistically, how important
is the relationship in this study? (e) Describe how you would graph these results.

20. In a study in which , , , , and , you
compute the following sums of squares:

Source Sum of Squares df Mean Square F

Between 147.32 ������ ������ ������
Within 862.99 ������ ������
Total 1010.31 ������

X3 5 8.2X2 5 16.9X1 5 45.3n 5 21k 5 3

Fobt

� 5 .05,Fobt

�

Fcrit� 5 .05,
FobtHaH0

21.7.Fobt

Fobt
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(a) Complete the ANOVA summary table. (b) With , what do you conclude
about ? (c) Report your results in the correct format. (d) Perform the appropri-
ate post hoc comparisons. What do you conclude about this relationship? (e) What
is the effect size in this study, and what does this tell you about the influence of the
independent variable?

21. Performing ANOVA protects our experimentwise error rate. (a) Name and explain
the error that this avoids. (b) Why is this an important error to avoid?

22. A researcher investigated the effect of volume of background noise on partici-
pants’ accuracy rates while performing a boring task. He tested three groups 
of randomly selected students and obtained the following means and sums of
squares:

Low Volume Moderate Volume High Volume

X� 61.5 65.5 48.25
n 4 5 7

Source Sum of Squares df Mean Square F

Between groups 652.16 ������ ������ ������
Within groups 612.75 ������ ������
Total 1264.92 ������

(a) Complete the ANOVA (b) At , what is ? (c) Report the statistical results
in the proper format. (d) Perform the appropriate post hoc tests. (e) What do you con-
clude about this study? (f) Compute the effect size and interpret it.

INTEGRATION QUESTIONS

23. (a) How do we create related samples? (b) In part (a) what two inferential proce-
dures are appropriate? (c) How do we create independent samples? (d) In part 
(c) what two inferential procedures are appropriate? (Chs. 12, 13)

24. (a) In this chapter we tested the relationship between performance scores and
perceived difficulty. Describe this relationship using “as a function of.” 
(b) An experimenter computes the mean anxiety level for samples of freshmen,
sophomores, juniors, and seniors. To graph these results, how would you label 
the axes? (c) Would this be a bar or line graph and why? (Chs. 2, 4)

25. (a) How is h similar to ? (b) How do we interpret this proportion? (Chs. 12, 13)
26. (a) Name and explain the error that power prevents. (b) Why is it important to

maximize the power of any experiment? (c) How is this done in a design using
ANOVA? (d) How does influencing the differences between and within conditions
influence the size of and its likelihood of being significant? (Chs. 10, 11, 13)

27. (a) How do you identify which variable in a study is the factor? (b) How do you
identify the levels of a factor? (c) How do you identify the variable that is the
dependent variable? (Chs. 2, 13)

28. For the following, identify the inferential procedure to perform and the key infor-
mation for answering the research question. Note: If no inferential procedure is
appropriate, indicate why. (a) Doing well in statistics should reduce students’

Fobt
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math phobia. We measure their math phobia after selecting groups who received
either an A, B, C, or D in statistics. (b) To determine if recall is better or worse
than recognition, participants study a list of words, and then half of them recall
the words and the other half performs a recognition test. (c) We repeatedly test the
aggressiveness of rats after 1, 3, 5 and 7 weeks, to see if they become more
aggressive as they grow older. (d) Using the grades of 100 students, we want to
use students’ score on the first exam to predict their final exam grade. (e) We test
for gender differences in voting history by counting the number of males and
females who voted in the last election. (f) We ask if pilots are quicker than naviga-
tors, comparing the reaction time of a group of pilots to that of their navigators.
(Chs. 7, 8, 10, 12, 13)

29. In question 28, identify the levels of the factor and the dependent variable in
experiments, and the predictor/criterion variables in correlational studies. 
(Chs. 8, 12, 13)

■ ■ ■ SUMMARY OF 
FORMULAS

The format for the summary table for a one-way
ANOVA is

Summary Table of One-Way ANOVA

Source Sum of Squares df Mean Square F

Between SSbn dfbn MSbn Fobt
Within SSwn dfwn MSwn
Total SStot dftot

1. To perform the one-way, between-subjects
ANOVA

a. Compute the sum of squares,

b. Compute the mean squares,

dfwn 5 N 2 kMSwn 5
SSwn

dfwn

dfbn 5 k 2 1MSbn 5
SSbn

dfbn

 SSwn 5 SStot 2 SSbn

2 a
1©Xtot 2

2

N
b

 SSbn 5 © a
1Sum of scores in the column 2 2

n of scores in the column
b

 SStot 5 ©X 2
tot 2 a

1©Xtot 2
2

N
b

c. Compute the -ratio

2. The formula for the protected -test is

Use the two-tailed for 

3. The formula for the HSD is

Values of are found in Appendix C, Table 6.

4. The formula for the confidence interval for is

Use the two-tailed for 
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GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 13, the terms factor and level, how to calculate , what a
significant indicates, when to perform post hoc tests, and what indicates.

Your goals in this chapter are to learn

■ What a two-way factorial ANOVA is.

■ How to collapse across a factor to find main effect means.

■ How to calculate main effect means and cell means.

■ How to compute the in a two-way ANOVA

■ What a significant main effect indicates.

■ What a significant interaction indicates.

■ How to perform post hoc tests.

■ How to interpret the results of a two-way experiment.

Fs

�2F
F

The Two-Way Analysis 
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In the previous chapter, you saw that ANOVA tests the means from one factor. In this
chapter, we’ll expand the experiment to involve two factors. Then the analysis is similar
to the previous ANOVA, except that here we compute several values of . Therefore,
be forewarned that the computations are rather involved (although they are more tedious
than difficult). Don’t try to memorize the formulas, because nowadays we usually ana-
lyze such experiments using a computer. However, you still need to understand the basic
logic, terminology, and purpose of the calculations. Therefore, the following sections
present (1) the general layout of a two-factor experiment, (2) what the ANOVA indi-
cates, (3) how to compute the ANOVA, and (4) how to interpret a completed study.

NEW STATISTICAL NOTATION

When a study involves two factors, it is called a two-way design. The two-way
ANOVA is the parametric inferential procedure that is applied to designs that involve
two independent variables. However, we have different versions of this depending on
whether we have independent or related samples. When both factors involve independ-
ent samples, we perform the two-way, between-subjects ANOVA. When both factors
involve related samples (either because of matching or repeated measures), we perform
the two-way, within-subjects ANOVA. If one factor is tested using independent sam-
ples and the other factor involves related samples, we perform the two-way, mixed-
design ANOVA. These ANOVAs are identical except for slight differences buried in
their formulas. In this chapter, we discuss the between-subjects version.

Fobt
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Each of our factors may contain any number of levels, so we have a code for describ-
ing a specific design. The generic format is to identify one independent variable as fac-
tor A and the other independent variable as factor B. To describe a particular ANOVA,
we use the number of levels in each factor. If, for example, factor A has two levels and
factor B has two levels, we have a two-by-two ANOVA, which is written as . Or
if one factor has four levels and the other factor has three levels, we have a or a

ANOVA, and so on.

WHY IS IT IMPORTANT TO KNOW ABOUT THE TWO-WAY ANOVA?

It is important for you to understand the two-way ANOVA because you, and other
researchers, will often study two factors in one experiment. This is because, first, a
two-factor design tells us everything about the influence of each factor that 
we would learn if it were the only independent variable. But we can also study
something that we’d otherwise miss—the interaction effect. For now, think of an
interaction effect as the influence of combining the two factors. Interactions are
important because, in nature, many variables that influence a behavior are often
simultaneously present. By manipulating more than one factor in an experiment, 
we can examine the influence of such combined variables. Thus, the primary reason
for conducting a study with two (or more) factors is to observe the interaction
between them.

A second reason for multifactor studies is that once you’ve created a design 
for studying one independent variable, often only a minimum of additional effort 
is required to study additional factors. Multifactor studies are an efficient and cost-
effective way of determining the effects of—and interactions among—several
independent variables. Thus, you’ll often encounter two-way ANOVAs in behavioral
research. And by understanding them, you’ll be prepared to understand the even more
complex ANOVAs that will occur.

UNDERSTANDING THE TWO-WAY DESIGN

The key to understanding the two-way ANOVA is to understand how to envision it. 
As an example, say that we are again interested in the effects of a “smart pill” on a
person’s IQ. We’ll manipulate the number of smart pills given to participants, calling
this factor A, and test two levels (one or two pills). Our dependent variable is a partici-
pant’s IQ score. We want to show the effect of factor A, showing how IQ scores change
as we increase dosage.

Say that we’re also interested in studying the influence of a person’s age on IQ. We’ll
call age factor B and test two levels (10- or 20-year-olds). Here, we want to show the
effect of factor B, showing how IQ scores change with increasing age.

To create a two-way design, we would simultaneously manipulate both the partici-
pants’ age and the number of pills they receive. The way to envision this is to use the
matrix in Table 14.1. We always place participants’ dependent scores inside the matrix,
so here each represents a participant’s IQ score. Understand the following about this
matrix:

1. Each column represents a level of one independent variable, which here is our pill
factor. (For our formulas, we will always call the column factor “factor A.”) Thus,
for example, any score in column is from someone tested with one pill.A1

X

3 3 4
4 3 3
2 3 2
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2. Each row represents one level of the other independent variable, which here is the
age factor. (The row factor is always called “factor B.”) Thus, for example, any
score in row is from a 10-year-old.

3. Each small square produced by combining a level of factor A with a level of fac-
tor B is called a cell. Here we have four cells, each containing a sample of three
participants, who are all a particular age and given the same dose of pills. For
example, the highlighted cell contains scores from 20-year-olds given two pills.

4. Because we have two levels of each factor, we have a design (it produces a
matrix).

5. We can identify each cell using the levels of the two factors. For example, the cell
formed by combining level 1 of factor A and level 1 of factor B is cell . We
can identify the mean and from each cell in the same way, so, for example, in
cell we will compute .

6. The in each cell is 3, so .

7. We have combined all of our levels of one factor with all levels of the other factor,
so we have a complete factorial design. On the other hand, in an incomplete fac-
torial design, not all levels of the two factors are combined. For example, if we had
not collected scores from 20-year-olds given one pill, we would have an incomplete
factorial design. Incomplete designs require procedures not discussed here.

OVERVIEW OF THE TWO-WAY, BETWEEN-SUBJECTS ANOVA

Now that you understand a two-way design, we can perform the ANOVA. But, enough
about smart pills. Here’s a semi-fascinating idea for a new study. Television commer-
cials are often much louder than the programs themselves because advertisers believe
that increased volume makes the commercial more persuasive. To test this, we will play
a recording of an advertising message to participants at one of three volumes. Volume
is measured in decibels, but to simplify things we’ll call the three volumes soft,
medium, and loud. Say that we’re also interested in the differences between how males
and females are persuaded, so our other factor is the gender of the listener. Therefore,
we have a two-factor experiment involving three levels of volume and two levels of

N 5 12n

XA1B1
A1B1

n
A1B1

2 3 2
2 3 2

B1

Factor A: Number of Pills

Level A1: Level A2:
1 Pill 2 Pills

X X
Level B1: X X ←⎯⎯⎯⎯⎯⎯⎯⎯
10-Year-Olds X X �

X�A1B1
X�A2B1

ScoresFactor B:
Age

X X
Level B2: X X ←⎯⎯⎯⎯⎯⎯⎯
20-Year-Olds X X �

X�A1B2
X�A2B2

↑⎯⎯ One of the four cells

TABLE 14.1

Two-Way Design for
Studying the Factors of
Number of Smart Pills
and Participant’s Age 

Each column contains scores
for one level of number of
pills; each row contains
scores for one level of age. 
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Factor A: Volume

Level A1: Level A2: Level A3:
Soft Medium Loud

9 8 18Level B1:
4 12 17Male

11 13 15Factor B:
Gender

2 9 6Level B2:
6 10 8Female
4 17 4

N � 18 

TABLE 14.2

A 3 � 2 Design for the
Factors of Volume and
Gender

Each column represents a
level of the volume factor;
each row represents a level of
the gender factor.

gender, so we have a design. The dependent variable indicates how persuasive
the message is, on a scale of 0 (not at all) to 25 (totally convincing).

This study is diagramed in Table 14.2 The numbers inside the cells are the persua-
siveness scores. Each column represents a level of the volume factor (factor A), and
each row represents a level of the gender factor (factor B). For simplicity we have the
unpowerful of 18: Nine men and nine women were tested, with three men and three
women hearing the message at each volume, so we have three persuasiveness scores
per cell.

But now what? As usual in any experiment, we want to conclude that if we tested the
entire population under our different conditions of volume or gender, we’d find differ-
ent populations of scores located at different . But, there is the usual problem: Our
sample data may reflect sampling error, so we might actually find the same population
and for all conditions. Therefore, once again we must eliminate the idea of sampling
error, and to do this, we perform ANOVA. As usual, first we set alpha (usually at )
and then check the assumptions.

With a complete factorial design, the assumptions of the two-way, between-subjects
ANOVA are

1. Each cell contains an independent sample.

2. The dependent variable measures normally distributed interval or ratio scores.

3. The populations have homogeneous variance.

Each cell in the persuasiveness study contains an independent sample, so we will
perform a between-subjects ANOVA. We want to determine the effect on per-
suasiveness when we change (1) the levels of the volume, (2) the levels of gender, and
(3) the interaction of volume and gender. To do so, we will examine one effect at a
time, as if we had only a one-way ANOVA involving that effect. You already under-
stand a one-way ANOVA, so the following is simply a guide for computing the various

. Any two-way ANOVA involves examining three things: the two main effects and
the interaction effect.

The Main Effect of Factor A

The main effect of a factor is the effect that changing the levels of that factor has on
dependent scores, while we ignore all other factors in the study. In the persuasiveness
study, to find the main effect of factor A (volume), we will ignore the levels of factor B

Fs

3 3 2

.05
�

�s

N

3 3 2
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(gender). Literally erase the horizontal line that separates the rows of males and
females back in Table 14.2, and treat the experiment as if it were this:

Factor A: Volume

Level A1: Level A2: Level A3: 
Soft Medium Loud

9 8 18
4 12 17

11 13 15
2 9 6 kA � 3
6 10 8
4 17 4

X�A1
� 6 X�A2

� 11.5 X�A3
� 11.33 

nA1
� 6 nA2

� 6 nA3
� 6 

We ignore whether there are males or females in each condition, so we simply have
people. Therefore, for example, we started with three males and three females who
heard the soft message, so ignoring gender, we have six people in that level. Thus,
when we look at the main effect of A, our entire experiment consists of one factor, with
three levels of volume. The number of levels in factor A is called , so . With
six scores in each column, .

Notice that the means in the three columns are 6, 11.5, and 11.33, respectively. 
So, for example, the mean for people (male and female) tested under the soft condition
is 6. By averaging together the scores in a column, we produce the main effect means
for the column factor. A main effect mean is the overall mean of one level of a factor
while ignoring the influence of the other factor. Here, we have the “main effect means
for volume.”

In statistical terminology, we produce the main effect means for volume when we
collapse across the gender factor. Collapsing across a factor means averaging together
all scores from all levels of that factor. (We averaged together the scores from males
and females.) Thus, whenever we collapse across one factor, we have the main effect
means for the remaining factor.

To see the main effect of volume, look at the overall pattern in the three main effect
means to see how persuasiveness scores change as volume increases: Scores go up
from around 6 (at soft) to around 11.5 (at medium), but then scores drop slightly to
around 11.3 (at high). To determine if these are significant differences—if there is a
significant main effect of the volume factor—we essentially perform a one-way
ANOVA that compares these three main effect means.

REMEMBER When we examine the main effect of factor A, we look at the
overall mean (the main effect mean) of each level of A, examining the col-
umn means.

The says that no difference exists between the levels of factor A in the population, so

In our study, this says that changing volume has no effect, so the three levels of volume
represent the same population of persuasiveness scores. If we reject , then we will
accept the alternative hypothesis, which is

: not all are equal�AHa

H0

H0: �A1
5 �A2

5 �A3

H0

nA 5 6
kA 5 3kA
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For our study, this says that at least two levels of volume represent different popula-
tions of scores, having different .

We test by computing an called . If is significant, it indicates that at
least two main effect means from factor A differ significantly. Then we describe this
relationship by graphing the main effect means, performing post hoc comparisons to
determine which means differ significantly, and determining the proportion of variance
that is accounted for by this factor.

The Main Effect of Factor B

After analyzing the main effect of factor A, we move on to the main effect of factor B.
Therefore, we collapse across factor A (volume), so erase the vertical lines separating
the levels of volume back in Table 14.2. Then we have

9 8 18 X�B1
� 11.89Level B1:

4 12 17Male
11 13 15 nB1

� 9
kB � 2Factor B:

Gender
2 9 6 X�B2

� 7.33Level B2:
6 10 8Female
4 17 4 nB2

� 9

Now we simply have the persuasiveness scores of some males and some females,
ignoring the fact that some of each heard the message at different volumes. Thus, when
we look at the main effect of B, now our entire experiment consists of one factor with
two levels. Notice that this changes things: With only two levels, is 2. And each 
has changed! For example, we started with three males in soft, three in medium, and
three in loud. So, ignoring volume, we have a total of nine males (and nine females).
With nine scores per row, .

Averaging the scores in each row yields the mean persuasiveness score for each gen-
der, which are the main effect means for factor . To see the main effect of this factor,
again look at the pattern of the means: Apparently, changing from males to females
leads to a drop in scores from around 11.89 to around 7.33.

REMEMBER When we examine the main effect of factor , we look at the over-
all mean (the main effect mean) for each level of B, examining the row means.

To determine if this is a significant difference—if there is a significant main effect of
gender—we essentially perform another one-way ANOVA that compares these means.
Our says that no difference exists in the population, so

In our study, this says that our males and females represent the same population. The
alternative hypothesis is

: not all are equal

In our study, this says that our males and females represent different populations.
To test for factor B, we compute a separate , called . If is significant,

then at least two of the main effect means for factor B differ significantly. Then we
graph these means, perform post hoc comparisons, and compute the proportion of vari-
ance accounted for.

FBFBFobtH0

�BHa

H0: �B1
5 �B2

H0

B

B

nB 5 9

nkB

FAFAFobtH0

�s



Interaction Effects

After examining the main effects, we examine the effect of the interaction. The
interaction of two factors is called a two-way interaction, and results from combining
the levels of factor A with the levels of factor B. In our example, the interaction is pro-
duced by combining volume with gender. An interaction is identified as . Here,
factor A has three levels, and factor B has two levels, so it is a interaction (but
say “3 by 2”).

Because an interaction is the influence of combining the levels of both factors, we
do not collapse across, or ignore, either factor. Instead, we treat each cell in the study
as a level of the interaction and compare the cell means.

REMEMBER For the interaction effect we compare the cell means.

In our study, we start with the original six cells back in Table 14.2. Using the three
scores per cell, we compute the mean in each cell, obtaining the interaction means
shown in Table 14.3.

3 3 2
A 3 B

324 CHAPTER 14 / The Two-Way Analysis of Variance

■ Collapsing (averaging together) the scores from the
levels of factor B produces the main effect means
for factor A. Differences among these means reflect
the main effect of A. Collapsing the levels of A
produces the main effect means for factor B. 
Differences among these means reflect the main
effect of B.

MORE EXAMPLES

Let’s say that our previous “smart pill” and age study
produced the following IQ scores:

Factor A: Dose

One Pill Two Pills

100 140
10 years 105 145 X� � 125

110 150Factor B:
Age

110 110
20 years 115 115 X� � 115

120 120

X� � 110 X� � 130

The column means are the main effect means for dose:
The main effect is that mean IQ increases from 110 to
130 as dosage increases. The row means are the main
effect means for age: The main effect is that mean IQ
decreases from 125 to 115 as age increases.

For Practice

In this study,

A1 A2

2 5
B1 2 4

2 3 

11 7
B2 10 6

9 5

1. Each equals ____, and each equals ____.

2. The means produced by collapsing across factor B
equal ____ and ____. They are called the ____
means for factor ____.

3. What is the main effect of A?

4. The means produced by collapsing across factor A
are ____ and ____. They are called the ____ means
for factor ____.

5. What is the main effect of B?

Answers
1. 6; 6
2. ; ; main effect; A
3. Changing from to produces a decrease in scores.
4. ; ; main effect; B
5. Changing from to produces an increase in scores.B2B1

XB2
5 8XB1

5 3
A2A1

XA2
5 5XA1

5 6

nBnA

A  Q U I C K  R E V I E W



Factor A: Volume

Soft Medium Loud

Male X� � 8 X� � 11 X� � 16.67Factor B:
Gender

Female X� � 4 X� � 12 X� � 6

k � 6
n � 3

TABLE 14.3

Cell Means for the
Volume by Gender 
Interaction
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Notice that things have changed again. For , now we have six cells, so . 
For , we are looking at the scores in only one cell at a time, so our “cell size” is 3, 
so .

Thus, now our experiment is somewhat like one “factor” with six levels, with three
scores per level. We will determine if the mean in the male–soft cell is different from in
the male–medium cell or from in the female–soft cell, and so on. However, examining an
interaction is not as simple as saying that the cell means are significantly different. Inter-
preting an interaction is difficult because both independent variables are changing, as well
as the dependent scores. To simplify the process, look at the influence of changing the
levels of factor A under one level of factor B. Then see if this effect—this pattern—for
factor A is different when you look at the other level of factor B. For example, here is the
first row from Table 14.3, showing the relationship between volume and scores for the
males. What happens? As volume increases, mean persuasiveness scores also increase, in
an apparently positive, linear relationship.

Factor A: Volume

B1:
Soft Medium Loud

male X� � 8 X� � 11 X� � 16.67

But now look at the relationship between volume and persuasiveness scores for the
females.

Factor A: Volume

Soft Medium Loud

B2:
female X� � 4 X� � 12 X� � 6

Here, as volume increases, mean persuasiveness scores first increase but then decrease,
producing a nonlinear relationship.

Thus, there is a different relationship between volume and persuasiveness scores for
each gender level. A two-way interaction effect is present when the relationship
between one factor and the dependent scores changes with, or depends on, the level of
the other factor that is present. Thus, whether increasing volume always increases
scores depends on whether we’re talking about males or females. In other words, an
interaction effect occurs when the influence of changing one factor is not the same for
each level of the other factor. Here we have an interaction effect because increasing the
volume does not have the same effect for males as it does for females.

nA3B 5 3
n

kA3B 5 6k
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You can also see the interaction by looking at the difference between males and
females at each volume back in Table 14.3. Who scores higher, males or females? It
depends on which level of volume we’re talking about.

Conversely, an interaction effect would not be present if the cell means formed the
same pattern for males and females. For example, say that the cell means had been as
follows:

Factor A: Volume

Soft Medium Loud

Male X� � 5 X� � 10 X� � 15Factor B:
Gender

Female X� � 20 X� � 25 X� � 30

Here, each increase in volume increases scores by about 5 points, regardless of whether
it’s for males or females. (Or, females always score higher, regardless of volume.)
Thus, an interaction effect is not present when the influence of changing the levels of
one factor does not depend on which level of the other variable is present. Or, in other
words, there’s no interaction when there is the same relationship between the scores
and one factor for each level of the other factor.

REMEMBER A two-way interaction effect indicates that the influence that one
factor has on scores depends on which level of the other factor is present.

To determine if there is a significant interaction effect in our data, we essentially per-
form another one-way ANOVA that compares the cell means. To write the and 
in symbols is complicated, but in words, is that the cell means do not represent an
interaction effect in the population, and is that at least some of the cell means do
represent an interaction effect in the population.

To test , we compute another , called . If is significant, it indicates
that at least two of the cell means differ significantly in a way that produces an interac-
tion effect. Then, as always, we graph the interaction, perform post hoc comparisons to
determine which cell means differ significantly, and compute the proportion of vari-
ance accounted for by the interaction.

FA3BFA3BFobtH0

Ha

H0

HaH0

■ We examine the interaction effect by looking at the
cell means. An effect is present if the relationship
between one factor and the dependent scores
changes as the levels of the other factor change.

MORE EXAMPLES

Here are the data again when factor A is dose of the
smart pill and factor B is age of participants.

Factor A: Dose

One Pill Two Pills

100 140
10 years 105 145

110 150
X� � 105 X� � 145Factor B:

Age
110 110

20 years 115 115
120 120

X� � 115 X� � 115

A  Q U I C K  R E V I E W

(continued)
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COMPUTING THE TWO-WAY ANOVA

We’ve seen that a two-way ANOVA involves three : one for the main effect of factor
A, one for the main effect of factor B, and one for the interaction effect of . The
logic for each of these is the same as in the one-way ANOVA discussed in Chapter 13:

should equal 1 if is true. The larger the , however, the less likely that is
true. If is larger than , we will reject .

Previously when we computed we saw two important formulas to keep in mind:

The describes the variability within groups and is our estimate of . It is com-
puted as the “average” variability in the cells. The is our one estimate of the error
variance used in all three ratios. We compute by computing and dividing
by 

The indicates the differences between our sample means, as an estimate of
However, because we have two main effects and the interaction, we have three

sources of between-groups variance, so we compute three mean squares. Thus, for the
main effect of factor A, we compute the sum of squares between groups for A ,
divide by the degrees of freedom for A , and have the mean square between
groups for A . For the main effect of B, we compute the sum of squares between
groups for B , divide by the degrees of freedom for B , and have the mean
square between groups for B ( ). For the interaction, we compute the sum of squares
between groups , divide by the degrees of freedom , and have the mean
square between groups .1MSA3B 2

1dfA3B 21SSA3B 2
MSB

1dfB 21SSB 2
1MSA 2

1dfA 2
1SSA 2

σ2
treat.

MSbn

dfwn.
SSwnMSwnF

MSwn

σ2
errorMSwn

MS 5
SS

df
Fobt 5

MSbn

MSwn

Fobt

H0FcritH0

H0FobtH0Fobt

A 3 B
Fs

Look at the cell means in one row at a time: We see an
interaction effect because the influence of increasing
dose depends on participants’ age. Dosage increases
mean IQ for 10-year-olds from 105 to 145, but it does
not change mean IQ for 20-year-olds (always at 115).
Or, looking at each column, the influence of increasing
age depends on dose. With 1 pill, 20-year-olds score
higher (115) than 10-year-olds (105), but with 2 pills 
10-year-olds score higher (145) than 20-year-olds (115).

For Practice

A study produces these data:

A1 A2

2 5
B1 2 4

2 3 

11 7
B2 10 6

9 5

1. The means to examine for the interaction are
called the ____ means.

2. When we change from to for , the cell
means are ____ and ____.

3. When we change from to for , the cell
means are ____ and ____.

4. How does the influence of changing from to 
depend on the level of that is present?

5. Is an interaction effect present?

Answers
1. cell
2. 2, 4
3. 10, 6
4. Under the means increase, under they decrease.
5. Yes

B2B1

B
A2A1

B2A2A1

B1A2A1



Source Sum of Squares / df � Mean Square F

Between
Factor A SSA dfA MSA ⎯⎯⎯⎯→ FA

(volume)
Factor B SSB dfB MSB  ⎯⎯⎯⎯→ FB

(gender)
Interaction SSA�B dfA�B MSA�B ⎯⎯⎯→FA�B

(vol � gen)
Within SSwn dfwn MSwn  ⎯⎯⎯
Total SStot dftot

TABLE 14.4

Summary Table of 
Two-Way ANOVA

328 CHAPTER 14 / The Two-Way Analysis of Variance

The summary table in Table 14.4 shows the preceding components. (Notice that if a
component is not labeled “within” or “total,” then it is one of our many between-groups
components.) To complete the ANOVA, for factor A, divide by to produce

. For factor B, divide by to produce . For the interaction, divide
by to produce 

The following sections show how to compute the above components.

Computing the Sums and Means

Your first step is to organize the data in each cell. Table 14.5 shows the persuasiveness
data, as well as the various components to compute.

Step 1 Compute and in each cell. For example, in the male–soft cell,
; Also note the of the cell

(here ) Then compute the mean for each cell (for the male–soft cell, ).
These are the interaction means.

Step 2 Compute vertically in each column. Sum the from the cells in a col-
umn (for example, for soft, ). Note the in each column (here )
and compute the mean for the scores in each column (for example, ). (Or aver-
age the cell means in the column.) These are the main effect means for factor A.

Step 3 Compute horizontally in each row. Sum the from the cells in a row
(for males, ). Note the in each row (here ) Com-
pute the mean of the scores in each row (for example, ). (Or average the
cell means in the row.) These are the main effect means for factor B.

Step 4 Compute . Sum the from the levels (columns) of factor A, so
. (Or add the from the levels of factor B.)

Step 5 Compute . Sum the from each cell, so 
. Note the (here )

We will use the components from the previous five steps to compute the sums of
squares, then the degrees of freedom, then the mean squares, and finally the . To keep
track of your computations and prevent brain strain, fill in the ANOVA summary table
as you go along.

Fs

N 5 18.N56 1 470 1 116 5 2075
©X 2

tot 5 218 1 377 1 838 1©X2©X 2
tot

©X©Xtot 5 36 1 69 1 68 5 173
©X©Xtot

Xmale 5 11.89
n 5 9.n©X 5 24 1 33 1 50 5 107

©Xs©X

Xsoft 5 6
n 5 6n©X 5 24 1 12

©Xs©X

X 5 8n 5 3.
n©X 2 5 42 1 92 1 112 5 218.©X 5 4 1 9 1 11 5 24

©X2©X

FA3B.MSwnMSA3B

FBMSwnMSBFA

MSwnMSA



Factor A: Volume

A1: A2: A3:
Soft Medium Loud

4 8 18
9 12 17

B1: 11 13 15
Male X� � 8 X� � 11 X� � 16.67 X�male � 11.89

©X � 24 ©X � 33 ©X � 50 ©X � 107
©X2 � 218 ©X2 � 377 ©X2 � 838 n � 9

n � 3 n � 3 n � 3Factor B: 
Gender

2 9 6
6 10 8

B2 : 4 17 4
Female X� � 4 X� � 12 X� � 6 X�fem � 7.33

©X � 12 ©X � 36 ©X � 18 ©X � 66
©X2 � 56 ©X2 � 470 ©X2 � 116 n � 9

n � 3 n � 3 n � 3

X�soft � 6 X�med � 11.5 X�loud � 11.33 ©Xtot � 173
©X � 36 ©X � 69 ©X � 68 ©X 2

tot � 2075
n � 6 n � 6 n � 6 N � 18
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TABLE 14.5

Summary of Data for 
3 � 2 ANOVA

Computing the Sums of Squares

First, compute the sums of squares.

Step 1 Compute the total sum of squares.

This says to divide by and then subtract the answer from .
From Table 14.5, , , and Filling in the formula

gives

Note: The quantity is also used when computing other sums of squares.
We call it the correction (here the correction equals 1662.72).

Step 2 Compute the sum of squares for factor A. As in the diagrams here, always have
factor A form your columns.

1©Xtot 2
2>N

SStot 5 412.28

SStot 5 2075 2 1662.72

SStot 5 2075 2 a
1173 22

18
b

N 5 18.©X2
tot 5 2075©Xtot 5 173

©X2
totN1©Xtot 2

2

The formula for the total sum of squares is

SStot 5 ©X2
tot 2 a

1©Xtot 2
2

N
b
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This says to square the in each column of factor A and divide by the in the
column. Then add the answers together and subtract the correction.

From Table 14.5, the three columns produced sums of 36, 69, and 68, and n was 6.
Filling in the above formula gives

Step 3 Compute the sum of squares for factor B. In your diagram, the levels of 
factor B should form the rows.

SSA 5 117.45

SSA 5 1780.17 2 1662.72

SSA 5 1216 1 793.5 1 770.67 2 2 1662.72

SSA 5 a
136 22

6
1
169 22

6
1
168 22

6
b 2 a

1173 22

18
b

n©X

This says to square the for each level of factor B and divide by the n in the level.
Then add the answers and subtract the correction.

In Table 14.5, the two rows produced sums of 107 and 66, and n was 9. Filling in the
formula gives

Step 4 Compute the sum of squares between groups for the interaction. This requires
two substeps. First, compute something called the total sum of squares between groups,
identified as .SSbn

SSB 5 93.39

SSB 5 1756.11 2 1662.72

SSB 5 a
11072 2

9
1
1662 2

9
b 2 1662.72

©X

The formula for the sum of squares between groups for  
factor A is

SSA 5 © a
1Sum of scores in the column 22

n of scores in the column
b 2 a

1©Xtot 2
2

N
b

The formula for the sum of squares between groups for 
factor B is

SSB 5 © a
1Sum of scores in the row 22

n of scores in the row
b 2 a

1©Xtot 2
2

N
b
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Find for each cell and divide by the n of the cell. Then add the answers together
and subtract the correction.

From Table 14.5,

The equals the sum of squares for factor A plus the sum of squares for factor B
plus the sum of squares for the interaction. Therefore, we find by subtracting
the and found above (in Steps 2 and 3) from the total Thus,SSbn.SSBSSA

SSA3B

SSbn

SSbn 5 313.61

SSbn 5 1976.33 2 1662.72

SSbn 5 a
124 22

3
1
133 22

3
1
150 22

3
1
112 22

3
1
136 22

3
1
118 22

3
b 2 1662.72

1©X 22

Above, , , and , so

Step 5 Compute the sum of squares within groups. The sum of squares within groups
plus the total sum of squares between groups equals the total sum of squares. There-
fore, subtract the total in Step 4 from the in Step 1 to obtain the .SSwnSStotSSbn

SSA3B 5 102.77

SSA3B 5 313.61 2 117.45 2 93.39

SSB 5 93.39SSA 5 117.45SSbn 5 313.61

Above, and , so

The previous sums of squares are shown in Table 14.6.
Now determine the df.

SSwn 5 98.67

SSwn 5 412.28 2 313.61

SSbn 5 313.61SStot 5 412.28

The formula for the total sum of squares between groups is

SSbn 5 © a
1Sum of scores in the cell 22

n of scores in the cell
b 2 a

1©Xtot 2
2

N
b

The formula for the sum of squares between groups for  the
interaction is

SSA3B 5 SSbn 2 SSA 2 SSB

The formula for the sum of squares within groups is

SSwn 5 SStot 2 SSbn
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Computing the Degrees of Freedom

1. The degrees of freedom between groups for factor A is , where is the
number of levels in factor A. (In our example, is the three levels of volume, 
so )

2. The degrees of freedom between groups for factor B is , where is the num-
ber of levels in factor B. (In our example, is the two levels of gender, so )

3. The degrees of freedom between groups for the interaction is the for factor 
multiplied times the for factor (In our example, and , so

)

4. The degrees of freedom within groups equals , where is the total of
the study and is the number of cells in the study. (In our example, is 18
and we have six cells, so )

5. The degrees of freedom total equals . Use this to check your previous calcu-
lations, because the sum of the above should equal (In our example

)

Place each in the ANOVA summary table as in Table 14.7. Perform the remainder
of the computations by working directly from this table. Next, we compute the mean
squares.

Computing the Mean Squares

Any mean square equals the appropriate sum of squares divided by the appropriate .
Therefore, for factor A,

df

df

dftot 5 17.
dftot.dfs

N 2 1

dfwn 5 18 2 6 5 12.
NkA3B

NNN 2 kA3B

dfA3B 5 2.
dfB 5 1dfA 5 2B.df

Adf

dfB 5 1.kB

kBkB 2 1

dkA 5 2.
kA

kAkA 2 1

Source Sum of Squares df Mean Square F

Between
Factor A 117.45 dfA MSA FA

(volume)
Factor B 93.39 dfB MSB FB

(gender)
Interaction 102.77 dfA�B MSA�B FA�B

(vol � gen)
Within 98.67 dfwn MSwn
Total 412.28 dftot

TABLE 14.6

Summary Table of Two-
Way ANOVA showing the
Sums of Squares

From Table 14.7 we find

MSA 5
117.45

2
5 58.73

The formula for the mean square between groups for 
factor A is

MSA 5
SSA

dfA
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Source Sum of Squares df Mean Square F

Between
Factor A 117.45 2 MSA FA

(volume)
Factor B 93.39 1 MSB FB

(gender)
Interaction 102.77 2 MSA�B FA�B

(vol � gen)
Within 98.67 12 MSwn
Total 412.28 17

TABLE 14.7

Summary Table of 
Two-Way ANOVA 
with df and Sums 
of Squares

From Table 14.7

MSB 5
93.39

1
5 93.39

Using Table 14.7

MSA3B 5
102.77

2
5 51.39

Table 14.7 gives

MSwn 5
98.67

12
5 8.22

The formula for the mean square between groups for 
factor B is

MSB 5
SSB

dfB

The formula for the mean square between groups for the
interaction is

MSA3B 5
SSA3B

dfA3B

The formula for the mean square within groups is

MSwn 5
SSwn

dfwn
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Putting the above values into the summary table gives Table 14.8.
Now, finally, compute the .

Computing F

Any equals the divided by the Therefore,MSwn.MSbnF

Fs

In our example, from Table 14.8 we have

FA 5
58.73

8.22
5 7.14

Source Sum of Squares df Mean Square F

Between
Factor A 117.45 2 58.73 FA

(volume)
Factor B 93.39 1 93.39 FB

(gender)
Interaction 102.77 2 51.39 FA�B

(vol � gen)
Within 98.67 12 8.22
Total 412.28 17

TABLE 14.8

Summary Table of Two-
Way ANOVA Showing
the Mean Squares, df,
and Sums of Squares

Thus, we have

FB 5
93.39

8.22
5 11.36

The formula for FA for the main effect of factor A is

FA 5
MSA

MSwn

The formula for FB for the main effect of factor B is

FB 5
MSB

MSwn

The formula for FA�B for the interaction effect is

FA3B 5
MSA3B

MSwn
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So

And now the finished summary table is in Table 14.9.

Interpreting Each F

Each is tested in the same way as in the previous chapter: The may be larger
than 1 because (1) is true but we have sampling error or (2) is false and at least
two means represent a relationship in the population. The larger an , the less likely
that is true. If is larger than , then we reject 

To find the for a particular , in the -tables (Table 5 in Appendix ), use the
that you used in computing that and your Thus,

1. To find for testing , use as the between groups and In our
example, and So, for , the is 3.88.

2. To find for testing , use as the between groups and In our
example, and So, at , the is 4.75.

3. To find for the interaction, use as the between groups and In
our example, and Thus, at , the is 3.88.

Notice that because factors A and B have different between groups, they have dif-
ferent critical values.

Thus, we end up comparing the following:

df

Fcrit� 5 .05dfwn 5 12.dfA3B 5 2
dfwn.dfdfA3BFcrit

Fcrit� 5 .05dfwn 5 12.dfB 5 1
dfwn.dfdfBFBFcrit

Fcrit� 5 .05dfwn 5 12.dfA 5 2
dfwn.dfdfAFAFcrit

dfwn.Fobtdfbn

CFFobtFcrit

H0.FcritFobtH0

Fobt

H0H0

FobtFobt

FA3B 5
51.39

8.22
5 6.25

Source Sum of Squares df Mean Square F

Between
Factor A 117.45 2 58.73 7.14

(volume)
Factor B 93.39 1 93.39 11.36

(gender)
Interaction 102.77 2 51.39 6.25

(vol � gen)
Within 98.67 12 8.22
Total 412.28 17

TABLE 14.9

Completed Summary
Table of Two-Way
ANOVA

Fobt Fcrit

Main effect of volume (A) 7.14 3.88
Main effect of gender (B) 11.36 4.75
Interaction (A � B) 6.25 3.88

By now you can do this with your eyes closed: Imagine a sampling distribution with
a region of rejection and in the positive tail. (If you can’t imagine this, look back
in Chapter 13 at Figure 13.1.) First, our of 7.14 is larger than the , so it lies in
the region of rejection. Therefore, we conclude that changing the volume of a message
produced significant differences in persuasiveness scores.

Likewise, the of 11.36 is significant, so we conclude that the males and females
in this study represent different populations of scores.

FB

FcritFA

Fcrit
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Finally, the of 6.25 is significant, so we conclude that the effect that changing
volume has in the population depends on whether it is a population of males or a popula-
tion of females. Or we can say that the difference between the male and female popula-
tions we’d see depends on whether a message is played at soft, medium, or loud volume.

Note: It is just a coincidence of your particular data which will be significant: any
combination of the main effects and/or the interaction may or may not be significant.

Fs

FA3B

■ A two-way ANOVA produces an for each main
effect and for the interaction.

■ Each equals the corresponding divided by
the .

■ Each equals the appropriate between
groups divided by the 

MORE EXAMPLES

In a new study, our factor A tests the effect of three
doses of a smart pill (one, two, or three pills), and fac-
tor B tests two ages (10- or 20-year olds). We obtain
the and shown here.

Source SS df MS F

A(dose) 48 2 24 6.00
B (age) 8 1 8 2.00
Interaction 38 2 19 4.75
Within 72 18 4
Total 166 

Then, is ; is ; is
; is . Then, is

; is ; is .
The for A is 3.55, so is significant: ChangingFAFcrit

19>4 5 4.75FA3B8>4 5 2.00FB24>4 5 6.00
FA72>18 5 4MSwn38>2 5 19

MSA3B8>1 5 8MSB48>2 5 24MSA

dfsSSs

MSwn.
MSFobt

df
SSMS

Fobt dose influenced IQ. The for B is 4.41, so is not
significant. The for is 3.55, so it is signifi-
cant: The influence that changing dose had on IQ
depends on participants’ age.

For Practice

1. For this study, complete the summary table:

Source SS df MS F

A 108 3 ____ ____
B 104 2 ____ ____
Interaction 252 6 ____ ____
Within 672 48 ____ ____
Total 536 59 ____ ____

2. The for is ____, the for is ____,
and the for is ____.

3. Which effects are significant?

Answers
1. , , , and ;

, , and 
2. 2.80; 3.19; 2.30
3. The main effect of and the interaction effectB

FA3B 5 3.00FB 5 3.71FA 5 2.57
MSwn 5 14MSA3B 5 42MSB 5 52MSA 5 36

FA3BFcrit

FBFcritFAFcrit

4 3 3

FA3BFcrit

FBFcrit

A  Q U I C K  R E V I E W

INTERPRETING THE TWO-WAY EXPERIMENT

To understand and interpret the results of a two-way ANOVA, you should examine the
means from each significant main effect and interaction by graphing them and perform-
ing post hoc comparisons.

Graphing and Post Hoc Comparisons with Main Effects

We graph each main effect separately, plotting all main effect means, even those that
the post hoc tests may indicate are not significant. As usual, label the axis as the mean
of the dependent scores and place the levels of the factor on the axis. For our volumeX

Y
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factor, the main effect means were 6.00 for low, 11.50 for medium, and 11.33 for loud.
For gender, the means were 11.89 for males and 7.33 for females. Figure 14.1. shows
the resulting graphs. Volume is a continuous, ratio variable, so we create a line graph.
Gender is a discrete, nominal variable, so we create a bar graph.

To determine which main effect means differ significantly, we usually perform
Tukey’s HSD procedure because we usually have equal . (With unequal , perform
Fisher’s t-test, as in Chapter 13.) Recall that the formula for the HSD is

where is from the ANOVA, is from Table 6 in Appendix C for and 
(where is the number of levels in the factor), and is the number of scores in a level.
But be careful here: Recall that the and were different for each main effect. In partic-
ular, the is always the number of scores used to compute each mean you are compar-
ing right now! Also, because depends on , when factors have a different , they have
different values of . Therefore, you will have a different HSD for each main effect
when or is different.

Our volume factor has three means, and each is 6. The . With ,
, and , the Thus,

The HSD for factor A is 4.41. The mean for soft (6.00) differs from the means for
medium (11.50) and loud (11.33) by more than 4.41. Thus, soft produces a significant
difference from the other volumes: increasing volume from soft to medium and from
soft to loud produced significant differences (increases) in scores. However, the means
for medium and loud differ by less than 4.41, so these conditions do not differ signifi-
cantly: Increasing volume from medium to loud did not produce a significant change in
scores.

After comparing the main effect means of factor A, we move on the main effect
means of factor B. When a factor contains only two levels (like our gender factor),

HSD 5 1qk 2 aB

MSwn

n
b 5 13.77 2 a

B

8.22

6
b 5 4.41

qk 5 3.77.dfwn 5 12k 5 3
� 5 .05MSwn 5 8.22n

nk
qk

kkqk

n
nk

nk
kdfwnqkMSwn

HSD 5 1qk 2 aB

MSwn

n
b

nsns

0
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Mean persuasiveness as 
a function of volume 

Mean persuasiveness as 
a function of gender

FIGURE 14.1

Graphs showing main
effects of volume and
gender
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we do not need to perform post hoc comparisons (it must be that the mean for males
differs significantly from the mean for females). If, however, a significant factor B had
more than two levels, you would compute the HSD using the and in that factor and
compare the differences between these main effect means as we did above.

Graphing the Interaction Effect

An interaction can be a beast to interpret, so always graph it! As usual, place the
dependent variable along the axis. To produce the simplest graph, place the factor
with the most levels on the axis. You’ll show the other factor by drawing a separate
line on the graph for each of its levels.

Thus, we’ll label the axis with our three volumes. Then we plot the cell means. 
The resulting graph is shown in Figure 14.2. As in any graph, you’re showing the rela-
tionship between the and variables, but here you’re showing the relationship
between volume and persuasiveness, first for males and then for females. Thus,
approach this in the same way that we examined the means back in Table 14.3. There,
we first looked at the relationship between volume and persuasiveness scores for males:
Their cell means are , , and Plot these three
means and connect the adjacent data points with straight lines. Then we looked at the
relationship between volume and scores for females: Their cell means are ,

, and Plot these means and connect their adjacent data points
with straight lines. (Note: Always provide a key to identify each line.)

The way to read the graph is to look at one line at a time. For males (the dashed line),
as volume increases, mean persuasiveness scores increase. However, for females (the
solid line), as volume increases, persuasiveness scores first increase but then decrease.
Thus, we see a linear relationship for males and a different, nonlinear relationship for
females. Therefore, the graph shows an interaction effect by showing that the effect of
increasing volume depends on whether the participants are male or female.

REMEMBER Graph the interaction by drawing a separate line that shows the
relationship between the factor on the axis and the dependent scores for
each level of the other factor.

Note one final aspect of an interaction. An interac-
tion effect can produce an infinite variety of different
graphs, but it always produces lines that are not par-
allel. Each line summarizes a relationship, and a line
that is shaped or oriented differently from another line
indicates a different relationship. Therefore, when the
lines are not parallel they indicate that the relationship
between and changes depending on the level of
the second factor, so an interaction effect is present.
Conversely, when an interaction effect is not present,
the lines will be essentially parallel, with each line
depicting essentially the same relationship. To see this
distinction, say that our data had produced one of the
two graphs in Figure 14.3. On the left, as the levels of
A change, the mean scores either increase or decrease
depending on the level of B, so an interaction is pres-
ent. However, on the right the lines are parallel, so as
the levels of A change, the scores increase, regardless

YX

1Y 2X

Xloud 5 6.Xmedium 5 12
Xsoft 5 4

Xloud 5 16.67.Xmedium 5 11Xsoft 5 8
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FIGURE 14.2

Graph of cell means,
showing the interaction
of volume and gender
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Interaction exists
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A3A2

B2

A1 A3A2
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FIGURE 14.3

Two graphs showing
when an interaction is
and is not present

Factor A: Volume

A1: A2: A3:
Soft Medium Loud

B1:
Male X� � 8 X� � 11 X� � 16.67

Factor B:
Gender

B2:
Female X� � 4 X� � 12 X� � 6

TABLE 14.10

Summary of Interaction
Means for Persuasiveness
Study

Horizontal and vertical lines
between two cells show
unconfounded comparisons;
diagonal lines show
confounded comparisons.

←⎯→

←⎯⎯⎯⎯⎯⎯⎯⎯⎯→
← ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ →

←
⎯

 ⎯
→

←
⎯

⎯→

of the level of B. Therefore, this graph does not depict an interaction effect. (The fact
that, overall, the scores are higher in B1than in B2 is the main effect of—difference due
to—factor B.)

Think of significance testing of the interaction as testing whether the lines are
significantly different from parallel. When an interaction is not significant, the lines
may represent parallel lines that would be found for the population. When an interac-
tion is significant, the lines we’d find in the population probably would not be parallel,
so there would be an interaction effect in the population.

REMEMBER An interaction effect is present when its graph produces lines
that are not parallel.

Performing Post Hoc Comparisons on the Interaction Effect

To determine which cell means in a interaction effect differ significantly, we usually
perform Tukey’s HSD procedure because we usually have equal cell ns. (Otherwise,
perform Fisher’s t-test.) However, we do not compare every cell mean to every other
cell mean. Look at Table 14.10. We would not, for example, compare the mean for
males at loud volume to the mean for females at soft volume. This is because we
would not know what caused the difference: The two cells differ in terms of both
gender and volume. Therefore, we would have a confused, or confounded, compari-
son. A confounded comparison occurs when two cells differ along more than one
factor. When performing post hoc comparisons on an interaction, we perform only
unconfounded comparisons, in which two cells differ along only one factor. There-
fore, compare only cell means within the same column because these differences
result from factor B. Compare means within the same row because these differences

FA3B



Factor A: Volume

A1: A2: A3:
Soft Medium Loud

B1:
Male 8.0 11 16.67

Factor B: 3.0 5.67

Gender 4.0 8.67 1.0 10.67

B2: 
Female 4.0 12 6

8.0 6.0
2.0

HSD � 7.47

TABLE 14.12

Table of the Interaction
Cells Showing the 
Differences Between
Unconfounded Means
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result from factor A. Do not, however, make any diagonal
comparisons because these are confounded comparisons.

We have one other difference when performing the HSD on
an interaction, and that involves how we obtain . Previously,
we found in Table 6 (Appendix C) using k, the number of
means being compared. Each in the table is appropriate for
making all possible comparisons between k means, as in a
main effect. However, in an interaction we make fewer com-
parisons, because we only make unconfounded comparisons.
Therefore, we compensate for fewer comparisons by using an
adjusted k. Obtain the adjusted from Table 14.11 (or at the
beginning of Table 6 of Appendix C). In the left-hand column,
locate the design of your study. Our study is a or a

design. As a double-check, confirm that the middle column contains the num-
ber of cell means in the interaction: we have 6. In the right-hand column is the
adjusted k: for our study it is 5.

The adjusted k is the value of to use to obtain . Thus, for our study, in Table 6
(Appendix C), we look in the column labeled for k equal to 5. With and

, the . This is appropriate for the number of unconfounded com-
parisons that we’ll actually make.

Now compute the HSD using the usual formula. Our is 8.22, and the n in each
mean that we’re comparing right now is 3. So

Thus, the HSD for the interaction is 7.47.
Now determine the differences between all cell means vertically within each column

and horizontally within each row. To see these differences, arrange them as in
Table 14.12. On the line connecting two cells is the absolute difference between their
means. Only three differences are larger than the HSD and thus significant: (1) between
the mean for females at the soft volume and the mean for females at the medium vol-
ume, (2) between the mean for males at the soft volume and the mean for males at the
loud volume, and (3) between the mean for males at the loud volume and the mean for
females at the loud volume.

HSD 5 1qk 2 aB

MSwn

n
b 5 14.51 2 a

B

8.22

3
b 5 7.47

MSwn

qkqk 5 4.51dfwn 5 12
� 5 .05

qkk

2 3 3
3 3 2

k

qk

qk

qk

TABLE 14.11

Values of Adjusted k

Design of Number of Cell Adjusted
Study Means in Study Value of k

2 � 2 4 3
2 � 3 6 5
2 � 4 8 6
3 � 3 9 7
3 � 4 12 8
4 � 4 16 10
4 � 5 20 12
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Interpreting the Overall Results of the Experiment

We report each using the same format as in the one-way ANOVA. Typically
we report the , the means and their significant differences, and the effect size for the
main effect of A, then for the main effect of B, and then for the interaction. (Include
nonsignificant effects as well.) Then, to interpret the results of the study, focus on the
means that differ significantly in each main effect and interaction. All of these differ-
ences found in the persuasiveness study are summarized in Table 14.13. Each line con-
necting two means indicates that they differ significantly. (Note: You may also compute
the confidence interval for the represented by any significant main effect mean or cell
mean. Use the formula in Chapter 13.)

Usually, the interpretation of a two-way study rests with the interaction, even when
main effects are significant. This is because the conclusions about main effects are
contradicted by the interaction. For example, our main effect means for gender suggest
that males score higher than females. However, in the interaction, we see that gender

�

F
Fobt

■ The graph of an interaction shows the relationship
between one factor on and dependent scores on 
for each level of the other factor.

■ When performing Tukey’s HSD test on an interac-
tion effect, determine the adjusted value of k and
make only unconfounded comparisons.

MORE EXAMPLES

We obtain the cell means on the left. To produce the
graph of the interaction on the right, we plot data
points at 2 and 6 for and connect them with the
solid line. We plot data points at 10 and 4 for and
connect them with the dashed line.

A1 A2

B1

B2

Say that , and the n per cell 
is 5. For the HSD, from Table 14.11, the adjusted k is 3.
In Table 6 (Appendix C), at , the is 3.65.
Then

HSD 5 1qk 2 aB

MSwn

n
b 5 13.65 2 a

B

5.19

5
b 5 3.72

qk� 5 .05

MSwn 5 5.19dfwn 5 16

B2

B1

YX
The unconfounded comparisons involve subtracting the
means in each column and each row. All differences are
significant except when comparing 6 versus 4.

For Practice

We obtain the following data:

A1 A2

B1

B2

The , , and 

1. The adjusted k is ___.

2. The is ___.

3. The HSD is ___.

4. Which cell means differ significantly?

Answers
1. 3
2. 3.77
3. 4.17
4. Only 12 versus 22 and 14 versus 22

qk

n 5 4.MSwn 5 4.89dfwn 5 12

A  Q U I C K  R E V I E W

X� � 2 X� � 6

X� � 10 X� � 4
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8
6
4
2
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B2
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X� � 13 X� � 14

X� � 12 X� � 22
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differences depend on volume: Only in the loud condition is there a significant differ-
ence between males and females. Therefore, because the interaction contradicts the pat-
tern suggested by the main effect, we cannot make an overall, general conclusion about
differences between males and females.

Likewise, the main effect of volume showed that increasing volume from soft to
medium and from soft to loud produced significant differences. However, the interac-
tion indicates that increasing the volume from soft to medium actually produced a sig-
nificant difference only for females, while increasing the volume from soft to loud
produced a significant difference only for males.

Thus, as above, usually you cannot draw clear conclusions about significant main
effects when the interaction is significant. After all, the interaction indicates that the
influence of one factor depends on the levels of the other factor and vice versa, so you
should not turn around and act like either factor has a consistent effect by itself. When
the interaction is not significant, then focus on any significant main effects. (For com-
pleteness, however, always perform the entire ANOVA for all main effects and the
interaction.)

REMEMBER The primary interpretation of a two-way ANOVA rests on the
interaction when it is significant.

Thus, we conclude that increasing the volume of a message beyond soft tends to
increase persuasiveness scores in the population, but this increase occurs for females
with medium volume and for males with loud volume. Further, we conclude that dif-
ferences in persuasiveness scores occur between males and females in the population
but only if the volume of the message is loud. (And, after all of the above shenanigans,
for all of these conclusions together, the probability of a Type I error in the study—the
experiment-wise error rate—is still )

Describing the Effect Size: Eta Squared

Finally, we again compute eta squared to describe effect size—the proportion of
variance in dependent scores that is accounted for by a variable. Compute a separate
eta squared for each significant main and interaction effect. The formula for eta
squared is

�2 5
Sum of squares between groups for the effect

SStot

1�2 2

p 6 .05.

Factor A: Volume

Level A1: Level A2: Level A3:
Soft Medium Loud

Level B1:
Male 8.0 11 16.67

X� � 11.89Factor B:
Gender

Level B2:
Female 4.0 12 6 X� � 7.33

X�soft � 6 X�med � 11.5 X�loud � 11.33

TABLE 14.13

Summary of Significant
Differences in the Persua-
siveness Study

Each line connects two
means that differ 
significantly.
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This says to divide the into the sum of squares for the factor, either , , 
or . Thus, for our factor A (volume), was 117.45 and was 412.28. 
Therefore,

Thus, if we predict participants’ scores using the main effect mean of the volume con-
dition they were tested under, we can account for 28% of the total variance in persua-
siveness scores. Likewise, for the gender factor, is 93.39, so is : Predicting
the mean of their condition for male and female participants will account for 23% of
the variance in scores. Finally, for the interaction, is 102.77, so is : By
using the mean of the cell to predict a participant’s score, we can account for 25% of
the variance.

Recall that the greater the effect size, the more important the effect is in determin-
ing participants’ scores. Because each of the above has about the same size, they are
all of equal importance in understanding differences in persuasiveness scores in this
experiment. However, suppose that one effect accounted for only 1% of the total
variance. Such a small indicates that this relationship is very inconsistent, so it is
not useful or informative. Therefore, we should emphasize the other, larger signifi-
cant effects. In essence, if eta squared indicates that an effect was not a big deal in
the experiment, then we should not make a big deal out of it when interpreting the
experiment.

The effect size is especially important when dealing with interactions. The one
exception to the rule of always focusing on the significant interaction is when it has a
very small effect size. If the interaction’s effect is small (say, only .02), then although
the interaction contradicts the main effect, it is only slightly and inconsistently contra-
dictory. In such cases, you may focus your interpretation on any significant main
effects that had a more substantial effect size.

SUMMARY OF THE STEPS IN PERFORMING A TWO-WAY ANOVA

The following summarizes the steps in a two-way ANOVA:

1. Compute the : Compute , , and for each main effect, the interaction, and
for within groups. Dividing each mean square between groups by the mean square
within groups produces each .

2. Find : For each factor or interaction, if is larger than , then there is a
significant difference between two or more means from the factor or interaction.

3. For each significant main effect: Perform post hoc tests when the factor has more
than two levels. Graph each main effect.

4. For a significant interaction effect: Perform post hoc tests by making only uncon-
founded comparisons. For the HSD, determine the adjusted k. Graph the effect by
labeling the axis with one factor and using a separate line to connect the cell
means from each level of the other factor.

5. Compute eta squared: Describe the proportion of variance in dependent scores
accounted for by each significant main effect or interaction.

6. Compute the confidence interval: This can be done for the represented by the
mean in any relevant level or cell.
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Recognize that, although there is no limit to the number of factors we can have in an
ANOVA, there is a practical limit to how many factors we can interpret. Say that we
added a third factor to the persuasiveness study—the sex of the speaker of the message.
This would produce a three-way ( ) ANOVA in which we compute an 
for three main effects ( , , and ), for three two-way interactions ( , ,
and ), and for a three-way interaction ( )! (If significant, it indicates
that the two-way interaction between volume and participant gender changes, depend-
ing on the sex of the speaker.) If this sounds very complicated, it’s because it is very
complicated. Therefore, unless you have a very good reason for including many factors
in one study, it is best to limit yourself to two or, at most, three factors. You may not
learn about many variables at once, but what you do learn you will understand.

Using the SPSS Appendix As shown in Appendix B.8, SPSS will perform the com-
plete two-way between-subjects ANOVA. It also performs the HSD test, but only for
main effects. SPSS also computes the and for the levels of all main effects and 
for the cells of the interaction, as well as computing the 95% confidence interval for
each mean. And, it graphs the means for the main effects and interaction.

s2
XX

A 3 B 3 CB 3 C
A 3 CA 3 BCBA

Fobt3 3 2 3 2

PUTTING IT 
ALL TOGETHER
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7. Interpret the experiment: Based on the significant main and/or interaction effects
and their values of , develop an overall conclusion regarding the relationships
formed by the specific means from the cells and levels that differ significantly.

Congratulations, you are getting very good at this stuff.

�2

CHAPTER SUMMARY

1. A two-way, between-subjects ANOVA involves two independent variables, and all
conditions of both factors contain independent samples. A two-way, within-
subjects ANOVA is performed when both factors involve related samples. A two-
way, mixed-design ANOVA is performed when one factor has independent
samples and one factor has related samples.

2. In a complete factorial design, all levels of one factor are combined with all levels
of the other factor. Each cell is formed by a particular combination of a level from
each factor.

3. In a two-way ANOVA, we compute an for the main effect of A, for the main
effect of B, and for the interaction of .

4. The main effect means for a factor are obtained by collapsing across (combining
the scores from) the levels of the other factor. Collapsing across factor B produces
the main effect means for factor A. Collapsing across factor A produces the main
effect means for factor B.

5. A significant main effect indicates significant differences between the main effect
means, indicating a relationship is produced when we manipulate one indepen-
dent variable by itself.

6. A significant two-way interaction effect indicates that the cell means differ signifi-
cantly such that the relationship between one factor and the dependent scores
depends on the level of the other factor that is present. When graphed, an interac-
tion produces nonparallel lines.

A 3 B
Fobt
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7. Perform post hoc comparisons on each significant effect having more than two
levels to determine which specific means differ significantly.

8. Post hoc comparisons on the interaction are performed for unconfounded compar-
isons only. The means from two cells are unconfounded if the cells differ along
only one factor. Two means are confounded if the cells differ along more than one
factor.

9. An interaction is graphed by plotting cell means on and the levels of one factor
on . Then a separate line connects the data points for the cell means from each
level of the other factor.

10. Conclusions from a two-way ANOVA are based on the significant main and inter-
action effects and upon which level or cell means differ significantly. Usually, con-
clusions about the main effects are contradicted when the interaction is significant.

11. Eta squared describes the effect size of each significant main effect and interaction.

X
Y

KEY TERMS

cell 320
collapsing 322
complete factorial design 320
confounded comparison 339
incomplete factorial design 320
main effect 321

MSA3B

dfA3BSSA3BMSBdfBSSB

MSAdfASSAFA3BFBFA main effect mean 322
two-way ANOVA 318
two-way, between-subjects 

ANOVA 318
two-way interaction effect 325
two-way, mixed-design ANOVA 318
two-way, within-subjects ANOVA 318
unconfounded comparison 339

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. What are the two reasons for conducting a two-factor experiment?
2. Identify the following terms: (a) two-way design, (b) complete factorial, and (c) cell.
3. What is the difference between a main effect mean and a cell mean?
4. Which type of ANOVA is used in a two-way design when (a) both factors are

tested using independent samples? (b) One factor involves independent samples
and one factor involves related samples? (c) Both factors involve related samples?

5. (a) What is a confounded comparison, and when does it occur? (b) What is an
unconfounded comparison, and when does it occur? (c) Why don’t we perform
post hoc tests on confounded comparisons?

6. What does it mean to collapse across a factor?
7. For a ANOVA, describe the following in words: (a) the statistical hypothe-

ses for factor A, (b) the statistical hypotheses for factor B, and (c) the statistical
hypotheses for .

8. (a) What does a significant main effect indicate? (b) What does a significant
interaction effect indicate? (c) Why do we usually base the interpretation of a 
two-way design on the interaction effect when it is significant?

A 3 B

2 3 2
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APPLICATION QUESTIONS

9. One more time, using a factorial design, we study the effect of changing the dose
for one, two, three, or four smart pills and test participants who are 10-, 15-, and
20-years old. We test ten participants in each cell. (a) Using two numbers,
describe this design. (b) When computing the main effect means for the factor of
dose, what will be the n in each group? (c) When computing the main effect
means for the factor of age, what will be the n in each group? (d) When perform-
ing Tukey’s HSD on the interaction, what will be the n?

10. (a) When is it appropriate to compute the effect size in a two-way ANOVA? 
(b) For each effect, what does the effect size tell you?

11. Below are the cell means of three experiments. For each experiment, compute the
main effect means and decide whether there appears to be an effect of A, B,
and/or .

Study 1 Study 2 Study 3

A1 A2 A1 A2 A1 A2

B1 B1 B1

B2 B2 B2

12. In question 11, if you label the axis with factor A and graph the cell means,
what pattern will we see for each interaction?

13. After performing a ANOVA with equal ns, you find that all are signifi-
cant. What other procedures should you perform?

14. A design studies participants’ frustration levels when solving problems as a
function of the difficulty of the problem and whether they are math or logic prob-
lems. The results are that logic problems produce significantly more frustration
than math problems, greater difficulty leads to significantly greater frustration,
and difficult math problems produce significantly greater frustration than difficult
logic problems, but the reverse is true for easy problems. In the ANOVA in this
study, what effects are significant?

15. In question 14, say instead that the researcher found no difference between math
and logic problems, frustration significantly increases with greater difficulty, and
this is true for both math and logic problems. In the ANOVA in this study, what
effects are significant?

16. In an experiment, you measure the popularity of two brands of soft drinks (factor A),
and for each brand you test males and females (factor B). The following table shows
the main effect and cell means from the study:

Factor A

Level A1: Level A2:
Brand X Brand Y

Level B1:
Males 14 23

Factor B

Level B2:
Females 25 12

2 3 2

Fs3 3 4

X

8 14

8 2

10 5

5 10

2 4

12 14

A 3 B
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(a) Describe the graph of the interaction when factor A is on the axis.
(b) Does there appear to be an interaction effect? Why? (c) What are the main
effect means and thus the main effect of changing brands? (d) What are the
main effect means and thus the main effect of changing gender? (e) Why will a
significant interaction prohibit you from making conclusions based on the main
effects?

17. A researcher examines performance on an eye–hand coordination task as a func-
tion of three levels of reward and three levels of practice, obtaining the following
cell means:

Reward

Low Medium High

Low 4 10 7

Practice Medium 5 5 14

High 15 15 15

(a) What are the main effect means for reward, and what do they appear to
indicate about this factor? (b) What are the main effect means for practice, and
what do they appear to indicate? (c) Does it appear that there is an interaction
effect? (d) How would you perform unconfounded post hoc comparisons of the
cell means?

18. (a) In question 17, why does the interaction contradict your conclusions about the
effect of reward? (b) Why does the interaction contradict your conclusions about
practice?

19. A study compared the performance of males and females tested by either a male
or a female experimenter. Here are the data:

Factor A: Participants

Level A1: Level A2:
Males Females

6 8
Level B1: 11 14
Male Experimenter 9 17

10 16
9 19

Factor B: Experimenter

8 4
Level B2: 10 6
Female Experimenter 9 5

7 5
10 7

(a) Using , perform an ANOVA and complete the summary table. 
(b) Compute the main effect means and interaction means. (c) Perform the 
appropriate post hoc comparisons. (d) What do you conclude about the relationships
this study demonstrates? (e) Compute the effect size where appropriate.

� 5 .05

X
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20. You conduct an experiment involving two levels of self-confidence ( is low and
is high) and examine participants’ anxiety scores after they speak to one of

four groups of differing sizes ( through represent speaking to a small,
medium, large, or extremely large group, respectively). You compute the follow-
ing sums of squares ( and ):

Source Sum of Squares df Mean Square F

Between
Factor A 8.42 ������ ������ ������
Factor B 76.79 ������ ������ ������
Interaction 23.71 ������ ������ ������

Within 110.72 ������ ������
Total 219.64 ������

(a) Complete the ANOVA summary table. (b) With , what do you conclude
about each ? (c) Compute the appropriate values of HSD. (d) For the levels of
factor B, the means are , , , and What
should you conclude about the main effect of B? (e) How important is the size of the
audience in determining a person’s anxiety score? How important is the person’s
self-confidence?

21. You measure the dependent variable of participants’ relaxation level as a function
of whether they meditate before being tested, and whether they were shown a film
containing a low, medium, or high amount of fantasy. Perform all appropriate sta-
tistical analyses, and determine what you should conclude about this study.

Amount of Fantasy

Low Medium High

5 7 9
Meditation 6 5 8

2 6 10
2 9 10
5 5 10

No 10 2 5
Meditation 10 5 6

9 4 5
10 3 7
10 2 6

INTEGRATION QUESTIONS

22. What does a 95% confidence interval for indicate? (Ch.11)
23. What does “significant” indicate about the results of any study? (Ch. 10)
24. (a) How do you recognize the independent variable in a study? (b) How do you

recognize the levels in a study? (c) How do you recognize the dependent variable
in a study? (Chs. 2, 12, 13, 14)

25. To select a statistical procedure for an experiment, what must you ask about how
participants are selected? (Chs. 12, 13, 14)

�

X4 5 28.3.X3 5 24.6X2 5 20.02X1 5 18.36
Fobt

� 5 .05

N 5 32n 5 4

B4B1

A2

A1
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26. (a) How do you recognize a two-sample t-test design? (b) What must be true
about the dependent variable? (c) Which versions of the t-test are available? 
(Chs. 2, 10, 12)

27. (a) How do you recognize a correlational design? (b) To select a correlation coef-
ficient, what must you ask about the variables? (c) What is the parametric correla-
tion coefficient? (d) What is the nonparametric correlation coefficient? (Chs. 2, 7,
10, 11)

28. (a) How do you recognize a design that requires a one-way ANOVA? (b) What
must be true about the dependent variable? (c) Which versions of ANOVA are
available? (Chs. 10, 12 13)

29. (a) How do you recognize a design that fits a two-way ANOVA? (b) What must be
true about the dependent variable? (c) Which versions of ANOVA are available?
(Chs. 10, 12, 14)

30. For the following, identify the factor(s), the primary inferential procedure to
perform and the key findings we’d look for. If a correlational design, indicate the
predictor and criterion. If no parametric procedure can be used, indicate why.
(Chs. 7, 8, 10, 11, 12, 13, 14)
(a) We measure babies’ irritability when their mother is present and when she is
absent. (b) We test the driving ability of participants who are either high, medium,
or low in the personality trait of “thrill seeker.” For each type, we test some
participants who have had either 0, 1, or 2 oz. of alcohol. (c) Parents with
alcoholism may produce adult children who are more prone to alcoholism. We
compare the degree of alcoholism in participants with alcoholic parents to those
with nonalcoholic parents. (d) To study dark adaptation, participants were asked
to identify stimuli after sitting in a dim room for 1 minute, again after 15 minutes,
and again after 30 minutes. (e) We study whether people who smoke cigarettes are
more prone to be drug abusers. We identify participants who are smokers or non-
smokers, and for each, count the number who are high or low drug abusers. (f) To
test if creativity scores change with age, we test groups of 5-, 10-, or 15-year-olds.
We also identify them as Caucasian or non-Caucasian to determine if age-related
changes in creativity depend on race. (g) As in part (f) we measure the age scores
and creativity scores of all students in the school district, again separating
Caucasian and non-Caucasian. (Chs. 8, 12, 13, 14)

■ ■ ■ SUMMARY OF 
FORMULAS

The general format for the summary table for a two-way, between-subjects ANOVA is 

Summary Table of Two-Way ANOVA

Source Sum of Squares df Mean Square F

Between
Factor A SSA dfA MSA FA
Factor B SSB dfB MSB FB
Interaction SSA�B dfA�B MSA�B FA�B

Within SSwn dfwn MSwn
Total SStot dftot
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1. To perform the two-way, between-subjects ANOVA

a. Compute the sum of squares,

b. Compute the degrees of freedom,

i. The between groups for factor A 
equals , where is the number of
levels in factor A.

ii. The df between groups for factor B 
equals , where is the number of lev-
els in factor B.

iii. The df between groups for the interaction
equals multiplied times .

iv. The df within groups equals
, where is the total of the

study and is the total number of cells in
the study.

c. Compute the mean square,

 MSwn 5
SSwn

dfwn

 MSA3B 5
SSA3B

dfA3B

 MSB 5
SSB

dfB

 MSA 5
SSA

dfA

kA3B

NNN 2 kA3B

1dfwn 2

dfBdfA1dfA3B 2

kBkB 2 1
1dfB 2

kAkA 2 1
1dfA 2df

SSwn 5 SStot 2 SSbn

SSA3B 5 SSbn 2 SSA 2 SSB

SSbn 5 © a
1Sum of scores in the row 22

n of scores in the row
b 2 a

1©Xtot 2
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N
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SSB 5 © a
1Sum of scores in the row 22
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b 2 a
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N
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SSA 5 © a
1Sum of scores in the column 22

n of scores in the column
b

SStot 5 ©X2
tot 2 a

1©Xtot 2
2

N
b

d. Compute ,

Critical values of are found in Table 5 of
Appendix C.

2. The formula for Tukey’s HSD post hoc
comparisons is

a. For a significant main effect: Find in Table
6 in Appendix C for k equal to the number of
levels in the factor. In the formula, n is the
number of scores used to compute each main
effect mean in the factor.

b. For a significant interaction effect: Determine
the adjusted k using the small table at the top
of Table 6 in Appendix C. Find in Table 6
using the adjusted k. In the formula for HSD,
n is the number of scores in each cell.

3. The formula for eta squared is

�2 5
Sum of squares between groups for the factor

SStot

qk

qk

HSD 5 1qk 2 aB

MSwn

n
. b

F

 FA3B 5
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MSB
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Chi Square and Other
Nonparametric Procedures15

GETTING STARTED
To understand this chapter, recall the following:

■ From Chapter 2, the four types of measurement scales (nominal, ordinal,
interval, and ratio).

■ From Chapter 12, the types of designs that call for either the independent-
samples t-test or the related-samples t-test.

■ From Chapter 13, the one-way ANOVA, post hoc tests, and eta squared.

■ From Chapter 14, what a two-way interaction indicates.

Your goals in this chapter are to learn

■ When to use nonparametric statistics.

■ The logic and use of the one-way chi square.

■ The logic and use of the two-way chi square.

■ The nonparametric procedures corresponding to the independent-samples and
related-samples t-test and to the between-subjects and within-subjects ANOVA.

Previous chapters have discussed the category of inferential statistics called parametric
procedures. Now we’ll turn to the other category, called nonparametric procedures.
Nonparametric procedures are still inferential statistics for deciding whether the differ-
ences between samples accurately represent differences in the populations, so the logic
here is the same as in past procedures. What’s different is the type of dependent vari-
able involved. In this chapter, we will discuss (1) two common procedures used with
nominal scores called the one-way and two-way chi square and (2) review several less
common procedures used with ordinal scores.

WHY IS IT IMPORTANT TO KNOW ABOUT NONPARAMETRIC PROCEDURES?

Previous parametric procedures have required that dependent scores reflect an interval
or ratio scale, that the scores are normally distributed, and that the population variances
are homogeneous. It is better to design a study that allows you to use parametric proce-
dures because they are more powerful than nonparametric procedures. However, some-
times researchers don’t obtain data that fit parametric procedures. Some dependent
variables are nominal variables (for example, whether someone is male or female).
Sometimes we can measure a dependent variable only by assigning ordinal scores (for
example, judging this participant as showing the most of the variable, this one second-
most, and so on). And sometimes a variable involves an interval or ratio scale, but the
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populations are severely skewed and/or do not have homogeneous variance (for exam-
ple, previously we saw that yearly income forms a positively skewed distribution).

Parametric procedures will tolerate some violation of their assumptions. But if the
data severely violate the rules, then the result is to increase the probability of a Type I
error so that it is much larger than the alpha level we think we have.

Therefore, when data do not fit a parametric procedure, we turn to nonparametric
statistics. They do not assume a normal distribution or homogeneous variance, and the
scores may be nominal or ordinal. By using these procedures, we keep the probability of a
Type I error equal to the alpha level that we’ve selected. Therefore, it is important to know
about nonparametric procedures because you may use them in your own research, and you
will definitely encounter them when reading the research of others.

REMEMBER Use nonparametric statistics when dependent scores form very
nonnormal distributions, when the population variance is not homogeneous,
or when scores are measured using ordinal or nominal scales.

CHI SQUARE PROCEDURES

Chi square procedures are used when participants are measured using a nominal vari-
able. With nominal variables, we do not measure an amount, but rather we categorize
participants. Thus, we have nominal variables when counting how many individuals
answer yes, no, or maybe to a question; how many claim to vote Republican, Democra-
tic, or Socialist; how many say that they were or were not abused as children; and so
on. In each case, we count the number, or frequency, of participants in each category.

The next step is to determine what the data represent. For example, we might find
that out of 100 people, 40 say yes to a question and 60 say no. These numbers indicate
how the frequencies are distributed across the categories of yes/no. As usual, we want
to draw inferences about the population: Can we infer that if we asked the entire popu-
lation this question, 40% would say yes and 60% would say no? Or would the frequen-
cies be distributed in a different manner? To make inferences about the frequencies in
the population, we perform chi square (pronounced “kigh square”). The chi square
procedure is the nonparametric inferential procedure for testing whether the frequen-
cies in each category in sample data represent specified frequencies in the population.
The symbol for the chi square statistic is .

REMEMBER Use the chi square procedure when you count the number
of participants falling into different categories.

Theoretically, there is no limit to the number of categories—levels—you may have
in a variable and no limit to the number of variables you may have. Therefore, we
describe a chi square design in the same way we described ANOVAs: When a study has
only one variable, perform the one-way chi square; when a study has two variables,
perform the two-way chi square; and so on.

ONE-WAY CHI SQUARE

The one-way chi square is used when data consist of the frequencies with which
participants belong to the different categories of one variable. Here we examine the
relationship between the different categories and the frequency with which participants

1�2 2

�2
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fall into each. We ask, “As the categories change, do the frequencies in the categories 
also change?”

Here is an example. Being right-handed or left-handed is related to brain organiza-
tion, and many of history’s great geniuses were left-handed. Therefore, using an IQ
test, we select a sample of 50 geniuses. Then we ask them whether they are left- 
or right-handed (ambidextrous is not an option). The total numbers of left- and right-
handers are the frequencies in the two categories. The results are shown here:

Handedness

Left-Handers Right-Handers

fo � 10 fo � 40

k � 2
N � total fo � 50

Each column contains the frequency in that category. We call this the observed fre-
quency, symbolized by . The sum of the from all categories equals , the total
number of participants. Notice that stands for the number of categories, or levels, and
here .

Above, 10 of the 50 geniuses (20%) are left-handers, and 40 of them (80%) are right-
handers. Therefore, we might argue that the same distribution of 20% left-handers and
80% right-handers would occur in the population of geniuses. But, there is the usual
problem: sampling error. Maybe, by luck, the people in our sample are unrepresenta-
tive, so in the population of geniuses, we would not find this distribution of right- and
left-handers. Maybe our results poorly represent some other distribution.

What is that “other distribution” of frequencies that the sample poorly represents?
To answer this, we create a model of the distribution of the frequencies we expect to
find in the population when is true. The model describes the distribution of
frequencies in the population if there is not the predicted relationship. It is because
we test this model that the one-way chi square procedure is also called a goodness-
of-fit test. Essentially, we test how “good” the “fit” is between our data and the 
model. Thus, the goodness-of-fit test is another way of asking whether sample data
are likely to represent the distribution of frequencies in the population as described
by .

Hypotheses and Assumptions of the One-Way Chi Square

The one-way tests only two-tailed hypotheses. Usually, researchers test the that
there is no difference among the frequencies in the categories in the population, mean-
ing that there is no relationship in the population. For the handedness study, for the
moment we’ll ignore that there are more right-handers than left-handers in the world.
Therefore, if there is no relationship in the population, then our is that the frequen-
cies of left- and right-handed geniuses are equal in the population. There is no conven-
tional way to write this in symbols, so simply write : all frequencies in the
population are equal. This implies that, if the observed frequencies in the sample are
not equal, it’s because of sampling error.

The alternative hypothesis always implies that the study did demonstrate the pre-
dicted relationship, so we have : not all frequencies in the population are equal. For
our handedness study, implies that the observed frequencies represent different fre-
quencies of left- and right-handers in the population of geniuses.

Ha

Ha

H0

H0

H0�2

H0

H0

H0H0

k 5 2
k

Nfosfo
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The one-way has five assumptions:

1. Participants are categorized along one variable having two or more categories, and
we count the frequency in each category.

2. Each participant can be in only one category (that is, you cannot have repeated
measures).

3. Category membership is independent: The fact that an individual is in a category
does not influence the probability that another participant will be in any category.

4. We include the responses of all participants in the study (that is, you would not
count only the number of right-handers, or in a different study, you would count
both those who do and those who do not agree with a statement).

5. For theoretical reasons, each “expected frequency” discussed below must be at
least 5.

Computing the One-Way Chi Square

The first step in computing is to translate into the expected frequency for each
category. The expected frequency is the frequency we expect in a category if the sam-
ple data perfectly represent the distribution in the population described by the null
hypothesis. The symbol for an expected frequency is . Our is that the frequencies
of left- and right-handedness are equal. If the sample perfectly represents this, then out
of our 50 participants, 25 should be right-handed and 25 should be left-handed. Thus,
the expected frequency in each category is .

Notice that, whenever we are testing the of no difference among the categories,
the will be the same for all categories, and it will always equal . Thus, above, 
our . Also notice that sometimes may contain a decimal. For ex-
ample, if we included a third category, ambidextrous, then , and each would 
be 16.67.

After computing each , the next step is to compute , which we call .�2
obt�2fe

fek 5 3
fefe 5 50>2 5 25

N>kfe

H0

fe 5 25

H0fe

H0�2

�2

This says to find the difference between and in each category, square that differ-
ence, and then divide it by the for that category. After doing this for all categories,
sum the quantities, and the answer is .

For the handedness study, we have these frequencies:

Handedness

Left-Handers Right-Handers

fo � 10 fo � 40
fe � 25 fe � 25

�2
obt

fe

fefo

The formula for chi square is

χ2
obt 5 © a

1 fo 2 fe 2
2

fe

b
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Filling in the formula gives

In the numerator of each fraction, first subtract the from the , giving

Squaring each numerator gives

After dividing,

So our 

Interpreting the One-Way Chi Square

If the sample perfectly represents the situation where is true, then each “should”
equal its corresponding . Then the difference between and should equal zero, and
so should equal zero. If not, says this is due to sampling error. However, the
larger the differences between and (and the larger the ), the harder it is for us to
accept that this is simply due to sampling error. At the same time, larger differences
between and are produced because of a larger observed frequency in one category
and a smaller one in another, so the more it looks like we are really representing a rela-
tionship. Therefore, the larger the , the less likely it is that is true and the more
likely it is that is true.

To determine if our is large enough, we examine the -distribution. Like previ-
ous sampling distributions, it is as if we have infinitely selected samples from the situa-
tion where is true. The  -distribution is the sampling distribution containing all
possible values of when is true. Thus, for the handedness study, the -distribu-
tion is the distribution of all possible values of when there are two categories and the
frequencies in the two categories in the population are equal. You can envision the -

distribution as shown in Figure 15.1.
Even though the -distribution is not at all nor-

mal, it is used in the same way as previous sam-
pling distributions. Most often the data perfectly
represent the situation so that each equals its

, and then is zero. However, sometimes by
chance, the observed frequencies differ from the
expected frequencies, producing a greater than
zero. The larger the , the larger are the differ-
ences between the observed and the expected and
then the less likely they are to occur when 
is true.

Because can only get larger, we again
have two-tailed hypotheses but one region of
rejection. To determine if is significant, we�2

obt

�2
obt

H0

�2
�2

�2fe

foH0

�2

�2
�2

�2H0�2
�2H0

�2�2
obt
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obt 5 9 1 9
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obt 5 a
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b 1 a
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1215 22
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b 1 a

115 22

25
b

fofe

�2
obt 5 © a

1 fo 2 fe 2
2

fe
b 5 a

110 2 25 22
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b 1 a

140 2 25 22
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 α = .05

0 χ2

χ2 greater than 0

χ2
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χ2χ2χ2χ2χ2 χ2χ2χ2

Region of rejection

FIGURE 15.1

Sampling distribution of
2 when H0 is true�



compare it to the critical value, symbolized by . As with previous statistics, the 
-distribution changes shape as the degrees of freedom change, so we must 

first determine the degrees of freedom. Here, , where is the number of
categories.

REMEMBER In a one-way chi square, .

Find the critical value of in Table 7 in Appendix C, entitled “Critical Values of
Chi Square.” For the handedness study, , so , and with , the

. Our of 18.0 is larger than this , so the results are significant:
This indicates that the differences between our observed and expected frequen-
cies are very unlikely to occur if our data represent no relationship in the population.
Therefore we reject that this is what the data represent. We then accept the that
the sample represents frequencies in the population that are not equal. In fact, we
would expect to find about 20% left-handers and 80% right-handers in the popula-
tion of geniuses. We conclude that we have evidence of a relationship between hand-
edness and genius. Then, as usual, we interpret the relationship in terms of the
behaviors and variables involved.

If had not been significant, we would have no evidence—one way or the other—
regarding how handedness is distributed among geniuses.

Note: If a study involves three categories, a significant chi square is not followed by
post hoc comparisons. We simply assume that the observed frequency in each category
represents frequencies that would be found in the population. Also, there is no measure
of effect size for this design.

Testing Other Hypotheses with the One-Way Chi Square

The procedure can also be used to test an other than that there is no difference
among the categories. For example, only about 10% of the general population is actu-
ally left-handed, so we should test whether handedness in geniuses is distributed dif-
ferently than this. Our is that geniuses are like the general population, being 10%
left-handed and 90% right-handed. Our is that our data represent a population of
geniuses that does not have this distribution (or for simplicity, we can write as
“not ”).

Each is again based on our . Say that we test our previous 50 geniuses. Our 
says that left-handed geniuses should occur 10% of the time: 10% of 50 is 5, so

. Right-handed geniuses should occur 90% of the time: 90% of 50 is 45, so
. We found for left-handers and for right-handers. We compute

using the previous formula, comparing the to for left-handers and the to 
for right-handers.

With and , the critical value of is again 3.84. Because the of
5.56 is larger than , we reject and conclude that the observed frequencies are
significantly different from what we would expect if handedness in the population of
geniuses was distributed as it is in the general population. Instead, we estimate that in
the population of geniuses, 20% are left-handers and 80% are right-handers.

H0�2
crit

�2
obt�2k 5 2� 5 .05

�2
obt 5 © a

1 fo 2 fe 2
2

fe
b 5 a

110 2 5 22

5
b 1 a

140 2 45 22

45
b 5 5.56

fofefofe�2
obt

fo 5 40fo 5 10fe 5 45
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H0fe
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H0

H0�2

�2
obt
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crit 5 3.84

� 5 .05df 5 1k 5 2
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df 5 k 2 1

kdf 5 k 2 1
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■ The one-way is used when counting the
frequency of category membership on one variable.

MORE EXAMPLES

Below are the number of acts of graffiti that occur on
walls painted white, painted blue, or covered with
chalkboard. is that there are no differences in the
population. With , for
each category.

White Blue Chalk

fo � 8 fo � 5 fo � 17
fe � 10 fe � 10 fe � 10

With and , ,
the wall coverings produce a significant difference in

�2
crit 5 5.99� 5 .05df 5 k 2 1 5 2

�2
obt 5

4

10
1

25

10
1

49

10
5 7.80

�2
obt 5

110 2 8 22

10
1
110 2 5 22

10
1
110 2 17 22

10

�2
obt 5 © a

1 fe 2 fo 2
2

fe
b

fe 5 N>k 5 30>3 5 10N 5 30
H0

�2 the frequency of graffiti acts. In the population, we
expect 27% of graffiti on white walls, 17% on blue
walls, and 57% on chalkboard walls.

For Practice

1. The one-way chi square is used when we count 
the ____ with which participants fall into 
different ____.

2. We find in category A and in cate-
gory B. is that the frequencies are equal. The 
for A is ____, and the for B is ____.

3. Compute .

4. The is ____, so at , is ____.

5. The is ____, so in the population we expect
membership is around ____% in A and around
____% in B.

Answers
1. frequency; categories
2. Each 

3.

4. 1; 3.84
5. significant; 35%; 65%

�2
obt 5

130 2 21 22

30
1
130 2 39 22

30
5 5.40

fe 5 60>2 5 30

�2
obt

�2
crit� 5 .05df

�2
obt

fe

feH0

fo 5 39fo 5 21
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THE TWO-WAY CHI SQUARE

The two-way chi square procedure is used when you count the frequency of category
membership along two variables. (The assumptions of the two-way chi square are the
same as for the one-way chi square.) Here is an example. At one time, psychologists
claimed that someone with a Type A personality tends to be a very pressured, hostile
individual who never seems to have enough time. The Type B personality tends not to
be so time pressured and is more relaxed and mellow. A controversy developed over
whether Type A people are less healthy, especially when it comes to the “big one”—

having heart attacks. Therefore, say that we select a sample of
80 people and determine how many are Type A and how 
many Type B. We then count the frequency of heart attacks in
each type. We must also count how many in each type have
not had heart attacks (see our assumption 4). Therefore, we
have two categorical variables: personality type (A or B) and
health (heart attack or no heart attack). Table 15.1 shows the
layout of this study. Notice, this is a matrix, so it is
called a design. Depending on the number of categories
in each variable, a study might be a , a , and so on.3 3 42 3 3

2 3 2
2 3 2

Personality Type

Type A Type B

Heart 
Attack

fo fo

Health
No Heart 
Attack

fo fo

TABLE 15.1

A Two-Way Chi Square
Design Comparing 
Participants’ Personality
Type and Health



Although Table 15.1 looks like a two-way ANOVA, it is not analyzed like one.
Instead of testing for main effects, the two-way procedure tests only what is essen-
tially the interaction. Recall that with an interaction, the influence of one variable
depends on the other. The two-way is also called the test of independence because
it tests whether the frequency that participants fall into the categories of one variable
depends on the frequency of falling into the categories on the other variable. Thus, our
study will test whether the frequencies of having or not having a heart attack are inde-
pendent of the frequencies of being Type A or Type B.

To understand independence, the left-hand matrix in Table 15.2 shows an example of
data we might get if category membership on our variables was perfectly independent.
Here, the frequency of having or not having a heart attack does not depend on the fre-
quency of being Type A or Type B. Another way to view the two-way is as a test of
whether a correlation exists between the two variables. When variables are independ-
ent, there is no correlation, and using the categories from one variable is no help in pre-
dicting the frequencies for the other variable. Here, knowing if people are Type A or
Type B does not help to predict if they do or do not have heart attacks (and the health
categories do not help in predicting personality type).

On the other hand, the right-hand matrix in Table 15.2 shows an example of when
category membership on the two variables is totally dependent. Here, the frequency of
a heart attack or no heart attack depends on personality type. Likewise, a perfect corre-
lation exists because whether people are Type A or Type B is a perfect predictor of
whether or not they have had a heart attack (and vice versa).

But, say that the actual observed frequencies from our participants are those shown
in Table 15.3. There is a degree of dependence here because heart attacks tend to 
be more frequent for Type A personalities, while no heart attack is more frequent for
Type B personalities. Therefore, some degree of correlation exists between the vari-
ables. On the one hand, we’d like to conclude that this relationship exists in the popu-
lation. On the other hand, perhaps there really is no correlation in the population, but
by chance we obtained frequencies that poorly represent this. The above translate into
our null and alternative hypotheses. In the two-way , is that category member-
ship on one variable is independent of (not correlated with) category membership on
the other variable. If the sample data look correlated, this is due to sampling error. The

is that category membership on the two variables in the population is dependent
(correlated).
Ha

H0�2

�2

�2

�2
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TABLE 15.2

Examples of Independence and Dependence

On the left, personality type and heart attacks are perfectly independent. On the right, personality type and heart attacks are
perfectly dependent.

Personality Type

Type A Type B

Heart 
Attack

fo � 20 fo � 20

Health

No Heart 
Attack

fo � 20 fo � 20

Personality Type

Type A Type B

Heart 
Attack

fo � 40 fo � 0

Health

No Heart 
Attack

fo � 0 fo � 40



Personality Type

Type A Type B

Heart 
Attack

fo � 25 fo � 10

Health

No Heart 
Attack

fo � 5 fo � 40

TABLE 15.3

Observed Frequencies as
a Function of Personality
Type and Health

Personality Type

Type A Type B

Heart fo � 25 fo � 10 row 
Attack fe � 13.125 fe � 21.875 total � 35

(35)(30)/80 (35)(50)/80
Health

No Heart fo � 5 fo � 40 row 
Attack fe � 16.875 fe � 28.125 total � 45

(45)(30)/80 (45)(50)/80

column column total � 80
total � 30 total � 50 N � 80

TABLE 15.4

Diagram Containing fo
and fe for Each Cell

Each fe equals the row
total times the column
total, divided by N.

The Two-Way Chi Square 359

Computing the Two-Way Chi Square

Again the first step in computing is to compute the expected frequencies. To do so,
as shown in Table 15.4, first compute the total of the observed frequencies in each col-
umn and the total of the observed frequencies in each row. Also, note , the total of all
observed frequencies.

Each is based on the probability of a participant falling into a cell if the two vari-
ables are independent. For example, for the cell of Type A and heart attack, we deter-
mine the probability of someone in our study being Type A and the probability of
someone in our study reporting a heart attack, when these variables are independent.
The expected frequency in this cell then equals this probability multiplied times .
Luckily, the steps involved in this can be combined to produce this formula.

N

fe

N

�2

For each cell we multiply the total observed frequencies for the row containing the cell
times the total observed frequencies for the column containing the cell. Then divide by
the of the study.

Table 15.4 shows the completed computations of for our study. To check 
your work, confirm that the sum of the in each column or row equals the column 
or row total.

fe

fe

N

The formula for computing the expected frequency 
in a cell of a two-way chi square is

fe 5
1Cell’s row total fo 2 1Cell’s column total fo 2

N



Compute the two-way using the same formula used in the one-way design,
which is

With the data in Table 15.4 we have

As you did previously with this formula, in the numerator of each fraction subtract 
from . Then square that difference and then divide by the in the denominator. Then

so

To evaluate , compare it to the appropriate . First, determine the degrees of
freedom by looking at the number of rows and columns in the diagram of your study.

In a two-way chi square, df ( )( ).

For our design, is . Find the critical value of in Table
7 in Appendix C. At and , the is 3.84.

Our of 30.56 is larger than , so it is significant. Therefore, envision the sam-
pling distribution back in Figure 15.1, with in the region of rejection. This indicates
that the differences between our observed and expected frequencies are so unlikely to
occur if our data represent variables that are independent in the population, that we reject
that this is what the data represent. If the variables are not independent, then they must
be dependent. Therefore, we accept the that the frequency of participants falling into
each category on one of our variables depends on the category they fall into on the other
variable. In other words, we conclude that there is a significant correlation such that the
frequency of having or not having a heart attack depends on the frequency of being Type
A or Type B (and vice versa). If is not larger than the critical value, do not reject 
. Then, we cannot say whether these variables are independent or not.

REMEMBER A significant two-way indicates that the sample data are likely
to represent two variables that are dependent (or correlated) in the population.
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■ The two-way is used when counting the
frequency of category membership on two
variables.

■ The is that category membership for one
variable is independent of category membership for
the other variable.

H0

�2 MORE EXAMPLES

We count the participants who indicate (1) whether
they like or dislike statistics and (2) their gender. The

is that liking/disliking is independent of gender.
The results are
H0

A  Q U I C K  R E V I E W

(continued)
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Like Dislike

fo � 20 fo � 10Male
fe � 15 fe � 15

Total fo � 30

fo � 5 fo � 15Female
fe � 10 fe � 10 Total fo � 20

Total Total
fo � 25 fo � 25 N � 50

Compute each :

For male-like: 
For male-dislike: 
For female-like: 
For female-dislike:

With , , so is significant: The
frequency of liking/disliking statistics depends on—is
correlated with—whether participants are male or
female.

For Practice

1. The two-way is used when counting the ______
with which participants fall into the ______ of two
variables.

�2

�2
obt�2

crit 5 3.84� 5 .05

df 5 12 2 1 2 12 2 1 2 5 1

�2
obt 5 8.334

�2
obt 5 25>15 1 25>15 1 25>10 1 25>10

  1
115 2 10 22

10

 �2
obt 5

120 2 15 22

15
1
110 2 15 22

15
1
15 2 10 22

10

fe 5 120 2 125 2 >50 5 10
fe 5 120 2 125 2 >50 5 10
fe 5 130 2 125 2 >50 5 15
fe 5 130 2 125 2 >50 5 15

fe

2. The is that the frequencies in the categories of
one variable are ______ of those of other variable.

3. Below are the frequencies for people who are 
satisfied/dissatisfied with their job and who
do/don’t work overtime. What is the in each cell?

Overtime No Overtime

Satisfied fo � 11 fo � 3

Dissatisfied fo � 8 fo � 12

4. Compute .

5. The ______ and ______.

6. What do you conclude about these variables?

Answers
1. frequency; categories
2. independent
3. For satisfied–overtime, ;

for satisfied–no overtime, ;
for dissatisfied–overtime, ;
for dissatisfied–no overtime, .

4.

5. 1; 3.84
6. is significant: The frequency of job satisfaction/

dissatisfaction depends on the frequency of overtime/
no overtime.

�2
obt

1
18 2 11.176 22

11.176
1
112 2 8.824 22

8.824
5 4.968

�2
obt 5

111 2 7.824 22

7.824
1
13 2 6.176 22

6.176

fe 5 8.824
fe 5 11.176
fe 5 6.176

fe 5 7.824

�2
crit 5df 5

�2
obt

fe
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Describing the Relationship in a Two-Way Chi Square

A significant two-way chi square indicates a significant correlation between the vari-
ables. To determine the size of this correlation, we have two new correlation coeffi-
cients: We compute either the phi coefficient or the contingency coefficient.

If you have performed a chi square and it is significant, compute the 
phi coefficient. Its symbol is , and its value can be between 0 and . Think 
of phi as comparing your data to the ideal situations shown back in Table 15.2. 
A coefficient of 0 indicates that the variables are perfectly independent. The larger 
the coefficient, the closer the variables are to forming a pattern that is perfectly 
dependent.

11�
2 3 2
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equals the total number of participants in the study.
For the heart attack study, was 30.56 and was 80, so

Thus, on a scale of 0 to , where indicates perfect dependence, the correlation is
between the frequency of heart attacks and the frequency of personality types.

Remember that another way to describe a relationship is to square the correlation
coefficient, computing the proportion of variance accounted for. If you didn’t take the
square root in the above formula, you would have (phi squared). This is analogous
to or , indicating how much more accurately we can predict scores by using the
relationship. Above, , so we are 38% more accurate in predicting the fre-
quency of heart attacks/no heart attacks when we know personality type (or vice versa).

The other correlation coefficient is the contingency coefficient, symbolized by .
This is used to describe a significant two-way chi square that is not a design (it’s
a , a , and so on).3 3 32 3 3

2 3 2
C

�2 5 .38
�2r2

�2

.62
1111

� 5
B

�2
obt

N
5
B

30.56

80
5 1.382 5 .62

N�2
obt

N

is the number of participants in the study. Interpret in the same way you interpret
. Likewise, is analogous to .

STATISTICS IN PUBLISHED RESEARCH: REPORTING CHI SQUARE

The results of a one-way or two-way are reported like previous results, except 
that in addition to the , we also include the . For example, in our handedness 
study, was 50, was 1, and the significant was 18. We report this as

.
To graph a one-way design, label the axis with frequency and the axis with the

categories, and then plot the in each category. With a nominal variable, create a bar
graph. Thus, the graph on the left in Figure 15.2 shows the results of our handedness
study. The graph on the right shows the results of our heart attack study. For a two-way
design, place frequency on the axis and one of the nominal variables on the axis.
The levels of the other variable are indicated in the body of the graph. (This is similar
to the way a two-way interaction was plotted in the previous chapter, except that here
we create bar graphs.)

XY

Xfo

XY
�2 11, N 5 50 2 5 18.00, p 6 .05
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obtdfN

Ndf
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The formula for the phi coefficient is
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The formula for the contingency coefficient is
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NONPARAMETRIC PROCEDURES FOR RANKED DATA

The is the only common inferential statistic for nominal scores. The only other type
of nonparametric procedure is for when the dependent variable involves rank-ordered
(ordinal) scores. You obtain ranked scores for one of two reasons. First, sometimes
you’ll directly measure participants using ranked scores (directly assigning participants
a score of 1st, 2nd, and so on). Second, sometimes you’ll initially measure interval or
ratio scores, but they violate the assumptions of parametric procedures by not being
normally distributed or not having homogeneous variance. Then you transform these
scores to ranks (the highest raw score is ranked 1, the next highest score is ranked 2,
and so on). Either way, you then compute one of the following nonparametric inferen-
tial statistics to determine whether there are significant differences between the condi-
tions of your independent variable.

The Logic of Nonparametric Procedures for Ranked Data

Instead of computing the mean of each condition in the experiment, with nonparamet-
ric procedures we summarize the individual ranks in a condition by computing the sum
of ranks. The symbol for a sum of ranks is . In each procedure, we compare the
observed sum of ranks to an expected sum of ranks. To see the logic of this, say we
have the following scores:

Condition 1 Condition 2

1 2
4 3
5 6
8 7

Here, the conditions do not differ, with each containing both high and low ranks. When
the ranks are distributed equally between two groups, the sums of ranks are also equal
(here, is 18 in each). This is true even for two populations. Our is always that
the populations are equal, so with ranked data, is that the sums of ranks for each
population are equal. Therefore, when is true, we expect the sums of ranks from theH0
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H0©R

©R 5 18©R 5 18
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samples to be equal. Thus, the observed above is exactly what we would
expect if is true, so such an outcome supports .

But say the data had turned out differently, as here:

Condition 1 Condition 2

1 5
2 6
3 7
4 8

Condition 1 contains all of the low ranks, and Condition 2 contains all of the high
ranks. Because these samples are different, they may represent two different popula-
tions. With ranked data says that one population contains predominantly low ranks
and the other contains predominantly high ranks. When our data are consistent with 

, the observed sum of ranks in each sample is different from the expected sum of
ranks produced when is true: Here, each does not equal 18.

Thus, the observed sum of ranks in each condition should equal the expected sum if
is true, but the observed sum will not equal the expected sum if is true. Of

course, it may be that is true, but we have sampling error in representing this, in
which case, the observed sum will not equal the expected sum. However, the larger the
difference between the expected and observed sum of ranks, the less likely it is that this
difference is due to sampling error, and the more likely it is that each sample represents
a different population.

In each of the following procedures, we compute a statistic that measures the differ-
ence between the expected and the observed sum of ranks. If we can then reject and
accept , we are confident that the reason the observed sum is different from the
expected sum is that the samples represent different populations. And, if the ranks
reflect underlying interval or ratio scores, a significant difference in ranks indicates that
the raw scores also differ significantly.

Resolving Tied Ranks

Each of the following procedures assumes you have resolved any tied ranks, in which
two participants receive the same rank on the same variable. Say that two people are
ranked 2nd. If not tied, one of them would have been 2nd and the other 3rd. Therefore,
resolve ties by assigning the mean of the ranks that would have been used had there not
been a tie. The mean of 2 and 3 is 2.5, so each tied participant would be given the new
rank of 2.5. Now, in a sense, you’ve used 2 and 3, so the next participant (originally
3rd) is assigned the new rank of 4, the next is given 5, and so on. (If three participants
had tied at 2nd, we’d assign them the mean of 2, 3, and 4, and assign the next person
the rank of 5. And so on.) Doing this makes your sum of ranks work out correctly.

Choosing a Nonparametric Procedure

Each of the major parametric procedures found in previous chapters has a correspon-
ding nonparametric procedure for ranked data. Your first task is to know which non-
parametric procedure to choose for your type of research design. Table 15.5 shows the
name of the nonparametric version of each parametric procedure we have discussed.

Ha

H0

H0

HaH0

©RH0

Ha

Ha

©R 5 26©R 5 10

H0H0

©R 5 18
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Note: The table includes from Chapter 7 the Pearson , the parametric correlation coef-
ficient, and the Spearman , the nonparametric correlation coefficient for ranks. My
advice is to memorize this table!

The steps in calculating each new nonparametric procedure are described in the fol-
lowing sections.

Tests for Two Independent Samples: The Mann–Whitney 
U Test and the Rank Sums Test

Two nonparametric procedures are analogous to the t-test for two independent samples:
the Mann–Whitney test and the rank sums test. Which test we use depends on the 
in each condition.

The Mann–Whitney U Test Perform the Mann–Whitney test when the in
each condition is equal to or less than 20 and there are two independent samples of
ranks. For example, say that we measure the reaction times of people to different visual
symbols that are printed in either black or red ink. Reaction times tend to be highly pos-
itively skewed, so we cannot perform the t-test. Therefore, we convert the reaction time
scores to ranks. Say that each is 5 (but unequal ns are acceptable). Table 15.6 gives
the reaction times (measured in milliseconds) and their corresponding ranks.

n

nU

nU

rS

r

Type of Design Parametric Test Nonparametric Test

Two independent Independent- Mann–Whitney U or rank
samples samples t-test sums test

Two related Related-samples Wilcoxon T test
samples t-test

Three or more Between-subjects Kruskal–Wallis H test
independent ANOVA (Post hoc test: rank
samples (Post hoc test: sums test)

protected t-test)

Three or more Within-subjects Friedman �2 test
repeated- ANOVA (Post hoc test: Nemenyi’s
measures (Post hoc test: test)
samples Tukey’s HSD)

Correlational study Pearson r Spearman rS

TABLE 15.5

Parametric Procedures
and Their Nonparametric
Counterparts

Red Symbols Black Symbols
��������������������������������� ����������������������������������

Reaction Ranked Reaction Ranked
Time Score Time Score

540 2 760 7
480 1 890 8
600 5 1105 10
590 3 595 4
605 6 940 9

n 5 5n 5 5
©R 5 38©R 5 17

TABLE 15.6

Ranked Data from Two
Independent Samples
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To perform the Mann–Whitney test,

1. Assign ranks to all scores in the experiment. Assign the rank of 1 to the lowest
score in the experiment, regardless of which group it is in. Assign the rank of 2 to
the second-lowest score, and so on.

2. Compute the sum of the ranks for each group. Compute for each group.

3. Compute two versions of the Mann–Whitney . First, compute for Group 1,
using the formula

where is the of Group 1, is the of Group 2, and is the sum of ranks
from Group 1. Let’s identify the red symbol condition as Group 1, so from Table
15.6, we have

Second, compute for Group 2, using the formula

Our black symbol condition is Group 2, so

4. Determine the Mann–Whitney . In a two-tailed test, the value of equals
the smaller of or . In the example, and , so .
In a one-tailed test, we predict that one of the groups has the larger sum of ranks.
The corresponding value of or from that group becomes .

5. Find the critical value of in Table 8 of Appendix C entitled “Critical Values of
the Mann–Whitney .” Choose the table for either a two-tailed or a one-tailed test.
Then locate using and . For our example, with a two-tailed test and

and , the is 2.0.

6. Compare to . WATCH OUT! Unlike any statistic we’ve discussed, the
is significant if it is equal to or less than . (This is because the smaller

the , the more likely that is false. In the example, and
, so the samples differ significantly, representing different populations

of ranks. Because the ranks reflect reaction time scores, the samples of reaction
times also differ significantly and represent different populations .

7. To describe the effect size, compute eta squared. If is significant, then ignore the
rule about the ns and reanalyze the data using the following rank sums test to get to .

The Rank Sums Test Perform the rank sums test when you have two independent
samples of ranks and either is greater than 20. To illustrate the calculations, we’ll
violate this rule and use the data from the previous reaction time study.

To perform the rank sums test,

1. Assign ranks to the scores in the experiment. As we did back in Table 15.6, rank-
order all scores in the experiment.

n

�2
Uobt

1p 6 .05 2

Ucrit 5 2.0
Uobt 5 2.0H0Uobt

UcritUobt

UcritUobt

Ucritn2 5 5n1 5 5
n2n1Ucrit

U
U

UobtU2U1

Uobt 5 2.0U2 5 2.0U1 5 23.0U2U1

UobtUobt

U2 5 15 2 15 2 1
515 1 1 2

2
2 38 5 40 2 38 5 2.0

U2 5 1n1 2 1n2 2 1
n21n2 1 1 2

2
2 ©R2

U2

U1 5 15 2 15 2 1
515 1 1 2

2
2 17 5 40 2 17 5 23.0

©R1nn2nn1

U1 5 1n1 2 1n2 2 1
n11n1 1 1 2

2
2 ©R1

U1U
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2. Choose one group and compute the sum of the ranks. Compute for one 
group.

3. Compute the expected sum of ranks for the chosen group. Use the 
formula

where is the of the chosen group and is the total of the study. We’ll com-
pute for the red symbol group, which had ( ). Thus,

4. Compute the rank sums statistic, symbolized by . Use the formula

where is the sum of the ranks for the chosen group, is the expected
sum of ranks for the chosen group, and are the of the two groups, and is
the total of the study.

For our example, so

5. Find the critical value of in the z-tables (Table 1 in Appendix C). At ,
the two-tailed . (If we had predicted whether the sum of ranks of the
chosen group would be greater than or less than the expected sum of ranks, then
we would use the one-tailed value of either or .)

6. Compare to . If the absolute value of is larger than , then the sam-
ples differ significantly. In our example, and .
Therefore, we conclude that the samples of ranked scores—as well as the 
underlying samples of reaction times—differ significantly .

7. Describe a significant relationship using eta squared. Here eta squared is
analogous to . Use the formula

where is computed in the above rank sums test and is the total number of
participants.

In the example, is and is 10, so we have , or . Thus, the
color of the symbols accounts for of the variance in the ranks. Because the ranks
reflect reaction time scores, approximately 53% of the differences in reaction time
scores are associated with the color of the symbol.
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The Wilcoxon T Test for Two Related Samples

Perform the Wilcoxon test when you have related samples of ranked data. Recall
that related samples occur when you match samples or have repeated measures. For
example, say that we perform a study similar to the previous reaction time study, but
this time we measure the reaction times of the same participants to both the red and
black symbols. Table 15.7 gives the data we might obtain.

To compute the Wilcoxon 

1. Determine the difference score for each pair of scores. Subtract the score in one
condition from the score in the other for each pair. It makes no difference which
score is subtracted from which, but subtract the scores the same way for all pairs.

2. Determine the of the nonzero difference scores. Ignore any differences equal to
zero and count the number of the other difference scores. In our study, one differ-
ence equals zero, so .

3. Assign ranks to the nonzero difference scores. Ignore the sign ( ) of each
difference. Assign the rank of 1 to the smallest difference, the rank of 2 to the 
second-smallest difference, and so on. Record the ranked scores in a column.

4. Separate the ranks, using the sign of the difference scores. Create two columns 
of ranks, labeled “ ” and “ .” The column contains the ranks assigned to
negative differences in step 3. The column contains the ranks assigned to
positive differences.

5. Compute the sums of ranks for the positive and negative difference scores.
Compute for the column labeled “ ” and for the column labeled “ .”

6. Determine the Wilcoxon . In the two-tailed test, the Wilcoxon equals 
the smallest . In the example, the smallest equals 3, so . In the
one-tailed test, we predict whether most differences are positive or negative,
depending on our experimental hypotheses. Thus, we predict whether or 

contains the smaller , and the one we predict is . (If we predicted that 
red symbols would produce the largest reaction time scores, given the way 
we subtracted, we would predict that for the column would be smaller, 
so would be 42.)Tobt

R2©R

Tobt©RR2
R1

Tobt 5 3©R©R
TobtTobt

R2R1©R

R1
R2R1R2

1 or 2

N 5 9

N

Tobt

T

TABLE 15.7

Data for the Wilcoxon T Test for Two Related Samples

Reaction Reaction Time
Time to Red to Black Ranked

Participant Symbols Symbols Difference Scores R R

1 540 760 � 220 6 6
2 580 710 � 130 4 4
3 600 1105 � 505 9 9
4 680 880 � 200 5 5
5 430 500 � 70 3 3
6 740 990 � 250 7 7
7 600 1050 � 450 8 8
8 690 640 � 50 2 2
9 605 595 � 10 1 1

10 520 520 0

©R 5 3©R 5 42N 5 9

12
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7. Find the critical value of in Table 9 of Appendix C, entitled “Critical Values of
the Wilcoxon .” Find for the appropriate and , the number of nonzero
difference scores. In our study, and , so is 5.0.

8. Compare to . Again, watch out: is significant if it is equal to or less
than . (The critical value is the largest value that our smallest can be and
still reflect a significant difference.)

In the example, the is less than the , so we have a significant difference.
Therefore, we conclude that each sample represents a different distribution of ranks and
thus a different population of reaction time scores .

There is no way to compute for this procedure.

The Kruskal–Wallis H Test

The Kruskal–Wallis test is analogous to a one-way, between-subjects ANOVA for
ranks. It assumes that the study involves one factor involving at least three conditions,
and each is tested using independent samples, with at least five participants in each sam-
ple. The null hypothesis is that all conditions represent the same population of ranks.

As an example, say that we examine the independent variable of a golfer’s height and
the dependent variable of the distance he or she hits the ball. We test golfers classified
as either short, medium, or tall, measuring the distance each drives the ball in meters.
However, say that we cannot assume that the distance scores have homogeneous vari-
ance, so we cannot perform ANOVA. Instead, we perform the Kruskal–Wallis test.
The data are shown in Table 15.8.

To compute the Kruskal–Wallis test,

1. Assign ranks, using all scores in the experiment. Assign a rank of 1 to the lowest
score in the experiment, a 2 to the second-lowest score, and so on.

2. Compute the sum of the ranks in each condition. Compute the in each column.

3. Compute the sum of squares between groups . Use the formula

For our example,
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1©R1 2

2

n1
1
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TcritTobt
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TobtTcritTobt

Tcrit� 5 .05N 5 9
N�TcritT

T

Height

Short Medium Tall
����������������������� ���������������������� ����������������������

Score Rank Score Rank Score Rank

10 2 24 3 68 14
28 6 27 5 71 15
26 4 35 7 57 10
39 8 44 9 60 12

6 1 58 11 62 13

N 5 15n2 5 5n2 5 5n1 5 5
©R2 5 64©R2 5 35©R1 5 21

TABLE 15.8

Data for the
Kruskal–Wallis H Test
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4. Compute . Use the formula

where is the total of the study, and is computed as above.
In the example

5. Find the critical value of in the tables (Table 7 in Appendix C). Values of 
have the same sampling distribution as . The degrees of freedom are

where is the number of levels in the factor.
In the example, is 3, so for and , is 5.99.

6. Compare the obtained value of to the critical value of . The is significant
if it is larger than the critical value. Above, the of 9.62 is larger than the 
of 5.99, so it is significant. This means that at least two samples represent differ-
ent populations of ranks. Because the distance participants hit the ball underlies
each rank, we conclude that at least two of the populations of distances for short,
medium, and tall golfers are not the same .

7. Perform post hoc comparisons using the rank sums test. When is significant,
determine which specific conditions differ by performing the rank sums test on
every pair of conditions. This is analogous to Fisher’s protected t-test (discussed
in Chapter 13) and is used regardless of the in each group. For each pair, treat
the two conditions being compared as if they comprised the entire study: re-rank
the scores using only the two conditions being compared, and then perform the
previous rank sums test.

In the example, comparing short to medium golfers produces a of 1.36, compar-
ing short to tall golfers produces a of 2.62, and comparing medium to tall golfers
produces a of 2.40. With , from the -tables is . Therefore, the
scores of short and medium participants are not significantly different, but they both
differ significantly from those in the tall condition. We conclude that tall golfers pro-
duce one population of distances that is different from the population for short and
medium golfers.

8. If is significant, compute eta squared. Use the formula

where is computed in the Kruskal–Wallis test and is the total number of
participants. Above, and , so , or . Therefore,
the variable of a player’s height accounts for approximately 69% of the variance
in the distance scores.
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The Friedman Test

The Friedman test is analogous to a one-way, within-subjects ANOVA for ranks. 
It assumes that the study involves one factor having at least three levels and that the
samples in each are related (because of either matching or repeated measures). With
only three levels, we must have at least ten participants in the study. With only four lev-
els, we must have at least five participants.

As an example, say that we consider the three teaching styles of Dr. Highman, 
Dr. Shyman, and Dr. Whyman. A sample of students who have taken courses from all
three instructors is repeatedly measured. Table 15.9 shows the data.

To perform the Friedman test,

1. Assign ranks within the scores of each participant. If the scores are not already
ranks, assign the rank of 1 to the lowest score for participant 1, assign the rank of
2 to the second-lowest score for participant 1, and so on. Repeat the process for
each participant.

2. Compute the sum of the ranks in each condition. Find in each column.

3. Compute the sum of squares between groups . Use the formula

In the example,

4. Compute the Friedman statistic. Use the formula

where is the number of participants and is the number of levels of the factor.
In the example

�2
obt 5 1.10 2 11298 2 2 120 5 129.8 2 120 5 9.80

�2
obt 5 a

12

13 2 110 2 13 1 1 2
b 11298 2 2 3110 2 13 1 1 2

kN
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12

1k 2 1N 2 1k 1 1 2
b 1SSbn 2 2 31N 2 1k 1 1 2
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SSbn 5 112 22 1 123 22 1 125 22 5 1298

SSbn 5 1©R1 2
2 1 1©R2 2

2 1 p 1 1©Rk 2
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1SSbn 2

©R

�2

x2

x2

Rankings for Three Instructors

Participant Dr. Highman Dr. Shyman Dr. Whyman

1 1 2 3
2 1 3 2
3 1 2 3
4 1 3 2
5 2 1 3
6 1 3 2
7 1 2 3
8 1 3 2
9 1 3 2

10 2 1 3

©R3 5 25©R2 5 23©R1 5 12N 5 10

TABLE 15.9

Data for the Friedman
Test
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5. Find the critical value of in the -tables (Table 7 in Appendix C). The degrees
of freedom are

where is the number of levels in the factor.
For the example, , so for and , the critical value is 5.99.

6. Compare to the critical value of . If is larger than , the results are
significant. Our of 9.80 is larger than the of 5.99, so at least two of the
samples represent different populations .

7. When the is significant, perform post hoc comparisons using Nemenyi’s
Procedure. This procedure is analogous to Tukey’s HSD procedure. To perform
Nemenyi’s procedure,

a. Compute the critical difference. Use the formula

where is the number of levels of the factor, is the number of participants
(or rows in the study’s diagram), and is the critical value used to test the
Friedman .

In the example, , , and , so

b. Compute the mean rank for each condition. For each condition, divide the 
sum of ranks by the number of participants. In the example, the 
mean ranks are 1.2, 2.3, and 2.5 for Highman, Shyman, and Whyman, 
respectively.

c. Compute the differences between all pairs of mean ranks. Subtract each mean
rank from the other mean ranks. Any absolute difference between two means
that is greater than the critical difference indicates that the two conditions dif-
fer significantly. In the example, the differences between Dr. Highman and the
other two instructors are 1.10 and 1.30, respectively, and the difference
between Shyman and Whyman is . The critical difference is 1.09, so only
Dr. Highman’s ranking is significantly different from those of the other two
instructors. Thus, we conclude that Dr. Highman would be ranked superior to
the other two instructors by the population.

8. Describe a significant relationship, using eta squared. Use the formula

where is from the Friedman test, is the number of participants, and is
the number of levels of the factor. For the example,

Thus, the instructor variable accounts for 34% of the variability in rankings.
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Chapter Summary 373

Congratulations! You have read an entire statistics book, and that’s an accomplishment!
You should be proud of the sophisticated level of your knowledge because you are now
familiar with the vast majority of statistical procedures used in psychology and other
behavioral sciences. Even if you someday go to graduate school, you’ll find that there
is little in the way of basics for you to learn.

Using the SPSS Appendix As shown in Appendix B.9, SPSS will perform the one-
way or the two-way procedure. This includes reporting its significance level and, in
the two-way design, computing or . Appendix B.10 describes how to use SPSS to
compute the nonparametric procedures for ranked scores discussed in this chapter,
except for post hoc comparisons and .

CHAPTER SUMMARY

1. Nonparametric procedures are used when data do not meet the assumptions of
parametric procedures. Nonparametric procedures are less powerful than 
parametric procedures.

2. Chi square x2 is used with one or more nominal (categorical) variables, and the
data are the frequencies with which participants fall into each category.

3. The one-way compares the the frequency of category membership along one
variable. A significant indicates that the observed frequencies are unlikely to
represent the distribution of frequencies in the population described by .

4. The two-way tests whether category membership for one variable is independ-
ent of category membership for the other variable. A significant indicates that
the data represent dependent or correlated variables in the population.

5. With a significant two-way , describe the strength of the relationship with 
(a) the phi coefficient if the design is a , or (b) the contingency
coefficient (C) if the design is not a . Squaring or gives the proportion
of variance accounted for, which indicates how much more accurately the
frequencies of category membership on one variable can be predicted by knowing
category membership on the other variable.

6. The two nonparametric versions of the independent-samples t-test for ranks are
the Mann–Whitney test, performed when both ns are less than 20, and the rank
sums test, performed when either is greater than 20.

7. The Wilcoxon test is the nonparametric, related-samples t-test for ranks.

8. The Kruskal–Wallis test is the nonparametric, one-way, between-subjects
ANOVA for ranks. The rank sums test is the post hoc test for identifying the
specific conditions that differ.

9. The Friedman test is the nonparametric, one-way, within-subjects ANOVA for
ranks. Nemenyi’s test is the post hoc test for identifying the specific conditions
that differ.

10. Eta squared describes the relationship found in experiments involving ranked
data. 
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KEY TERMS

-distribution 355
chi square procedure 352
contingency coefficient 362
expected frequency 354
Friedman test 371
goodness-of-fit test 353
Kruskal–Wallis test 369
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nonparametric statistics 352
observed frequency 353
one-way chi square 352
phi coefficient 361
rank sums test 366
test of independence 358
two-way chi square 357
Wilcoxon test 368T

REVIEW QUESTIONS

(Answers for odd-numbered questions are in Appendix D.)

1. What do all nonparametric inferential procedures have in common with all
parametric procedures?

2. (a) Which variable in an experiment determines whether to use parametric or
nonparametric procedures? (b) In terms of the dependent variable, what are the
two categories into which all nonparametric procedures can be grouped?

3. (a) Which two scales of measurement always require nonparametric procedures?
(b) What two things can be “wrong” with interval/ratio scores that lead to
nonparametric procedures (c) What must you do to the interval/ratio scores first?

4. (a) Why, if possible, should we design a study that meets the assumptions of a
parametric procedure? (b) Why shouldn’t you use parametric procedures for data
that clearly violate their assumptions?

5. (a) When do you use the one-way chi square? (b) When do you use the two-way
chi square?

6. (a) What is the symbol for observed frequency? What does it mean? (b) What is
the symbol for expected frequency? What does it mean?

7. (a) What does a significant one-way chi square indicate? (b) What does a signifi-
cant two-way chi square indicate?

8. What is the logic of and in all procedures for ranked data?
9. (a) What is the phi coefficient, and when is it used? (b) What does the squared phi

coefficient indicate? (c) What is the contingency coefficient, and when is it used?
(d) What does the squared contingency coefficient indicate?

10. What is the nonparametric version of each of the following? (a) A one-way, between-
subjects ANOVA (b) An independent-samples t-test (c) A related-samples
t-test (d) An independent-samples t-test (e) A one-way, within-subjects
ANOVA (f) Fisher’s protected t-test (g) Tukey’s HSD test

APPLICATION QUESTIONS

11. In the population, political party affiliation is 30% Republican, 55% Democratic,
and 15% other. To determine whether this distribution is also found among the
elderly, in a sample of 100 senior citizens, we find 18 Republicans, 64 Democrats,
and 18 other. (a) What procedure should we perform? (b) What are and ? HaH0

1n 7 20 2
1n 6 20 2

HaH0



(c) What is for each group? (d) Compute . (e) With , what do you
conclude about party affiliation in the population of senior citizens?

12. A survey finds that, given the choice, 34 females prefer males much taller than them-
selves, and 55 females prefer males only slightly taller than themselves. (a) What
procedure should we perform? (b) What are and ? (c) With , what do
you conclude about the preference of females in the population? (d) Describe how
you would graph these results.

13. Foofy counts the students who like Professor Demented and those who like Profes-
sor Randomsampler. She then performs a one-way to determine if there is a sig-
nificant difference between the frequency with which students like each professor.
(a) Why is this approach incorrect? (Hint: Check the assumptions of .) (b) How
should she analyze the data?

14. The following data reflect the frequency with which people voted in the last
election and were satisfied with the officials elected:

Satisfied

Yes No

Yes 48 35
Voted

No 33 52

(a) What procedure should we perform? (b) What are and ? (c) What is in
each cell? (d) Compute . (e) With , what do you conclude about the
correlation between these variables? (f) How consistent is this relationship?

15. A study determines the frequency of the different political party affiliations for
male and female senior citizens. The following data are obtained:

Affiliation

Republican Democrat Other

Male 18 43 14
Gender

Female 39 23 18

(a) What procedure should we perform? (b) What are and ? (c) What is in
each cell? (d) Compute . (e) With , what do you conclude about gen-
der and party affiliation in the population of senior citizens? (f) How consistent is
this relationship?

16. Select the noparametric procedure to use when we study: (a) The effect of a pain
reliever on rankings of the emotional content of words describing pain. One group
is tested before and after taking the drug. (b) The effect of eight colors of
spaghetti sauce on its tastiness. A different sample tastes each color of sauce, and
tastiness scores are ranked. (c) The (skewed) reaction time scores after one group
of participants consumed 1, 3, and then 5 alcoholic drinks. (d) Whether two levels
of family income influence the percentage of income spent on clothing last year.
Percentages are then ranked.

17. After testing 40 participants, a significant of 13.31 was obtained. With
and , how would this result be reported in a publication?df 5 2� 5 .05

�2
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� 5 .05�2
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18. We compare the attitude scores of people tested in the morning to their scores
when tested in the afternoon. We obtain the following interval data but it does not
have homogeneous variance. With , is there a significant difference in
scores as a function of testing times?

Morning Afternoon

14 36
18 31
20 19
28 48
3 10

34 49
20 20
24 29

19. We measure the maturity level of students who have completed statistics and
students who have not. Maturity scores tend to be skewed. For the following
interval scores,

Nonstatistics Statistics

43 51
52 58
65 72
23 81
31 92
36 64

(a) Do the groups differ significantly ? (b) What do you conclude about
maturity scores in the population?

20. A therapist evaluates a sample in a new treatment program after 1 month, after 
2 months, and again after 3 months. Such data do not have homogeneous variance.
(a) What procedure should be used? Why? (b) What must the therapist do to the
data first? (c) If the results are significant, what procedure should be performed?
(d) Ultimately, what will the therapist be able to identify?

21. An investigator evaluated the effectiveness of a therapy on three types of patients.
She collected the following improvement ratings, but these data form skewed
distributions.

Depressed Manic Schizophrenic

16 7 13
11 9 6
12 6 10
20 4 15
21 8 9

(a) Which procedure should be used? Why? (b) What should the investigator 
do to the data first? (c) If the results are significant, what should she do next? 
(d) Ultimately, what will we learn from this study?

1� 5 .05 2

� 5 .05
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22. A report indicates that the Friedman test was significant. (a) What does this test
indicate about the design of the study? (b) What does it indicate about the raw
scores? (c) What two procedures do you also expect to be reported? (d) What will
you learn about the relationship?

23. A report indicates that the Wilcoxon test was significant. (a) What does this test
indicate about the design of the study? (b) What does it indicate about the raw
scores? (c) What will you learn about the relationship here?

24. You show participants a picture of a person either smiling, frowning, or smirking.
For each, they indicate whether the person was happy or sad. (a) What are the fac-
tor(s) and level(s) in this design, and (b) What is the dependent variable? (c) How
will you analyze the results? (d) What potential flaw is built into the study in
terms of the statistical errors we may make? (c) When would this flaw be a
concern? (d) How can you eliminate the flaw?

INTEGRATION QUESTIONS

25. Thinking back on the previous few chapters, what three aspects of your
independent variable(s) and one aspect of your dependent variable determine 
the specific inferential procedure to perform in a particular experiment? 
(Ch’s. 10, 11, 12, 13, 14, 15)

26. For the following, what inferential statistical procedures should be performed
and what is the key information for answering the research question? Unless
described otherwise, assume scores are parametric. (a) To test the influence of
dietary fat levels on visual accuracy, rats are placed on one of four different
diets. Three weeks later, all are tested for visual accuracy. (b) We measure the
preferences of three groups of students for their classmates after either 1, 5, or
10 weeks into the semester. To be friendly, everyone’s scores are skewed
toward being positive. (c) To examine if body image is related to personality
traits, we measure the self-confidence and degree of obesity in a sample of
adults. (d) We find that among all Americans without marital problems, people
nod their head 32 times during a conversation with a spouse. In a sample of
people having problems, the mean number of nods is only 22, with .
(e) We select 30 left-handed and 30 right-handed men and measure their man-
ual dexterity scores. Ten of each type is tested under either low, medium, or
high illumination levels. (f) Last semester a teacher gave 25 As, 35 Bs, 20 Cs,
10 Ds, and 10 Fs. According to college policy, each grade should occur 20% of
the time. Is the teacher different from the college’s model? (g) We compare the
introversion of two groups of autistic children, one after receiving a new
improved therapy and the other after traditional therapy. (h) To determine if
handedness is related to aphasia, in a sample we count the number of left- and
right-handed individuals and in each group count those who do and do not
exhibit aphasia. (i) We create two groups of 15 participants, who either slept 4
or 8 hours the night before. Then we rank their driving ability. ( j) To determine
how colors influence consumer behavior, we compare the mean attractiveness
scores from a group of participants who viewed a product’s label when printed
in red, in green, and in blue. (k) Does chewing gum while taking an exam lead
to better performance? We obtain exam grades for students who do or do not
chew gum during an exam, when the exam is either multiple choice or essay.
(Chs. 7, 8, 11, 12, 13, 14, 15)

sX 5 5.6
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■ ■ ■ SUMMARY OF 
FORMULAS

1. The formula for chi square is

In a one-way chi square:

In a two-way chi square:

df 5 1Number of rows 2 1 2 1Number of columns 2 1 2

fe 5
1Cell’s row total fo 2 1Cell’s column total fo 2

N

df 5 k 2 1

�2
obt 5 © a

1 fo 2 fe 2
2

fe
b

2. The formula for the phi coefficient is

3. The formula for the contingency coefficient is

C 5
B
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Additional Statistical Formulas

A.1 CREATING GROUPED FREQUENCY DISTRIBUTIONS

In a grouped distribution, different scores are grouped together, and then the total
of each group is reported. For example, say that we measured the level of

anxiety exhibited by 25 participants, obtaining the following scores:

First, determine the number of scores the data span. The number spanned between
any two scores is

Thus, there is a span of 39 values between 41 and 3.
Next, decide how many scores to put into each group, with the same range of scores

in each. You can operate as if the sample contained a wider range of scores than is actu-
ally in the data. For example, we’ll operate as if these scores are from 0 to 44, spanning
45 scores. This allows nine groups, each spanning 5 scores, resulting in the grouped
distribution shown in Table A.1.

The group labeled 0–4 contains the scores 0, 1, 2, 3, and 4, the group 5–9 contains 
5 through 9, and so on. Each group is called a class interval, and the number of scores
spanned by an interval is called the interval size. Here, the interval size is 5, so each

group includes five scores. Choose an interval size that is easy to work
with (such as 2, 5, 10, or 20). Also, an interval size that is an odd num-
ber is preferable because later we’ll use the middle score of the interval.

Notice several things about the score column in Table A.1. First, each
interval is labeled with the low score on the left. Second, the low score
in each interval is a whole-number multiple of the interval size of 5.
Third, every class interval is the same size. (Even though the highest
score in the data is only 41, we have the complete interval of 40–44.)
Finally, the intervals are arranged so that higher scores are located
toward the top of the column.

To complete the table, find the for each class interval by summing the
individual frequencies of all scores in the group. In the example, there
are no scores of 0, 1, or 2, but there are two 3s and five 4s. Thus, the 0–4
interval has a total of 7. For the 5–9 interval, there are two 5s, one 6, no
7s, one 8, and no 9s, so is 4. And so on.f

f

f

Number of scores 5 1High score 2 Low score 2 1 1

3 4 4 18 4 28

18 22 3 17 12 26
   

26 41 5 40 4 6 5

4 20 8 15 38 36

f, rel. f,  or cf

A.1 Creating Grouped Frequency Distributions

A.2 Performing Linear Interpolation

A.3 The One-Way, Within-Subjects Analysis of Variance
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The column on the left identifies the lowest
and highest score in each class interval.

Anxiety
Scores f rel. f cf

40–44 2 .08 25
35–39 2 .08 23
30–34 0 .00 21
25–29 3 .12 21
20–24 2 .08 18
15–19 4 .16 16
10–14 1 .04 12
5– 9 4 .16 11
0– 4 7 .28 7��� ����

Total: 25 1.00

TABLE A.1

Grouped Distribution
Showing f, rel. f, and cf
for Each Group of 
Anxiety Scores



Compute the relative frequency for each interval by dividing the for the interval 
by . Remember, is the total number of raw scores (here, 25), not the number of class
intervals. Thus, for the 0–4 interval, equals 7/25, or .28.

Compute the cumulative frequency for each interval by counting the number of
scores that are at or below the highest score in the interval. Begin with the lowest inter-
val. There are 7 scores at 4 or below, so the for interval 0–4 is 7. Next, is 4 for the
scores between 5 and 9, and adding the 7 scores below the interval produces a of 11
for the interval 5–9. And so on.

Real versus Apparent Limits

What if one of the scores in the above example were 4.6? This score seems too large for
the 0–4 interval, but too small for the 5–9 interval. To allow for such scores, we consider
the “real limits” of each interval. These are different from the upper and lower numbers of
each interval seen in the frequency table, which are called the apparent upper limit and the
apparent lower limit, respectively. As in Table A.2, the apparent limits for each interval
imply corresponding real limits. Thus, for example, the interval having the apparent limits
of 40–44 actually contains any score between the real limits of 39.5 and 44.5.

Note that (1) each real limit is halfway between the lower apparent limit of one inter-
val and the upper apparent limit of the interval below it, and (2) the lower real limit of
one interval is always the same number as the upper real limit of the interval below it.
Thus, 4.5 is halfway between 4 and 5, so 4.5 is the lower real limit of the 5–9 interval
and the upper real limit of the 0–4 interval. Also, the difference between the lower real
limit and the upper real limit equals the interval size .

Real limits eliminate the gaps between intervals, so now a score such as 4.6 falls into
the interval 5–9 because it falls between 4.5 and 9.5. If scores equal a real limit (such
as two scores of 4.5), put half in the lower interval and half in the upper interval. If one
score is left over, just pick an interval.

The principle of real limits also applies to ungrouped data. Implicitly, each individ-
ual score is a class interval with an interval size of 1. Thus, when a score in an
ungrouped distribution is labeled 6, this is both the upper and the lower apparent lim-
its. However, the lower real limit for this interval is 5.5, and the upper real limit is 6.5.

Graphing Grouped Distributions

Grouped distributions are graphed in the same way as ungrouped distributions, except
that the X axis is labeled differently. To graph simple frequency or relative frequency,

label the X axis using the midpoint of each class interval. To find the
midpoint, multiply times the interval size and add the result to the
lower real limit. Above, the interval size is 5, which multiplied 
times is 2.5. For the 0–4 interval, the lower real limit is .
Adding 2.5 to yields 2. Thus, the score of 2 on the X axis iden-
tifies the class interval of 0–4. Similarly, for the 5–9 interval, 2.5
plus 4.5 is 7, so this interval is identified using 7.

As usual, for nominal or ordinal scores create a bar graph, 
and for interval or ratio scores, create a histogram or polygon.
Figure A.1 presents a histogram and polygon for the grouped
distribution from Table A.1. The height of each data point or bar
corresponds to the total simple frequency of all scores in the class
interval. Plot a relative frequency distribution in the same way,
except that the Y axis is labeled in increments between 0 and 1.

2.5
2.5.5

.5

19.5 2 4.5 5 5 2

cf
fcf

rel. f
NN

f

380 APPENDIX A / Additional Statistical Formulas

The apparent limits in the column on the left
imply the real limits in the column on the right.

Apparent Limits Real Limits
(Lower–Upper) Imply (Lower–Upper)

40–44 → 39.5–44.5
35–39 → 34.5–39.5
30–34 → 29.5–34.5
25–29 → 24.5–29.5
20–24 → 19.5–24.5
15–19 → 14.5–19.5
10–14 → 9.5–14.5

5– 9 → 4.5– 9.5
0– 4 → �0.5– 4.5

TABLE A.2

Real and Apparent Limits



Application Questions

(Answers for odd-numbered questions are in Appendix D.)

1. Organize the scores below into an ungrouped distribution showing simple
frequency, cumulative frequency, and relative frequency.

49 52 47 52 52 47 49 47 50
51 50 49 50 50 50 53 51 49

2. Using an interval size of 5, group these scores and construct a table that shows sim-
ple, relative, and cumulative frequency. The highest apparent limit is 95.

76 66 80 82 76 80 84 86 80 86
85 87 74 90 92 87 91 94 94 91
94 93 57 82 76 76 82 90 87 91
66 80 57 66 74 76 80 84 94 66

3. Using an interval size of 4, group these scores and construct a table showing
simple, relative, and cumulative frequency. The lowest apparent limit is 100.

122 117 116 114 110 109 107
105 103 102 129 126 123 123
122 122 119 118 117 112 108
117 117 126 123 118 113 112

A.2 PERFORMING LINEAR INTERPOLATION

This section presents the procedures for linear interpolation of z-scores as discussed in
Chapter 6 and of values of as discussed in Chapter 11.tcrit
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FIGURE A.1

Grouped frequency polygon and histogram



Interpolating from the z-Tables

You interpolate to find an exact proportion not shown in the z-table or when dealing with
a z-score that has three decimal places. Carry all computations to four decimal places.

Finding an Unknown z-Score

Say that we seek a z-score that corresponds to exactly of the curve between
the mean and z. First, from the z-tables, identify the two bracketing proportions that are
above and below the target proportion. Note their corresponding z-scores. For ,
the bracketing proportions are at and at . Arrange
the values this way:

Known Unknown
Proportion under Curve z-score

Upper bracket .4505 1.6500
Target .4500 ?
Lower bracket .4495 1.6400

Because the “known” target proportion is bracketed by and , the
“unknown” target z-score falls between 1.6500 and 1.6400.

First, deal with the known side. The target of is halfway between and
. That is, the difference between the lower known proportion and the target

proportion is one-half of the difference between the two known proportions. We
assume that the z-score corresponding to is also halfway between the two
bracketing z-scores of 1.6400 and 1.6500. The difference between these z-scores is

, and one-half of that is . To go to halfway between 1.6400 and 1.6500, we
add to 1.6400. Thus, a z-score of 1.6450 corresponds to of the curve
between the mean and .

The answer will not always be as obvious as in this example, so use the following
steps.

Step 1 Determine the difference between the upper and lower known brackets. In the
example . This is the total distance between the two proportions.

Step 2 Determine the difference between the known target and the lower known
bracket. Above, .

Step 3 Form a fraction with the answer from Step 2 as the numerator and the answer
from Step 1 as the denominator. Above, the fraction is . Thus, 
is one-half of the distance from to .

Step 4 Find the difference between the two brackets in the unknown column. Above,
. This is the total distance between the two z-scores that

bracket the unknown target z-score.

Step 5 Multiply the answer in Step 3 by the answer in Step 4. Above, .
The unknown target z-score is larger than the lower bracketing z-score.

Step 6 Add the answer in Step 5 to the lower bracketing z-score. Above,
. Thus, of the normal curve lies between

the mean and .z 5 1.645
.45001.640 5 1.645.005 1 1.640 5 1.645

.005
1.5 2 1.010 2 5 .005

1.6500 2 1.6400 5 .010

.4505.4495
.4500.0005>.0010 5 .5

.4500 2 .4495 5 .0005

.4505 2 .4495 5 .0010

z
.4500.005

.005.010

.4500

.4505
.4495.4500

.4495.4505

z 5 1.6400.4495z 5 1.6500.4505
.4500

.45 1.4500 2
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Finding an Unknown Proportion

Apply the above steps to find an unknown proportion for a known three-decimal 
z-score. For example, say that we seek the proportion between the mean and a z of
1.382. From the z-tables, the upper and lower brackets around this z are 1.390 and
1.380. Arrange the z-scores and corresponding proportions as shown below:

Known Unknown
z-score Proportion under Curve

Upper bracket 1.390 .4177
Target 1.382 ?
Lower bracket 1.380 .4162

To find the target proportion, use the preceding steps.

Step 1
This is the total difference between the known bracketing z-scores.

Step 2
This is the distance between the lower known bracketing z-score and the target z-score.

Step 3

This is the proportion of the distance that the target z-score lies from the lower bracket.
A of 1.382 is of the distance between 1.380 and 1.390.

Step 4
The total distance between the brackets of and in the unknown column is

.

Step 5
Thus, of the distance separating the bracketing proportions in the unknown column
is .

Step 6
Increasing the lower proportion in the unknown column by takes us to the point
corresponding to of the distance between the bracketing proportions. This point is

, which is the proportion that corresponds to .

Interpolating Critical Values

Sometimes you must interpolate between the critical values in a table. Apply the same
steps described above, except now use degrees of freedom and critical values.

For example, say that we seek the corresponding to 35 (with , two-
tailed test). The -tables have values only for 30 and 40 , giving the following:

Known Unknown
df Critical Value

Upper bracket 30 2.042
Target 35 ?
Lower bracket 40 2.021

dfdft
� 5 .05dftcrit

z 5 1.382.4165
.20

.0003
.4162 1 .0003 5 .4165

.0003
.20
10.20 2 10.0015 2 5 .0003

.0015
.4162.4177

.4177 2 .4162 5 .0015

.20z

.002

.010
5 .20

1.382 2 1.380 5 .002

1.390 2 1.380 5 .010
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Because 35 is halfway between 30 and 40 , the corresponding critical value is
halfway between 2.042 and 2.021. Following the steps described for z-scores, we have

Step 1
This is the total distance between the known bracketing .

Step 2
Notice a change here: This is the distance between the upper bracketing and the
target .

Step 3

This is the proportion of the distance that the target lies from the upper known
bracket. Thus, the of 35 is of the distance from 30 to 40.

Step 4
The total distance between the bracketing critical values of 2.042 and 2.021 in the
unknown column is .

The of 35 is .50 of the distance between the bracketing , so the target critical
value is .50 of the distance between 2.042 and 2.021, or of .

Step 5
Thus, of the distance between the bracketing critical values is .0105. Because
critical values decrease as increases, we are going from 30 to 35 , so subtract

from the larger value, 2.042.

Step 6
Thus, is the critical value for 35 at for a two-tailed test.

The same logic can be applied to find critical values for any other statistic.

Application Questions

(Answers for odd-numbered questions are in Appendix D.)

1. What is the z-score you must score above to be in the top 25% of scores?
2. Foofy obtains a z-score of 1.909. What proportion of scores are between her score

and the mean?
3. For , what is the two-tailed for ?
4. For , what is the two-tailed for ?

A.3 THE ONE-WAY, WITHIN-SUBJECTS ANALYSIS OF VARIANCE

This section contains formulas for the one-way, within-subjects ANOVA discussed in
Chapter 13. This ANOVA is similar to the two-way ANOVA discussed in Chapter 14,
so read that chapter first.

Assumptions of the Within-Subjects ANOVA

In a within-subjects ANOVA, either the same participants are measured repeatedly or
different participants are matched under all levels of one factor. (Statistical terminol-
ogy still uses the old fashioned term subjects instead of the more modern partici-
pants.) The other assumptions here are (1) the dependent variable is a ratio or interval
variable, (2) the populations are normally distributed, and (3) the population variances
are homogeneous.

df 5 55tcrit� 5 .05
df 5 50tcrit� 5 .05

� 5 .05dft 5 2.0315
2.042 2 .0105 5 2.0315

.0105
dfdfdf

.50
1.50 2 1.021 2 5 .0105

.021.50
dfsdf

.021

2.042 2 2.021 5 .021

.50df
df

5

10
5 .50

df
df

35 2 30 5 5

dfs
40 2 30 5 10

dfdfdf
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Logic of the One-Way, Within-Subjects ANOVA

As an example, say that we’re interested in whether a person’s form of dress influences
how comfortable he or she feels in a social setting. On three consecutive days, we ask
each participant to act as a “greeter” for other people participating in a different experi-
ment. On the first day, participants dress casually; on the second day, they dress semi-
formally; on the third day, they dress formally. We test the very unpowerful of 5. At
the end of each day, participants complete a questionnaire measuring the dependent
variable of their comfort level while greeting people. Labeling the independent vari-
able of type of dress as factor A, the layout of the study is shown in Table A.3.

To describe the relationship that is present, we’ll find the mean of each level (col-
umn) under factor A. As usual, we test whether the means from the levels represent dif-
ferent . Therefore, the hypotheses are the same as in a between-subjects design:

Elements of the Within-Subjects ANOVA

Notice that this one-way ANOVA can be viewed as a two-way ANOVA: Factor A (the
columns) is one factor, and the different participants or subjects (the rows) are a second
factor, here with five levels. The interaction is between subjects and type of dress.

In Chapters 13 and 14, we computed the F-ratio by dividing by the mean square within
groups . This estimates the error variance , the variability among scores in
the population. We computed using the differences between the scores in each cell
and the mean of the cell. However, in Table A.3, each cell contains only one score. There-
fore, the mean of each cell is the score in the cell, and the differences within a cell are
always zero. Obviously, we cannot compute in the usual way.

Instead, the mean square for the interaction between factor A and subjects (abbrevi-
ated ) reflects the inherent variability of scores. Recall that an interaction
indicates that the effect of one factor changes as the levels of the other factor change. It
is because of the inherent variability among people that the effect of type of dress will
change as we change the “levels” of which participant we test. Therefore, 
is our estimate of the error variance, and it is used as the denominator of the -ratio. 
(If the study involved matching, each triplet of matched participants would provide the

F
MSA3subs

MSA3subs

MSwn

MSwn

1σ2
error 21MSwn 2

Ha: Not all �s are equal

H0: �1 5 �2 5 �3

�s

N
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Factor A: Type of Dress

Level A1: Level A2: Level A3:
Casual Semiformal Formal

1 X X X

2 X X X

Su
Factor

bjects
3 X X X

4 X X X

5 X� X X

X�A1
X�A2

X�A3

TABLE A.3

One-Way Repeated-
Measures Study of the
Factor of Type of Dress

Each X represents a par-
ticipant’s score on the
dependent variable of
comfort level.



scores in each row, and the here would still show the variability among
their scores.)

As usual, describes the difference between the means in factor A, and it estimates
the variability due to error plus the variability due to treatment. Thus, the F-ratio here is

If is true and all s are equal, then both the numerator and the denominator will
contain only , so will equal 1. However, the larger the , the less likely it is
that the means for the levels of factor A represent one population . If is signifi-
cant, then at least two of the means represent different .

Computing the One-Way, Within-Subjects ANOVA

Say that we obtained these data:

Factor A: Type of Dress

Level A1: Level A2: Level A3:
Casual Semiformal Formal

1 4 9 1 ©Xsub � 14

2 6 12 3 ©Xsub � 21

Subjects 3 8 4 4 ©Xsub � 16

4 2 8 5 ©Xsub � 15

5 10 7 2 ©Xsub � 19

Total:
©X � 30 ©X � 40 ©X � 15 ©Xtot � 30 � 40 � 15 � 85

©X2 � 220 ©X2 � 354 ©X2 � 55 ©X2
tot � 220 � 354 � 55 � 629

n1 � 5 n2 � 5 n3 � 5 N � 15
X�1 � 6 X�2 � 8 X�3 � 3 k � 3

Step 1 Compute the , the , and the for each level of factor A (each column).
Then compute and . Also, compute , which is the for each partic-
ipant’s scores (each row). Notice that the and are based on the number of scores,
not the number of participants.

Then follow these steps.

Step 2 Compute the total sum of squares.

Nns
©X©Xsub©X2

tot©Xtot

©X2X©X

�s
Fobt�

FobtFobtσ2
error

�H0

Sample Estimates Population

Fobt � �
MS

M

A

S

�

A

subs
�

→
→

MSA

MSA3subs
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σ2
error 1 σ2

treat

σ2
error

The formula for the total sums of squares is

SStot 5 ©X2
tot 2 a

1©Xtot 2
2

N
b



From the example, we have

Note that the quantity is the correction in the following computations.
(Here, the correction is 481.67.)

Step 3 Compute the sum of squares for the column factor, factor A.

1©Xtot 2
2>N

SStot 5 629 2 481.67 5 147.33

SStot 5 629 2 a
852

15
b
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Find in each level (column) of factor A, square the sum and divide by the n of the
level. After doing this for all levels, add the results together and subtract the correction.

In the example

Step 4 Find the sum of squares for the row factor, for subjects.

SSA 5 545 2 481.67 5 63.33

SSA 5 a
130 22

5
1
140 22

5
1
115 22

5
b 2 481.67

©X

Square the sum for each subject ( ). Then add the squared sums together. Next,
divide by , the number of levels of factor A. Finally, subtract the correction. In the
example,

Step 5 Find the sum of squares for the interaction. To do this, subtract the sums of
squares for the other factors from the total.

SSsubs 5 493 2 481.67 5 11.33

SSsubs 5
114 22 1 121 22 1 116 22 1 115 22 1 119 22

3
2 481.67

k
©Xsub

The formula for the sum of squares between groups for factor A is

SSA 5 © a
1Sum of scores in the column 22

n of scores in the column
b 2 a

1©Xtot 2
2

N
b

The formula for the sum of squares for subjects is

SSsubs 5
1©Xsub1 2

2 1 1©Xsub2 2
2 1 . . . 1 1©Xn 2

2

k
2
1©Xtot 2

2

N

The formula for the interaction of factor a by subjects is

SSA3subs 5 SStot 2 SSA 2 SSsubs
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In the example

Step 6 Determine the degrees of freedom.

SSA3subs 5 147.33 2 63.33 2 11.33 5 72.67
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is the number of levels of factor A. (In the example, , so is 2.)dfAkA 5 3kA

is the number of levels of factor A, and is the number of participants. In the
example with three levels of factor A and five subjects, .

Compute and to check the above . The . The
, where is the total number of scores in the experiment. The is also

equal to the sum of all other .

Step 7 Place the sum of squares and the in the summary table. For the example,

Summary Table of One-Way, Within-Subjects ANOVA

Source Sum of Squares df Mean Square F

Subjects 11.33 4
Factor A (dress) 63.33 2 MSA FA
Interaction

(A � subjects) 72.67 8 MSA�subs
Total 147.33 14

Because there is only one factor of interest here (type of dress), we will find the 
only for factor A.

Step 8 Find the mean square for factor A and the interaction.

Fobt

dfs

dfs
dftotNdftot 5 N 2 1

dfsubs 5 ksubs 2 1dfdftotdfsubs

dfA3subs 5 12 2 14 2 5 8
ksubskA

The degrees of freedom between groups for factor A is

dfA 5 kA 2 1

The degrees of freedom for the interaction is

dfA3subs 5 1kA 2 1 2 1ksubs 2 1 2

The mean square for factor A is

MSA 5
SSA

dfA



In our example,

MSA 5
SSA

dfA
5

63.33

2
5 31.67
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In the example,

Step 9 Find .Fobt

MSA3subs 5
SSA3subs

dfA3subs
5

72.67

8
5 9.08

In the example,

The finished summary table is

Source Sum of Squares df Mean Square F

Subjects 11.33 4
Factor A (dress) 63.33 2 31.67 3.49
Interaction

(A � subjects) 72.67 8 9.08
Total 147.33 14

Step 10 Find the critical value of in Table 5 of Appendix C. Use as the degrees
of freedom between groups and as the degrees of freedom within groups. In
the example for , , and , the is 4.46.FcritdfA3subs 5 8dfA 5 2� 5 .05

dfA3subs

dfAF

Fobt 5
MSA

MSA3subs
5

31.67

9.08
5 3.49

The mean square for the interaction between factor A and
subjects is

MSA3subs 5
SSA3subs

dfA3subs

The within-subjects F-ratio is

Fobt 5
MSA

MSA3subs
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Interpreting the Within-Subjects F

Interpret the above the same way that you would a between-subjects . Because
in the above example is not larger than , it is not significant. Thus, we do not

have evidence that the means from at least two levels of type of dress represent differ-
ent populations of scores. Had been significant, it would indicate that at least two
of the level means differ significantly. Then, for post hoc comparisons, graphing, eta
squared, and confidence intervals, follow the procedures discussed in Chapter 13. How-
ever, in any of those formulas, in place of the term use .

Note: The related-samples t-test in Chapter 12 is more powerful than the independent-
samples -test because the variability in the scores is less. For the same reason, a within-
subjects ANOVA is more powerful than a between-subjects ANOVA for the same data.

Application Questions

(Answers for odd-numbered questions are in Appendix D.)

1. You read in a research report that the repeated-measures factor for a person’s
weight gain led to a decrease in his or her mood. (a) What does this tell you about
the design? (b) What does it tell you about the results?

2. Which of these relationships suggest using a repeated-measures design? (a) Exam-
ining the improvement in language ability as children grow older (b) Measuring
participants’ reaction when the experimenter surprises them by unexpectedly
shouting, under three levels of volume of shouting (c) Comparing the dating strate-
gies of males and females (d) Comparing memory ability under the conditions of
participants’ consuming different amounts of alcoholic beverages.

3. We study the influence of practice on performing a task requiring eye–hand
coordination. We test people with no practice, after 1 hour of practice, and after 
2 hours of practice. In the following data, higher scores indicate better
performance. (a) What are and ? (b) Complete the ANOVA summary table.
(c) With , what do you conclude about ? (d) Perform the appropriate
post hoc comparisons. (e) What is the effect size in this study? (f) What should you
conclude about this relationship?

Amount of Practice

Subjects None 1 Hour 2 Hours

1 4 3 6

2 3 5 5

3 1 4 3

4 3 4 6

5 1 5 6

6 2 6 7

7 2 4 5

8 1 3 8

Fobt� 5 .05
HaH0

t

MSA3subsMSwn

Fobt

FcritFobt

FobtFobt
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4. You measure 21 students’ degree of positive attitude toward statistics at four
equally spaced intervals during the semester. The mean score for each level is time
1, 62.50; time 2, 64.68; time 3, 69.32; time 4, 72.00. You obtain the following 
sums of squares:

Source Sum of Squares df Mean Square F

Subjects 402.79
Factor A 189.30
A � subjects 688.32
Total 1280.41

(a) What are and (b) Complete the ANOVA summary table (c) With
, what do you conclude about ? (d) Perform the appropriate post 

hoc comparisons. (e) What is the effect size in this study? (f) What should you 
conclude about this relationship?

Fobt� 5 .05
Ha?H0
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392

Using SPSS

This appendix describes how to use the computer program called SPSS (or PASW) to
compute the statistics described in this textbook. These instructions are appropriate for
most recent versions of SPSS, although copies of “screens” were made from Student
Version 17.0 and different versions may have minor differences. 

It is best if you perform the following sections in order. For each, type in the exam-
ple data and perform the other steps as they are described. We’ll refer to example
problems from earlier chapters so that you can compare your answer when using a
formula to the answer when using the computer. (Slight differences may arise
because of rounding.)

B.1 ENTERING DATA

Install and start SPSS using the instructions included with the program. The opening
window is shown in Screen B.1.

The window in the foreground gives several options. Usually we will input data, so
using the left mouse button click at Type in data and then click the OK button. The fore-
ground window disappears, leaving the window in the background, containing the grid
of rectangles. This is the “Data Editor” and in it we enter our data. Use the horizontal
scroll bar at the bottom of the Data Editor to see columns to the right.

Across the top of the Data Editor is the typical “Menu Bar,” with buttons for File,
Edit, and so on. Some useful information is available by clicking Help: Click Topics for
an index, Tutorial for instructions and examples, and Statistics Coach for help in select-
ing a procedure.

The first step in any data analysis is to name the variables and enter the scores.

B.1 Entering Data

B.2 Frequency Distributions and Percentile

B.3 Central Tendency, Variability, and z-Scores

B.4 Correlation Coefficients and the Linear Regression Equation

B.5 The One-Sample t-Test and Significance Testing of Correlation
Coefficients

B.6 Two-Sample t-Tests

B.7 The One-Way, Between-Subjects ANOVA

B.8 The Two-Way, Between-Subjects ANOVA

B.9 Chi Square Procedures

B.10 Nonparametric Tests for Ranked Scores

B.11 The One-Way, Within-Subjects ANOVA

B



Naming Variables

The program’s default will name your variables var00001, var00002, and so on, but
give them a more meaningful name. For example, say that we want to input the follow-
ing scores, which measure creativity and intelligence:

Participant Creativity Intelligence 

1 50 110
2 47 116
3 65 125
4 66 127
5 48 100

Begin with a blank Data Editor: To clear old data, on the Menu Bar click File,
point to New, and click Data.

Name the variable(s): At the bottom left of the Data Editor, click on Variable View.
In the left column under “Name” click on the first rectangle and type the variable’s
name. (For example, Creativity.) Press Enter on the keyboard.

The information that appears next to a variable’s name are the SPSS defaults, which
will work for our statistics, assuming that you want scores to have no more than two
decimal places. (Type in a three decimal number, and it will be rounded.) Click any rec-
tangle in a row to change the default value. In the “Label” column, you can add infor-
mation about the variable that you want to remember.
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In the “Name” column, click the second rectangle and enter the second variable’s
name (Intelligence).

Entering Data

Click on Data View at the bottom left of the Data Editor. Input the scores under the cor-
responding variable. When participants’ are measured on both variables, each row in
the Data Editor holds the scores from the same participant. Thus, participant 1 scored
50 on creativity, so in the Creativity column, click the rectangle next to “1” and type
50. Next you have three choices: (1) Press the Tab key on the keyboard, and the rectan-
gle to the right of 50 is highlighted, ready for participant 1’s intelligence score; 
(2) press the Enter key and the rectangle below 50 is highlighted, ready for participant 2’s
creativity score; (3) click any rectangle in either column to highlight it and type in the
score that belongs there. Enter the remaining scores.

You can enter data from several variables and then only analyze some of it at one
time. (We can analyze only creativity, only intelligence, or both.)

To correct a mistake: Click on the score or rectangle and retype. Always check that
the Data Editor contains the correct scores. (Here the columns should look like our
original columns of data above.)

Saving Data

To save data: The first time that you save, on the Menu Bar click File, click Save as,
and name the file. For saves after that, click File and Save.

To open a saved file: Open a file to add more data or to analyze it. Below the Menu
Bar, click the file folder icon. Click your file’s name and click Open.

Saving or Printing the Output

Later we’ll see that SPSS shows the results of calculations by opening a new window
called the “Output.” Although you’ll have many options with this window, the most
useful are to select the appropriate icon to save or print the results.

Close SPSS by clicking the X in the upper right-hand corner.

For Practice

Enter the following scores. Your Data Editor should look like that shown in Screen B.2.
Then save and then retrieve the file.
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SCREEN B.2

Practice Data Editor Participant Test 1 Test 2

1 19 11
2 17 7
3 15 5
4 16 7
5 17 11
6 19 12
7 19 3.431



B.2 FREQUENCY DISTRIBUTIONS AND PERCENTILE

SPSS creates frequency tables and graphs, and it computes percentiles as discussed in
Chapter 3. (Graphs can also be exported into a report that you are writing.) For exam-
ple, say that we have these 15 scores:

6 4 5 6 7 9 6 3 4 6 5 8 5 7 7

Creating a Frequency Table with Percentiles

Enter the data: Name one variable (for example, Scores) and enter the data as above.
Select a frequency table: We’ll often do the type of move shown in Screen B.3. On

the Menu Bar, click Analyze, move the cursor to Descriptive Statistics, and then click
Frequencies. A “box” appears that is labeled “Frequencies,” as shown in Screen B.4
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Select the variable(s): Click and the highlighted variable will move to under
“Variable(s).” Or, you may “drag and drop” the highlighted variable into the space
under “Variable(s).”

To remove a variable: Highlight the variable under “Variable(s)” and click the
reversed-arrow button.

The output: Click OK. The frequency table in Screen B.5 appears. In the left-hand
column are the original scores, but arranged in increasing order. In the next column 
is each score’s simple frequency. Under “Percent” is the percent each score’s is of 

(its times 100). Under “Cumulative Percent” is percentile. (Ignore “Valid 
Percent.”)

rel. fN
f
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SCREEN B.5

Frequency Table Output

Determining the Score at a Particular Percentile

Select a frequency table: On the Menu Bar, again click Analyze, Descriptive Statis-
tics, and Frequencies. Then move each variable to “Variables(s).”

Select a percentile: Click Statistics. A “Frequencies: Statistics” box appears. Click
to place a check mark at Percentile(s) and in the space next to it, type the percentile that
you seek. Say that we seek the score at the 10th percentile, so type 10. Click Add and
10 appears in the larger white box. Add other percentiles in the same way. Or click
Quartiles to produce the 25th, 50th, and 75th percentile. Or, use Cut points for the
score at the 10th percentile, the 20th, and so on. (To remove a percentile from the white
box, click it and click Remove.) Click Continue.

The output: Back at the “Frequencies” box, click OK. The percentile(s) will be listed
in the “Statistics” output table shown below. (The score at the 10th percentile is 3.6.)

Plotting Bar Graphs and Histograms

Select a frequency table: Repeat the original steps for a frequency table: On the Menu
Bar, click Analyze, Descriptive Statistics, and Frequencies. In the “Frequencies” box,
move your variable to “Variables(s).”



Select Charts: Click Charts. In the “Frequencies: Charts” box, click Bar charts or
Histograms. Click Continue, and click OK. (You may need to scroll down in the output
window to see the graph.)

Plotting Frequency Polygons

On the Menu Bar, click Graphs and click Chart Builder: Click OK on the Chart Builder
box that appears. Under Choose from, click Histogram. Place the cursor over the Fre-
quency Polygon icon and drag it into the Chart preview area. Close the Element Prop-
erties box. Drag your variable from the Variables column to the area under the X axis.
Click OK. The polygon will not show zero frequency when a score did not occur—the
line will connect the frequencies of the scores above and below it. (For older versions
of SPSS, on the Menu Bar click Graphs, then Line then Simple. Click Define and move
the variable to Category Axis. Click of cases and click OK.)

For Practice

1. Create a frequency table for the data in Application Question 21 in Chapter 3.

2. For the above data, create a bar graph and a frequency polygon.

Answers
1. Your output should give the same answers as in Appendix D.

2.

N
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B.3 CENTRAL TENDENCY, VARIABILITY, AND z-SCORES

This section describes how to (1) compute measures of central tendency (as in Chapter 4)
and variability (as in Chapter 5) for a sample of scores and (2) transform a sample of raw
scores into z-scores (as in Chapter 6).

Summarizing a Sample of Scores

SPSS often computes the mean and standard deviation of scores as part of other proce-
dures, including computing them for each condition when analyzing an experiment. The
following section describes how, for one sample of scores, we can also simultaneously



compute the mean, median, and/or mode, as well as the standard deviation, variance,
and/or range. For example, say we have these ten test scores:

40 33 36 38 49 39 40 38 36 37

Enter the data: Name the variable and enter the scores into the Data Editor as usual.
Select a frequency table: Repeat the previous steps for a frequency table: On the

Menu Bar, select Analyze, Descriptive Statistics, and Frequencies. Then move each
variable to “Variables(s).”

Select statistics: Click Statistics. The “Frequencies: Statistics” box appears. Under
Central Tendency, click to place a checkmark at each measure that you seek. Disper-
sion means variability, so check these measures that you seek.

Note: The standard (std.) deviation and variance given here are the estimated popu-
lation versions, what we called and , in which the final division involves .
Also, the “S.E. mean” is the standard error of the mean introduced in Chapter 6.

The output: Click Continue and click OK. You’ll see Screen B.6.

Transforming a Sample to z-Scores

Enter the data: Enter the data as above. (Let’s use the previous scores.)
Select Descriptives: On the Menu Bar click Analyze, Descriptive Statistics, and

Descriptives. The “Descriptives” box appears.
Select the variable(s): Move each variable to “Variable(s).”
Select z-scores: Check Save standardized values as variables.
The output: Click OK. The output includes the mean and standard deviation of the

raw scores. But back in your Data Editor, a new variable (a new column) will appear
containing the z-score for each raw score.

For Practice

Using the data in questions 14 and 15 in Chapter 5, determine the mean, median, mode,
estimated standard deviation and variance, and range.

N 2 1s2
XsX
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B.4 CORRELATION COEFFICIENTS AND THE LINEAR REGRESSION EQUATION

This section describes how to compute the Pearson and the Spearman (as in
Chapter 7) and the linear regression equation (as in Chapter 8).

Computing the Pearson Correlation Coefficient

SPSS computes , as well as the mean and estimated standard deviation of the and
. (You may have more than two variables and correlate all pairs of variables.) As an

example, say that we wonder if a person’s extroversion level is correlated with his or
her aggression level. We obtain these scores:

Participant Extroversion Aggression

1 14 23
2 12 10
3 10 11
4 13 18
5 19 20
6 20 18
7 9 10
8 4 9

Enter the data: Name the two variables and enter the scores in the two columns.
(Save the file for use later with regression.)

Select the correlation: On the Menu Bar, select Analyze, Correlate, and Bivariate.
The “Bivariate Correlations” box appears. Be sure Pearson is checked. (Anything refer-
ring to “significant” will make sense after you’ve read Chapter 11.) 

Select the variable(s): Move the two variables you want to correlate to “Variables.”
Select Descriptives: Click Options and then check Means and standard deviations.

Click Continue.
The output: Click OK. In the “Descriptive Statistics” table are the and for 

each variable. In the “Correlations” table is the “correlation matrix,” shown in 
Screen B.7.

sXX

Ys
Xsr

rSr



The matrix contains the correlation coefficients produced when the variable in every
row is correlated with the variable in every column. Thus, in the first row, the (mean-
ingless) between extroversion scores and extroversion scores is . However, the

that we seek between extroversion and aggression is . (If it were negative, a
minus sign would appear.) If we had a third variable, we’d also see the between it
and extroversion and between it and aggression.

Computing the Spearman Correlation Coefficient

Say that we rank-ordered ten participants in terms of their attractiveness and their
apparent honesty and we wish to correlate these ranks.

Participant Attractive Honest

1 8 7
2 6 8
3 5 4
4 7 6
5 3 3
6 1 2
7 10 9
8 2 2
9 4 1

10 9 5

Enter the data: Enter the scores as we did for . SPSS automatically resolves tied
ranks as discussed in Chapter 15. Also, you may enter interval or ratio scores, and
SPSS will transform them to ranks.

Select the correlation: On the Menu Bar, select Analyze, Correlate, and Bivariate.
The “Bivariate Correlations” box appears.

Select the variable(s): Move the variables you want to correlate to “Variables.”
Select Spearman: Check Spearman; uncheck Pearson.
The output: Click OK. A correlation matrix again appears. Notice that is called

“rho” here. Our between attractiveness and honesty is .1.815rS

rS

r

robt

1.747robt

11robt
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Computing the Linear Regression Equation

SPSS computes the components of the linear regression equation. For example, in the
Pearson above, we correlated extroversion and aggression. To perform linear regres-
sion on these data, retrieve the file (or re-enter the scores).

Identify X and Y: First decide which variable is the predictor variable (your ) and
which is the criterion variable (your ). Say that we want to use extroversion scores to
predict aggression scores.

Select Regression: On the Menu Bar, select Analyze, Regression, and Linear. The
“Linear Regression” box appears.

Select the variable(s): Move your predictor or variable (here “Extroversion”)
under “Independent(s).” Move your criterion or variable (here “Aggression”) under
“Dependent(s).”

Select Descriptives: Click Statistics and, in the box check Descriptives to compute
the and for each variable and the between them. Click Continue.

The output: Click OK. Considerable information is provided, but the basic material
is shown in Screen B.8.

In the “Model Summary” table is (called R), (called R Square), and the
standard error of the estimate. (This is computed differently than our , because ours
describes the standard error for our sample, but in SPSS it is an estimate of the stan-
dard error that would be found in the population. You’ll get the same answer if, in 
our defining formula for you divide by instead of .) The components of the
regression equation are in the “Coefficients” table. Locate the column under B. In the
row at “Constant” is the intercept (our a). Here, a is 5.030. In the row at our predictor
variable’s name (here, “Extroversion”) is the slope (our b). Here, b is . Thus, the
linear equation here is 

For Practice

1. Compute the Pearson in Application Question 19 in Chapter 7. Compare your
output to the answers in Appendix D.

2. As in Application Question 21 in Chapter 8, compute the linear regression equa-
tion when using Burnout to predict Absences. Compare your output to the
answers in Appendix D.

3. Compute the Spearman Application Question 21 in Chapter 7. Compare your
output to the answers in Appendix D.

rS

r

Y ¿ 5 .780X 1 5.030.
.780

Y

NN 2 2SY¿

SY¿

r2robt

rsXX

Y
X

Y
X

r
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B.5 THE ONE-SAMPLE t-TEST AND SIGNIFICANCE TESTING 
OF CORRELATION COEFFICIENTS

As discussed in Chapter 11, this section describes how to (1) perform the one-sample 
t-test and compute the confidence interval for , and (2) perform significance testing
of the Pearson and Spearman coefficients.

The One-Sample t-Test

SPSS simultaneously computes and for the sample, performs the t-test, and com-
putes the confidence interval. For example, we want to test if poor readers score differ-
ently on a grammar test than the national population of readers (where so

). Our dependent (grammar) scores are

72 67 59 76 93 90 75 81 71 93

Enter the data: Name the variable and enter the scores as usual.
Select the t-Test: On the Menu Bar, select Analyze, Compare Means, and One-sample

T Test. The “One-Sample T Test” box appears.
Select the variable: Move your dependent variable to “Test Variable(s).”
Enter : Click the space at Test Value and enter your value of . (For the example,

enter 89.)
The output: Click OK. The “One-Sample Statistics” table shows the and

for our data. The “Std. Error Mean” is . The t-test results are in Screen B.9.

Deciding if a Result Is Significant

In Screen B.9, the is with . For a two-tailed test you do not need to look
up . Under “Sig. (2-tailed)” is the smallest possible value of that is needed for the
results to be significant. This must be less than or equal to your for the results to be sig-
nificant. In the example is , indicating that is significant if the region of rejection
is the extreme of the sampling distribution. Thus, is in a region that is smaller than
our usual of the curve. Therefore, this would be beyond our , so it is significant.
If the “Sig. (2-tailed)” value is .000, it means that —and —is less than .

On the other hand, if “Sig. (2-tailed)” had been, say, , then this is beyond 
only when the region of rejection is of the curve. This is larger than our region,
so is not beyond our , and is not significant.tcrittobt

.05.06
tcrittobt.06

.001p�
tcrittobt.05

tobt.012
tobt.012

�
�tcrit

df 5 923.424tobt

sXsX 111.461 2
X 177.70 2

��

H0: � 5 89
� 5 89;

sXX

�
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The Confidence Interval for 

Also in Screen B.9 is a slightly different version of a confidence interval. It indicates
the minimum and maximum difference that is likely between the in and the rep-
resented by our sample. To convert this to our confidence interval, add the values
shown under “Lower” and “Upper” to the in your . Here we happen to be adding
negative numbers, so adding to 89 gives 69.5016; adding to 89
gives 85.8984. Thus, after rounding, the 95% confidence interval for the of poor
readers is .

Significance Testing of the Pearson Correlation Coefficient

SPSS performs significance testing when it calculates . For example, previously in
Section B.4, we correlated extroversion and aggression. Retrieve that file and on the
Menu Bar again select Analyze, Correlate, and Bivariate. In the “Bivariate Correla-
tions” box, be sure Flag significant correlations is checked. Also check whether you
want a one-tailed or a two-tailed test. Click OK. The relevant output is the “Correla-
tions” table in Screen B.10.

The . The second row shows “Sig. (2-tailed)” and to its right is . 
This is interpreted as discussed previously in the one-sample t-test: is less than

so the is significant in a two-tailed test. In fact, notice the * at and the
footnote under the table. For a one-tailed test, we interpret “Sig. (1-tailed)” as above.

Significance Testing of the Spearman 
Correlation Coefficient

Interpret the output for a Spearman like the Pearson r. For example, in Section B.4,
we correlated rankings that reflected attractiveness and honesty, producing Screen B.11.

The . The “Sig. (2-tailed)” is . Because is less than , this 
is significant.

For Practice

1. Perform the t-test in Application Question 11 in Chapter 11.

2. For these SPSS results, determine whether each is significant . 
(a) , Sig. (2-tailed) ; (b) , 
Sig. (2-tailed) ; (c) , Sig. (2-tailed)

Answers
1. Compare your output to the answers in Appendix D.

2. (a) Significant; (b) significant; (c) not significant.

5 .20tobt 5 22.21, N 5 85 .000
robt 5 2.531, N 5 1805 .041N 5 28rS 5 1.42, 

1� 5 .05 2

rS.05.004.004rS 5 1.815

rS

.747robt.05,
.033

.033robt 5 .747

r
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B.6 TWO-SAMPLE t-TESTS

This section describes how to compute the independent-samples and related-samples 
t-test (as in Chapter 12) along with the corresponding confidence intervals and descrip-
tive statistics.

Identifying the Conditions of the Independent Variable

First, we must tell SPSS the condition in which each participants’ dependent score
belongs. For example, say that we test the influence of the independent variable of the
color of a product’s label (Blue or Green) on the dependent variable of how desirable it
is, obtaining these scores:

Independent Variable: Color

Condition 1: Condition 2:
Blue Green

10 20
12 24
14 28
17 19
16 21

Name the variables: In the Data Editor, name one variable using the independent
variable (Color) and one using the dependent variable (Desire.)

Label the output: We will use a number to tell SPSS in which condition each score
belongs. So first, arbitrarily choose a number to identify each condition. Lets use “1”
for Blue and “2” for Green. However, it is very helpful to have output in which the con-
ditions are labeled with words and not 1s and 2s. Therefore, while in variable view in
the Data Editor, in the row for the independent variable, click on the rectangle under
“Values” and then in it click the gray square with the three dots. In the “Values Label”
box, at “Value,” enter the number for one condition (e.g., 1). At “Value Label,” enter
the name of the condition for the output (e.g., Blue). Click Add. Likewise, in the same
“Values Label” box, enter “2” and “Green,” and click Add. Click OK.
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Enter the data: Return to data view. To enter each dependent score, first identify the
condition by entering the condition’s number under “color.” Then, while in the same
row, enter the score under “desire.” Thus, for the first participant in Blue who scored 10,
in the first row of the Data Editor, enter a 1 under “color” and a 10 under “desire.” Next
enter 1 and 12 and so on. In the sixth row, enter 2 (for Green) under “color,” with 20
under “desire,” and so on. The completed Data Editor is in Screen B.12.
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The Independent-Samples t-Test

Enter the data: Input the data as described above. Save this file. (The following
assumes that you have equal ns.)

Select the t-test: On the Menu Bar, select Analyze, Compare Means, and Independent-
Samples T-test. The “Independent-Samples T-test” box appears.

Select the variables: Move your dependent variable (Desire) to “Test variable(s).”
Move your independent variable to “Grouping Variable.”

Identify the conditions: Click Define groups. In the “Define Groups” box, enter the
number used to identify each condition. (We used 1 and 2.) Click Continue.

The output: Click OK. In the “Group Statistics” box is the and for each condi-
tion. The t-test is in the “Independent Samples Test” box, as in Screen B.13.

Read the row for “Equal variances assumed”: The is , with . The
“Sig. (2-tailed)” is , so is significant. The “Mean Difference” is the difference
between the means of the two conditions. The “Std. Error Difference” is our .
The confidence interval is for the difference between the , so with rounding,

. You must compute the effect size using our formula 
for .r2

pb

213.38 # �1 2 �2 # 23.82
�s

sX12X2

tobt.003
df 5 824.147tobt

sXX



The Related-Samples t-Test

For a related-samples t-test, we enter the data differently than above. For example, say
that we study the total errors made in estimating distance by the same people when
using one or both eyes. We obtain these data:

One Eye Two Eyes

10 2
12 4
9 2
6 1
8 3

Enter the data: In the Data Editor, create two variables, each the name of a condi-
tion of the independent variable (for example, One and Two). Then in each row of the
Data Editor, enter the two dependent scores from the same participant; for example, in
row 1, enter 10 under One and 2 under Two. (In a matched-samples design, each row
contains the two scores from a matched pair.)

Select the t-test: On the Menu Bar, select Analyze, Compare Means, and Paired-
Samples T-test. The “Paired-Samples T-test” box appears.

Select the variables: In the area under “Paired Variables,” drag and drop each of
your variables into the highlighted row labeled “1.” Drop one variable under “Variable
1” and the other under “Variable 2.”

The output: Click OK. The output for the t-test is in the “Paired Samples Test” table
as in Screen B.14.

The “Mean” (6.6) and “Std. Deviation” (1.52) are our and . The “Std. 
Error Mean” is our . The confidence interval is for , so with rounding,

. The is , with . The “Sig. (2-tailed)” is , so
the results are significant .

The output also includes the “Paired Samples Statistics” table, containing the and
in each condition. In the “Paired Samples Correlations” table is the Pearson 

between the scores in the two conditions. This is not effect size! For that, you must use
our formula for .

For Practice

1. Perform the independent-samples t-test in Application Question 21 in Chapter 12.
Your answers should match those in Appendix D.

r2
pb

rsX

X
1p 5 .001 2

.001df 5  419.731tobt4.72 # �D # 8.48
�DsD

sDD
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2. Perform the related-samples t-test in Application Question 15 in Chapter 12.
Compare your answers to those in Appendix D.

B.7 THE ONE-WAY, BETWEEN-SUBJECTS ANOVA

This section describes how to perform the one-way, between-subjects ANOVA, as
described in Chapter 13. This includes Tukey’s HSD comparisons, descriptive statistics
for each level, and graphs. (These instructions assume equal ns.)

Say that we expand the study discussed with the independent-samples t-test, testing
the influence of three colors on a product’s desirability. We have these data:

Condition 1: Condition 2: Condition 3:
Blue Green Yellow

10 20 24
12 24 25
14 28 26
17 19 21
16 21 23

Enter the data: Enter the data as we did in the independent-samples t-test: Name
one variable for the independent variable (for example, Color) and one for the depend-
ent variable (Desire). Again identify a participant’s condition by entering the condi-
tion’s number in the Color column (either a 1, 2, or 3). In the same row, enter that
participant’s dependent score in the Desire column.

Label the output: Use words to label each level, as we did in the independent-
samples t-test.

Select the ANOVA: On the Menu Bar, select Analyze, Compare Means, and One-
way ANOVA. The “One-Way ANOVA” box appears.

Select the Variables: Move your dependent variable (Desire) to “Dependent list.”
Move your independent variable (Color) to “Factor.”

Select the post hoc test: Click Post Hoc and, in the box that appears, checkmark the
box with only the word Tukey. Click Continue.

Select Descriptive: Click Options and, in the “Options” box, checkmark Descrip-
tive to get the and of each level.sXX
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One-Way ANOVA Summary Table

SCREEN B.16

Output for Tukey’s HSD Test

Select the graph: While at the “Options” box, checkmark Means plot to produce a
line graph. Click Continue.

The output: Click OK. In the “Descriptives” table, the first three rows give the , 
and confidence interval for in each level.

The ANOVA summary table is shown in Screen B.15 above. Our is 17.452.
Under “Sig.” is the minimum needed for to be significant, so interpret this as in
previous procedures. Here the results are significant, with .

In Screen B.16 is the “Multiple Comparisons” table, showing the Tukey HSD proce-
dure. Under “(I) color” is first Blue, and in the rows here are the comparisons between
Blue and the other conditions. Thus, the first row compares the mean of Blue to the
mean of Green and the difference is . The asterisk indicates that this difference is
larger than the HSD value when , and under “Sig.” we see that . The
confidence interval is for the difference between the represented by these two level
means. Under “(I) color” at Green are the comparisons involving the mean of Green,
including again comparing it with Blue. And so on.

Note in your output the line graph of the means, which may be exported to a report
you are writing. Compute effect size using our formula for .�2

�s
� 5 .001� 5 .05

28.6

p 6 .001
Fobt�

Fobt

�
sXX



For Practice

Perform the ANOVA in Application Question 19 in Chapter 13. Confirm that your
answers match those in Appendix D.

B.8 THE TWO-WAY, BETWEEN-SUBJECTS ANOVA

This section describes how to perform the two-way, between-subjects ANOVA, as
described in Chapter 14. This includes Tukey’s HSD comparisons for main effects only,
descriptive statistics for the cells and main effects, and graphing. (These instructions
assume equal ns in all cells.) As an example, in Chapter 14, we tested the factors of vol-
ume of a message and gender on the dependent variable of persuasiveness. We had the
data shown in Table B.1.

Name the variables: In the Data Editor, name three variables: one for factor A
(Volume), one for factor B (Gender), and one for the dependent variable (Persuasion).
Arbitrarily assign a number to each level in each factor. Let’s use 1, 2, and 3 for soft,
medium, and loud, and 1 and 2 for male and female, respectively.

Label the output: Enter word labels for each factor as described in the independent-
samples t-test (B.6). Otherwise, the output is mind-boggling!

Enter the data: We must identify the cell in which each score belongs. In the Data
Editor, enter a participant’s level of A in the Volume column and, in the same row, enter
that participant’s level of B in the Gender column. While still in the same row, enter
that participant’s dependent score in the Persuasion column. Thus, in the male-soft cell
is the score of 9, so we enter 1 under Volume, 1 under Gender, and 9 under Persuasion.
See Screen B.17. Enter all scores from a cell together, so in the second row enter 1, 1,
and 4. In the third row, enter 1, 1, and 11. For the next cell, change only one factor.
Let’s change to medium volume. In row 4 of the Data Editor, for the first male-medium
score, enter 2 under Volume, 1 under Gender, and 8 under Persuasion, and so on. In row
10, go back to 1 for Volume, but enter 2 for Gender (females), and so on.

Select the ANOVA: On the Menu Bar, select Analyze, General Linear Model, and
Univariate. The “Univariate” box appears.

Select the variables: Move your dependent variable (Persuasion) to “Dependent
variable.” Move both factors to “Fixed Factors.”

Select the post hoc test: Click Post Hoc and, in the box that appears, move each fac-
tor, to “Post Hoc Test for.” Checkmark Tukey. Click Continue.

Select Descriptives: Click Options and, in the box that appears, checkmark Descrip-
tive Statistics. This will give the and for all levels and cells. Click Continue.sXX
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TABLE B.1

A 3 � 2 Design for the
Factors of Volume and
Gender

Each column represents a
level of the volume factor;
each row represents a
level of the gender factor.

Factor A: Volume

Level A1: Level A2: Level A3:
Soft Medium Loud

9 8 18Level B1:
4 12 17Male

11 13 15Factor B:
Gender

2 9 6Level B2:
6 10 8Female
4 17 4

N � 18 



Select graphs: Click Plots. In the box that appears, to plot the main effect means,
move a factor to “Horizontal Axis” and click Add. Do the same with the other factor.
To plot the interaction, click the factor with the most levels (Volume) and move it to
“Horizontal Axis.” Click the other factor (Gender) and move it to “Separate Lines.”
Click Add and then Continue.

The output: Click OK. The ANOVA summary table is in Screen B.18.
In the row at the name of each factor is the relevant information. For Volume, the 

is 7.142, which is significant . For Gender, is 11.358, which is significant
. SPSS describes the interaction here as “Volume * Gender.” The interaction1p 5 .006 2

Fobt1p 5 .009 2
Fobt
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is 6.250, and it is significant . The is in the row labeled “Error”
(8.222) and . Use these numbers when computing the HSD for the interaction.
Use the “Corrected Total” sum of squares when computing squared.

Screen B.19 above shows the “Descriptive Statistics” table. First are the cells under
soft volume. The first row is labeled “Male,” so for the cell of male-soft, 
and . The second row, “Female,” describes the female-soft cell. The row
labeled “Total” has the and for the main effect of soft volume, after collapsing
across gender. In the next group of rows labeled “Medium” are the male-medium cell,
the female-medium cell, and the main effect for medium volume, and so on. In the bot-
tom rows labeled “Total” are the main effect means for gender.

Your output will also include the “Multiple Comparisons” table which shows
Tukey’s HSD test for the main effect of Volume. Interpret this as we did for the one-
way ANOVA. If the Gender factor had involved more than two levels, a separate “Mul-
tiple Comparisons” table for it would appear.

Remember that SPSS does not compute Tukey’s HSD for the interaction effect, so
use the procedure described in Chapter 14. Likewise, compute effect size—using our
formula for —for each significant effect.

For Practice

Perform the two-way ANOVAs in Application Questions 19 and 21 in Chapter 14. 
Confirm that your answers match those in Appendix D.

B.9 CHI SQUARE PROCEDURES

This section describes how to perform the one-way and two-way chi square procedure,
as described in Chapter 15.

The One-Way Chi Square

In Chapter 15, we discussed a study involving the frequency of left- or right-handed
geniuses. There we had a total 10 left-handers and 40 right-handers. However, we must
let SPSS count the participants in each category. For example, let’s look at a small

�2

sXX
sX 5 3.60555

X 5 8.0000

�
dfwn 5 12

MSwn1p 5 .014 2Fobt
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portion of the original handedness data before the totals. We used a 1 to indicate left-
handed and a 2 to indicate right-handed.

Participant Handedness

1 1
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 1
12 2

Enter the data: In the Data Editor, name one variable (for example, Handedness).
(Label the output as in previous procedures.) Then enter the scores.

Select Chi Square: On the Menu Bar, select Analyze, Nonparametric Tests, and Chi-
Square. The “Chi-Square Test” box appears.

Select the variables: Move your variable to “Test Variable List.” (If your is not
that all frequencies are equal, under “Expected values” check Values. Then type in the
expected frequency for the lowest labeling score: We’d enter the for the number 
of 1s. Click Add. Enter the for the second labeling score (2s), click Add, and so on.)

The output: Click OK. As in Screen B.20, the “Handedness” table shows the and
for each category. The “Test Statistics” table shows that with . The

“Asymp. Sig.” is , which is interpreted as in previous procedures: This is sig-
nificant, with .

The Two-Way Chi Square

Here SPSS must count the participants in each category of two variables. For example,
let’s examine the study comparing Type A or B personalities and the incidence of heart
attacks from Chapter 15. We’ll violate the assumptions and look at a very small .N

p 5 .021
�2

obt.021
df 5 1�2

obt 5 5.33fe

fo

fe

fe

H0
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Participant Type Attack

1 1 1
2 2 2
3 2 2
4 1 2
5 1 1
6 2 1
7 1 1
8 2 2
9 1 1

10 2 2
11 1 1
12 2 2

Enter the data: Name the two variables (for example, Type and Attack). For each,
determine the scores that will indicate the categories. Above, a 1 is Type A and a 2 is
Type B. Also, a 1 indicates a heart attack, and a 2 indicates no attack. (Label the output
as we’ve done for previous procedures.) Then, for each participant, enter in the same
row the scores that indicate category membership on each variable: For participant 1,
enter 1 under Type and 1 under Attack. For participant 2, enter 2 and 2, and so on.

Select the Chi Square: On the Menu Bar, select Analyze, Descriptive Statistics, and
Crosstabs. The “Crosstabs” box appears.

Select the variables: This design forms a matrix. Move the variable
you want to form the rows of the matrix to “Rows.” Move the variable that forms the
columns to “Columns.”

Select a bar chart: Checkmark Display clustered bar charts.
Select the statistics: Click Statistics. In the box that appears, checkmark Chi-square.

Below that, checkmark Contingency coefficient or Phi and . . . (in this example, its the
latter). Click Continue.

Select the expected frequencies: To see the in each cell, click Cells. In the box
that appears, under “Counts” checkmark Expected. Click Continue.

The output: Click OK. In your output is the table labeled “HeartAttack*Type
Crosstabulation.” In it is the matrix containing the observed and expected fre-
quencies (count). In the “Chi-square Tests” table, at “Pearson Chi-Square,” is the 
of 5.333, with . The “Asymp. Sig.” is , which is interpreted as in previous
procedures, so is significant . In the “Symmetric Measures” table, the
phi coefficient is .

For Practice

1. In a survey, Foofy finds that three people prefer country music, nine prefer hip-
hop, and two prefer classical. Compute the for these data. (a) What is and

(b) Are the results significant? (c) What is ?

2. In another survey, Foofy asks if people like (1) or dislike (2) country music and if
they like (1) or dislike (2) classical music. Compute the on the following data:�2

pdf ?
�2

obt�2

.667
1p 5 .021 2�2

obt

.021df 5 1
�2

obt

2 3  2

fe

2 3  22 3  2
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Participant Country Classical

1 2 1
2 1 2
3 2 2
4 1 2
5 2 1
6 2 1
7 1 2
8 2 2
9 1 1

10 2 2
11 2 2
12 2 2

(a) What is and ? (b) Are the results significant? (c) What is ? (d) Does 
the bar chart show an interaction?

Answers
1. (a) , ; (b) Significant; (c) 

2. (a) , ; (b) Not significant; (c) ; (d) No: Connecting the
tops of the “Like” (blue) bars with one line, and the tops of the “Dislike” (green)
bars with another produces close to parallel lines.

B.10 NONPARAMETRIC TESTS FOR RANKED SCORES

The following describes how to compute the Mann–Whitney , the Wilcoxon , the
Kruskal–Wallis , and the Friedman tests, which are discussed in Chapter 15. How-
ever, use our formulas for computing effect size and post hoc tests. For each, the
dependent scores can be ranks, or they can be interval or ratio scores that SPSS will
automatically convert to ranks. You can compute descriptive statistics for these raw
interval/ratio scores by selecting Options and then checking Descriptive.

The Mann–Whitney U Test

Enter the data: Create the Data Editor as in the independent-samples t-test (B.6).
Select the nonparametric test: On the Menu Bar, select Analyze, Nonparametric

Tests, and 2 Independent Samples. The “Two Independent Samples” box appears.
Under “Test Type” check Mann-Whitney .

Select the variables: Move your dependent variable to “Test Variable List.” Move
your independent variable to “Grouping Variable.”

Define the groups: Click Define groups and, in the box that appears, enter the num-
ber that you used to identify each condition. Click Continue.

The output: Click OK. In the “Test Statistics” table, is at “Mann–Whitney .”
The minimum needed to be significant is at “Asymp. Sig. (2-tailed).”�

UUobt

U

�2H
TU

p 5 .665df 5 1�2
obt 5 .188

p 5 .046df 5 2�2
obt 5 6.143

pdf�2
obt
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The Wilcoxon T Test

Enter the data: Create the Data Editor as in the related-samples t-test (B.6).
Select the nonparametric test: On the Menu Bar, select Analyze, Nonparametric

Tests, and 2 Related Samples. The “Two Related Samples” box appears. Under “Test
Type” check Wilcoxon. 

Select the variables: In the area under “Test Pairs,” drag and drop each of your vari-
ables into the highlighted row labeled “1.” Drop one variable under “Variable 1” and
the other under “Variable 2.”

The output: Click OK. In the “Ranks” table are the sums of the positive and nega-
tive ranks. You may use the smaller sum as as described in Chapter 15 and com-
pare it to . Or, in the output’s “Test Statistics” table, the smaller sum is transformed
to a z-score. The minimum for this z to be significant is at “Asymp. Sig. (2-tailed).”

The Kruskal–Wallis H Test

Enter the data: Create the Data Editor as we did for the one-way, between-subjects
ANOVA (B.7).

Select the nonparametric test: On the Menu Bar, select Analyze, Nonparametric
Tests, and Independent Samples. The “Test for Several Independent Samples” box
appears. Under “Test Type” check Kruskal-Wallis .

Select the variables: Move your dependent variable to “Test Variable List.” Move
your independent variable to “Grouping Variable.”

Define the groups: Click Define Range. Enter the lowest score that you used 
to identify a condition at “Minimum.” Enter the highest score at “Maximum.” Click
Continue.

The output: Click OK. In the “Ranks” table are the mean of the ranks in each con-
dition. In the “Test Statistics” table, the is at “Chi-Square,” under which is the .
The minimum for to be significant is at “Asymp. Sig. (2-tailed).”

The Friedman Test

Enter the data: Create the Data Editor as in the Wilcoxon above, but name a vari-
able for each level. For example, if you have three conditions then name three vari-
ables. Then in each row, put the three scores from the same participant in the
appropriate columns.

Select the nonparametric test: On the Menu Bar, select Analyze, Nonparametric
Tests, and Related Samples. The “Test for Several Related Samples” box appears.
Under “Test Type” check Friedman.

Select the variables: Move all variables to “Test Variables.”
The output: Click OK. In the “Ranks” table is the mean rank for each condition. In

the “Test Statistics” table, is the number of participants, and at “Chi-Square” is the
. At “Asymp. Sig. (2-tailed)” is the minimum a needed for to be significant.

For Practice

Perform each of the above procedures using the data from the example study that we
discussed when that statistic was introduced in Chapter 15. Compare the answers in
your output to those we obtained using the formulas.

�2
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B.11 THE ONE-WAY, WITHIN-SUBJECTS ANOVA

This section describes the one-way, within-subjects ANOVA that is discussed in
Appendix A.3, including descriptive statistics and graphs. The student version of SPSS
will not perform the Tukey HSD test here, so follow the instructions in Appendix A.3.

As an example, in Appendix A.3 we discussed a repeated-measures design that
measured participants’ comfort level when wearing either casual, semiformal, or for-
mal clothes. The data are shown again in Table B.2.

Enter the data: As in Appendix A.3, we treat this as a two-way design, so create the
Data Editor as we did in the two-way ANOVA: Name three variables. Name the first
Participants, the next for factor A (Dress), and the third for the dependent variable
(Comfort). Assign a number to identify each level in factor A and label the output!
Then enter the participants’ number (1, 2, or 3, . . .) under “Participants,” the level of A
under “Dress,” and the dependent score under “Comfort.” In this study, three rows in
the Data Editor will belong to the same participant, each containing the score from a
level of A. Thus, for participant 1: In the first row, enter 1, 1, and 4; in the next row,
enter 1, 2, and 9; in the third row, enter 1, 3, and 1, and so on. The completed Data Edi-
tor is in Screen B.21.

Select the ANOVA: On the Menu Bar, select Analyze, General Linear Model, and
Univariate. The “Univariate” box appears.

Select the variables: Move your dependent variable (Comfort) to “Dependent Vari-
able.” Move your independent variable (Dress) to “Fixed Factors.” Move “participants”
to “Random Factor(s).”

Select Plots: Click Plots but, to simplify matters, move only the factor (Dress) to
“Horizontal Axis.” Click Add and Continue.

Select Descriptive: Click Options and checkmark “Descriptive Statistics.” Click
Continue.

The output: Click OK. The ANOVA summary table is in Screen B.22.
We are interested in only the following: In the row labeled “Dress Hypothesis” is the

for factor A (here, 3.486). In the column labeled “Sig.” is , so this is not
significant. In the row labeled “Dress * Participant Hypothesis,” under Mean Square is
our . Use this and its when computing the HSD. When computing , add the

in the above two rows to that in the “Subject Hypothesis” row to obtain ; use
the at “Dress Hypothesis” as .SSbnSS

SStotSS
�2dfMSwn

Fobt.082Fobt
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Factor A: Type of Dress

Level A1: Level A2: Level A3:
Participants Casual Semiformal Formal

1 4 9 1

2 6 12 3

3 8 4 4

4 2 8 5

5 10 7 2

TABLE B.2

Data from One-Way,
Within-Subjects Study



Also in your output is the “Descriptive Statistics” box: In the rows under “Casual,”
look at the row at “Total.” This contains the and for the casual level. Likewise, find
the and for the other levels.

In your line graph, ignore that it says “estimated marginal means. . . .” They are our
real means.

For Practice

Perform the one-way, within-subjects ANOVA in Application Question 3 in Appendix
A.3. Confirm that your answers match those in Appendix D.

sXX
sXX
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Statistical Tables
Table C.1 Proportions of Area under the Standard Normal Curve: 

The z-Tables

Table C.2 Critical Values of t: The t-Tables

Table C.3 Critical Values of the Pearson Correlation 
Coefficient: The r-Tables

Table C.4 Critical Values of the Spearman Rank-Order Correlation
Coefficient: The rS-Tables

Table C.5 Critical Values of F: The F-Tables

Table C.6 Values of Studentized Range Statistic, qk

Table C.7 Critical Values of Chi Square: The �2-Tables

Table C.8 Critical Values of the Mann–Whitney U

Table C.9 Critical Values of the Wilcoxon T

C



TABLE C.1

Proportions of Area under the Standard Normal Curve: The z-Tables

Column A lists z-score values. Column B lists the proportion of the area between the mean and the z-score value.
Column C lists the proportion of the area beyond the z-score in the tail of the distribution. (Note: Because the
normal distribution is symmetrical, areas for negative z-scores are the same as those for positive z-scores.)
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TABLE C.1 (CONT.)

Proportions of Area under the Standard Normal Curve: The z-Tables
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Proportions of Area under the Standard Normal Curve: The z-Tables
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TABLE C.1 (CONT.)

Proportions of Area under the Standard Normal Curve: The z-Tables
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TABLE C.4

Critical Values of the Spearman Rank-Order Correlation Coefficient: The rs-Tables

To interpolate the critical value for an N not given, find the critical values for the N above and below your N, add
them together, and then divide the sum by 2. When N is greater than 30, transform rS to a z-score using the formula

. For , the two-tailed and the one-tailed .

Two-Tailed Test One-Tailed Test

Alpha Level Alpha Level

(no. of
N

pairs) (no. of
N

pairs) a 5 .01a 5 .05a 5 .01a 5 .05

zcrit 5 1.645zcrit 5 ;1.96� 5 .05zobt 5 1rS 2 11N 2 1 2

0 +rcrit–rcrit 0 +rcrit

From E. G. Olds (1949), “The 5 Percent Significance Levels of Sums of Squares of Rank Differences and a Correction,” Annals of Math Statis-
tics, 20, pp. 117–118; and E. G. Olds (1938), “Distribution of Sums of Squares of Rank Differences for Small Numbers of Individuals,” Annals
of Math Statistics, 9, pp. 133–148. Reprinted with permission of the Institute of Mathematical Statistics.
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TABLE C.6

Values of Studentized Range Statistic, qk

For a one-way ANOVA, or a comparison of the means from a main effect, the value of k is the number of means in
the factor.

To compare the means from an interaction, find the appropriate design (or number of cell means) in the table
below and obtain the adjusted value of k. Then use adjusted k as k to find the value of qk.

Values of Adjusted k

Design of Number of Cell Adjusted
Study Means in Study Value of k

4 3
6 5
8 6
9 7

12 8
16 10
20 12

Values of qk for are dark numbers and for are light numbers.

Degrees of Freedom
Within Groups k � Number of Means Being Compared(degrees of freedom
in denominator

of F-ratio) 2 3 4 5 6 7 8 9 10 11 12a

� 5 .01� 5 .05

4 3 5
4 3 4
3 3 4
3 3 3
2 3 4
2 3 3
2 3 2

continued
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TABLE C.6 (CONT.)

Values of Studentized Range Statistic, qk

Degrees of Freedom
Within Groups k � Number of Means Being Compared(degrees of freedom
in denominator

of F-ratio) 2 3 4 5 6 7 8 9 10 11 12a

From B. J. Winer, Statistical Principles in Experimental Design, McGraw-Hill, 1962; abridged from H. L. Harter, D. S. Clemm, and E. H.
Guthrie, “The probability integrals of the range and of the studentized range,” WADC Tech. Rep., 58–484, Vol. 2, 1959, Wright Air Develop-
ment Center, Table II.2, pp. 243–281. Reproduced by permission of the McGraw-Hill Companies, Inc.
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Answers to Odd-Numbered
Questions

Chapter 1

1. To conduct research and to understand the research of
others

3. (a) To two more decimal places than were in the origi-
nal scores.

(b) If the number in the third decimal place is 5 or
greater, round up the number in the second decimal
place. If the number in the third decimal place is
less than 5, round down by not changing the
number in the second decimal place.

5. Perform squaring and taking a square root first, then
multiplication and division, and then addition and
subtraction.

7. It is the “dot” placed on a graph when plotting a pair of
and scores.

9. A proportion is a decimal indicating a fraction of the
total. To transform a number to a proportion, divide the
number by the total.

11. (a) (b)
(c)

13. (a) 33% (b) 20% (c) .1%
15. (a) 13.75 (b) 10.04 (c) 10.05 (d)

(e) 1.00
17.
19.
21. (a) ; ; 

(b)
(c) ; multiplied by 100 is 85%

23. (a) Space the labels to reflect the actual distance
between the scores.

(b) So that they don’t give a misleading impression.

Chapter 2

1. (a) The large groups of individuals (or scores) to which
we think a law of nature applies.

115>135 5 0.85
1.60 2135 5  81

1.60 260 5 361.60 235 5 211.60 240 5 24
D 5 123.25 2 13 2 5 29.75
Q 5 18 1 22 2 164 1 4 2 5 16 2 168 2 5 408

.08

1>1000 5 .001
10>50 5 .205>15 5 .33

YX

D
(b) A subset of the population that represents or stands

in for the population.
(c) We assume that the relationship found in a sample

reflects the relationship found in the population.
(d) All relevant individuals in the world, in nature.

3. It is the consistency with which one or close to one 
score is paired with each .

5. The design of the study and the scale of measurement
used.

7. The independent variable is the overall variable the
researcher is interested in; the conditions are the spe-
cific amounts or categories of the independent variable
under which participants are tested.

9. To discover relationships between variables, which may
reflect how nature operates.

11. (a) A statistic describes a characteristic of a sample of
scores. A parameter describes a characteristic of a
population of scores.

(b) Statistics use letters from the English alphabet.
Parameters use letters from the Greek alphabet.

13. The problem is that a statistical analysis cannot prove
anything.

15. His sample may not be representative of all college
students. Perhaps he selected those few students who
prefer carrot juice.

17. Ratio scales provide the most specific information,
interval scales provide less specific information, ordinal
scales provide even less specific information, and nom-
inal scales provide the least specific information.

19. Samples A ( scores increase) and D ( scores increase
then decrease).

21. Studies A and C. In each, as the scores on one variable
change, the scores on the other variable change in a
consistent fashion.

23. Because each relationship suggests that in nature, as the
amount of changes, also changes.YX

YY

XY



25.

Qualitative Continuous, Type of
or Discrete or Measurement

Variable Quantitative Dichotomous Scale

gender qualitative dichotomous nominal

academic qualitative discrete nominal
major

number quantitative continuous interval
of minutes
before 
and after 
an event

restaurant quantitative discrete ordinal
ratings 
(best, next 
best, etc.)

speed quantitative continuous ratio

dollars quantitative discrete ratio 
in your 
pocket

change in quantitative continuous interval
weight

checking quantitative discrete interval
account 
balance

reaction quantitative continuous ratio
time

letter quantitative discrete ordinal
grades 

clothing quantitative discrete ordinal
size 

registered qualitative dichotomous nominal
voter

therapeutic qualitative discrete nominal
approach

schizophrenia 
type qualitative discrete nominal

work quantitative discrete ratio
absences

words quantitative discrete ratio
recalled

Chapter 3

1. (a) is the number of scores in a sample.
(b) is frequency, the number of times a score 

occurs.
(c) is relative frequency, the proportion of time a

score occurs.
(d) is cumulative frequency, the number of times

scores at or below a score occur.
cf

rel. f

f
N

3. (a) A histogram has a bar above each score; a polygon
has datapoints above the scores that are connected
by straight lines.

(b) Histograms are used with a few different interval or
ratio scores, polygons are used with a wide range of
interval/ratio scores.

5. (a) Relative frequency (the proportion of time a score
occurs) may be easier to interpret than simple 
frequency (the number of times a score occurs).

(b) Percentile (the percent of scores at or below a score)
may be easier to interpret than cumulative frequency
(the number of scores at or below a score).

7. A negatively skewed distribution has only one tail at the
extreme low scores; a positively skewed distribution has
only one tail at the extreme high scores.

9. The graph showed the relationship where, as scores on
the variable change, scores on the variable change. A
frequency distribution shows the relationship where, as 
scores change, their frequency (shown on ) changes.

11. It means that the score is either a high or low extreme
score that occurs relatively infrequently.

13. (a) The middle IQ score has the highest frequency in a
symmetric distribution; the higher and lower scores
have lower frequencies, and the highest and lowest
scores have a relatively very low frequency.

(b) The agility scores form a symmetric distribution
containing two distinct “humps” where there are
two scores that occur more frequently than the sur-
rounding scores.

(c) The memory scores form an asymmetric distribu-
tion in which there are some very infrequent,
extremely low scores, but there are not correspond-
ingly infrequent high scores.

15. It indicates that the test was difficult for the class,
because most often the scores are low or middle scores,
and seldom are there high scores.

17. (a) 35% of the sample scored at or below the score.
(b) The score occurred 40% of the time.
(c) It is one of the highest and least frequent scores.
(d) It is one of the lowest and least frequent scores.
(e) 50 participants had either your score or a score

below it.
(f) 60% of the area under the curve and thus 60% of

the distribution is to the left of (below) your score.
19. (a) 70, 72, 60, 85, 45

(b) Because .20 of the area under the curve is to the left
of 60, it’s at the 20th percentile.

(c) With of the area under the curve to the left 
of 70, of the sample is below 70.

(d) With of the area under the curve below 70, and
of the area under the curve below 60, then

. of the area under the curve is
between 60 and 70.

(e) .20

.50 2 .20 5 .30

.20
.50
.50
.50

Y
X

YX
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(f) With of the scores between 70 and 80, and 
of the area under the curve below 70, a total of

of scores are below 80, so it’s at
the 80th percentile.

21.

Score f rel. f cf

53 1 .06 18
52 3 .17 17
51 2 .11 14
50 5 .28 12
49 4 .22 7
48 0 .00 3
47 3 .17 3

23.

Score f rel. f cf

16 5 .33 15
15 1 .07 10
14 0 .00 9
13 2 .13 9
12 3 .20 7
11 4 .27 4

25. (a) Nominal: scores are names of categories.
(b) Ordinal: scores indicate rank order, no zero, adjacent

scores not equal distances.
(c) Interval: scores indicate amounts, zero is not none,

negative numbers allowed.
(d) Ratio: scores indicate amounts, zero is none, negative

numbers not allowed.
27. (a) Bar graph; this is a nominal (categorical) variable.

(b) Polygon; we will have many different ratio scores.
(c) Histogram; we will have only 8 different ratio

scores.
(d) Bar graph; this is an ordinal variable.

29. (a) Multiply of the time.
(b) We expect .60 of 50, which is 

Chapter 4

1. It indicates where on a variable most scores tend to be
located.

3. The mode is the most frequently occurring score, used
with nominal scores.

5. The mean is the average score, the mathematical center
of a distribution, used with symmetrical distributions of
interval or ratio scores.

7. Because here the mean is not near most of the scores.
9. Deviations convey (1) whether a score is above or

below the mean and (2) how far the score is from the
mean.

11. (a)
(b) © 1X 2 X 2

X 2 X

.60150 2 5 30.
.601100 2 5 60%

.30 1 .50 5 .80

.50.30
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(c) The total distance that scores are above the mean
equals the total distance that other scores are below
the mean.

13. (a)
(b) The mode is 58.

15. (a) Mean
(b) Median (these ratio scores are skewed)
(c) Mode (this is a nominal variable)
(d) Median (this is an ordinal variable)

17. (a) The person with ; it is farthest below the mean.
(b) The person with ; it is in the tail where the 

lowest-frequency scores occur.
(c) The person with 0; this score equals the mean,

which is the highest-frequency score.
(d) The person with ; it is farthest above the mean.

19. Mean errors do not change until there has been 5 hours
of sleep deprivation. Mean errors then increase as a
function of increasing sleep deprivation.

21. She is correct unless the variable is something on which
it is undesirable to have a high score. Then, being below
the mean with a negative deviation is better.

23. (a) The means for conditions 1, 2, and 3 are 15, 12, and
9, respectively.

(b)

13

25
25

©X 5 638, N 5 11, X 5 58

Noise level

15
14
13
12
11
10

9
8M

ea
n 

pr
od

uc
tiv

ity

Low Medium High

f

Productivity scores

7 8 9 10 11 12 13 14 15

μ for 
high noise 

μ for 
medium 
noise 

μ for 
low noise 

(c)

(d) Apparently the relationship is that as noise level
increases, the typical productivity score decreases
from around 15 to around 12 to around 9.

25. (a) It is the variable that supposedly influences a
behavior; it is manipulated by the researcher.

(b) It reflects the behavior that is influenced by the inde-
pendent variable; it measures participants’ behavior. 



27. (a) The independent variable.
(b) The dependent variable.
(c) Produce a line graph when the independent variable

is an interval or ratio scale, a bar graph when the
independent variable is nominal or ordinal.

29. (a) Line graph; income on Y axis, age on X axis; find
median income per age group—income is skewed.

(b) Bar graph; positive votes on Y axis, presence or
absence of a wildlife refuge on X axis; find mean
number of votes, if normally distributed.

(c) Line graph; running speed on Y axis, amount of car-
bohydrates consumed on X axis; find mean 
running speed, if normally distributed.

(d) Bar graph; alcohol abuse on Y axis, ethnic group on
X axis; find mean rate of alcohol abuse per group, if
normally distributed.

Chapter 5

1. It is needed for a complete description of the data, indi-
cating how spread out scores are and how accurately the
mean summarizes them.

3. (a) The range is the distance between the highest and
lowest scores in a distribution.

(b) Because it includes only the most extreme and
often least-frequent scores, so it does not summa-
rize most of the differences in a distribution.

(c) With nominal or ordinal scores or with interval/
ratio scores that cannot be accurately described by
other measures.

5. (a) Variance is the average of the squared deviations
around the mean.

(b) Variance equals the squared standard deviation, and
the standard deviation equals the square root of the
variance.

7. Because a sample value too often tends to be smaller
than the population value. The unbiased estimates of the
population involve the quantity , resulting in a
slightly larger estimate.

9. (a) The lower score and the upper score �
.

(b) The lower score and the upper score �

(c) Use to estimate , then the lower score
and the upper score

11. (a) Range , so the scores spanned 8 dif-
ferent scores.

(b) , , , so 
: The average squared deviation

of creativity scores from the mean of 4.10 is 6.29.
(c) : The “average deviation” of

creativity scores from the mean of 4.10 is 2.51.
13. (a) With and , the scores are

, and 4.1 1 2.51 5 6.61.4.1 2 2.51 5 1.59
Sx 5 2.51X 5 4.1

SX 5 16.29 5 2.51

168.1 2 >10 5 6.29
S2

X 5 1231 2N 5 10©X 2 5 231©X 5 41

5 8 2 0 5 8
5 � 1 1sX.� 2 1sX

5�X
� 1 1σX.

5 � 2 1σX

X 1 1SX

5 X 2 1SX

N 2 1

(b) The portion of the normal curve between these
scores is 68%, so 

(c) Below 1.59 is about 16% of a normal distribution,
so 

15. (a) Because the sample tends to be normally distrib-
uted, the population should be normal too.

(b) Because , we would estimate
the to be 76.29.

(c) The estimated population variance is 

(d) The estimated standard deviation is 
(e) Between 72.19 and 80.39 

17. (a) Guchi. Because his standard deviation is larger, his
scores are spread out around the mean, so he tends
to be a more inconsistent student.

(b) Pluto, because his scores are closer to the mean 
of 60, so it more accurately describes all of his
scores.

(c) Pluto, because we predict each will score at his
mean score, and Pluto’s individual scores tend to be
closer to his mean than Guchi’s are to his mean.

(d) Guchi, because his scores vary more widely above
and below 60.

19. (a) Compute the mean and sample standard deviation
in each condition.

(b) Changing conditions A, B, C changes dependent
scores from around 11.00 to 32.75 to 48.00, respec-
tively.

(c) The for the three conditions are .71, 1.09,
and .71, respectively. These seem small, showing
little spread, so participants scored consistently in
each condition.

(d) Yes.
21. (a) Study A has a relatively narrow/skinny distribution,

and Study B has a wide/fat distribution.
(b) In A, about 68% of scores will be between

and ; in B, 68% will be
between and .

23. (a) For conditions 1, 2, and 3, we’d expect of about
13.33, 8.33, and 5.67, respectively.

(b) Somewhat inconsistently, because based 
on we’d expect a of 4.51, 2.52, and 3.06,
respectively.

25. The shape of the distribution, a measure of central ten-
dency and a measure of variability.

27. (a) The flat line graph indicates that all conditions
produced close to the same mean, but a wide 
variety of different scores was found throughout the
conditions.

(b) The mean for men was 14 and their standard
deviation was 3.

(c) The researcher found and is using it to esti-
mate , and is estimating by using the sample
data to compute .sX

σX�
X 5 14

σXsX

�s
50140 1 10 230140 2 10 2

45140 1 5 235140 2 5 2

SX

4.10 2
176.29 1176.29 2 4.10 2

116.85 5 4.10.
98,953.47 2 >16 5 16.85.

199,223 2
�

X 2 1297>17 5 76.29

1.16 2 11000 2 5 160.

1.68 2  11000 2 5 680.
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29. (a) A bar graph; rain/no rain on ; mean laughter time
on . 

(b) A bar graph; divorced/not divorced on ; mean
weight change on .

(c) A bar graph; alcoholic/not alcoholic on ; median
income on .

(d) A line graph; amount paid on ; mean number of
ideas on .

(e) A line graph; number of siblings on ; mean vocab-
ulary size on .

(f) A bar graph; type of school on ; median income
rank on .

Chapter 6

1. (a) A z-score indicates the distance, measured in 
standard deviation units, that a score is above 
or below the mean.

(b) z-scores can be used to interpret scores from 
any normal distribution of interval or ratio scores.

3. It is the distribution that results after transforming a
distribution of raw scores into z-scores.

5. (a) It is our model of the perfect normal z-distribution.
(b) It is used as a model of any normal distribution of

raw scores after being transformed to z-scores.
(c) The raw scores should be at least approximately

normally distributed, they should be from a contin-
uous interval or ratio variable, and the sample
should be relatively large.

7. (a) That it is normally distributed, that its equals the
of the raw score population, and that its standard

deviation (the standard error of the mean) equals
the raw score population’s standard deviation
divided by the square root of .

(b) Because it indicates the characteristics of any sam-
pling distribution, without our having to actually
measure all possible sample means.

9. (a) Convert the raw score to , use with the z-tables to
find the proportion of the area under the appropri-
ate part of the normal curve, and that proportion is
the rel. , or use it to determine percentile.

(b) In column B or C of the z-tables, find the specified 
rel. or the rel. converted from the percentile, identify
the corresponding at the proportion, transform the 
into its raw score, and that score is the cutoff score.

(c) Compute the standard error of the mean, transform
the sample mean into a z-score, follow the steps in
part (a) above.

11. (a) Small. This will give him a large positive z-score,
placing him at the top of his class.

(b) Large. Then he will have a small negative and be
relatively close to the mean.

13. , , and , so and
.

(a) For .
(b) For .X 5 6, z 5 16 2 8.58 2 >1.98 5 21.30

X 5 10, z 5 110 2 8.58 2 >1.98 5 1.72
X 5 8.58

SX 5 1.98N 5 12©X2 5 931©X 5 103

z

zz
ff

f

zz

N

�
�

Y
X

Y
X

Y
X

Y
X

Y
X

Y
X
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15. (a) (b)
(c) (d)

17. (a) (b)
(c)
(d)

19. From the z-table the 25th percentile is at approximately
. The cutoff score is then 
.

21. To make the salaries comparable, compute . For 
City A, For
City B, . City B
is the better offer, because her income will be closer to
(less below) the average cost in that city.

23. (a) , so of the curve is
between 60 and 56, plus of the curve below the
mean gives a total of or 69.15% of the curve
is expected to be below 60.

(b) , so of the curve is
between 54 and 56, plus of the curve that is
above the mean for a total of or 59.87% 
scoring above 54.

(c) The approximate upper of the curve is
above so the corresponding raw score is

.
25. (a) This is a rather infrequent mean.

(b) The sampling distribution of means.
(c) All other means that might occur in this situation. 

27. (a) With normally distributed, interval, or ratio scores.
(b) With normally distributed, interval, or ratio scores. 

29. (a)
(b) We are asking for its frequency.
(c)
(d) 

Chapter 7

1. (a) In experiments the researcher manipulates one vari-
able and measures participants on another variable;
in correlational studies the researcher measures
participants on two variables.

(b) In experiments the researcher computes the mean of
the dependent ( ) scores for each condition of the
independent variable (each ); in correlational stud-
ies the researcher examines the relationship over all

pairs by computing a correlation coefficient.
3. You don’t necessarily know which variable occurred

first, nor have you controlled other variables that might
cause scores to change.

5. (a) A scatterplot is a graph of the individual data points
formed from a set of pairs.

(b) It is a data point that lies outside of the general
pattern in the scatterplot, because of an extreme 

or score.
(c) A regression line is the summary straight line

drawn through the center of the scatterplot.

YX

X2Y

X2Y

X
Y

.701100 2 5 70%
35>50 5 .70

.40 1500 2 5 200

X 5 11.84 2 18 2 1 56 5 62.72
z 5 1.84

1.2005 2.20

.5987
.50

.0987z 5 154 2 56 2 >8 5 2.25

.6915
.50

.1915z 5 160 2 56 2 >8 5 .50

z 5 170,000 2 85,000 2 >20,000 5 2.75
z 5 147,000 2 65,000 2 >15,000 5 21.2.

z
75 5 68.3

X 5 12.67 2 110 2  1z 5 2.67

.0250 1 .0250 5 .05

.3944 1 .4970 5 .8914
.0107.4706

z 5 22.0z 5 2.70
z 5 22.8z 5 11.0



7. (a) As the scores increase, the scores tend to
increase.

(b) As the scores increase, the scores tend to
decrease.

(c) As the scores increase, the scores do not only
increase or only decrease.

9. (a) Particular scores are not consistently paired with
particular scores.

(b) The variability in at each is equal to the overall
variability in all scores in the data.

(c) The scores are not close to the regression line.
(d) Knowing does not improve accuracy in predict-

ing 
11. (a) That the variable forms a relatively strong

relationship with ( is relatively large), so by
knowing someone’s we come close to knowing
his or her .

(b) That the variable forms a relatively weak rela-
tionship with ( is relatively small), so by know-
ing someone’s we have only a general idea if he
or she has a low or high score.

13. He is drawing the causal inference that more people
cause fewer bears, but it may be the number of hunters,
or the amount of pesticides used, or the noise level asso-
ciated with more people, etc.

15. (a) With , the scatterplot is skinnier.
(b) With , there is less variability in at 

each .
(c) With , the scores hug the regression line

more closely.
(d) No. He thought a positive was better than a nega-

tive . Consider the absolute value.
17. Disagree. Exceptionally smart people will produce a

restricted range of IQ scores and grade averages. With
an unrestricted range, the would be larger.

19. Compute r. , , ,
, , , , and

. .
This is a strong positive linear relationship, so a nurse’s
burnout score will allow reasonably accurate prediction
of her absenteeism.

21. Compute : ; 
This is a very strong negative relationship, so that the
most dominant consistently weigh the most, and the less
dominant weigh less.

23. (a) Neither variable.
(b) Impossible to determine: being creative may cause

intelligence, or being intelligent may cause creativity,
or maybe something else (e.g., genes) causes both.

(c) Also impossible to determine.
(d) We do not call either variable the independent

variable in a correlational coefficient.
25. (a) Correlational, Pearson .

(b) Experiment, with age as a (quasi-) independent
variable.

r

r 5 1 2 11872>9902 5 2.89.©D2 5 312rS

r 5 12853 2 2584 2 >11464 2 1344 2 5 1.67N 5 9
©Y 5 3171©Y 22 5 4624©Y 2 5 552©Y 5 68
1©X 22 5 1444©X 2 5 212©X 5 38

r

r
r

Yr 5 2.40
X

Yr 5 2.40
r 5 2.40

Y
X

rY
X
Y

X
rY

X
Y.

X
Y

Y
XY

X
Y

YX

YX

YX (c) Correlational, Pearson .
(d) Correlational, Spearman after creating ranks for

number of visitors to correlate with attractiveness
rankings.

(e) Experiment.

Chapter 8

1. It is the line that summarizes a scatterplot by, on average,
passing through the center of the scores at each .

3. is the predicted score for a given , computed
from the regression equation.

5. (a) The intercept is the value of when the regres-
sion line crosses the axis.

(b) The slope indicates the direction and degree that the
regression line is slanted.

7. (a) The standard error of the estimate.
(b) It is a standard deviation, indicating the “average”

amount that the scores deviate from their corre-
sponding values of .

(c) It indicates the “average” amount that the actual
scores differ from the predicted scores, so it is
the “average” error.

9. is inversely related to the absolute value of .
Because a smaller indicates the scores are closer
to the regression line (and ) at each , which is what
happens with a stronger relationship (a larger ).

11. (a) is the coefficient of determination, or the propor-
tion of variance in that is accounted for by the
relationship with .

(b) indicates the proportional improvement in accu-
racy when using the relationship with to predict 
scores, compared to using the overall mean of to
predict scores.

13. (a) Foofy; because is  positive.
(b) Linear regression.
(c) “Average” error is the .
(d) , so our error is 19% smaller.
(e) The proportion of variance accounted for (the 

coefficient of determination).
15. The researcher measured more than one variable and

then correlated them with one variable, and used the
to predict 

17. (a) He should use multiple correlation and multiple
regression, simultaneously considering the hours
people study and their test speed when he predicts
error scores.

(b) With a multiple R of , : He will be
45% more accurate at predicting error scores when
considering hours studied and test speed than if
these predictors are not considered.

19. (a) Compute r: , ,
, , ,

and , so  
.1.81

r 5 14600 2 40052>11565 2 1949 2  5N 5 10
©XY 5 460,1©Y 22 5 7921©Y 2 5 887©Y 5 89

1©X 22 5 2025,©X2 5 259©X 5 45

R2 5 .451.67

Y.Xs
Y

X

r2 5 11.44 22 5 .19
SY¿ 5 3.90

r
Y

Y
YX

r2
X

Y
r2

r
XY ¿

YSY¿

rSY¿

Y ¿

Y ¿
Y

Y
YY

XYY ¿
XY

rS

r

APPENDIX D / Answers to Odd-Numbered Questions 443

A
N

S
W

E
R

S
 TO

 O
D

D
-N

U
M

B
E
R

E
D

 Q
U

E
S
TIO

N
S



(b) and 
, so 

(c) Using the regression equation, for people with an
attraction score of 9, the predicted anxiety score is

.
(d) Compute : , so 

. The “average error” is 1.81 
when using to predict anxiety scores.

21. (a) ; 
, so 

(b)
(c)
(d) ; very useful, providing a 45%

improvement in the accuracy of predictions
23. (a) The size of the correlation coefficient indirectly

indicates this, but the standard error of the estimate
most directly communicates how much better (or
worse) than predicted she’s likely to perform.

(b) Not very useful: Squaring a small correlation coef-
ficient produces a small proportion of variance
accounted for.

25. (a) Yes, by each condition.
(b) The and per condition.

27. (a) The independent ( ) variable.
(b) The dependent ( ) variable.
(c) The mean dependent score of their condition.
(d) The variance (or standard deviation) of that

condition.
29. (a) It is relatively strong.

(b) There is a high degree of consistency.
(c) The variability is small.
(d) The data points are close to the line,
(e) is relatively large. 
(f) We can predict scores reasonably accurately.

Chapter 9

1. (a) It is our expectation or confidence in the event.
(b) The relative frequency of the event in the 

population.
3. (a) Sampling with replacement is replacing the individ-

uals or events from a sample back into the popula-
tion before another sample is selected.

(b) Sampling without replacement is not replacing the
individuals or events from a sample before another
is selected.

(c) Over successive samples, sampling without
replacement increases the probability of an event,
because there are fewer events that can occur; with
replacement, each probability remains constant.

5. It indicates that by chance, we’ve selected too 
many high or low scores so that our sample is 

Y
r

Y
X

SXX

r2 5 1.67 22 5 .45
Y ¿ 5 1.58 24 1 5.11 5 7.43
SY¿ 5 2.06121 2 .672 5 1.53

Y ¿ 5 .58X 1 5.112 1.58 2 14.222 2 5 5.11
a 5 7.556b 5 12853 2 25842>11908 2 144425 .58

Y ¿
21 2 .812 5 1.81

SY¿ 5 13.081 2SY 5 3.081SY¿

Y ¿ 111.05 29 1 4.18 5 13.63

Y ¿ 5 111.05 2X 1 4.18.11.05 2 14.5 2 5 4.18
a 5 8.9 2b 5 14600 2 4005 2 >565 5 11.05
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unrepresentative. Then the mean does not equal the 
that it represents.

7. It indicates whether or not the sample’s z-score (and the
sample ) lies in the region of rejection.

9. The of a hurricane is . The uncle is
looking at an unrepresentative sample over the past 
13 years. Poindexter uses the gambler’s fallacy, failing
to realize that p is based on the long run, and so in the
next few years there may not be a hurricane.

11. She had sampling error, obtaining an unrepresentative
sample that contained a majority of Poindexter sup-
porters, but the majority in the population were Dorcas
supporters.

13. (a) .
(b) Yes: , so 
(c) No, we should reject that the sample represents this

population.
(d) Because such a sample and mean is unlikely to

occur if we are representing this population.
15. (a)

(b) Yes: , so .
(c) Such a sample and mean is unlikely to occur in this

population.
(d) Reject that the sample represents this population.

17. , so . No,
this z-score is beyond the critical value of , so this
sample is unlikely to be representing this population.

19. No, the gender of one baby is independent of another,
and a boy now is no more likely than at any other time,
with .

21. (a) For Fred’s sample, , and for Ethel’s, .
(b) The population with is most likely to pro-

duce a sample with , and the population
with is most likely to produce a sample
with .

23. (a) The ; .
Then . With a
critical value of , conclude that the football
players do not represent this population.

(b) Football players, as represented by your sample,
form a population different from non-football play-
ers, having a of about 35.67.

25. (a)
(b)
(c)

(d)

(e) For each the probability equals the above rel. f.
27. (a)

.
(b) p 5 .0793

21.41; rel. f 5 .0793
z 5 146 2 50 2 >2.8 5σX 5 18>140 5 2.846;

rel. f 5 .1056 1 .2266 5 .33221.75,
z 5 149 2 43 2 >8 5z 5 133 2 43 2 >8 5 21.25,

rel. f 5 .0517 1 .0517 5 .10341.13,
z 5 144 2 43 2 >8 5z 5 142 2 43 2 >8 5 2.13,

z 5 151 2 43 2 >8 5 11.0, rel. f 5 .1587
z 5 127 2 43 2 >8 5 22.0, rel. f 5 .0228

�

;1.96
z 5 135.67 2 30 2 >1.67 5 13.40

σX 5 5>19, 5 1.67X 5 321>9 5 35.67
X 5 18
� 5 18

X 5 26
� 5 26

� 5 18� 5 26
p 5 .5

;1.96
z 5 134 2 28 2 >1.521 5 13.945σX 5 1.521

z 5 136.8 2 33 2 >2.19 5 1.74σX 5 2.19
11.645

z 5 172.1 2 75 2 >1.28 5 22.27,σX 5 1.28
11.96

160>2005 5 .80p
X

�



Chapter 10

1. A sample may (1) poorly represent one population
because of sampling error, or (2) represent some other
population.

3. stands for the criterion probability; it determines the
size of the region of rejection and the theoretical proba-
bility of a Type I error.

5. They describe the predicted relationship that may or
may not be demonstrated in an experiment.

7. (a) Use a one-tailed test when predicting the direction
the scores will change.

(b) Use a two-tailed test when predicting a relationship
but not the direction that scores will change.

9. (a) Power is the probability of not making a Type II
error.

(b) So we can detect relationships when they exist and
thus learn something about nature.

(c) When results are not significant, we worry if we
missed a real relationship.

(d) In a one-tailed test the critical value is smaller than
in a two-tailed test; so the obtained value is more
likely to be significant.

11. (a) We will demonstrate that changing the independent
variable from a week other than finals week to
finals week increases the dependent variable of
amount of pizza consumed; we will not demon-
strate an increase.

(b) We will demonstrate that changing the independ-
ent variable from not performing breathing exer-
cises to performing them changes the dependent
variable of blood pressure; we will not demon-
strate a change.

(c) We will demonstrate that changing the independent
variable by increasing hormone levels changes the
dependent variable of pain sensitivity; we will not
demonstrate a change.

(d) We will demonstrate that changing the independent
variable by increasing amount of light will decrease
the dependent variable of frequency of dreams; we
will not demonstrate a decrease.

13. (a) A two-tailed test because we do not predict the
direction that scores will change.

(b) ,

(c)

(d)
(e) Yes, because is beyond , the results are sig-

nificant: Changing from the condition of no music
to the condition of music results in test scores
changing from a of 50 to a of around 54.63.

15. (a) The probability of a Type I error is . The
error would be concluding that music influences
scores when really it does not.

p 6 .05
��

zcritzobt

zcrit 5 ;1.96
zobt 5 154.63 2 50 2 >1.71 5 12.71
σX 5 12>249 5 1.71;

Ha: � ? 50H0: � 5 50

�

(b) By rejecting , there is no chance of making a
Type II error. It would be concluding that music
does not influence scores when really it does.

17. She is incorrect about Type I errors, because the total
size of the region of rejection (which is ) is the same
regardless of whether a one- or two-tailed test is used;

is also the probability of making a Type I error, so it
is equally likely using either type of test.

19. (a) She is correct; that is what indicates.
(b) She is incorrect. In both studies the researchers

decided the results were unlikely to reflect sam-
pling error from the population; they merely
defined unlikely differently.

(c) The probability of a Type I error is less in Study B.
21. (a) The researcher decided that the difference between

the scores for brand X and other brands is too large
to have resulted by chance if there wasn’t a real
difference between them.

(b) The indicates an of , so the proba-
bility is that the researcher made a Type I
error. This p is far too large for us to accept the
conclusion.

23. (a) One-tailed.
(b) : The of all art majors is less than or equal 

to that of engineers who are at 45; : the of 
all art majors is greater than that of engineers 
who are at 45.

(c)
This is not larger than ; the results are
not significant.

(d) We have no evidence regarding whether, nation-
wide, the visual memory ability of the two groups
differs or not.

(e) .
25. (a) The independent variable is manipulated by the

researcher; the dependent variable measures parti-
cipants’ scores.

(b) Dependent variable.
(c) Interval and ratio scores measure actual amounts,

but an interval variable allows negative scores;
nominal variables are categorical variables; ordinal
scores are the equivalent of 1st, 2nd, etc.

(d) A normal distribution is bell shaped and symmetri-
cal with two tails; a skewed distribution is asym-
metrical with only one pronounced tail.

27. This will produce two normal distributions on the same
axis, with the morning’s centered around a of 40 and
the evening’s centered around a of 60.

29. (a) Because they study the laws of nature and a rela-
tionship is the telltale sign of a law at work.

(b) A real relationship occurs in nature (in the “popula-
tion”). One produced by sampling error occurs by
chance, and only in the sample data.

(c) Nothing.

�
�

z 5 11.43, p 7 .05

zcrit 5 11.645
zobt 5 149 2 45 2>2.8 5 11.428.σX 514>125 5 2.8;

�Ha

�H0

.44
.44�p 6 .44

H0

p 6 .0001

�

�

H0
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Chapter 11

1. (a) The t-test and the z-test.
(b) Compute z if the standard deviation of the raw

score population ( ) is known; compute t if is
estimated by .

(c) That we have one random sample of interval or
ratio dependent scores, and the scores are approxi-
mately normally distributed.

3. (a) is the estimated standard error of the mean; is
the true standard error of the mean.

(b) Both are used as a “standard deviation” to locate 
a sample mean on the sampling distribution of
means.

5. (a)
(b)
(c) Determine if the coefficient is significant by compar-

ing it to the appropriate critical value; if the coeffi-
cient is significant, compute the regression equation
and graph it, compute the proportion of variance
accounted for, and interpret the relationship.

7. To describe the relationship and interpret it psychologi-
cally, sociologically, etc.

9. (a) Power is the probability of rejecting when it is
false (not making a Type II error).

(b) When a result is not significant.
(c) Because then we may have made a Type II error.
(d) When designing a study.

11. (a) ; 
(b)

(c) With .
(d) Using this book rather than other books produces 

a significant improvement in exam scores:
.

(e)

13. (a)
(b)
(c) For 
(d) , so the results are not signif-

icant, so do not compute the confidence interval.
(e) She has no evidence that the arguments change peo-

ple’s attitudes toward this issue.
15. Disagree. Everything Poindexter said was meaningless,

because he failed to first perform significance testing to
eliminate the possibility that his correlation was merely
a fluke resulting from sampling error.

17. (a) ; 
(b) With .
(c)
(d) The correlation is significant, so he should con-

clude that the relationship exists in the population,
and he should estimate that is approximately

.
(e) The regression equation and should be computed.r 2

1.38
�

r170 2 5 1.38, p 6 .05 1and even, 6 .01 2
df 5 70, rcrit 5 ;.232

Ha: � ? 0H0: � 5 0

t17 2 5 1.39, p 7 .05
df 5 7, tcrit 5 ;2.365

tobt 5 153.25 2 50 2 >8.44 5 1.39
Ha: � ? 50H0: � 5 50

78.5 5 70.33 # � # 86.67
112.262 2  113.61 2 122.262 2 1 78.5 # � # 13.61 2

2.77, p 6 .05
tobt19 25

df 5 9, tcrit 5 ;2.262
tobt 5 178.5 2 68.5 2 >3.61 5 12.77
s2

X 5 130.5; sX 5 1130.5>10 5 3.61;
Ha: � ? 68.5H0: � 5 68.5

H0

�s

�

σXsX

sX

σXσX
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19. ; ; , ; 
; 

. The results are significant, so
there is evidence of a relationship: Without uniforms,

; with uniforms, is around 8.67. The 95% con-
fidence interval is 

so with uniforms is between
6.40 and 10.94.

21. (a)
(b)

23. The df of 80 is .33 of the distance between the df at 60 and
120, so the target is .33 of the distance from 2.000 to
1.980: , so ,
and thus equals the target of 1.993.

25. (a) We must first believe that it is a real relationship,
which is what significant indicates.

(b) Significant means only that we believe that the rela-
tionship exists in the population; a significant rela-
tionship is unimportant if it accounts for little of the
variance.

27. The z- and  t-tests are used to compare the of a popula-
tion when exposed to one condition of the independent
variable, to the scores in a sample that is exposed to a dif-
ferent condition. A correlation coefficient is used when
we have measured the  and scores of a sample.

29. (a) They are equally significant.
(b) Study B’s is larger.
(c) Study B’s is smaller, further into the tail of the sam-

pling distribution.
(d) The probability of a Type I error is .031 in A, but

less than .001 in B. 
31. (a) Compute the mean and standard deviation for each set

of scores, compute the Pearson between the scores
and test if it is significant (two-tailed). If so, perform
linear regression. The size of (and ) is the key.

(b) We have the mean and (estimated) standard devia-
tion, so perform the two-tailed, one-sample t-test,
comparing the to Whether 
is significant is the key. Then compute the confi-
dence interval for the represented by the sample.

(c) Along with the mean, compute the standard devia-
tion for this year’s team. Perform the one-tailed 
z-test, comparing to . Whether

is significant is the key.

Chapter 12

1. (a) The independent-samples t-test and the related-
samples t-test.

(b) Whether the scientist created independent samples
or related samples.

3. (a) Each score in one sample is paired with a score in
the other sample by matching pairs of participants
or by repeatedly measuring the same participants in
all conditions.

zobt

� 5 71.1X 5 77.6

�

tobt� 5 106.X 5 97.4

rr2

r

YX

�

tcrit2.000 2 .0066
1.020 2 1.33 2 5 .00662.000 2 1.980 5 .020

tcrit

t15 2 5 21.72, p 7 .05
t142 2 5 16.72, p 6 .05

�1.882 2 12.571 2 1 8.67,
1.882 2 122.571 2 1 8.67 # � #
�� 5 12

df 5 5, tcrit 5 ;2.571
tobt 5 18.667 2 12 2 >.882 5 23.78;14.67>6 5 .882

sX 5s2
X 5 4.67X 5 8.667Ha: � ? 12H0: � 5 12



(b) The scores are interval or ratio scores; the popula-
tions are normal and have homogeneous variance.

5. (a) is the standard error of the difference—the 
“standard deviation” of the sampling distribution 
of differences between means from independent
samples.

(b) is the standard error of the mean difference, the
“standard deviation” of the sampling distribution of

from related samples.
(c) n is the number of scores in each condition; is the

number of scores in the experiment.
7. It indicates a range of values of , one of which is

likely to represent.
9. (a) It indicates the size of the influence that the inde-

pendent variable had on dependent scores.
(b) It measures effect size using the magnitude of the

difference between the means of the conditions.
(c) It indicates the proportion of variance in the

dependent scores accounted for by changing the
conditions of the independent variable in the exper-
iment, indicating how consistently close to the
mean of each condition the scores are.

11. She should graph the results, compute the appropriate
confidence interval, and compute the effect size.

13. (a) : ; :
(b) ; ;

tobt 5 143 2 39 2 >1.78 5 12.25

sX12X2
5 1.78s2

pool 5 23.695
�1 2 �2 ? 0Ha�1 2 �2 5 0H0

D�D

N
D

sD

sX12X2

(d) The results are significant. In the population, chil-
dren exhibit more aggressive acts after watching the
show (with about 3.9), than they do before the
show (with about 2.7).

(e)

(f) ; a relatively large difference.
19. You cannot test the same people first when they’re

males and then again when they’re females.
21. (a) Two-tailed.

(b) , Ha�1 2 �2 ? 0H0: �1 2 �2 5 0

d 5 1.2>11.289 5 1.14
1.2 5 .39 # �D # 2.01112.262 2 1

1.359 2 122.262 2 1 1.2 # �D # 1.359 2
�
�
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(c) With ,
(d) The results are significant: In the population, hot

baths (with about 43) produce different relax-
ation scores than cold baths (with about 39).

(e)

(f)
This is a

moderate to large effect.
(g) Label the axis as bath temperature; label the 

axis as mean relaxation score; plot the data point
for cold baths at a of 39 and for hot baths at a of
43; connect the data points with a straight line.

15. (a) : ; :
(b)
(c) With , , so people exposed to

much sunshine exhibit a significantly higher well-
being score than when exposed to less sunshine.

(d)
(e) The of 15.5, the of 18.13.
(f) ; they are on

average about 64% more accurate.
(g) By accounting for 64% of the variance, these

results are very important.
17. (a) : ; 

(b) , ,

(c) With , tcrit 5 11.833df 5 9
tobt 5 11.2 2 0 2 >.359 5 13.34

sD 5 .359;s2
D 5 1.289D 5 1.2

Ha: �D 7 0�D # 0H0

r2
pb 5 13.51 22> 3 13.51 22 1 7 4 5 .64

XX
.86 # �D # 4.40

tcrit 5 ;2.365df 5 7
tobt 5 12.63 2 0 2 >.75 5 13.51

�D ? 0Ha�D 5 0H0

YY

YX

r2
pb 5 12.25 22> 3 12.25 22 1 28 4 5 .15.

d 5 143 2 39 2 >123.695 5 .82;
112.048 2 1 4 5 .35 # �1 2 �2 # 7.65
11.78 2 122.0480 2 1 4 # �1 2 �2 # 11.78 2

�
�

tcrit 5 ; 2.048.df 5 115 2 1 2 1 115 2 12 5 28

(c) , ; , ,
, ,

With , , so is 
significant.

(d)

(e) Police who’ve taken this course are more success-
ful at solving disputes than police who have not
taken it. The for the police with the course is
around 14.1, and the for police without the
course is around 11.5. The absolute difference
between these s will be between 4.76 and .44.

(f) ; ; taking the course is important.
23. The independent variable is manipulated by the

researcher to create the conditions in which participants
are tested; presumably this will cause a behavior to
change. The dependent variable measures the behavior
of participants that is to be changed.

25. (a) When the dependent variable is measured using
normally distributed, interval, or ratio scores, and
has homogeneity of variance.

(b) z-test, performed in a one-sample experiment
when and under one condition are known;
one sample t-test, performed in a one-sample
experiment when under one condition is known
but must be estimated using ; independent
samples t-test, performed when independent sam-
ples of participants are tested under two condi-
tions; related samples t-test, performed when
participants are tested under two conditions of the
independent variable, with either matching pairs
of participants or with repeated measures of the
same participants. 

27. (a) To predict scores by knowing someone’s score.
(b) We predict the mean of a condition for participants

in that condition.
(c) The independent variable.
(d) When the predicted mean score is close to most par-

ticipants’ actual score. 
29. A confidence interval always uses the two-tailed .tcrit

XY

sXσX

�

σX�

r 2
ph 5 .26d 5 1.13

�

�
�

112.101 2 1 22.6 5 24.76 # �1 2 �2 # 2.44
11.03 2 122.101 2 1 22.6 # �1 2 �2 # 11.03 2

tobttcrit 5 ;2.101df 5 185 22.52
tobt5 111.5 214.12>1.03sX12X2

5 1.03s2
pool 5 5.29

s2
2 5 5.86X2 5 14.1s2

1 5 4.72X1 5 11.5



Chapter 13

1. (a) Analysis of variance.
(b) A study that contains one independent variable.
(c) An independent variable.
(d) A condition of the independent variable.
(e) Another name for a level.
(f) All samples are independent.
(g) All samples are related, either through a repeated-

measures or matched-samples design.
3. Because the hypotheses require more than two levels, or

because it’s easy to obtain additional information.
5. (a) It is the probability of making a Type I error 

after comparing all possible pairs of means in an
experiment.

(b) Multiple t-tests result in an experiment-wise error
rate larger than alpha, but performing ANOVA and
then post hoc tests keeps the experiment-wise error
rate equal to alpha.

7. (a) When is significant and k is greater than 2. The
indicates only that two or more sample means

differ significantly; post hoc tests determine which
levels differ significantly.

(b) When is not significant or when .
9. The effect size, as the proportion of variance in depend-

ent scores accounted for by changing the levels of the
independent variable.

11. The researcher measured participants on more than one
dependent variable in each condition of the independent
variable.

13. (a)
(b) : not all s are equal.
(c) is that a relationship is not represented; is

that one is.
15. (a) The is less than the ; either term is a

poor estimate of and is assumed to be true.
(b) He made a computational error— cannot be a

negative number.
17. (a) This is a pretest–posttest design, comparing the

weights of one group before and after they dieted.
(b) A within-subjects design.

19. (a)

Sum of Mean
Source Squares df Square F

Between 134.800 3 44.933 17.117
Within 42.000 16 2.625
Total 176.800 19

(b) With and 16, , so is signifi-
cant,

(c) For and , , so 

: , ,
, . Only ages 4 and 10, and

ages 6 and 8 do not differ significantly.
X10 5 5.8X8 5 9.40

X6 5 10.8X4 5 4.414.05 2 122.625>5 2 5 2.93

HSD 5qk 5 4.05dfwn 5 16k 5 4
p 6 .05.

FobtFcrit 5 3.24df 5 3

Fobt

H0σ2
crror

MSwnMSbn

HaH0

�Ha

H0: �t 5 �2 5 �3 5 �4

k 5 2Fobt

Fobt

Fobt
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(d) Because , this relationship
accounts for 76% of the variance, so it’s a very
important relationship.

(e) Label the axis as the factor of age and the axis
as the mean creativity score. Plot the mean score for
each condition, and connect adjacent data points
with straight lines.

21. (a) A Type I error: rejecting a true , thus claiming the
factor influences behavior when really it does not.

(b) It produces scientific “facts” that are wrong. 
23. (a) By testing the same participants under all condi-

tions or by testing different  participants who are
matched on a variable.

(b) The related-samples t-test and the within-subjects
ANOVA.

(c) By selecting different and unmatched participants
for each condition.

(d) The independent-samples t-test and the between-
subjects ANOVA.

25. (a) Both measure effect size, indicating the proportion
of variance accounted for.

(b) The improvement in predicting scores when using
our level means.

27. (a) It is manipulated by the researcher to create the
conditions; it is presumably the cause of a behavior.

(b) They are the different conditions created by the
researcher under which participants are tested.

(c) It measures the behavior of participants that is
“caused” by the factor.

29. (a) Levels: statistics grades; dependent variable (DV):
math phobia scores.

(b) Levels: recall vs. recognition.  DV: memory score.
(c) Levels: 1, 3, 5, or 7 weeks.  DV: aggressiveness.
(d) Predictor: First exam grade. Criterion: final exam

grade.
(e) Levels: male vs. female.  DV: number who voted.
(f) Levels: pilot vs. navigator. DV: reaction time.

Chapter 14

1. To examine the interaction between two independent
variables, or for the efficiency of simultaneously study-
ing multiple factors.

3. A main effect mean is based on scores in a level of one
factor while collapsing across the other factor. A cell
mean is the mean of scores from a particular combina-
tion of a level of factor A with a level of factor B.

5. (a) A confounded comparison involves two cells that
differ along more than one factor. It occurs 
with cells that are diagonally positioned in a study’s
diagram.

(b) An unconfounded comparison involves two cells
that differ along only one factor. It occurs with
means within the same column or within the same
row of a diagram.

H0

YX

�2 5 134.8>176.8 5 .76



(c) Because we cannot determine which factor pro-
duced the difference.

7. (a) is that the s represented by the level means
from factor A are all equal; is that not all s are
equal.

(b) is that the s represented by the level means
from factor B are all equal; is that they are not
all equal.

(c) is that the s represented by the cell means do
not form an interaction; is that they do form an
interaction.

9. (a) 4 � 3; (b) 30; (c) 40; (d) 10
11. Study 1: For A, means are 7 and 9; for B, means are 

3 and 13. Apparently there are effects for A and B but
not for .

Study 2: For A, means are 7.5 and 7.5; for B, means
are 7.5 and 7.5. There is no effect for A or B but there is
an effect for .

Study 3: For A, means are 8 and 8; for B, means are
11 and 5. There is no effect for A, but there are effects
for B and  .

13. Perform Tukey’s post hoc comparisons on each main
effect and the interaction, graph each main effect and
interaction and compute its ; where appropriate, com-
pute confidence intervals for the represented by a cell
or level mean.

15. Only the main effect for difficulty level is significant.
17. (a) For low reward ; for medium ; and for

high . It appears that as reward increases,
performance increases.

(b) For low practice ; for medium ; for
high . It appears that increasing practice
increases performance.

(c) Yes: How the scores change with increasing reward
depends on the level of practice, and vice versa.

(d) By comparing the three means within each column
and the three means within each row.

19. (a)

Sum of Mean
Source Squares df Square F

Factor A 7.20 1 7.20 1.19
Factor B 115.20 1 115.20 19.04
Interaction 105.80 1 105.80 17.49
Within groups 96.80 16 6.05
Total 325.00

For each factor, and 16, so : fac-
tor B and the interaction are significant,

(b) For factor A, , ; for factor B,
, ; for the interaction,

,
(c) Because factor A is not significant and factor B 

contains only two levels, such tests are unnecessary.

XA2B2
5 5.4.XA2B1

5 14.8,XA1B2
5 8.8, 9.0

XA1B2 
5X2 5 7.1X1 5 11.9

X2 5 10.1X1 5 8.9
p 6 .05.

Fcrit 5 4.49df 5 1

X 5 15
X 5 8X 5 7

X 5 12
X 5 10X 5 8

�
�2

A 3 B

A 3 B

A 3 B

Ha

�H0

Ha

�H0

�Ha

�H0

For A � B, adjusted , so , HSD �
; the only significant dif-

ferences are between males and females tested by a
male, and between females tested by a male and
females tested by a female.

(d) Conclude that a relationship exists between gender
and test scores when testing is done by a male, and
that male versus female experimenters produce a
relationship when testing females, .

(e) For B, ; for  ,

21.

Sum of Mean
Source Squares df Square F

A: Fantasy 42.467 2 21.233 13.134
B: Meditation .833 1 .833 .515
A � B: Interaction 141.267 2 70.633 43.691
Within 38.800 24 1.617
Total 223.367 29

The main effect of fantasy and the interaction are signifi-
cant. For the main effect of fantasy, ,

; ; only 
low versus high do not differ significantly

. For the interaction, with
meditation the cell means for the low-, medium-, and
high-fantasy levels are 4, 6.4, and 9.4; with no medita-
tion the means are 9.8, 3.2, and 5.8; 

; all unconfounded compar-
isons are significant .)
Conclude that: with meditation each increase in fantasy
increases relaxation; without meditation, low fantasy
produces the highest relaxation, which drops drastically
with medium fantasy and then increases slightly with
high fantasy.

23. That the relationship in the sample data was not a
chance pattern; that it reflects a relationship in the pop-
ulation (in nature).

25. Are there related samples (because of matching or
repeated measures) or are there independent samples?  

27. (a) The researcher selects one group of participants and
measures their scores on and 

(b) Are both normally distributed, interval/ratio vari-
ables?

(c) Pearson .
(d) Spearman .

29. (a) The researcher manipulates two variables, for each
creating at least two or more groups that differ on a
variable or are tested in different situations.

(b) Is it a normally distributed, interval or ratio variable
with homogeneous variance.

(c) The between-subjects, within-subjects or mixed
design ANOVA.

rS

r

Y.X

1�2 5 14.267>223.367 5 .63
4.17111.617>5 2 5 2.37

HSD 5

1�2 5 42.467>223.367 5 19 2

HSD 5 3.53111.617>10 2 5 1.419XA3 5 7.6
XA2 5 4.8,XA1 5 6.9

105.8>325 5 .33.
�2 5A 3 B�2 5 115.2>325 5 .35

p 6 .05

13.65 2 116.05>5 5 4.02
qk 5 3.65k 5 3
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Chapter 15

1. Both types of procedures test whether, due to sampling
error, the data poorly represent the absence of the pre-
dicted relationship in the population.

3. (a) Nominal or ordinal scores.
(b) They form nonnormal distributions, or they do not

have homogeneous variance, so they are trans-
formed to ranks.

(c) Transform them to ranks.
5. (a) When categorizing participants on one variable.

(b) When categorizing participants on two variables.
7. (a) That the sample frequencies are unlikely to repre-

sent the frequencies in the population described 
by .

(b) That category membership on one variable depends
on or is correlated with category membership on
the other variable.

9. (a) It is the correlation coefficient between the two
variables in a significant chi square design.

(b) indicates the improvement in predicting partici-
pants’ category membership on one variable by
knowing their category membership on the other
variable.

(c) is the correlation coefficient between the two
variables in a significant two-way chi square that is
not a design.

(d) indicates the improvement in predicting partici-
pants’ category membership on one variable by
knowing their category membership on the other
variable.

11. (a) The one-way .
(b) : The elderly population is 30% Republican,

55% Democrat, and 15% other; : Affiliations in
the elderly population are not distributed this way.

(c) For Republicans, ; for Demo-
crats, ; and for others,

.

(d)
(e) For , so the results are signifi-

cant: Party membership in the population of senior
citizens is different from party membership in the
general population, and it is distributed as in our
samples, .

13. (a) The frequency with which students dislike each
professor also must be included.

(b) She can perform a separate one-way on the data
for each professor to test for a difference between
the frequency for “like” and “dislike,” or she can
perform a two-way to determine if whether stu-
dents like or dislike one professor is correlated with
whether they like or dislike the other professor.

�2

�2

p 6 .05

df 5 2, �2
crit 5 5.99

�2
obt 5 4.80 1 1.47 1 .60 5 6.87

1.15 2 1100 2 5 15
fe 5fe 5 1.55 2 1100 2 5 55

fe 5 1.30 2 1100 2 5 30

Ha

H0

�2

C2
2 3 2

C

	2
2 3 2

H0
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15. (a) The two-way .
(b) : Gender and political party affiliation are inde-

pendent in the population; : Gender and political
party affiliation are dependent in the population.

(c) For males, Republican ,
Democrat , and other

. For females, Republi-
can , Democrat 

and other 
.

(d)

(e) With , so the results are signifi-
cant: In the population, frequency of political party
affiliation depends on gender, .

(f) , indicating a
somewhat consistent relationship.

17.
19. (a) Yes. Because for the Mann–Whitney test,

and ; therefore, . . The
two groups of ranks differ significantly, as do the
original maturity scores, .

(b) Return to the raw scores: For students who have not
taken statistics, , so you would expect 
to be around 41.67. For statistics students,

, so you would expect their to be
around 69.67.

21. (a) She should use the Kruskal–Wallis H test, because
this is a nonparametric one-way, between-subjects
design.

(b) She should assign ranks to the 15 scores, assigning
a 1 to the lowest score in the study, a 2 to the next
lowest, and so on.

(c) She should perform the post hoc comparisons: For
each possible pair of conditions, she should rerank
the scores and perform the rank sums test.

(d) She will determine which types of patients have
significantly different improvement ratings.

23. (a) The design involved a within-subjects factor with
two conditions.

(b) The raw scores were ordinal scores.
(c) That the ranks in one group were significantly

higher or lower than those in the other group.
25. For the independent variable, the number of conditions

we have, the number of independent variables we have,
and whether independent or related samples were
tested. For the dependent variable, whether it requires a
parametric or nonparametric procedure.

�X 5 69.67

�X 5 41.67

p 6 .05

Ucrit 5 5Uobt 5 4U2 5 4
U1 5 32

�2 12, N 5 40 2 5 13.31, p 6 .05

C 5 114.14> 1155 1 14.14 2 5 .29
p 6 .05

df 5 2, �2
crit 5 5.99

.13 5 14.14
�2

obt 5 3.33 1 3.83 1 .14 1 3.12 1 3.59 1
155 5 16.52

fe 5 180 2 132 2 >180 2 166 2 >155 5 34.06
fe 5fe 5 180 2 157 2 >155 5 29.42

fe 5 175 2 132 2 >155 5 15.48
fe 5 175 2 166 2 >155 5 31.94

fe 5 175 2 157 2 >155 5 27.58

Ha

H0

�2



Appendix A: Additional Statistical
Formulas

Section A.1: Creating Grouped Frequency Distributions

1.

Score f rel. f cf

53 1 .06 18
52 3 .17 17
51 2 .11 14
50 5 .28 12
49 4 .22 7
48 0 .00 3
47 3 .17 3

3.

Score f rel. f cf

128–131 1 .04 28
124–127 2 .07 27
120–123 6 .21 25
116–119 8 .29 19
112–115 4 .14 11
108–111 3 .11 7
104–107 2 .07 4
100–103 2 .07 2

Section A.2: Performing Linear Interpolation

1. The target z-score is between at .2514 of the
curve and at .2483. With .2500 at .
of the distance between .2514 and .2483, the correspon-
ding z-score is .00452 above .67, at .67452.

3. The of 50 is bracketed by with ,
and with . Because 50 is at .5 of
the distance between 40 and 60, the target is .5 of
the .021 between the brackets, which is 2.0105.

tcrit

tcrit 5 2.000df 5 60
tcrit 5 2.021df 5 40df

0014>.0031z 5 .680
z 5 .670

Section A.3: The One-Way, Within-Subjects Analysis
of Variance

1. (a) It tells you that the researcher tracked participants’
weight gain at different times and, at each, meas-
ured their mood.

(b) On some occasions when participants’ weight
increased, their mood significantly decreased.

3. (a) ; : Not all s are equal.
(b) ; ;

and 

Sum of Mean
Source Squares df Square F

Subjects 9.63 7
Factor A 53.08 2 26.54 16.69
A � Subjects 22.25 14 1.59
Total 84.96 23

(c) With and , the is 3.74.
The is significant.

(d) The and HSD 1.65. The means for 0,
1, and 2 hours are 2.13, 4.25, and 5.75, respectively.
Significant differences occurred between 0 and 1
hour and between 0 and 2 hours, but not between 1
and 2 hours.

(e) Eta squared .
(f) The variable of amount of practice is important in

determining performance scores, but although 1 or
2 hours of practice significantly improved perform-
ance compared to no practice, 2 hours was not sig-
nificantly better than 1 hour.

1�2 2 5 53.08>84.96 5 .62

5qk 5 3.70
Fobt

FcritdfA3subs 5 14dfA 5 2

SSsubs 5 1205>3 2 392.04
SSA 5 445.125 2 392.04SStot 5 477 2 392.04

�HaH0: �1 5 �2 5 �3
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GLOSSARYGLOSSARY

Alpha The Greek letter , which symbolizes the criterion,
the size of the region of rejection of a sampling distribu-
tion, and the theoretical probability of making a Type I
error

Alternative hypothesis The statistical hypothesis describ-
ing the population parameters that the sample data repre-
sent if the predicted relationship does exist; symbolized
by 

Analysis of variance The parametric procedure for deter-
mining whether significant differences exist in an experi-
ment containing two or more sample means; abbreviated
ANOVA

ANOVA Abbreviation of analysis of variance
As a function of A way to describe a relationship using

the format “changes in Y as a function of changes in X”
Bar graph A graph in which a free-standing vertical bar

is centered over each score on the X axis; used with
nominal or ordinal scores

Beta The Greek letter , which symbolizes the theoretical
probability of making a Type II error

Between-subjects ANOVA The type of ANOVA that 
is performed when a study involves between-subjects
factors

Between-subjects factor An independent variable that is
studied using independent samples in all conditions

Biased estimator A formula for a sample’s variability
that involves dividing by N that is biased toward under-
estimating the corresponding population variability

Bimodal distribution A symmetrical frequency polygon
with two distinct humps where there are relatively high-
frequency scores and with center scores that have the
same frequency

Bivariate normal distribution An assumption of the
Pearson correlation coefficient that the Y scores at each
X form a normal distribution and the X scores at each Y
form a normal distribution.

Cell In a two-way ANOVA, the combination of one level
of one factor with one level of the other factor

�

Ha

� Central limit theorem A statistical principle that defines
the mean, standard deviation, and shape of a theoretical
sampling distribution

�2-distribution The sampling distribution of all possible
values of that occur when the samples represent 
the distribution of frequencies described by the null
hypothesis

Chi square procedure The nonparametric inferential
procedure for testing whether the frequencies of category
membership in the sample represent the predicted fre-
quencies in the population

Class interval The name for each group of scores in a
grouped frequency distribution

Coefficient of alienation The proportion of variance not
accounted for by a relationship; computed by subtract-
ing the squared correlation coefficient from 1

Coefficient of determination The proportion of variance
accounted for by a relationship; computed by squaring
the correlation coefficient

Cohen’s d A measure of effect size that reflects the 
magnitude of the difference between the means of 
conditions

Collapsing In a two-way ANOVA, averaging together all
scores from all levels of one factor in order to calculate
the main effect means for the other factor

Complete factorial design A two-way ANOVA design in
which all levels of one factor are combined with all
levels of the other factor

Condition An amount or category of the independent
variable that creates the specific situation under which
subjects’ scores on the dependent variable are measured

Confidence interval for a single A range of values of
, one of which is likely to be represented by the sample

mean
Confidence interval for �D A range of values of �D, one

of which is likely to be represented by the sample mean
( ) in a related-samples t-testD

�
�

�2



454 GLOSSARY

Confidence interval for the difference between two s
A range of differences between two population , one
of which is likely to be represented by the difference
between two sample means

Confounded comparison In a two-way ANOVA, a com-
parison of two cells that differ along more than one factor

Contingency coefficient The statistic that describes the
strength of the relationship in a two-way chi square
when there are more than two categories for either vari-
able; symbolized by C

Continuous scale A measurement scale that allows for
fractional amounts of the variable being measured

Correlation coefficient A number that describes the type
and the strength of the relationship present in a set of data

Correlational study A procedure in which participants’
scores on two variables are measured, without manipula-
tion of either variable, to determine whether they form a
relationship

Criterion probability The probability that defines
whether a sample is too unlikely to have occurred 
by chance and thus is unrepresentative of a particular
population

Criterion variable The variable in a relationship whose
unknown scores are predicted through use of the known
scores on the predictor variable

Critical value The value of the sample statistic that
marks the edge of the region of rejection in a sampling
distribution; values that fall beyond it lie in the region
of rejection

Cumulative frequency The frequency of the scores at or
below a particular score; symbolized by cf

Curvilinear relationship See Nonlinear relationship
Data point A dot plotted on a graph to represent a pair of

X and Y scores
Degree of association See Strength of a relationship
Degrees of freedom The number of scores in a sample

that are free to vary, and thus the number that is used 
to calculate an estimate of the population variability;
symbolized by df

Dependent events Events for which the probability of
one is influenced by the occurrence of the other

Dependent variable In an experiment, the variable that 
is measured under each condition of the independent
variable

Descriptive statistics Procedures for organizing and sum-
marizing data so that the important characteristics can be
described and communicated

Design The way in which a study is laid out so as to
demonstrate a relationship

Deviation The distance that separates a score from the
mean and thus indicates how much the score differs from
the mean

Dichotomous variable A discrete variable that has only
two possible amounts or categories

�s
� Discrete scale A measurement scale that allows for meas-

urement only in whole amounts
Distribution An organized set of data
Effect size A measure of the amount of influence that

changing the conditions of the independent variable had
on dependent scores; may be computed as the proportion
of variance accounted for

Error variance The inherent variability within a popula-
tion, estimated in ANOVA by the mean square within
groups

Estimated population standard deviation The unbiased
estimate of the population standard deviation, calculated
from sample data using degrees of freedom ( );
symbolized by 

Estimated population variance The unbiased estimate of
the population variance, calculated from sample data
using degrees of freedom ( ); symbolized by 

Estimated standard error of the mean An estimate of
the standard deviation of the sampling distribution of
means, used in calculating the one-sample t-test; sym-
bolized by 

Eta squared The proportion of variance in the dependent
variable that is accounted for by changing the levels of a
factor, and thus a measurement of effect size; symbol-
ized by 

Expected frequency In chi square, the frequency expected
in a category if the sample data perfectly represent the
distribution of frequencies in the population described by
the null hypothesis; symbolized by 

Experiment A research procedure in which one variable
is actively changed or manipulated, the scores on
another variable are measured, and all other variables
are kept constant, to determine whether a relationship
exists

Experimental hypotheses Two statements made before a
study is begun, describing the predicted relationship that
may or may not be demonstrated by the study

Experiment-wise error rate The probability of making a
Type I error when comparing all means in an experiment

Factor In ANOVA, an independent variable
F-distribution The sampling distribution of all possible

values of F that occur when the null hypothesis is true
and all conditions represent one population 

Fisher’s protected t-test The post hoc procedure per-
formed with ANOVA to compare means from a factor in
which all levels do not have equal ns

F-ratio In ANOVA, the ratio of the mean square between
groups to the mean square within groups

Frequency The number of times each score occurs within
a set of data; also called simple frequency; symbolized
by f

Frequency polygon A graph that shows interval or ratio
scores (X axis) and their frequencies (Y axis), using data
points connected by straight lines

�
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�2

sX

s2
XN 2 1

sX

N 2 1



GLOSSARY 455

G
LO

S
S
A

R
Y

Friedman � test The nonparametric version of the one-
way, repeated-measures ANOVA for ranked scores

Goodness-of-fit test A name for the one-way chi square,
because it tests how “good” the “fit” is between the data
and 

Grouped distribution A distribution formed by combin-
ing different scores to make small groups whose total
frequencies, relative frequencies, or cumulative frequen-
cies can then be manageably reported

Heteroscedasticity An unequal spread of Y scores around
the regression line (that is, around the values of )

Histogram A graph similar to a bar graph but with adja-
cent bars touching, used to plot the frequency distribution
of a small range of interval or ratio scores

Homogeneity of variance A characteristic of data
describing populations represented by samples in a study
that have the same variance

Homoscedasticity An equal spread of Y scores around the
regression line and around the values of 

Incomplete factorial design A two-way ANOVA design
in which not all levels of the two factors are combined

Independent events Events for which the probability of
one is not influenced by the occurrence of the other

Independent samples Samples created by selecting each
participant for one sample, without regard to the partici-
pants selected for any other sample

Independent-samples t-test The t-test used with data
from two independent samples

Independent variable In an experiment, a variable that is
changed or manipulated by the experimenter; a variable
hypothesized to cause a change in the dependent variable

Individual differences Variations in individuals’ traits,
backgrounds, genetic makeup, etc., that influence their
behavior in a given situation and thus the strength of a
relationship

Inferential statistics Procedures for determining whether
sample data represent a particular relationship in the
population

Interval estimation A way to estimate a population 
parameter by describing an interval within which the
population parameter is expected to fall

Interval scale A measurement scale in which each score
indicates an actual amount and there is an equal unit of
measurement between consecutive scores, but in which
zero is simply another point on the scale (not zero
amount)

Interval size The number of values spanned by each class
interval in a grouped frequency distribution

Kruskal–Wallis H test The nonparametric version of the
one-way, between-subjects ANOVA for ranked scores

Level In ANOVA, each condition of the factor (independ-
ent variable); also called treatment

Linear regression The procedure for describing the 
best-fitting straight line that summarizes a linear 
relationship

Y ¿

Y ¿

H0

2 Linear regression equation The equation that defines the
straight line summarizing a linear relationship by
describing the value of at each X

Linear regression line The straight line that summarizes
the scatterplot of a linear relationship by, on average,
passing through the center of all Y scores

Linear relationship A correlation between the X scores
and Y scores in a set of data in which the Y scores tend to
change in only one direction as the X scores increase,
forming a slanted straight regression line on a scatterplot

Line graph A graph of an experiment when the independ-
ent variable is an interval or ratio variable; plotted by
connecting the data points with straight lines

Main effect In a two-way ANOVA, the effect on the
dependent scores of changing the levels of one factor
while ignoring (collapsing over) the other factor

Main effect mean The overall mean of one level of a 
factor while ignoring (collapsing over) the influence of
the other factor

Mann–Whitney U test The nonparametric version of the
independent-samples t-test for ranked scores when n is
less than or equal to 20

Margin of error Expressing the expected error when 
estimating a population parameter as plus or minus some
amount

Matched-samples design An experiment in which each
participant in one sample is matched on an extraneous
variable with a participant in the other sample

Mean The score located at the mathematical center of a
distribution

Mean square In ANOVA, an estimated population vari-
ance, symbolized by MS

Mean square between groups In ANOVA, the variability
in scores that occurs between the levels in a factor or the
cells in an interaction

Mean square within groups In ANOVA, the variability
in scores that occurs in the conditions, or cells; also
known as the error term

Measure of central tendency A score that summarizes
the location of a distribution on a variable by indicating
where the center of the distribution tends to be located

Measures of variability Measures that summarize the
extent to which scores in a distribution differ from one
another

Median The score located at the 50th percentile; symbol-
ized by Mdn

Mode The most frequently occurring score in a sample
Multiple correlation coefficient The correlation that

describes the relationship between multiple predictor (X)
variables and one criterion (Y) variable

Multiple regression equation The procedure for simulta-
neously using multiple predictor (X) variables to predict
scores on one criterion (Y) variable

Multivariate statistics Procedures applied to a study that
measures two or more dependent variables

Y ¿



Negative linear relationship A linear relationship in
which the Y scores tend to decrease as the X scores
increase

Negatively skewed distribution A frequency polygon
with low-frequency, extreme low scores but without cor-
responding low-frequency, extreme high ones, so that its
only pronounced tail is in the direction of the lower
scores

Nemenyi’s procedure The post hoc procedure performed
with the Friedman test

Nominal scale A measurement scale in which each score
is used simply for identification and does not indicate an
amount

Nonlinear relationship A relationship in which the Y scores
change their direction of change as the X scores change;
also called a curvilinear relationship

Nonparametric statistics Inferential procedures that do
not require stringent assumptions about the parameters
of the raw score population represented by the sample
data; usually used with scores most appropriately
described by the median or the mode

Nonsignificant Describes results that are considered
likely to result from chance sampling error when the pre-
dicted relationship does not exist; it indicates failure to
reject the null hypothesis

Normal curve The symmetric, bell-shaped curve produced
by graphing a normal distribution

Normal distribution A set of scores in which the middle
score has the highest frequency, and proceeding toward
higher or lower scores the frequencies at first decrease
slightly but then decrease drastically, with the highest
and lowest scores having very low frequency

Null hypothesis The statistical hypothesis describing the
population parameters that the sample data represent 
if the predicted relationship does not exist; symbolized
by 

Observed frequency In chi square, the frequency with
which participants fall into a category of a variable; 
symbolized by 

One-sample t-test The parametric procedure for a one-
sample experiment when the standard deviation of the
raw score population must be estimated

One-tailed test The test used to evaluate a statistical
hypothesis that predicts that scores will only increase or
only decrease

One-way ANOVA The analysis of variance performed
when an experiment has only one independent variable

One-way chi square The chi square procedure for testing
whether the sample frequencies of category membership
on one variable represent the predicted distribution of
frequencies in the population

Ordinal scale A measurement scale in which scores indi-
cate rank order

Outlier A data point that lies outside of the general pat-
tern in a scatterplot; created by an unusual X or Y score

f0

H0

�2

Parameter See Population parameter
Parametric statistics Inferential procedures that require

certain assumptions about the parameters of the raw
score population represented by the sample data; usually
used with scores most appropriately described by the
mean

Participants The individuals who are measured in a 
sample; also called subjects

Pearson correlation coefficient The correlation coeffi-
cient that describes the linear relationship between two
interval or ratio variables; symbolized by r

Percent A proportion multiplied times 100
Percentile The percentage of all scores in the sample that

are at or below a particular score
Phi coefficient The statistic that describes the strength 

of the relationship in a two-way chi square when there
are only two categories for each variable; symbolized 
by 

Point-biserial correlation coefficient The correlation
coefficient that describes the linear relationship between
scores from one continuous interval or ratio variable and
one dichotomous variable; symbolized by 

Point estimation A way to estimate a population parame-
ter by describing a point on the variable at which the
population parameter is expected to fall

Pooled variance The weighted average of the sample vari-
ances in a two-sample experiment; symbolized by 

Population The infinitely large group of all possible
scores that would be obtained if the behavior of every
individual of interest in a particular situation could be
measured

Population parameter A number that describes a charac-
teristic of a population of scores, symbolized by a letter
from the Greek alphabet; also called a parameter

Population standard deviation The square root of the
population variance, or the square root of the average
squared deviation of scores around the population mean;
symbolized by �X

Population variance The average squared deviation of
scores around the population mean; symbolized by �

Positive linear relationship A linear relationship in
which the Y scores tend to increase as the X scores
increase

Positively skewed distribution A frequency polygon
with low-frequency, extreme high scores but without
corresponding low-frequency, extreme low ones, so that
its only pronounced tail is in the direction of the higher
scores

Post hoc comparisons In ANOVA, statistical procedures
used to compare all possible pairs of sample means in 
a significant effect, to determine which means differ 
significantly from each other

Power The probability that a statistical test will detect a
true relationship and allow the rejection of a false null
hypothesis

2
X
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Predicted Y score In linear regression, the best prediction
of the Y scores at a particular X, based on the linear rela-
tionship summarized by the regression line; symbolized
by 

Predictor variable The variable from which known
scores in a relationship are used to predict unknown
scores on another variable

Probability A mathematical statement indicating the 
likelihood that an event will occur when a particular
population is randomly sampled; symbolized by p

Probability distribution The probability of every event
in a population, derived from the relative frequency of
every event in that population

Proportion A decimal number between 0 and 1 that
indicates a fraction of a total

Proportion of the area under the curve The proportion
of the total area beneath the normal curve at certain
scores, which represents the relative frequency of those
scores

Proportion of variance accounted for The proportion of
the error in predicting scores that is eliminated when,
instead of using the mean of Y, we use the relationship
with the X variable to predict Y scores; the proportional
improvement in predicting Y scores thus achieved

Qualitative variable A variable that reflects a quality or
category

Quantitative variable A variable that reflects a quantity
or amount

Random sampling A method of selecting samples so that
all members of the population have the same chance of
being selected for a sample

Range The distance between the highest and lowest
scores in a set of data

Rank sums test The nonparametric version of the
independent-samples t-test for ranked scores when n is
greater than 20; also, the post hoc procedure performed
with the Kruskal–Wallis H test

Ratio scale A measurement scale in which each score
indicates an actual amount, there is an equal unit of
measurement, and there is a true zero

Rectangular distribution A symmetric frequency 
polygon shaped like a rectangle; it has no discernible
tails because its extreme scores do not have relatively
low frequencies

Region of rejection That portion of a sampling distribu-
tion containing values considered too unlikely to occur
by chance, found in the tail or tails of the distribution

Regression line The line drawn through the long dimension
of a scatterplot that best fits the center of the scatterplot,
thereby visually summarizing the scatterplot and indicat-
ing the type of relationship that is present

Related samples Samples created by matching each par-
ticipant in one sample with a participant in the other
sample or by repeatedly measuring the same participant
under all conditions; also called dependent samples

Y ¿

Related-samples t-test The t-test used with data from two
related (dependent) samples

Relationship A correlation between two variables
whereby a change in one variable is accompanied by a
consistent change in the other

Relative frequency The proportion of time a score occurs
in a distribution, equal to the proportion of the total
number of scores that is made up by the score’s simple
frequency; symbolized by rel. f

Relative frequency distribution A distribution of scores,
organized to show the proportion of time each score
occurs in a set of data

Relative standing A description of a particular score
derived from a systematic evaluation of the score using
the characteristics of the sample or population in which
it occurs

Repeated-measures design A related-samples design in
which the same participants are measured repeatedly
under all conditions of an independent variable

Representative sample A sample whose characteristics
accurately reflect those of the population

Restriction of range In correlation, improper limitation
of the range of scores obtained on one or both variables,
leading to an underestimate of the strength of the rela-
tionship between the two variables

Sample A relatively small subset of a population, intended
to represent the population; a subset of the complete
group of scores found in any particular situation

Sample standard deviation The square root of the sam-
ple variance or the square root of the average squared
deviation of sample scores around the sample mean;
symbolized by 

Sample statistic A number that describes a characteristic
of a sample of scores, symbolized by a letter from the
English alphabet; also called a statistic

Sample variance The average squared deviation of a 
sample of scores around the sample mean; symbolized 
by 

Sampling distribution of differences between the means
A frequency distribution showing all possible differences
between two means that occur when two independent
samples of a particular size are drawn from the popula-
tion of scores described by the null hypothesis

Sampling distribution of mean differences A frequency
distribution showing all possible mean differences that
occur when the difference scores from two related sam-
ples of a particular size are drawn from the population of
difference scores described by the null hypothesis

Sampling distribution of means A frequency distribu-
tion showing all possible sample means that occur when
samples of a particular size are drawn from the raw score
population described by the null hypothesis

Sampling distribution of r A frequency distribution
showing all possible values of r that occur when samples
are drawn from a population in which is zero	

S2
X
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Sampling distribution of A frequency distribution
showing all possible values of that occur when samples
are drawn from a population in which is zero

Sampling error The difference, due to random chance,
between a sample statistic and the population parameter
it represents

Sampling with replacement A sampling procedure in
which previously selected individuals or events are
returned to the population before any additional samples
are selected

Sampling without replacement A sampling procedure in
which previously selected individuals or events are not
returned to the population before additional samples are
selected

Scatterplot A graph of the individual data points from a
set of X–Y pairs

Significant Describes results that are too unlikely to
accept as resulting from chance sampling error when 
the predicted relationship does not exist; it indicates
rejection of the null hypothesis

Simple frequency The number of times that a score
occurs in data

Simple frequency distribution A distribution of scores,
organized to show the number of times each score occurs
in a set of data

Skewed distribution A frequency polygon similar in shape
to a normal distribution except that it is not symmetrical
and it has only one pronounced tail

Slope A number that indicates how much a linear regres-
sion line slants and in which direction it slants; used in
computing predicted Y scores; symbolized by b

Spearman rank-order correlation coefficient The cor-
relation coefficient that describes the linear relationship
between pairs of ranked scores; symbolized by 

Squared sum of X A result calculated by adding all scores
and then squaring their sum; symbolized by ( )

Standard error of the difference The estimated standard
deviation of the sampling distribution of differences
between the means of independent samples in a two-
sample experiment; symbolized by 

Standard error of the estimate A standard deviation
indicating the amount that the actual Y scores in a
sample differ from, or are spread out around, their
corresponding scores; symbolized by 

Standard error of the mean The standard deviation of
the sampling distribution of means; used in the z-test
(symbolized by ) and estimated in the one-sample 
t-test (symbolized by )

Standard error of the mean difference The standard
deviation of the sampling distribution of mean differ-
ences between related samples in a two-sample experi-
ment; symbolized by 

Standard normal curve A theoretical perfect normal
curve, which serves as a model of the perfect normal 
z-distribution

sD
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rS Standard scores See z-score
Statistic See Sample statistic
Statistical hypotheses Two statements ( and ) that

describe the population parameters the sample statistics
will represent if the predicted relationship exists or does
not exist

Statistical notation The standardized code for the mathe-
matical operations performed in formulas and for the
answers obtained

Strength of a relationship The extent to which one value
of Y within a relationship is consistently associated with
one and only one value of X; also called the degree of
association

Sum of squares The sum of the squared deviations of a
set of scores around the mean of those scores

Sum of the deviations around the mean The sum of all
differences between the scores and the mean; symbol-
ized as 

Sum of the squared Xs A result calculated by squaring
each score in a sample and adding the squared scores;
symbolized by 

Sum of X The sum of the scores in a sample; symbolized
by 

Tail (of a distribution) The far-left or far-right portion 
of a frequency polygon, containing the relatively 
low-frequency, extreme scores

t-distribution The sampling distribution of all possible
values of t that occur when samples of a particular size
represent the raw score population(s) described by the
null hypothesis

Test of independence A name for the two-way chi
square, because it tests whether the frequencies in the
categories of one variable are independent of the cate-
gories of the other variable

Total area under the curve The area beneath the
normal curve, which represents the total frequency of
all scores

Transformation A systematic mathematical procedure
for converting a set of scores into a different but equiva-
lent set of scores

Treatments The conditions of the independent variable;
also called levels

Treatment effect The result of changing the conditions of
an independent variable so that different populations of
scores having different are produced

Treatment variance In ANOVA, the variability between
scores from different populations that would be created
by the different levels of a factor

t-test for independent samples The parametric procedure
used for significance testing of sample means from two
independent samples

t-test for related samples The parametric procedure used
for significance testing of sample means from two
related (dependent) samples

�s
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Tukey’s HSD multiple comparisons test The post hoc
procedure performed with ANOVA to compare means
from a factor in which all levels have equal n

Two-tailed test The test used to evaluate a statistical
hypothesis that predicts a relationship, but not whether
scores will increase or decrease

Two-way ANOVA The parametric inferential procedure
performed when an experiment contains two independ-
ent variables

Two-way, between-subjects ANOVA The parametric
inferential procedure performed when both factors are
between-subjects factors

Two-way chi square The chi square procedure for testing
whether, in the population, frequency of category
membership on one variable is independent of frequency
of category membership on the other variable

Two-way interaction effect The effect produced by
manipulating two independent variables such that the
influence of changing the levels of one factor depends on
which level of the other factor is present

Two-way, mixed-design ANOVA The parametric inferen-
tial procedure performed when the design involves one
within-subjects factor and one between-subjects factor

Two-way, within-subjects ANOVA The parametric
inferential procedure performed when both factors are
within-subjects factors

Type I error A statistical decision-making error in which
a large amount of sampling error causes rejection of the
null hypothesis when the null hypothesis is true (that is,
when the predicted relationship does not exist)

Type II error A statistical decision-making error in
which the closeness of the sample statistic to the popula-
tion parameter described by the null hypothesis causes
the null hypothesis to be retained when it is false (that is,
when the predicted relationship does exist)

Type of relationship The form of the correlation between
the X scores and the Y scores in a set of data, determined
by the overall direction in which the Y scores change as
the X scores change

Unbiased estimator A formula for a sample’s variability
that involves dividing by that equally often 
under- and over-estimates the corresponding population
variability (See Biased estimator)

N 2 1

Unconfounded comparison In a two-way ANOVA, a
comparison between two cells that differ along only one
factor

Ungrouped distribution A distribution that shows infor-
mation about each score individually (See Grouped
distribution)

Unimodal distribution A distribution whose frequency
polygon has only one hump and thus has only one score
qualifying as the mode

Univariate statistics Procedures applied to a study that
measures only one dependent variable

Variable Anything that, when measured, can produce two
or more different scores

Variance A measure of the variability of the scores in 
a set of data, computed as the average of the squared
deviations of the scores around the mean

Variance of Y scores around In regression, the
average squared deviation between the actual Y scores
and corresponding predicted scores, symbolized 
by 

Wilcoxon T test The nonparametric version of the
related-samples t-test for ranked scores

Within-subjects ANOVA The type of ANOVA performed
when a study involves within-subjects factors

Within-subjects factor The type of factor created when
an independent variable is studied using related samples
in all conditions because participants are either matched
or repeatedly measured

Y intercept The value of Y at the point where the linear
regression line intercepts the Y axis; used in computing
predicted Y scores; symbolized by a

z-distribution The distribution of z-scores produced by
transforming all raw scores in a distribution into z-scores

z-score The statistic that describes the location of a raw
score in terms of its distance from the mean when meas-
ured in standard deviation units; symbolized by z; also
known as a standard score because it allows comparison
of scores on different kinds of variables by equating, or
standardizing, the distributions

z-test The parametric procedure used to test the null
hypothesis for a single-sample experiment when the true
standard deviation of the raw score population is known
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a, 164. See also Y intercept
Absolute value, 109
Accounting for variance, 103
Accuracy, correlation coefficients and, 

144
Alpha 

error and, 225–226
one-sample t-test and, 235, 240
published research and, 224, 246–247
SPSS and, 255
two-tailed test and, 216

Alternative hypothesis 
hypothesis testing and, 211–213
one-way chi square and, 356
power and, 228–229
Type I error: rejecting when is true,

224–227
Type I/Type II error comparison and,

228–229
Type II error: retaining when is

false, 227–228
American Psychological Association 

(APA)
publication rules, 53
and use of mean, 79

Analysis of variance. See One-way 
ANOVA

ANOVA. See One-way ANOVA; Two-way
ANOVA

Apparent limits, 380
Area under the curve, 91
“Around”, quantification of, 88–89
As a function of

definition of, 19
and drawing conclusions from

experiments, 24
Assumptions, 208
Average of deviations, 88

B
b. See Slope
Bar graph

chi square procedures and, 362
of experiments, 76–77

H0H0

H0H0
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frequency distribution graphing and,
38–41

relative frequency and, 49
Beta 227
Between-subjects ANOVA, 312, 350
Between-subjects factor, 291–292
Biased estimators, 96–97
Bimodal distribution, 44–46, 62–63

C
Causality/causal relationship, 26–27
Cell, 320–321, 324–325
Cell means, 324, 338
Central limit theorem, 125–126
Central tendency

definition/importance of, 60–61
summation and, 60–61

Chi square procedures 
and choosing nonparametric procedure,

364–365
critical values of, 431
definition of, 352
distribution, 355
formula for, 354–355, 378
Kruskal-Wallis H test and, 369–370
and logic of nonparametric procedures 

for ranked data, 363–364
Mann-Whitney U test and, 365–366
one-way chi square, 352–357
published research and, 362–363
rank sums test and, 366–367
tied rank resolution and, 364
two-way chi square, 357–362
Wilcoxon T test and, 368–369

Class interval, 379
Coefficient of alienation, 177
Coefficient of determination, 177
Coefficients. See Correlation coefficients
Cohen’s d, 280–282, 289
Collapsing, 321
Complete factorial design, 320–321
Computational formulas

definition of, 85
for estimated population standard

deviation, 99, 108
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1� 2 ,

for estimated population variance, 98
for Pearson correlation coefficient,

148–149, 159
for proportion of variance accounted for,

176–177
for proportion of variance not accounted

for, 176–177
for sample standard deviation, 94, 108
for sample variance, 93, 108
for Spearman rank-order correlation

coefficient, 152–153, 159
of standard error of the estimate, 170–171

Computers in statistics, 3. See also SPSS
Condition, independent variables and, 

23–24
Confidence, 187
Confidence interval

for difference between two 289
for 317
for 277
for single 234, 243–245, 268–269, 

289, 310
Confounded comparison, 339–340
Constant (K)

mathematical constants, 95
standard deviation and, 95
transformations and, 69

Contingency coefficient (C), 361–362, 378
Continuous scales, 28–29, 40
Correlation coefficients. See also Pearson

correlation coefficient
characteristics of, 138
concepts of, 136–137
drawing conclusions from, 137–138
importance of, 136
and interpretation of Pearson 

(correlation coefficients), 250–251
multiple, 179
and one-tailed tests of Pearson 

(correlation coefficients), 251
Pearson correlation coefficient, 147–150
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153–154
scatterplots and, 138–139
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Spearman rank-order, 151–153
and statistics in published research,

154–155
and sum of the cross products, 135–136
and testing the Pearson (correlation

coefficients), 247–250
zero association and, 146

Correlational studies
mean/central tendencies and, 73
relationships and, 25–27

Criterion probability, 198
Criterion variable, 162–163
Critical value of z 

comparing to obtained 217–218
nonsignificant results and, 219
region of rejection and, 215–216
significant results and, 218

Critical values, 198–201, 436–437
of chi square ( tables), 431
comparing to, 217–218
F-tables, 426–428
interpolating, 383–384
of Mann-Whitney U test, 432–435
and performing z-test, 216
r-tables, 424

-tables, 425
t-tables, 423

Cumulative frequency (cf)
computing, 51–52
formula for, 59
grouped frequency distribution and,

54–55
Curvilinear relationships, 141–142

D
Data, definition of, 1–2
Data point

definition of, 8–9
and line graphs of experiments, 75–76
and reading graphs, 19–20

Definitional formula, 85, 89
Degrees of freedom (df)

ANOVA and, 295
computing 302–303
and confidence interval for 277
definition of, 97–98, 97–98
between groups for factor A, 388
one-sample t-test and, 238–240, 242
one-way chi square and, 356
relationships and, 361–362
two-way ANOVA and, 349
two-way chi square and, 360

Dependent events, 189
Dependent variables

definition of, 23–24
experiments and, 73–74
inferential statistics and, 209
multivariate statistics and, 312
and performing z-test, 215
two-sample t-test and, 272
two-way ANOVA and, 321

Descriptive statistics, 20–21
Design of study. See also Two-way 

ANOVA
correlational studies, 25–27
experiments, 22–25
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Deviation, around the mean, 69–72
df. See Degrees of freedom (df)
Dichotomous variable, 29
Differences between conditions 

311, 317
Differences (total) between all scores in

experiment 311, 317
Direction from the mean, 69–70
Discrete scales, 28–30, 76–77
Distance as difference between scores, 61
Distance from the mean, 69–70
Distributions, 36. See also Frequency

distributions

E
Effect size, 280–283
Ellipse, 140
Empirical, 1
Error

estimated standard error of the mean, 
236

and experiment summarization, 73–74
population representation and, 194–196
power and, 228–229
in predicted Y score, 168–169
and predicting scores with mean, 71–72
random sampling and, 193–194
standard error of the estimate, 170–171
standard error of the estimate and,

173–174
standard error of the mean, 126–127
Type I error: rejecting when is true,

224–227
Type I/Type II error comparison, 228–229
Type II error: retaining when is

false, 227–228
variability and, 102

Error variance 298, 385
Estimated population standard 

deviation, 97, 99
Estimated population variance, 97–99, 236
Estimated population variance of the

difference scores, 274
Estimated standard error of the mean, 236
Estimation

and computing confidence interval for
single 243–245

interval/point, 243
and predicting scores with mean, 71–72

Eta squared, 311, 317
Experiment-wise error rate, 293
Experimental hypotheses, 209–210
Experiments. See also Research

dependent variables and summarization
of, 73–74

drawing conclusions from, 24–25
graphing, 75–77
relationships and, 22–25
steps of statistical analysis of, 78–79

F
F. See also One-way ANOVA; Two-way

ANOVA
ANOVA and, 293–294, 349
interpreting within-subject, 390

�,

1�2   
error 2 ,

H0H0

H0H0

1SStot 2 ,

1SSbn 2 ,

F-distribution, 304–305
F-ratio

and comparing mean squares, 296–298
one-way, within-subject analysis of

variance and, 385–386
theoretical components of, 298–299

F-tables, 426–428
Factor. See Independent variables
Fisher’s protected t-test, 307

computing, 300–304
Formulas. See also Computational formulas

basic concepts of, 5–6
for chi square, 354–355, 378
for Cohen’s d, 280–282, 289
computing 302–303
for confidence interval for difference

between two 289
for confidence interval for 317
for confidence interval for single 

244–245, 259, 289, 310
for contingency coefficient (C), 362, 

378
and critical values of Pearson r, 259
and critical values of Spearman 259
for degrees of freedom between groups

for factor A, 388
for deviation, 69
for estimated standard error of the mean,

236
for eta squared, 317, 350
for expected frequency in cell of two-way

chi square 359–360
for 350
for grouped frequency distribution,

379–381
for HSD, 317
for independent-samples t-test, 289
for independent-samples 266
for linear regression equation, 163–164,

184
for mean, 66
for median estimation, 83
for one-sample t-test, 236–237, 259
for one-way, within-subject analysis of

variance, 386–390
Pearson, 159
for percentile for score with known cf, 59
for phi coefficient 362, 378
for pooled variance, 265
for population mean, 73
for proportion of variance accounted 

for, 184
for proportion of variance accounted for

283
for proportion of variance not accounted

for, 184
for protected t-test, 317
for range, 87, 108
for related-samples t-test, 275, 289
for relative frequency (rel.f), 59
for estimated population variance of the

difference scores, 274
for sample mean, 66, 83
for sample variance, 89
for slope of linear regression line,

164–166, 184
Spearman rank-order, 152–153, 159
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for standard error of estimate, 184
for standard error of the difference

265
for standard error of the mean

difference, 275
sum of squares between groups 

301
sum of squares within groups 302
summary of two-way ANOVA, 349
for transformation, 206
for transforming raw score in a population

into z-score, 113, 134
for transforming raw score in a sample

into z-score, 112, 134
for transforming sample mean into 

z-score, 127–128, 134, 206
for transforming z-score in population

into raw score, 114, 134
for transforming z-score in sample into

raw score, 113–114, 134
for true standard error of the mean,

126–127, 134
for Tukey’s HSD multiple comparisons

test, 308
Tukey’s HSD post hoc comparisons test

and, 350
for two-way ANOVA degrees of freedom,

350
for two-way ANOVA mean square, 350
two-way between subjects ANOVA, 350
for variance of Y scores around 184
for Y intercept of linear regression line,

184
z-test, 216–217, 233

Frequency distributions
APA publication rules and, 53–54
bimodal distribution and, 44–46
cumulative frequency and, 51–52
formulas for creation of, 379–381
grouped/ungrouped, 54–55
importance of, 37
labeling of, 45–46
and measure of central tendency, 62
normal distribution and, 42–43
percentile and, 51–53
rectangular distribution and, 45
relative frequency and, 47–51
simple, 37–42
skewed distribution and, 43–44, 46

Frequency (f ), 36–37, 54–55
Friedman test, 371–372
Function (as a function of)

definition of, 19
and drawing conclusions from

experiments, 24

G
Gambler’s fallacy, 187
Goodness-of-fit test, 353
Graphs

bar graphs, 38–41, 49, 76–77, 362
creation of, 7–9
of experiments, 75–77
of grouped distributions, 380–381
histogram and, 38, 40–41
one-way ANOVA and, 311
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polygon and, 38, 40–41
relationships and, 18–20
relative frequency and, 48–49
of simple frequency distributions, 38–42
two-sample t-test, 279–280

Greater than 207
Greater than or equal to 207
Grouped distributions, 54–55, 379–381

H
(null hypothesis), 212–213, 235,

237–238, 240–242, 250–251
(alternative hypothesis), 211–213,

241–242
Heteroscedasticity, 172–173
Histogram

frequency distribution graphing and, 38,
40–41

relative frequency and, 49
Homogeneity of variance, 262, 321
Homoscedasticity, 171–172
HSD (honestly significant differences). 

See also Tukey’s HSD multiple
comparisons test

formulas for, 317
Tukey’s HSD multiple comparisons test,

307–308
two-way ANOVA and, 337–340

Hypothesis testing. See also Statistical
hypotheses

alternative hypothesis and, 211–212
experimental hypotheses, 209–210

and, 218. See also Null 
hypothesis 

and importance of z-test, 208
nonsignificant results and, 219–220
null hypothesis and, 212–213. See also

Null hypothesis 
one-sample experiment design and,

210–211
one-tailed testing and, 221–223
and performing z-test, 215–218
published research and, 224
related-samples t-test and, 272–273
significant results and, 218–219
statistical hypotheses creation and,

211–213
statistical hypotheses logic and, 

213–214

I
Incomplete factorial design, 320
Independent events, 188–189, 262
Independent samples, 262, 321
Independent-samples t-test

and computing standard error of the
difference, 265–266

computing 265, 289
and confidence interval for difference

between two 268–269
and estimating population variance,

264–265
formulas for, 265, 289
interpreting, 267–268
one-tailed testing and, 269–270

�s,

tobt,

1H0 2

1H0 2
H0

Ha

H0

1$ 2 ,
17 2 ,

requirements for, 262
sampling distribution for, 263–264
statistical hypotheses for, 262–263
when to perform, 284

Independent variables
definition of, 22–24
effect size and, 280

Individual differences, 17
Inferential statistics

and decisions regarding representative
samples, 202–203

definition of, 21, 186
mode/mean/median comparisons and,

67–69
nonparametric statistics as, 351
research role of, 208–209, 229–230
setting up procedures for, 209–213
two-way ANOVA as, 318
z-test and, 208

Inflection points, 91
Interaction effect

definition of, 339
post hoc comparisons on, 339–340
two-way ANOVA and, 319, 324–326

Interval estimation, 243
Interval scale, 28–29

simple frequency histograms and, 40–41
Interval size, 379
Inverted U-shaped relationship, 141

K
k (number of levels in a factor), 290
Known true population variability, 96
Kruskal-Wallis H test, 369–372

L
Labeling, of frequency distributions, 

45–46
Less than 207
Less than or equal to 207
Level, definition of, 23, 290
Line graphs, 75–76
Linear interpolation, 381–384
Linear regression

importance of, 161
linear regression line and, 161–163
predicted Y score, 160
statistics in published research of, 179

Linear regression equation 163–164,
167, 184

Linear regression line, 161–163
formula for Y intercept of, 166–167

Linear relationships, 139–141
Locations and scores, 61

M
Main effect mean, 321
Main effect of factor A, 321–323
Main effect of factor B, 323
Mann-Whitney U test, 365–366, 432–435
Margin of error, 243
Matched-samples design, 271–272
Mathematical constants, 95. See also

Constant (K)

1Y¿ 2 ,

1# 2 ,
16,



Mathematical operations. See also Formulas
identification of, 5
order of, 5–6

Mean
compared with median/mode, 67–69
definition/computation of, 65–66
deviation around the, 69–72
estimated standard error of the mean, 

236
and measures of variability, 85
population, 72–73
population mean 72–73
for predicted Y scores, 160
predicting scores with, 71–72
sample mean and, 79
standard error of the, 126–127
uses of, 66–67
z-scores and, 112

Mean difference, 273–279
Mean square between groups 

computing, 303
one-way ANOVA and, 295–296, 

299–300
Mean square within groups, 349, 385–386,

388
Mean square within groups 

computing, 303
one-way ANOVA and, 295, 299–300

Measure of central tendency, 61–62
Measurement scales, 27–30
Measures of variability

84–85
85

definition/importance of, 85–86
descriptive/inferential measures of

variability, 101
estimated population standard deviation,

97, 99
estimated population variance, 97–99
mathematical constants and, 95
population variance/standard deviation,

95–99
published research and, 103–104
range, 87
sample standard deviation, 89–92, 94
sample variance, 88–89, 94
standard deviation, 87–90
and strength of relationship of variability,

101–102
variability and errors in prediction, 

102
variance/standard deviation application to

research, 100–103
Median

compared with mode/mean, 67–69
definition of, 63–64
uses of, 65

Mode
compared with median/mean, 67–69
definition of, 62
uses of, 63

mu See Population mean 
Multiple correlation coefficient, 179
Multiple regression equation, 179
Multivariate analysis of variance

(MANOVA), 312
Multivariate statistics, 312

1� 21� 2 .

©X2,
1©X 22,

1MSwn 2

1MSbn 2

1� 2 ,

464 Index

N
n (total number of scores in condition), 

260, 337
N (total number of scores in study), 37–38,

260
Negative linear relationship, 141
Negatively skewed distribution, 44, 46, 68
Nemenyi’s procedure, 365, 372
Nominal scale

and bar graphs of experiments, 76–77
characteristics of, 27, 29
simple frequency bar graphs and, 39–41

Nonlinear relationships, 141–142
Nonnormal distribution, 43–46
Nonparametric procedures

and choosing nonparametric procedure,
364–365

Friedman test and, 371–372
Kruskal-Wallis H test and, 369–370
and logic of nonparametric procedures for

ranked data, 363–364
Mann-Whitney U test and, 365–366
rank sums test and, 366–367
tied rank resolution and, 364
Wilcoxon T test and, 368–369

Nonparametric statistics. See also Chi
square procedures 

definition of, 209, 351
importance of, 351–352

Nonsignificant results, hypothesis testing
and, 219–220

Nonsymmetrical. See Skewed distribution
Normal curve/distribution. See also z-scores

and area under the curve, 91–92
and computing percentiles, 52–53
and measure of central tendency, 86
median location in, 64
relative frequency and, 49–51
simple frequency distributions and,

42–43, 46
standard deviation rule and, 94

Not equal to 207
Null hypothesis 

ANOVA and, 293
F-ratio and, 298–299
hypothesis testing and, 212–213
and interaction effects, 326
and main effect of factor A, 322–323
nonsignificant results and, 220
one-way chi square and, 353–354, 356
power and, 228–229
Type I error: rejecting when is true,

224–227
Type I/Type II error comparison and,

228–229
Type II error: retaining when is

false, 227–228
Number of levels in a factor (k), 290

O
Observed frequency, 353, 355–356, 

358–360
One-sample t-test

and computing confidence interval for
single 243–245

definition of, 234
�,

H0H0

H0H0

1H0 2
1?2 ,

1x2 2

�2

formula for, 236–237
importance of, 234–235
and interpretation of Pearson r

(correlation coefficients), 250–251
interpreting, 240–241
one-tailed t-test, 241–242
and one-tailed tests of Pearson r

(correlation coefficients), 251
performing, 235–237
published research and, 246–247
and significance testing of correlation

coefficients, 402–404
t-distribution/degrees of freedom and,

238–240
and testing the Pearson r (correlation

coefficients), 247–250
and using t-tables, 240, 242
when to perform, 234

One-tailed test
for decreasing scores, 223
definition of, 210
for increasing scores, 221–222
r-tables, 424
relationships and, 229
Type I error and, 225

One-way ANOVA
and computing 300–304
and confidence interval for single 310
controlling experiment-wise error rate,

292–293
Fisher’s protected t-test and, 307
format for summary table of, 317
graphing, 311
importance of, 291
and interpreting with F-distribution,

304–305
and logic of F-ratio, 296–298
and mean square between groups,

295–296, 299–300
and mean square within groups, 295,

299–300
order of operations in, 293–294
overview of, 291–292
post hoc comparisons and, 306–308
published research and, 312
statistical hypotheses in, 293
summary of performance steps for,

309–310
and theoretical components of F-ratio,

298–299, 298–299
Tukey’s HSD multiple comparisons test

and, 307–308
within-subject analysis of variance,

384–390
One-way chi square

computing, 354–355
definition of, 352–353
hypotheses/assumptions of, 353–354
interpreting, 355–356
testing other hypotheses with, 356

Ordinal scale
about, 27–29
and bar graphs of experiments, 76–77
simple frequency bar graphs and, 39–41

Outlier, 138–139
Over the long run, 186–187
Overestimation, 71–72

Fobt

�,
Fobt,



P
Parameters, definition of, 22
Parametric statistics

analysis of variance, 292
definition of, 209
two-sample t-test and, 262

Participants (subjects), 384
definition of, 13

PASW. See SPSS
Pearson correlation coefficient or (r)

about, 147–148
computational formula for, 148–149, 159
definition of, 147–148
interpreting, 250–251
linear regression and, 164
one-tailed testing and, 251
r-tables, 424
sampling distribution of, 249–250

Pearson Product Moment Correlation 
Coefficient, 147

Percentile
as cumulative frequency, 51–53
for score, 59

Percents, definition of, 7
Perfect association, 143–144
Phi coefficient 361–362, 378
Plotting. See Graphs
Plus or minus , 109
Point estimation, 243
Polygon

frequency distribution graphing and, 38,
40–41

relative frequency and, 49
Pooled variance, 265
Population mean 72–73. See also

Mean
Population standard deviation 95–99
Population variance, 95–99
Populations

about, 13–14
definition of, 186
descriptive/inferential statistics and, 21
inferring relationship in, 78–79
parameters and, 22
sampling error and, 194–196
two-sample t-test and, 261–262, 272

Positive linear relationship, 140–141
Positively skewed distribution, 44, 46

median location in, 64
mode/mean/median comparisons and, 68

Post hoc comparisons, 293–294, 336–337,
339–340

Power. See also Effect size
error and, 228–229
maximizing in statistical tests, 253–255
sufficient scores for, 235
Type II error and, 241, 253

Predicted Y score
computing, 167
error description in, 168–169
linear regression and, 160

Predictions
correlation coefficients and accuracy of,

144–146
descriptive statistics and, 21
standard error of the estimate and,

173–174

1σX 2 ,

1� 2 ,

1; 2

1� 2 ,

1� 2

Index 465

variability and errors in, 102
Y score, 160, 167

Predictor variable, 162–163
Pretest/posttest, 272
Probability distribution, creation of, 188
Probability (p)

creation of probability distribution, 188
definition of, 186
and factors affecting probability of event,

188–189
importance of, 186–187
logic of, 186–187
odds/chance definitions, 185
p as, 186
power and, 228–229, 235, 241, 253–255
random sampling and, 193–194
representative samples and, 193–194,

197–200, 202–203
sampling distribution of means and, 

191
from standard normal curve (individual

scores), 190
from standard normal curve (sample

means), 191
Proportion of total area under the curve,

50–51
Proportion of variance accounted for 

effect size and, 282–283
predicted Y scores and, 174–177, 184

Proportion of variance not accounted for

predicted Y scores and, 177–178, 184
Proportions

cumulative frequency/percentile and, 52
definition of, 7
finding unknown, 383
relative frequency and, 47–51
z-tables, 419–422

Protected t-test
formula for, 317
formulas for, 317

Published research. See Research

Q
See Range 

Quasi-independent variables, 23

R
r-tables, 424
Random sample

definition of, 14
probability and, 186
sampling error and, 193–194

Range ( )
as measure of variability, 87
one-way ANOVA and, 429–430

Rank sums test, 366–367
Ratio scale, 28–29, 40–41
Raw score, transformed into z-score, 112

235
Real limits, 380
Rectangular distribution, 45
Region of rejection, 197–198, 216
Regression line, 140, 161–163
Regular frequency distribution, 38

rcrit,

qk

1qk 2qk.

11 2 r2 2

1r2
˛pb 2

Related-samples t-test
as method to calculate two-sample 

t-test, 262
computing, 274–275
computing confidence interval for, 277
formula for, 275, 289
interpreting, 275–276
one-tailed testing and, 277–278
requirements for, 271–272
statistical hypotheses for, 272–273,

273–274
when to perform, 284

Relationships
as associations, 15–17
causal, 26–27
cumulative frequency/percentile and,

51–53
definition of, 15
graphing, 18–20
and inferences in population, 78–79
linear, 139–141
nonexistence of, 17–18
nonlinear, 141–142
strength of, 16–17, 142–146
two-sample t-test and, 261–262
in two-way chi square, 361–362
types of, 139–142
variability and strength of, 101–102

Relative degree of consistency, 143–144
Relative frequency, 47–51, 187
Relative frequency distribution, 48–49
Relative frequency (rel.f ), 47–51, 54–55, 59
Relative standing, 110
Repeated-measures design, 271–272
Representative samples

definition of, 14
making intelligent decisions regarding,

202–203
random sampling and, 193–194
region of rejection and, 197–198
and standard error of the mean, 

199–200
Research. See also Central tendency

alpha and, 246–247
APA rules, 53
causality and, 26–27
chi square procedures and, 362–363
correlation coefficients and, 154–155
correlational studies and, 25–26
descriptive/inferential statistics and,

20–21
and drawing conclusions from

experiments, 24–25
experiments and, 22–25
hypothesis testing and, 224
linear regression and, 179
logic of, 12–13
mean and, 79
measurement scales/scores and, 27–29
and measuring variables for data 

acquisition, 14–15
one-sample t-test and, 246–247
one-way ANOVA and, 312
parameters and, 21–22
relationships and, 15–18
role of inferential statistics, 208–209
samples/populations and, 13–14

1� 2



and steps of statistical analysis of 
experiments, 78–79

two-sample t-test and, 284
use of terms in, 30–31
variability and, 103–104
variance/standard deviation application to,

100–103
Research design, 209
Restriction of range problem, 153–154
Rounding numbers, 6

S
Sample, definition of, 13–14, 186
Sample mean

formula for, 83
mean, 79
relative frequency of, 128–129
and sampling distribution of means,

124–128
Sample standard deviation , 89–92, 

94, 160
Sample variance, 88–89, 94, 160
Sampling distribution of differences between

means, 263–264
Sampling distribution of mean differences,

274
Sampling distribution of means

and critical value identification, 
198–200

and performing z-test, 215–218
probability and, 191
setting up, 197–198, 200–201
and standard error of the mean, 126–127
z-scores and, 124–125

Sampling distribution of , 252–253
Sampling error. See also Error

population representation and, 194–196
random sampling and, 193–194
and role of inferential statistics, 208

Sampling with replacement, 189
Sampling without replacement, 189
Scale of measurement, 209
Scales

characteristics of, 27–30
and measure of central tendency, 62

Scatterplots. See also Correlation
coefficients

correlation coefficients and, 138–139,
143–146

described by , 248
two-sample t-test and, 280

Scores
as locations, 61
characteristics of, 27–30
dependent variables and, 23–24
deviation of, 69–72
grouped frequency distribution and,

379–381
Mann-Whitney U test and, 432–435
median as, 63–64
percentile for cf, 59
predicting with mean, 71–72
and sum of deviations around the mean,

70–71
See Sum of the squared Xs 1©X 22©X2.

H0

rS

1SX 2

466 Index

Significance testing. See One-sample t-test;
z-test

Significant results
definition of, 218
hypothesis testing and, 218–219
Type I/Type II errors and, 228–230

Simple frequency distribution, 37–42, 37–42
Skewed distribution

about, 43–44, 46
median location in, 64
mode/mean/median comparisons and,

67–69
Slope

linear regression equation and, 163–164,
184

of regression line, 164–166
Spearman rank-order correlation 

coefficient 
about, 151–153
linear regression equation and, 159

-tables, 425
testing, 252–253

SPSS
central tendency/variability/z-scores and,

397–399
chi square procedures and, 373, 411–414
and computing percentiles, 52
correlation coefficients and, 155, 399–401
entering data, 392–394
frequency distributions/percentiles and,

395–397
Friedman test and, 415
hypothesis testing and, 255
Kruskal-Wallis H test and, 415
linear regression and, 180
linear regression equation and, 399–401
Mann-Whitney U test and, 414
measures of variability and, 104
mode/mean/median comparisons and, 79
one-sample t-test and, 255
one-sample t-test and significance testing

of correlation coefficients, 402–404
one-way ANOVA and, 312–313
one-way, between-subjects ANOVA and,

407–409
one-way, within-subjects ANOVA and,

416–417
and transformation into z-scores, 130
two-sample t-test and, 284, 404–407
two-way, between-subjects ANOVA and,

409–411
Wilcoxon T test and, 415

See Squared sum of X
Squared point-biserial correlation

coefficient, 282–283
Squared sum of X , 84–85
Standard deviation

mathematical constants and, 95
and performing z-test, 215
population variance/standard deviation,

95–99
sample standard deviation , 90
of sampling distribution of means

(standard error of the mean), 126–127
variance and, 87–90
z-scores and, 110–112

1SX 2

1©X 22

1©X 221©X 22.

�2

rS

1�s 2

Standard error of the difference, 265–266
Standard error of the estimate, 170–174, 184
Standard error of the mean difference, 275
Standard error of the mean

formula for, 126–127, 191
and performing z-test, 216
and population representation, 199–200

Standard normal curve
and relative frequency of sample means,

128–129
z-tables, 419–422

Statistical hypotheses
for independent-samples t-test, 262–263
one-sample t-test and, 235–237
in one-way ANOVA, 293
for related-samples t-test, 272–273
and testing the Pearson r (correlation 

coefficients), 248
and testing the Spearman (correlation

coefficients), 252–253
Statistical notation, 4–6
Statistical tables

of chi square ( tables), 431
F-tables, 426–428
Mann-Whitney U test, 432–435

values, 429–430
r-tables, 424

-tables, 425
t-tables, 423
Wilcoxon T test and, 436–437
z-tables, 419–422

Statistics
basic standard notation, 4–5
definitions of, 1–4
descriptive, 20–21
importance of, 1–4
inferential, 21

Strength of relationship, 16–17. See also
Relationships

linear/nonlinear variables, 142–146
standard error of the estimate and,

173–174
Subscripts, 85
Sum of 60–61
Sum of deviations around the mean, 70–71,

70–71
Sum of squares between groups , 301
Sum of squares , 301
Sum of squares within groups , 

302, 349
Sum of the cross products, 136
Sum of the squared , 84–85
Summation 60–61
Symmetrical distribution, 66–67

T
t-distribution, 238–240
t-tables, 240, 242
t-tables, 423
t-test. See One-sample t-test
Tables. See Statistical tables
Tails of distribution, 43–44

235, 238–242, 244–245
Test of independence, 358
Theoretical probability distribution, 188

tcrit,

1© 2 ,
X21©X 22

1SSwn 2
1SStot 2

1SSbn 2

X 1©X 2 ,

rS

qk

x2

rS

1σX 2



Tied ranks, 151
235–238, 240–242

and independent-samples t-test, 266–267
and related-samples t-test, 275

Total area under the curve, 50–51
Total number of scores in condition (n), 

260, 337
Total number of scores in study (N), 37–38,

260
Transformation

definition of, 6–7
mean and, 69

Treatment, 23, 290
Treatment effect, 290
Treatment variance , 298–299
Tukey’s HSD multiple comparisons test,

307–308
Tukey’s HSD post hoc comparisons test, 350
Two-sample t-test. See also Independent-

samples t-test; Related-samples t-test
graphing, 279–280
importance of, 261
measuring effect size in, 280–283
published research and, 283
relationships and, 261–262

Two-tailed test
and creation of statistical hypotheses, 248
definition of, 210
r-tables, 424
relationships and, 229
sampling distribution and, 215–216
uses of, 223

Two-way analysis of variance (ANOVA).
See Two-way ANOVA

Two-way ANOVA
and computing degrees of freedom, 332
computing (degrees of freedom), 332
and computing each F, 334
and computing 327–328
and computing mean square between

groups for factor A, 332–333
and computing mean square between

groups for factor B, 333
and computing mean square between

groups for interaction, 333
and computing mean square within

groups, 333
computing (mean squares), 332–335
computing (overview), 327–328
and computing sum of squares between

groups for factor A, 330
and computing sum of squares between

groups for factor B, 330
and computing sum of squares between

groups for interaction, 331
and computing sum of squares within

groups, 331–332
and computing sums and means, 328–329
computing (sums and means), 328–329
computing (sums of squares), 329–332
and computing total sum of squares, 329
and computing total sum of squares

between groups, 331
eta squared effect size and, 341–343
and graphing interaction effect, 337–339,

337–339, 338–339

Fobt,

1�2
treat 2

tobt,

Index 467

and graphing/post hoc comparisons with
main effects, 336–337, 336–340

importance of, 319
and interaction effects of A/B 

factors, 323
interpreting, 340–341
and interpreting each F, 335–336
and interpreting F, 335
and main effect of factor A, 321–323
and main effect of factor B, 323
overview of, 319–327
and post hoc comparisons on interaction

effects, 339–340
summary of performance steps for,

343–344
summary table of, 349
two-way between-subjects ANOVA, 

318
two-way mixed-design ANOVA, 318
two-way within-subjects ANOVA, 318

Two-way between-subjects ANOVA, 318
Two-way chi square

computing, 359–360
definition of, 357–359
formula for, 359–360

Two-way interaction effect, 326
Two-way mixed-design ANOVA, 318
Two-way within-subjects ANOVA, 318
Type I error. See also Error
Type I error: rejecting when is true,

224–229, 240–241, 246–247, 250,
292–293

Type II error: retaining when is false,
227–229, 241, 253–254. See also
Error

Types of relationships, 139–142

U
Unbiased estimators, 97
Unconfounded comparison, 339–340
Underestimation

biased estimators and, 96–97
and predicting scores with mean, 71–72

Ungrouped distributions, 54
Unimodal distribution, 62–63, 66–67
Univariate statistics, 312
Unrepresentative samples, 14

V
Variability

correlation coefficients and, 144–145
descriptive/inferential measures of, 101
and strength of relationship, 101–102

Variables
definition/use of, 14–15
dependent, 23–24, 73–74
dichotomous, 29
independent, 22–23
predictor/criterion, 162–163
quasi-independent, 23
and relationship with interval variables,

150
Variance

ANOVA and, 299–300

H0H0

H0H0

computational formula for, 94
homogeneity of, 262
one-way, within-subject analysis of,

384–390
pooled, 265
and proportion of variance accounted for,

174–175
standard deviation and, 87–89
variance of Y scores around 

, 169–170, 184

W
Wilcoxon T test, 368–369, 436–437
Within-subjects factor, 291

X
X axis

and “as a function of” changes, 19, 24
bar graphs and, 39
graph creation and, 7–9
normal distribution and, 42–43
relationships and, 15–16, 18–20

Y
Y axis

and “as a function of” changes, 19, 24
graph creation and, 7–9
normal distribution and, 42–43
relationships and, 15–16, 18–20

Y intercept
about, 163–164
formula for, 184
linear regression equation and, 163–164

Y prime , 160, 164

Z
z-distribution

definition of, 115–116
and probability from standard normal

curve (individual scores), 190
and relative frequency of sample means,

128–129
z obtained ( )

comparing to critical values, 217–218
formula for, 216
nonsignificant results and, 219–220
published research and, 224
significant results and, 218

z-scores
comparing different variables using,

116–117
critical values and, 198–199
definition of, 110–112
in determining probability of particular

sample means, 191–192
determining relative frequency of raw

scores with, 117–120
formula for, 127–128
formula for transforming raw score in a

population into, 113
formula for transforming raw score in a

sample into, 112

zobt

1Y¿ 2

Y¿



importance of, 110
linear interpretation of, 381–384
sample mean and, 124–128
for transforming sample mean into 

z-score, 206
for transforming z-score in population

into raw score, 114
for transforming z-score in sample into

raw score, 113–114
and use of z-table, 120–122

1X 2

468 Index

z-table, 120–122, 419–422
z-test. See also Critical value of ; z

obtained 
and computing confidence interval, 245
and computing 236
formula for, 216–217, 233
importance of, 208
inferential statistics and, 208
one-tailed testing and, 223, 229
performing, 215–218

tobt,

1zobt 2
z1zcrit 2

power and, 228-229
summary of, 220
Type I error and, 228
Type II error and, 228
when to perform, 234

See Critical value of z
Zero, as sum of deviations around the mean,

70–71
Zero association, 146

1zcrit 2zcrit.
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Chapter 3
N number of scores in the data

f frequency

cf cumulative frequency

rel. f relative frequency

Chapter 4
X scores

Y scores

K constant

�X sum of X

Mdn median

X� sample mean of Xs

X � X� deviation

� mu; population mean

�(X � X�) sum of deviations around the mean

Chapter 5
�X2 sum of squared Xs

(�X)2 squared sum of Xs

SX sample standard deviation

S2
X sample variance

σX population standard deviation

σ2
X population variance

sX estimated population standard deviation

s2
X estimated population variance

df degrees of freedom

Chapter 6
� plus or minus

z z-score

σX� standard error of the mean

Chapter 7
Y� sample mean of Ys

�Y sum of Ys

�Y2 sum of squared Ys

(�Y)2 squared sum of Ys

�XY sum of cross products of X and Y

D difference score

r Pearson correlation coefficient

rS Spearman correlation coefficient

Chapter 8
Y ′ Y prime; predicted value of Y

S2
Y ′ variance of the Y scores around Y ′

SY ′ standard error of the estimate

b slope of the regression line

a Y-intercept of the regression line

r2 coefficient of determination

1 � r2 coefficient of alienation

Chapter 9
p probability

p(A) probability of event A

Chapter 10
� greater than

� less than

� greater than or equal to

	 less than or equal to


 not equal to

Ha alternative hypothesis

H0 null hypothesis

zobt obtained value of z-test

zcrit critical value of z-test

� alpha; theoretical probability of a Type I error

� beta; theoretical probability of a Type II error

1 � � power

List of Symbols



Chapter 11
tobt obtained value in t-test

tcrit critical value of t-test

sX� estimated standard error of the mean

� rho; population correlation coefficient

robt obtained value of r

rcrit critical value of r

Chapter 12
n number of scores in each sample

s2
pool pooled variance

sX�1�X�2 standard error of the difference

D� mean of difference scores

�D mean of population of difference scores

s2
D estimated variance of population of difference

scores

sD� standard error of the mean difference

r2
pb effect size in a two-sample experiment

Chapter 13
ANOVA analysis of variance

k number of levels in a factor

Fobt obtained value from F-ratio

Fcrit critical value of F

σ2
error population error variance

σ2
treat population treatment variance

MSwn mean square within groups

dfwn degrees of freedom within groups

SSwn sum of squares within groups

MSbn mean square between groups

dfbn degrees of freedom between groups

SSbn sum of squares between groups

SStot total sum of squares

dftot total degrees of freedom

qk value used in HSD test

HSD Tukey’s honestly significant difference

�2 eta squared; effect size in the sample

Chapter 14
FA obtained F for factor A

FB obtained F for factor B

FA�B obtained F for interaction of A and B

Chapter 15
fo observed frequency

fe expected frequency

�2
obt obtained value in chi square procedure

�2
crit critical value in chi square procedure

� phi coefficient

C contingency coefficient

	R sum of ranks

	Rexp expected sum of ranks

Uobt obtained value in Mann–Whitney U test

Tobt obtained value in Wilcoxon T test

Hobt obtained value in Kruskal–Wallis H test

zobt obtained value in rank sums test

�2
obt obtained value in Friedman �2 test


	Front Cover
	Title Page
	Copyright
	Contents
	Preface
	1 Introduction to Statistics
	GETTING STARTED
	WHY IS IT IMPORTANT TO LEARN STATISTICS (AND HOW DO YOU DO THAT?)
	What Are Statistics?
	Why Must I Learn Statistics?
	What Do Researchers Do with Statistics?
	But I’m Not Interested in Research; I Just Want to Help People!
	But I Don’t Know Anything about Research!
	What If I’m Not Very Good at Math?
	What If I’m Not Very Good at Statistics?
	I Looked through the Book: Statistics Aren’t Written in English!
	But, Those Formulas!
	So All I Have to Do Is Learn How to Compute the Answers?
	What about Using a Computer to Do Statistics?
	All Right, So How Do I Learn Statistics?

	REVIEW OF MATHEMATICS USED IN STATISTICS
	Basic Statistical Notation
	Rounding Numbers
	Transforming Scores
	Creating Graphs

	PUTTING IT ALL TOGETHER
	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS

	2 Statistics and the Research Process
	GETTING STARTED
	THE LOGIC OF RESEARCH
	Samples and Populations
	Obtaining Data by Measuring Variables
	Understanding Relationships

	A QUICK REVIEW
	APPLYING DESCRIPTIVE AND INFERENTIAL STATISTICS
	Descriptive Statistics
	Inferential Statistics
	Statistics versus Parameters

	UNDERSTANDING EXPERIMENTS AND CORRELATIONAL STUDIES
	Experiments
	Correlational Studies

	A QUICK REVIEW
	A Word about Causality

	THE CHARACTERISTICS OF SCORES
	The Four Types of Measurement Scales
	Continuous versus Discrete Scales

	A QUICK REVIEW
	STATISTICS IN PUBLISHED RESEARCH: USING STATISTICAL TERMS
	PUTTING IT ALL TOGETHER
	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS

	3 Frequency Distributions and Percentiles
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT FREQUENCY DISTRIBUTIONS
	SIMPLE FREQUENCY DISTRIBUTIONS
	Presenting Simple Frequency in a Table

	A QUICK REVIEW
	Graphing a Simple Frequency Distribution

	A QUICK REVIEW
	TYPES OF SIMPLE FREQUENCY DISTRIBUTIONS
	The Normal Distribution
	Other Common Frequency Polygons
	Labeling Frequency Distributions

	A QUICK REVIEW
	RELATIVE FREQUENCY AND THE NORMAL CURVE
	Presenting Relative Frequency in a Table or Graph
	Finding Relative Frequency Using the Normal Curve

	A QUICK REVIEW
	COMPUTING CUMULATIVE FREQUENCY AND PERCENTILE
	Computing Cumulative Frequency
	Computing Percentiles
	Finding Percentile Using the Area Under the Normal Curve

	A QUICK REVIEW
	STATISTICS IN PUBLISHED RESEARCH: APA PUBLICATION RULES
	A WORD ABOUT GROUPED FREQUENCY DISTRIBUTIONS
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	4 Measures of Central Tendency: The Mean, Median, and Mode
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT CENTRAL TENDENCY?
	WHAT IS CENTRAL TENDENCY?
	THE MODE
	Uses of the Mode

	THE MEDIAN
	Uses of the Median

	A QUICK REVIEW
	THE MEAN
	Uses of the Mean

	A QUICK REVIEW
	Comparing the Mean, Median, and Mode

	TRANSFORMATIONS AND THE MEAN
	DEVIATIONS AROUND THE MEAN
	Using the Mean to Predict Scores

	A QUICK REVIEW
	DESCRIBING THE POPULATION MEAN
	SUMMARIZING RESEARCH
	Summarizing an Experiment
	Graphing the Results of an Experiment

	A QUICK REVIEW
	Inferring the Relationship in the Population

	STATISTICS IN PUBLISHED RESEARCH: USING THE MEAN
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	5 Measures of Variability: Range, Variance, and Standard Deviation
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT MEASURES OF VARIABILITY?
	A QUICK REVIEW
	THE RANGE
	UNDERSTANDING THE VARIANCE AND STANDARD DEVIATION
	The Sample Variance
	The Sample Standard Deviation

	A QUICK REVIEW
	COMPUTING THE SAMPLE VARIANCE AND SAMPLE STANDARD DEVIATION
	Computing the Sample Variance
	Computing the Sample Standard Deviation

	A QUICK REVIEW
	Mathematical Constants and the Standard Deviation

	THE POPULATION VARIANCE AND THE POPULATION STANDARD DEVIATION
	Estimating the Population Variance and Population Standard Deviation
	Computing the Estimated Population Variance and Standard Deviation
	Interpreting the Estimated Population Variance and Standard Deviation

	A QUICK REVIEW
	A SUMMARY OF THE VARIANCE AND STANDARD DEVIATION
	APPLYING THE VARIANCE AND STANDARD DEVIATION TO RESEARCH
	Variability and Strength of a Relationship
	Variability and Errors in Prediction
	Accounting for Variance

	STATISTICS IN PUBLISHED RESEARCH: REPORTING VARIABILITY
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	6 z-Scores and the Normal Curve Model
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT z-SCORES?
	UNDERSTANDING z-SCORES
	Computing z-Scores
	Computing a Raw Score When z Is Known

	A QUICK REVIEW
	INTERPRETING z-SCORES USING THE z-DISTRIBUTION
	USING z-SCORES TO COMPARE DIFFERENT VARIABLES
	USING z-SCORES TO DETERMINE THE RELATIVE FREQUENCY OF RAW SCORES
	The Standard Normal Curve
	Using the z-Table

	A QUICK REVIEW
	STATISTICS IN PUBLISHED RESEARCH: USING z-SCORES
	USING z-SCORES TO DESCRIBE SAMPLE MEANS
	The Sampling Distribution of Means
	The Standard Error of the Mean
	Computing a z-Score for a Sample Mean
	Describing the Relative Frequency of Sample Means
	Summary of Describing a Sample Mean with a z-Score

	A QUICK REVIEW
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	7 The Correlation Coefficient
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT CORRELATION COEFFICIENTS?
	UNDERSTANDING CORRELATIONAL RESEARCH
	Drawing Conclusions from Correlational Research
	Distinguishing Characteristics of Correlational Analysis
	Plotting Correlational Data: The Scatterplot

	TYPES OF RELATIONSHIPS
	Linear Relationships
	Nonlinear Relationships
	How the Correlation Coefficient Describes the Type of Relationship

	STRENGTH OF THE RELATIONSHIP
	Perfect Association
	Intermediate Association
	Zero Association

	A QUICK REVIEW
	THE PEARSON CORRELATION COEFFICIENT
	A QUICK REVIEW
	THE SPEARMAN RANK-ORDER CORRELATION COEFFICIENT
	A QUICK REVIEW
	THE RESTRICTION OF RANGE PROBLEM
	STATISTICS IN PUBLISHED RESEARCH: CORRELATION COEFFICIENTS
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	8 Linear Regression
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT LINEAR REGRESSION?
	UNDERSTANDING LINEAR REGRESSION
	THE LINEAR REGRESSION EQUATION
	Computing the Slope
	Computing the Y Intercept
	Describing the Linear Regression Equation
	Plotting the Regression Line
	Computing Predicted Y Scores

	A QUICK REVIEW
	DESCRIBING THE ERRORS IN PREDICTION
	Computing the Variance of the Y Scores around Y¿
	Computing the Standard Error of the Estimate

	A QUICK REVIEW
	Interpreting the Standard Error of the Estimate
	The Strength of a Relationship and Prediction Error

	COMPUTING THE PROPORTION OF VARIANCE ACCOUNTED FOR
	Using r to Compute the Proportion of Variance Accounted For
	Applying the Proportion of Variance Accounted For

	A QUICK REVIEW
	A WORD ABOUT MULTIPLE CORRELATION AND REGRESSION
	STATISTICS IN PUBLISHED RESEARCH: LINEAR REGRESSION
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	9 Using Probability to Make Decisions about Data
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT PROBABILITY?
	THE LOGIC OF PROBABILITY
	COMPUTING PROBABILITY
	Creating Probability Distributions
	Factors Affecting the Probability of an Event

	A QUICK REVIEW
	OBTAINING PROBABILITY FROM THE STANDARD NORMAL CURVE
	Determining the Probability of Individual Scores
	Determining the Probability of Sample Means

	A QUICK REVIEW
	RANDOM SAMPLING AND SAMPLING ERROR
	DECIDING WHETHER A SAMPLE REPRESENTS A POPULATION
	A QUICK REVIEW
	Setting Up the Sampling Distribution
	Identifying the Critical Value
	Deciding if the Sample Represents the Population
	Other Ways to Set up the Sampling Distribution

	A QUICK REVIEW
	PUTTING IT ALL TOGETHER
	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	10 Introduction to Hypothesis Testing
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT THE z-TEST?
	THE ROLE OF INFERENTIAL STATISTICS IN RESEARCH
	SETTING UP INFERENTIAL PROCEDURES
	Creating the Experimental Hypotheses
	Designing a One-Sample Experiment
	Creating the Statistical Hypotheses

	A QUICK REVIEW
	The Logic of Statistical Hypothesis Testing

	PERFORMING THE z-TEST
	Setting Up the Sampling Distribution for a Two-Tailed Test
	Computing z
	Comparing the Obtained z to the Critical Value

	INTERPRETING SIGNIFICANT RESULTS
	INTERPRETING NONSIGNIFICANT RESULTS
	SUMMARY OF THE z-TEST
	A QUICK REVIEW
	THE ONE-TAILED TEST
	The One-Tailed Test for Increasing Scores
	The One-Tailed Test for Decreasing Scores

	A QUICK REVIEW
	STATISTICS IN PUBLISHED RESEARCH: REPORTING SIGNIFICANCE TESTS
	ERRORS IN STATISTICAL DECISION MAKING
	Type I Errors: Rejecting H0 When H0 Is True
	Type II Errors: Retaining H0 When H0 Is False
	Comparing Type I and Type II Errors
	Power

	A QUICK REVIEW
	PUTTING IT ALL TOGETHER
	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	11 Performing the One-Sample t-Test and Testing Correlation Coefficients
	GETTING STARTED
	WHY IS IT IMPORTANT TO KNOW ABOUT t-TESTS?
	PERFORMING THE ONE-SAMPLE t-TEST
	Computing tobt

	A QUICK REVIEW
	The t-Distribution and Degrees of Freedom
	Using the t-Tables
	Interpreting the t-Test
	The One-Tailed t-Test
	Some Help When Using the t-Tables

	A QUICK REVIEW
	ESTIMATING BY COMPUTING A CONFIDENCE INTERVAL  
	Computing the Confidence Interval

	A QUICK REVIEW
	Summary of the One-Sample t-Test

	STATISTICS IN PUBLISHED RESEARCH: REPORTING THE t-TEST
	SIGNIFICANCE TESTS FOR CORRELATION COEFFICIENTS
	Testing the Pearson r
	Testing the Spearman rS
	Summary of Testing a Correlation Coefficient

	A QUICK REVIEW
	MAXIMIZING THE POWER OF STATISTICAL TESTS
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	12 The Two-Sample t-Test
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT THE TWO-SAMPLE t-TEST?
	UNDERSTANDING THE TWO-SAMPLE EXPERIMENT
	THE INDEPENDENT-SAMPLES t-TEST
	Statistical Hypotheses for the Independent-Samples t-Test
	The Sampling Distribution for the Independent-Samples t-Test
	Computing the Independent-Samples t-Test

	A QUICK REVIEW
	Interpreting the Independent-Samples t-Test
	Confidence Interval for the Difference between Two s  
	Performing One-Tailed Tests with Independent Samples

	SUMMARY OF THE INDEPENDENT-SAMPLES t-TEST
	A QUICK REVIEW
	THE RELATED-SAMPLES t-TEST
	The Logic of Hypotheses Testing in the Related-Samples t-Test

	STATISTICAL HYPOTHESES FOR THE RELATED-SAMPLES t-TEST
	Computing the Related-Samples t-Test
	Interpreting the Related-Samples t-Test
	Computing the Confidence Interval for D  
	Performing One-Tailed Tests with Related Samples

	SUMMARY OF THE RELATED-SAMPLES t-TEST
	A QUICK REVIEW
	DESCRIBING THE RELATIONSHIP IN A TWO-SAMPLE EXPERIMENT
	Graphing the Results of a Two-Sample Experiment
	Measuring Effect Size in the Two-Sample Experiment

	STATISTICS IN PUBLISHED RESEARCH: THE TWO-SAMPLE EXPERIMENT
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	13 The One-Way Analysis of Variance
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT ANOVA?
	AN OVERVIEW OF ANOVA
	How ANOVA Controls the Experiment-Wise Error Rate
	Statistical Hypotheses in ANOVA
	The Order of Operations in ANOVA: The F Statistic and Post Hoc Comparisons

	A QUICK REVIEW
	UNDERSTANDING THE ANOVA
	The Mean Square within Groups
	The Mean Square between Groups
	Comparing the Mean Squares: The Logic of the F-Ratio
	The Theoretical Components of the F-ratio

	A QUICK REVIEW
	PERFORMING THE ANOVA
	Computing the Fobt
	Interpreting Fobt

	A QUICK REVIEW
	PERFORMING POST HOC COMPARISONS
	Fisher’s Protected t-Test
	Tukey’s HSD Multiple Comparisons Test

	A QUICK REVIEW
	SUMMARY OF STEPS IN PERFORMING A ONE-WAY ANOVA
	ADDITIONAL PROCEDURES IN THE ONE-WAY ANOVA
	The Confidence Interval for Each Population  
	Graphing the Results in ANOVA
	Describing Effect Size in the ANOVA

	STATISTICS IN PUBLISHED RESEARCH: REPORTING ANOVA
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	14 The Two-Way Analysis of Variance
	GETTING STARTED
	NEW STATISTICAL NOTATION
	WHY IS IT IMPORTANT TO KNOW ABOUT THE TWO-WAY ANOVA?
	UNDERSTANDING THE TWO-WAY DESIGN
	OVERVIEW OF THE TWO-WAY, BETWEEN-SUBJECTS ANOVA
	The Main Effect of Factor A
	The Main Effect of Factor B

	A QUICK REVIEW
	Interaction Effects

	A QUICK REVIEW
	COMPUTING THE TWO-WAY ANOVA
	Computing the Sums and Means
	Computing the Sums of Squares
	Computing the Degrees of Freedom
	Computing the Mean Squares
	Computing F
	Interpreting Each F

	A QUICK REVIEW
	INTERPRETING THE TWO-WAY EXPERIMENT
	Graphing and Post Hoc Comparisons with Main Effects
	Graphing the Interaction Effect
	Performing Post Hoc Comparisons on the Interaction Effect

	A QUICK REVIEW
	Interpreting the Overall Results of the Experiment
	Describing the Effect Size: Eta Squared

	SUMMARY OF THE STEPS IN PERFORMING A TWO-WAY ANOVA
	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	15 Chi Square and Other Nonparametric Procedures
	GETTING STARTED
	WHY IS IT IMPORTANT TO KNOW ABOUT NONPARAMETRIC PROCEDURES?
	CHI SQUARE PROCEDURES
	ONE-WAY CHI SQUARE
	Hypotheses and Assumptions of the One-Way Chi Square
	Computing the One-Way Chi Square
	Interpreting the One-Way Chi Square
	Testing Other Hypotheses with the One-Way Chi Square

	A QUICK REVIEW
	THE TWO-WAY CHI SQUARE
	Computing the Two-Way Chi Square

	A QUICK REVIEW
	Describing the Relationship in a Two-Way Chi Square

	STATISTICS IN PUBLISHED RESEARCH: REPORTING CHI SQUARE
	NONPARAMETRIC PROCEDURES FOR RANKED DATA
	The Logic of Nonparametric Procedures for Ranked Data
	Resolving Tied Ranks
	Choosing a Nonparametric Procedure
	Tests for Two Independent Samples: The Mann–Whitney U Test and the Rank Sums Test
	The Wilcoxon T Test for Two Related Samples
	The Kruskal–Wallis H Test
	The Friedman Test  2

	PUTTING IT ALL TOGETHER
	Using the SPSS Appendix

	CHAPTER SUMMARY
	KEY TERMS
	REVIEW QUESTIONS
	APPLICATION QUESTIONS
	INTEGRATION QUESTIONS
	SUMMARY OF FORMULAS

	A: Additional Statistical Formulas
	A.1 CREATING GROUPED FREQUENCY DISTRIBUTIONS
	A.2 PERFORMING LINEAR INTERPOLATION
	A.3 THE ONE-WAY, WITHIN-SUBJECTS ANALYSIS OF VARIANCE

	B: Using SPSS
	B.1 ENTERING DATA
	B.2 FREQUENCY DISTRIBUTIONS AND PERCENTILE
	B.3 CENTRAL TENDENCY, VARIABILITY, AND z-SCORES
	B.4 CORRELATION COEFFICIENTS AND THE LINEAR REGRESSION EQUATION
	B.5 THE ONE-SAMPLE t-TEST AND SIGNIFICANCE TESTING OF CORRELATION COEFFICIENTS
	B.6 TWO-SAMPLE t-TESTS
	B.7 THE ONE-WAY, BETWEEN-SUBJECTS ANOVA
	B.8 THE TWO-WAY, BETWEEN-SUBJECTS ANOVA
	B.9 CHI SQUARE PROCEDURES
	B.10 NONPARAMETRIC TESTS FOR RANKED SCORES
	B.11 THE ONE-WAY, WITHIN-SUBJECTS ANOVA

	C: Statistical Tables
	TABLE 1 PROPORTIONS OF AREA UNDER THE STANDARD NORMAL CURVE: THE z-TABLES
	TABLE 2 CRITICAL VALUES OF t: THE t-TABLES
	TABLE 3 CRITICAL VALUES OF THE PEARSON CORRELATION COEFFICIENT: THE r-TABLES
	TABLE 4 CRITICAL VALUES OF THE SPEARMAN RANK-ORDER CORRELATION COEFFICIENT: THE rS-TABLES
	TABLE 5 CRITICAL VALUES OF F: THE F-TABLES
	TABLE 6 VALUES OF STUDENTIZED RANGE STATISTIC, qK
	TABLE 7 CRITICAL VALUES OF CHI SQUARE: THE X2-TABLES
	TABLE 8 CRITICAL VALUES OF THE MANN–WHITNEY U
	TABLE 9 CRITICAL VALUES OF THE WILCOXON T

	D: Answers to Odd-Numbered Questions
	GLOSSARY
	INDEX



