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PREFACE

BACKGROUND AND PURPOSE

As in the previous three editions, the primary objective of the fourth edition
of Basic Econometrics is to provide an elementary but comprehensive intro-
duction to econometrics without resorting to matrix algebra, calculus, or
statistics beyond the elementary level.

In this edition I have attempted to incorporate some of the developments
in the theory and practice of econometrics that have taken place since the
publication of the third edition in 1995. With the availability of sophisti-
cated and user-friendly statistical packages, such as Eviews, Limdep,
Microfit, Minitab, PcGive, SAS, Shazam, and Stata, it is now possible to dis-
cuss several econometric techniques that could not be included in the pre-
vious editions of the book. I have taken full advantage of these statistical
packages in illustrating several examples and exercises in this edition.

I was pleasantly surprised to find that my book is used not only by eco-
nomics and business students but also by students and researchers in sev-
eral other disciplines, such as politics, international relations, agriculture,
and health sciences. Students in these disciplines will find the expanded dis-
cussion of several topics very useful.

THE FOURTH EDITION
The major changes in this edition are as follows:

1. In the introductory chapter, after discussing the steps involved in tra-
ditional econometric methodology, I discuss the very important question of
how one chooses among competing econometric models.

2. In Chapter 1, I discuss very briefly the measurement scale of eco-
nomic variables. It is important to know whether the variables are ratio

XXV
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scale, interval scale, ordinal scale, or nominal scale, for that will determine
the econometric technique that is appropriate in a given situation.

3. The appendices to Chapter 3 now include the large-sample properties
of OLS estimators, particularly the property of consistency.

4. The appendix to Chapter 5 now brings into one place the properties
and interrelationships among the four important probability distributions
that are heavily used in this book, namely, the normal, t, chi square, and F.

5. Chapter 6, on functional forms of regression models, now includes a
discussion of regression on standardized variables.

6. To make the book more accessible to the nonspecialist, I have moved
the discussion of the matrix approach to linear regression from old Chapter 9
to Appendix C. Appendix C is slightly expanded to include some advanced
material for the benefit of the more mathematically inclined students. The
new Chapter 9 now discusses dummy variable regression models.

7. Chapter 10, on multicollinearity, includes an extended discussion of
the famous Longley data, which shed considerable light on the nature and
scope of multicollinearity.

8. Chapter 11, on heteroscedasticity, now includes in the appendix an
intuitive discussion of White’s robust standard errors.

9. Chapter 12, on autocorrelation, now includes a discussion of the
Newey-West method of correcting the OLS standard errors to take into ac-
count likely autocorrelation in the error term. The corrected standard errors
are known as HAC standard errors. This chapter also discusses briefly the
topic of forecasting with autocorrelated error terms.

10. Chapter 13, on econometric modeling, replaces old Chapters 13 and
14. This chapter has several new topics that the applied researcher will find
particularly useful. They include a compact discussion of model selection
criteria, such as the Akaike information criterion, the Schwarz information
criterion, Mallows'’s C, criterion, and forecast chi square. The chapter also
discusses topics such as outliers, leverage, influence, recursive least squares,
and Chow’s prediction failure test. This chapter concludes with some cau-
tionary advice to the practitioner about econometric theory and economet-
ric practice.

11. Chapter 14, on nonlinear regression models, is new. Because of the
easy availability of statistical software, it is no longer difficult to estimate
regression models that are nonlinear in the parameters. Some econometric
models are intrinsically nonlinear in the parameters and need to be esti-
mated by iterative methods. This chapter discusses and illustrates some
comparatively simple methods of estimating nonlinear-in-parameter regres-
sion models.

12. Chapter 15, on qualitative response regression models, which re-
places old Chapter 16, on dummy dependent variable regression models,
provides a fairly extensive discussion of regression models that involve a
dependent variable that is qualitative in nature. The main focus is on logit
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and probit models and their variations. The chapter also discusses the
Poisson regression model, which is used for modeling count data, such as the
number of patents received by a firm in a year; the number of telephone
calls received in a span of, say, 5 minutes; etc. This chapter has a brief dis-
cussion of multinomial logit and probit models and duration models.

13. Chapter 16, on panel data regression models, is new. A panel data
combines features of both time series and cross-section data. Because of in-
creasing availability of panel data in the social sciences, panel data regres-
sion models are being increasingly used by researchers in many fields. This
chapter provides a nontechnical discussion of the fixed effects and random
effects models that are commonly used in estimating regression models
based on panel data.

14. Chapter 17, on dynamic econometric models, has now a rather ex-
tended discussion of the Granger causality test, which is routinely used (and
misused) in applied research. The Granger causality test is sensitive to the
number of lagged terms used in the model. It also assumes that the under-
lying time series is stationary.

15. Except for new problems and minor extensions of the existing esti-
mation techniques, Chapters 18, 19, and 20 on simultaneous equation mod-
els are basically unchanged. This reflects the fact that interest in such mod-
els has dwindled over the years for a variety of reasons, including their poor
forecasting performance after the OPEC oil shocks of the 1970s.

16. Chapter 21 is a substantial revision of old Chapter 21. Several concepts
of time series econometrics are developed and illustrated in this chapter. The
main thrust of the chapter is on the nature and importance of stationary
time series. The chapter discusses several methods of finding out if a given
time series is stationary. Stationarity of a time series is crucial for the appli-
cation of various econometric techniques discussed in this book.

17. Chapter 22 is also a substantial revision of old Chapter 22. It discusses
the topic of economic forecasting based on the Box—Jenkins (ARIMA) and
vector autoregression (VAR) methodologies. It also discusses the topic of
measuring volatility in financial time series by the techniques of autoregres-
sive conditional heteroscedasticity (ARCH) and generalized autoregressive con-
ditional heteroscedasticity (GARCH).

18. Appendix A, on statistical concepts, has been slightly expanded. Ap-
pendix C discusses the linear regression model using matrix algebra. This is
for the benefit of the more advanced students.

As in the previous editions, all the econometric techniques discussed in
this book are illustrated by examples, several of which are based on con-
crete data from various disciplines. The end-of-chapter questions and prob-
lems have several new examples and data sets. For the advanced reader,
there are several technical appendices to the various chapters that give
proofs of the various theorems and or formulas developed in the text.
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ORGANIZATION AND OPTIONS

SUPPLEMENTS
Data CD

Changes in this edition have considerably expanded the scope of the text. I
hope this gives the instructor substantial flexibility in choosing topics that
are appropriate to the intended audience. Here are suggestions about how
this book may be used.

One-semester course for the nonspecialist: Appendix A, Chapters 1
through 9, an overview of Chapters 10, 11, 12 (omitting all the proofs).

One-semester course for economics majors: Appendix A, Chapters 1
through 13.

Two-semester course for economics majors: Appendices A, B, C,
Chapters 1 to 22. Chapters 14 and 16 may be covered on an optional basis.
Some of the technical appendices may be omitted.

Graduate and postgraduate students and researchers: This book is a
handy reference book on the major themes in econometrics.

Every text is packaged with a CD that contains the data from the text in
ASCII or text format and can be read by most software packages.

Student Solutions Manual

EViews

Web Site

Free to instructors and salable to students is a Student Solutions Manual
(ISBN 0072427922) that contains detailed solutions to the 475 questions
and problems in the text.

With this fourth edition we are pleased to provide Eviews Student Ver-
sion 3.1 on a CD along with all of the data from the text. This software is
available from the publisher packaged with the text (ISBN: 0072565705).
Eviews Student Version is available separately from QMS. Go to
http://www.eviews.com for further information.

A comprehensive web site provides additional material to support the study
of econometrics. Go to www.mhhe.com/econometrics/gujarati4.
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INTRODUCTION

.1 WHAT IS ECONOMETRICS?

Literally interpreted, econometrics means “economic measurement.” Al-
though measurement is an important part of econometrics, the scope of
econometrics is much broader, as can be seen from the following quotations:

Econometrics, the result of a certain outlook on the role of economics, consists of
the application of mathematical statistics to economic data to lend empirical sup-
port to the models constructed by mathematical economics and to obtain
numerical results.!

... econometrics may be defined as the quantitative analysis of actual economic
phenomena based on the concurrent development of theory and observation, re-
lated by appropriate methods of inference.?

Econometrics may be defined as the social science in which the tools of economic
theory, mathematics, and statistical inference are applied to the analysis of eco-
nomic phenomena.?

Econometrics is concerned with the empirical determination of economic
laws.*

!Gerhard Tintner, Methodology of Mathematical Economics and Econometrics, The Univer-

sity of Chicago Press, Chicago, 1968, p. 74.

2P. A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee

for Econometrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141-146.

SArthur S. Goldberger, Econometric Theory, John Wiley & Sons, New York, 1964, p. 1.
“H. Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, p. 1.
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2 BASIC ECONOMETRICS

The art of the econometrician consists in finding the set of assumptions that are
both sufficiently specific and sufficiently realistic to allow him to take the best
possible advantage of the data available to him.>

Econometricians . . . are a positive help in trying to dispel the poor public image
of economics (quantitative or otherwise) as a subject in which empty boxes are
opened by assuming the existence of can-openers to reveal contents which any
ten economists will interpret in 11 ways.°

The method of econometric research aims, essentially, at a conjunction of eco-
nomic theory and actual measurements, using the theory and technique of statis-
tical inference as a bridge pier.”

.2 WHY A SEPARATE DISCIPLINE?

As the preceding definitions suggest, econometrics is an amalgam of eco-
nomic theory, mathematical economics, economic statistics, and mathe-
matical statistics. Yet the subject deserves to be studied in its own right for
the following reasons.

Economic theory makes statements or hypotheses that are mostly quali-
tative in nature. For example, microeconomic theory states that, other
things remaining the same, a reduction in the price of a commodity is ex-
pected to increase the quantity demanded of that commodity. Thus, eco-
nomic theory postulates a negative or inverse relationship between the price
and quantity demanded of a commodity. But the theory itself does not pro-
vide any numerical measure of the relationship between the two; that is, it
does not tell by how much the quantity will go up or down as a result of a
certain change in the price of the commodity. It is the job of the econome-
trician to provide such numerical estimates. Stated differently, economet-
rics gives empirical content to most economic theory.

The main concern of mathematical economics is to express economic
theory in mathematical form (equations) without regard to measurability or
empirical verification of the theory. Econometrics, as noted previously, is
mainly interested in the empirical verification of economic theory. As we
shall see, the econometrician often uses the mathematical equations pro-
posed by the mathematical economist but puts these equations in such a
form that they lend themselves to empirical testing. And this conversion of
mathematical into econometric equations requires a great deal of ingenuity
and practical skill.

Economic statistics is mainly concerned with collecting, processing, and
presenting economic data in the form of charts and tables. These are the

SE. Malinvaud, Statistical Methods of Econometrics, Rand McNally, Chicago, 1966, p. 514.

®Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar Publish-
ing, Hants, England, 1990, p. 54.

'T. Haavelmo, “The Probability Approach in Econometrics,” Supplement to Econometrica,
vol. 12, 1944, preface p. iii.
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jobs of the economic statistician. It is he or she who is primarily responsible
for collecting data on gross national product (GNP), employment, unem-
ployment, prices, etc. The data thus collected constitute the raw data for
econometric work. But the economic statistician does not go any further,
not being concerned with using the collected data to test economic theories.
Of course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade,
the econometrician often needs special methods in view of the unique na-
ture of most economic data, namely, that the data are not generated as the
result of a controlled experiment. The econometrician, like the meteorolo-
gist, generally depends on data that cannot be controlled directly. As Spanos
correctly observes:

In econometrics the modeler is often faced with observational as opposed to
experimental data. This has two important implications for empirical modeling
in econometrics. First, the modeler is required to master very different skills
than those needed for analyzing experimental data. ... Second, the separation
of the data collector and the data analyst requires the modeler to familiarize
himself/herself thoroughly with the nature and structure of data in question.’

.3 METHODOLOGY OF ECONOMETRICS

How do econometricians proceed in their analysis of an economic problem?
That is, what is their methodology? Although there are several schools of
thought on econometric methodology, we present here the traditional or
classical methodology, which still dominates empirical research in eco-
nomics and other social and behavioral sciences.’

Broadly speaking, traditional econometric methodology proceeds along
the following lines:

1. Statement of theory or hypothesis.

2. Specification of the mathematical model of the theory
3. Specification of the statistical, or econometric, model
4. Obtaining the data

5. Estimation of the parameters of the econometric model
6. Hypothesis testing

7. Forecasting or prediction

8. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian
theory of consumption.

8Aris Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Obser-
vational Data, Cambridge University Press, United Kingdom, 1999, p. 21.

°For an enlightening, if advanced, discussion on econometric methodology, see David F.
Hendry, Dynamic Econometrics, Oxford University Press, New York, 1995. See also Aris
Spanos, op. cit.
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1. Statement of Theory or Hypothesis

Keynes stated:

The fundamental psychological law . . . is that men [women] are disposed, as a
rule and on average, to increase their consumption as their income increases, but
not as much as the increase in their income.'’

In short, Keynes postulated that the marginal propensity to consume
(MPC), the rate of change of consumption for a unit (say, a dollar) change
in income, is greater than zero but less than 1.

2. Specification of the Mathematical Model of Consumption

FIGURE I.1

Although Keynes postulated a positive relationship between consumption
and income, he did not specify the precise form of the functional relation-
ship between the two. For simplicity, a mathematical economist might sug-
gest the following form of the Keynesian consumption function:

Y =814+ BX 0<pB <1 (I.3.1)

where Y = consumption expenditure and X = income, and where $; and 8,
known as the parameters of the model, are, respectively, the intercept and
slope coefficients.

The slope coefficient g, measures the MPC. Geometrically, Eq. (I.3.1) is as
shown in Figure I.1. This equation, which states that consumption is lin-

Y

B, = MPC

Consumption expenditure

Bi

Income

Keynesian consumption function.

19John Maynard Keynes, The General Theory of Employment, Interest and Money, Harcourt
Brace Jovanovich, New York, 1936, p. 96.
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early related to income, is an example of a mathematical model of the rela-
tionship between consumption and income that is called the consumption
function in economics. A model is simply a set of mathematical equations.
If the model has only one equation, as in the preceding example, it is called
a single-equation model, whereas if it has more than one equation, it is
known as a multiple-equation model (the latter will be considered later in
the book).

In Eq. (I.3.1) the variable appearing on the left side of the equality sign
is called the dependent variable and the variable(s) on the right side are
called the independent, or explanatory, variable(s). Thus, in the Keynesian
consumption function, Eq. (I.3.1), consumption (expenditure) is the depen-
dent variable and income is the explanatory variable.

3. Specification of the Econometric Model of Consumption

The purely mathematical model of the consumption function given in
Eq. (I1.3.1) is of limited interest to the econometrician, for it assumes that
there is an exact or deterministic relationship between consumption and
income. But relationships between economic variables are generally inexact.
Thus, if we were to obtain data on consumption expenditure and disposable
(i.e., aftertax) income of a sample of, say, 500 American families and plot
these data on a graph paper with consumption expenditure on the vertical
axis and disposable income on the horizontal axis, we would not expect all
500 observations to lie exactly on the straight line of Eq. (I.3.1) because, in
addition to income, other variables affect consumption expenditure. For ex-
ample, size of family, ages of the members in the family, family religion, etc.,
are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the
econometrician would modify the deterministic consumption function
(I1.3.1) as follows:

Y=8+pX+u (1.3.2)

where 1, known as the disturbance, or error, term, is a random (stochas-
tic) variable that has well-defined probabilistic properties. The disturbance
term u may well represent all those factors that affect consumption but are
not taken into account explicitly.

Equation (I.3.2) is an example of an econometric model. More techni-
cally, it is an example of a linear regression model, which is the major
concern of this book. The econometric consumption function hypothesizes
that the dependent variable Y (consumption) is linearly related to the ex-
planatory variable X (income) but that the relationship between the two is
not exact; it is subject to individual variation.

The econometric model of the consumption function can be depicted as
shown in Figure 1.2.
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FIGURE 1.2

4. Obtaining Data

TABLE 1.1

Consumption expenditure

Income

Econometric model of the Keynesian consumption function.

To estimate the econometric model given in (I.3.2), that is, to obtain the
numerical values of 8y and 8., we need data. Although we will have more to
say about the crucial importance of data for economic analysis in the next
chapter, for now let us look at the data given in Table 1.1, which relate to

DATA ON Y (PERSONAL CONSUMPTION EXPENDITURE)
AND X (GROSS DOMESTIC PRODUCT, 1982-1996), BOTH
IN 1992 BILLIONS OF DOLLARS

Year Y X

1982 3081.5 4620.3
1983 3240.6 4803.7
1984 3407.6 51401
1985 3566.5 5323.5
1986 3708.7 5487.7
1987 3822.3 5649.5
1988 3972.7 5865.2
1989 4064.6 6062.0
1990 4132.2 6136.3
1991 4105.8 6079.4
1992 4219.8 6244.4
1993 4343.6 6389.6
1994 4486.0 6610.7
1995 4595.3 6742.1
1996 47141 6928.4

Source: Economic Report of the President, 1998, Table B-2, p. 282.
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Personal consumption expenditure (Y) in relation to GDP (X), 1982—1996, both in billions of 1992
dollars.

the U.S. economy for the period 1981-1996. The Y variable in this table is
the aggregate (for the economy as a whole) personal consumption expen-
diture (PCE) and the X variable is gross domestic product (GDP), a measure
of aggregate income, both measured in billions of 1992 dollars. Therefore,
the data are in “real” terms; that is, they are measured in constant (1992)
prices. The data are plotted in Figure 1.3 (cf. Figure 1.2). For the time being
neglect the line drawn in the figure.

5. Estimation of the Econometric Model

Now that we have the data, our next task is to estimate the parameters of
the consumption function. The numerical estimates of the parameters give
empirical content to the consumption function. The actual mechanics of es-
timating the parameters will be discussed in Chapter 3. For now, note that
the statistical technique of regression analysis is the main tool used to
obtain the estimates. Using this technique and the data given in Table 1.1,
we obtain the following estimates of 8; and B, namely, —184.08 and 0.7064.
Thus, the estimated consumption function is:

Y = —184.08 + 0.7064X; (1.3.3)

The hat on the Y indicates that it is an estimate.!! The estimated consump-
tion function (i.e., regression line) is shown in Figure 1.3.

"As a matter of convention, a hat over a variable or parameter indicates that it is an esti-
mated value.
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As Figure 1.3 shows, the regression line fits the data quite well in that the
data points are very close to the regression line. From this figure we see that
for the period 1982-1996 the slope coefficient (i.e., the MPC) was about
0.70, suggesting that for the sample period an increase in real income of
1 dollar led, on average, to an increase of about 70 cents in real consumption
expenditure.!? We say on average because the relationship between con-
sumption and income is inexact; as is clear from Figure 1.3; not all the data
points lie exactly on the regression line. In simple terms we can say that, ac-
cording to our data, the average, or mean, consumption expenditure went up
by about 70 cents for a dollar’s increase in real income.

6. Hypothesis Testing

Assuming that the fitted model is a reasonably good approximation of
reality, we have to develop suitable criteria to find out whether the esti-
mates obtained in, say, Eq. (I.3.3) are in accord with the expectations of the
theory that is being tested. According to “positive” economists like Milton
Friedman, a theory or hypothesis that is not verifiable by appeal to empiri-
cal evidence may not be admissible as a part of scientific enquiry.'

As noted earlier, Keynes expected the MPC to be positive but less than 1.
In our example we found the MPC to be about 0.70. But before we accept
this finding as confirmation of Keynesian consumption theory, we must en-
quire whether this estimate is sufficiently below unity to convince us that
this is not a chance occurrence or peculiarity of the particular data we have
used. In other words, is 0.70 statistically less than 1? If it is, it may support
Keynes’ theory.

Such confirmation or refutation of economic theories on the basis of
sample evidence is based on a branch of statistical theory known as statis-
tical inference (hypothesis testing). Throughout this book we shall see
how this inference process is actually conducted.

7. Forecasting or Prediction

If the chosen model does not refute the hypothesis or theory under consid-
eration, we may use it to predict the future value(s) of the dependent, or
forecast, variable Y on the basis of known or expected future value(s) of the
explanatory, or predictor, variable X.

To illustrate, suppose we want to predict the mean consumption expen-
diture for 1997. The GDP value for 1997 was 7269.8 billion dollars.!* Putting

Do not worry now about how these values were obtained. As we show in Chap. 3, the
statistical method of least squares has produced these estimates. Also, for now do not worry
about the negative value of the intercept.

13See Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Eco-
nomics, University of Chicago Press, Chicago, 1953.

“Data on PCE and GDP were available for 1997 but we purposely left them out to illustrate
the topic discussed in this section. As we will discuss in subsequent chapters, it is a good idea
to save a portion of the data to find out how well the fitted model predicts the out-of-sample
observations.
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this GDP figure on the right-hand side of (1.3.3), we obtain:

Yig97 = —184.0779 + 0.7064 (7269.8)
=4951.3167

(1.3.4)

or about 4951 billion dollars. Thus, given the value of the GDP, the mean,
or average, forecast consumption expenditure is about 4951 billion dol-
lars. The actual value of the consumption expenditure reported in 1997 was
4913.5 billion dollars. The estimated model (1.3.3) thus overpredicted
the actual consumption expenditure by about 37.82 billion dollars. We
could say the forecast error is about 37.82 billion dollars, which is about
0.76 percent of the actual GDP value for 1997. When we fully discuss the
linear regression model in subsequent chapters, we will try to find out if
such an error is “small” or “large.” But what is important for now is to note
that such forecast errors are inevitable given the statistical nature of our
analysis.

There is another use of the estimated model (I.3.3). Suppose the Presi-
dent decides to propose a reduction in the income tax. What will be the ef-
fect of such a policy on income and thereby on consumption expenditure
and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment ex-
penditure increases. What will be the effect on the economy? As macroeco-
nomic theory shows, the change in income following, say, a dollar’s worth of
change in investment expenditure is given by the income multiplier M,

which is defined as

1

M =1—wrc

(1.3.5)

If we use the MPC of 0.70 obtained in (I.3.3), this multiplier becomes about
M = 3.33. That is, an increase (decrease) of a dollar in investment will even-
tually lead to more than a threefold increase (decrease) in income; note that
it takes time for the multiplier to work.

The critical value in this computation is MPC, for the multiplier depends
on it. And this estimate of the MPC can be obtained from regression models
such as (I1.3.3). Thus, a quantitative estimate of MPC provides valuable in-
formation for policy purposes. Knowing MPC, one can predict the future
course of income, consumption expenditure, and employment following a
change in the government’s fiscal policies.

8. Use of the Model for Control or Policy Purposes

Suppose we have the estimated consumption function given in (I1.3.3).
Suppose further the government believes that consumer expenditure of
about 4900 (billions of 1992 dollars) will keep the unemployment rate at its
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FIGURE 1.4  Anatomy of econometric modeling.

current level of about 4.2 percent (early 2000). What level of income will
guarantee the target amount of consumption expenditure?

If the regression results given in (I.3.3) seem reasonable, simple arith-
metic will show that

4900 = —184.0779 + 0.7064X (1.3.6)

which gives X = 7197, approximately. That is, an income level of about
7197 (billion) dollars, given an MPC of about 0.70, will produce an expendi-
ture of about 4900 billion dollars.

As these calculations suggest, an estimated model may be used for con-
trol, or policy, purposes. By appropriate fiscal and monetary policy mix, the
government can manipulate the control variable X to produce the desired
level of the target variable Y.

Figure 1.4 summarizes the anatomy of classical econometric modeling.

Choosing among Competing Models

When a governmental agency (e.g., the U.S. Department of Commerce) col-
lects economic data, such as that shown in Table 1.1, it does not necessarily
have any economic theory in mind. How then does one know that the data
really support the Keynesian theory of consumption? Is it because the
Keynesian consumption function (i.e., the regression line) shown in Fig-
ure 1.3 is extremely close to the actual data points? Is it possible that an-
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other consumption model (theory) might equally fit the data as well? For ex-
ample, Milton Friedman has developed a model of consumption, called the
permanent income hypothesis.'> Robert Hall has also developed a model of
consumption, called the life-cycle permanent income hypothesis.'® Could one
or both of these models also fit the data in Table 1.1?

In short, the question facing a researcher in practice is how to choose
among competing hypotheses or models of a given phenomenon, such as
the consumption-income relationship. As Miller contends:

No encounter with data is step towards genuine confirmation unless the hypoth-
esis does a better job of coping with the data than some natural rival. ... What
strengthens a hypothesis, here, is a victory that is, at the same time, a defeat for a
plausible rival.!”

How then does one choose among competing models or hypotheses? Here
the advice given by Clive Granger is worth keeping in mind:'®

I would like to suggest that in the future, when you are presented with a new piece
of theory or empirical model, you ask these questions:

(i) What purpose does it have? What economic decisions does it help with?
and;

(ii) Is there any evidence being presented that allows me to evaluate its qual-
ity compared to alternative theories or models?

I think attention to such questions will strengthen economic research and
discussion.

As we progress through this book, we will come across several competing
hypotheses trying to explain various economic phenomena. For example,
students of economics are familiar with the concept of the production func-
tion, which is basically a relationship between output and inputs (say, capi-
tal and labor). In the literature, two of the best known are the Cobb-Douglas
and the constant elasticity of substitution production functions. Given the
data on output and inputs, we will have to find out which of the two pro-
duction functions, if any, fits the data well.

The eight-step classical econometric methodology discussed above is
neutral in the sense that it can be used to test any of these rival hypotheses.

Is it possible to develop a methodology that is comprehensive enough to
include competing hypotheses? This is an involved and controversial topic.

BMilton Friedman, A Theory of Consumption Function, Princeton University Press,
Princeton, N.J., 1957.

16R. Hall, “Stochastic Implications of the Life Cycle Permanent Income Hypothesis: Theory
and Evidence,” Journal of Political Economy, 1978, vol. 86, pp. 971-987.

7R. W. Miller, Fact and Method: Explanation, Confirmation, and Reality in the Natural and
Social Sciences, Princeton University Press, Princeton, N.J., 1978, p. 176.

8Clive W. J. Granger, Empirical Modeling in Economics, Cambridge University Press, UK.,
1999, p. 58.
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FIGURE 1.5

Econometrics
|
v v

Theoretical Applied

Classical Bayesian Classical Bayesian

Categories of econometrics.

We will discuss it in Chapter 13, after we have acquired the necessary
econometric theory.

.4 TYPES OF ECONOMETRICS

As the classificatory scheme in Figure 1.5 suggests, econometrics may be
divided into two broad categories: theoretical econometrics and applied
econometrics. In each category, one can approach the subject in the clas-
sical or Bayesian tradition. In this book the emphasis is on the classical
approach. For the Bayesian approach, the reader may consult the refer-
ences given at the end of the chapter.

Theoretical econometrics is concerned with the development of appro-
priate methods for measuring economic relationships specified by econo-
metric models. In this aspect, econometrics leans heavily on mathematical
statistics. For example, one of the methods used extensively in this book is
least squares. Theoretical econometrics must spell out the assumptions of
this method, its properties, and what happens to these properties when one
or more of the assumptions of the method are not fulfilled.

In applied econometrics we use the tools of theoretical econometrics to
study some special field(s) of economics and business, such as the produc-
tion function, investment function, demand and supply functions, portfolio
theory, etc.

This book is concerned largely with the development of econometric
methods, their assumptions, their uses, their limitations. These methods are
illustrated with examples from various areas of economics and business.
But this is not a book of applied econometrics in the sense that it delves
deeply into any particular field of economic application. That job is best left
to books written specifically for this purpose. References to some of these
books are provided at the end of this book.

1.5 MATHEMATICAL AND STATISTICAL PREREQUISITES

Although this book is written at an elementary level, the author assumes
that the reader is familiar with the basic concepts of statistical estimation
and hypothesis testing. However, a broad but nontechnical overview of the
basic statistical concepts used in this book is provided in Appendix A for
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the benefit of those who want to refresh their knowledge. Insofar as mathe-
matics is concerned, a nodding acquaintance with the notions of differential
calculus is desirable, although not essential. Although most graduate level
books in econometrics make heavy use of matrix algebra, I want to make it
clear that it is not needed to study this book. It is my strong belief that the
fundamental ideas of econometrics can be conveyed without the use of
matrix algebra. However, for the benefit of the mathematically inclined stu-
dent, Appendix C gives the summary of basic regression theory in matrix
notation. For these students, Appendix B provides a succinct summary of
the main results from matrix algebra.

1.6 THE ROLE OF THE COMPUTER

Regression analysis, the bread-and-butter tool of econometrics, these days
is unthinkable without the computer and some access to statistical soft-
ware. (Believe me, I grew up in the generation of the slide rule!) Fortunately,
several excellent regression packages are commercially available, both for
the mainframe and the microcomputer, and the list is growing by the day.
Regression software packages, such as ET, LIMDEP, SHAZAM, MICRO
TSP, MINITAB, EVIEWS, SAS, SPSS, STATA, Microfit, PcGive, and BMD
have most of the econometric techniques and tests discussed in this book.

In this book, from time to time, the reader will be asked to conduct
Monte Carlo experiments using one or more of the statistical packages.
Monte Carlo experiments are “fun” exercises that will enable the reader to
appreciate the properties of several statistical methods discussed in this
book. The details of the Monte Carlo experiments will be discussed at ap-
propriate places.

1.7 SUGGESTIONS FOR FURTHER READING

The topic of econometric methodology is vast and controversial. For those
interested in this topic, I suggest the following books:

Neil de Marchi and Christopher Gilbert, eds., History and Methodology of
Econometrics, Oxford University Press, New York, 1989. This collection of
readings discusses some early work on econometric methodology and has
an extended discussion of the British approach to econometrics relating to
time series data, that is, data collected over a period of time.

Wojciech W. Charemza and Derek F. Deadman, New Directions in Econo-
metric Practice: General to Specific Modelling, Cointegration and Vector Auto-
gression, 2d ed., Edward Elgar Publishing Ltd., Hants, England, 1997. The
authors of this book critique the traditional approach to econometrics and
give a detailed exposition of new approaches to econometric methodology.

Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward
Elgar Publishers Ltd., Hants, England, 1990. The book provides a somewhat
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balanced discussion of the various methodological approaches to economet-
rics, with renewed allegiance to traditional econometric methodology.

Mary S. Morgan, The History of Econometric Ideas, Cambridge University
Press, New York, 1990. The author provides an excellent historical perspec-
tive on the theory and practice of econometrics, with an in-depth discussion
of the early contributions of Haavelmo (1990 Nobel Laureate in Economics)
to econometrics. In the same spirit, David F. Hendry and Mary S. Morgan,
The Foundation of Econometric Analysis, Cambridge University Press, U.K.,
1995, have collected seminal writings in econometrics to show the evolution
of econometric ideas over time.

David Colander and Reuven Brenner, eds., Educating Economists, Univer-
sity of Michigan Press, Ann Arbor, Michigan, 1992, present a critical, at times
agnostic, view of economic teaching and practice.

For Bayesian statistics and econometrics, the following books are very
useful: John H. Dey, Data in Doubt, Basic Blackwell Ltd., Oxford University
Press, England, 1985. Peter M. Lee, Bayesian Statistics: An Introduction,
Oxford University Press, England, 1989. Dale J. Porier, Intermediate Statis-
tics and Econometrics: A Comparative Approach, MIT Press, Cambridge,
Massachusetts, 1995. Arnold Zeller, An Introduction to Bayesian Inference in
Econometrics, John Wiley & Sons, New York, 1971, is an advanced reference

book.
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SINGLE-EQUATION
REGRESSION MODELS

Part I of this text introduces single-equation regression models. In these
models, one variable, called the dependent variable, is expressed as a linear
function of one or more other variables, called the explanatory variables.
In such models it is assumed implicitly that causal relationships, if any,
between the dependent and explanatory variables flow in one direction only,
namely, from the explanatory variables to the dependent variable.

In Chapter 1, we discuss the historical as well as the modern interpreta-
tion of the term regression and illustrate the difference between the two in-
terpretations with several examples drawn from economics and other fields.

In Chapter 2, we introduce some fundamental concepts of regression
analysis with the aid of the two-variable linear regression model, a model
in which the dependent variable is expressed as a linear function of only a
single explanatory variable.

In Chapter 3, we continue to deal with the two-variable model and intro-
duce what is known as the classical linear regression model, a model that
makes several simplifying assumptions. With these assumptions, we intro-
duce the method of ordinary least squares (OLS) to estimate the parameters
of the two-variable regression model. The method of OLS is simple to apply,
yet it has some very desirable statistical properties.

In Chapter 4, we introduce the (two-variable) classical normal linear re-
gression model, a model that assumes that the random dependent variable
follows the normal probability distribution. With this assumption, the OLS
estimators obtained in Chapter 3 possess some stronger statistical proper-
ties than the nonnormal classical linear regression model—properties that
enable us to engage in statistical inference, namely, hypothesis testing.

15
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Chapter 5 is devoted to the topic of hypothesis testing. In this chapter, we
try to find out whether the estimated regression coefficients are compatible
with the hypothesized values of such coefficients, the hypothesized values
being suggested by theory and/or prior empirical work.

Chapter 6 considers some extensions of the two-variable regression
model. In particular, it discusses topics such as (1) regression through the
origin, (2) scaling and units of measurement, and (3) functional forms of
regression models such as double-log, semilog, and reciprocal models.

In Chapter 7, we consider the multiple regression model, a model in
which there is more than one explanatory variable, and show how the
method of OLS can be extended to estimate the parameters of such models.

In Chapter 8, we extend the concepts introduced in Chapter 5 to the
multiple regression model and point out some of the complications arising
from the introduction of several explanatory variables.

Chapter 9 on dummy, or qualitative, explanatory variables concludes
Part I of the text. This chapter emphasizes that not all explanatory variables
need to be quantitative (i.e., ratio scale). Variables, such as gender, race, re-
ligion, nationality, and region of residence, cannot be readily quantified, yet
they play a valuable role in explaining many an economic phenomenon.



Gujarati: Basic
Econometrics, Fourth
Edition

1. Single-Equation 1. The Nature of © The McGraw-Hill
Regression Models Regression Analysis Companies, 2004

THE NATURE OF
REGRESSION ANALYSIS

As mentioned in the Introduction, regression is a main tool of econometrics,
and in this chapter we consider very briefly the nature of this tool.

1.1 HISTORICAL ORIGIN OF THE TERM REGRESSION

The term regression was introduced by Francis Galton. In a famous paper,
Galton found that, although there was a tendency for tall parents to have
tall children and for short parents to have short children, the average height
of children born of parents of a given height tended to move or “regress” to-
ward the average height in the population as a whole.! In other words, the
height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of universal
regression was confirmed by his friend Karl Pearson, who collected more
than a thousand records of heights of members of family groups.? He found
that the average height of sons of a group of tall fathers was less than their
fathers’ height and the average height of sons of a group of short fathers
was greater than their fathers’ height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was
“regression to mediocrity.”

Francis Galton, “Family Likeness in Stature,” Proceedings of Royal Society, London, vol. 40,
1886, pp. 42-72.

2K. Pearson and A. Lee, “On the Laws of Inheritance,” Biometrika, vol. 2, Nov. 1903,
pp. 357-462.

17
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1.2 THE MODERN INTERPRETATION OF REGRESSION

Examples

FIGURE 1.1

The modern interpretation of regression is, however, quite different.
Broadly speaking, we may say

Regression analysis is concerned with the study of the dependence of one vari-
able, the dependent variable, on one or more other variables, the explanatory vari-
ables, with a view to estimating and/or predicting the (population) mean or aver-
age value of the former in terms of the known or fixed (in repeated sampling)
values of the latter.

The full import of this view of regression analysis will become clearer as
we progress, but a few simple examples will make the basic concept quite
clear.

1. Reconsider Galton’s law of universal regression. Galton was inter-
ested in finding out why there was a stability in the distribution of heights
in a population. But in the modern view our concern is not with this expla-
nation but rather with finding out how the average height of sons changes,
given the fathers’ height. In other words, our concern is with predicting the
average height of sons knowing the height of their fathers. To see how this
can be done, consider Figure 1.1, which is a scatter diagram, or scatter-
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gram. This figure shows the distribution of heights of sons in a hypothetical
population corresponding to the given or fixed values of the father’s height.
Notice that corresponding to any given height of a father is a range or dis-
tribution of the heights of the sons. However, notice that despite the vari-
ability of the height of sons for a given value of father’s height, the average
height of sons generally increases as the height of the father increases. To
show this clearly, the circled crosses in the figure indicate the average height
of sons corresponding to a given height of the father. Connecting these
averages, we obtain the line shown in the figure. This line, as we shall see, is
known as the regression line. It shows how the average height of sons
increases with the father’s height.?

2. Consider the scattergram in Figure 1.2, which gives the distribution
in a hypothetical population of heights of boys measured at fixed ages.
Corresponding to any given age, we have a range, or distribution, of heights.
Obviously, not all boys of a given age are likely to have identical heights.
But height on the average increases with age (of course, up to a certain age),
which can be seen clearly if we draw a line (the regression line) through the

70 X Mean value o

[o)
o
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ul
S

40 -

I I I I I
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Age, years

Hypothetical distribution of heights corresponding to selected ages.

3At this stage of the development of the subject matter, we shall call this regression line sim-
ply the line connecting the mean, or average, value of the dependent variable (son’s height) corre-
sponding to the given value of the explanatory variable (father’s height). Note that this line has a
positive slope but the slope is less than 1, which is in conformity with Galton’s regression to
mediocrity. (Why?)
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FIGURE 1.3

circled points that represent the average height at the given ages. Thus,
knowing the age, we may be able to predict from the regression line the
average height corresponding to that age.

3. Turning to economic examples, an economist may be interested in
studying the dependence of personal consumption expenditure on after-
tax or disposable real personal income. Such an analysis may be helpful
in estimating the marginal propensity to consume (MPC), that is, average
change in consumption expenditure for, say, a dollar’s worth of change in
real income (see Figure 1.3).

4. A monopolist who can fix the price or output (but not both) may want
to find out the response of the demand for a product to changes in price.
Such an experiment may enable the estimation of the price elasticity (i.e.,
price responsiveness) of the demand for the product and may help deter-
mine the most profitable price.

5. A labor economist may want to study the rate of change of money
wages in relation to the unemployment rate. The historical data are shown
in the scattergram given in Figure 1.3. The curve in Figure 1.3 is an example
of the celebrated Phillips curve relating changes in the money wages to the
unemployment rate. Such a scattergram may enable the labor economist to
predict the average change in money wages given a certain unemployment
rate. Such knowledge may be helpful in stating something about the infla-
tionary process in an economy, for increases in money wages are likely to be
reflected in increased prices.

Unemployment rate, %

Rate of change of money wages

Hypothetical Phillips curve.
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k- Money

Income

Inflation rate

Money holding in relation to the inflation rate =.

6. From monetary economics it is known that, other things remaining
the same, the higher the rate of inflation 7, the lower the proportion k of
their income that people would want to hold in the form of money, as de-
picted in Figure 1.4. A quantitative analysis of this relationship will enable
the monetary economist to predict the amount of money, as a proportion
of their income, that people would want to hold at various rates of inflation.

7. The marketing director of a company may want to know how the de-
mand for the company’s product is related to, say, advertising expenditure.
Such a study will be of considerable help in finding out the elasticity of
demand with respect to advertising expenditure, that is, the percent change
in demand in response to, say, a 1 percent change in the advertising budget.
This knowledge may be helpful in determining the “optimum” advertising
budget.

8. Finally, an agronomist may be interested in studying the dependence
of crop yield, say, of wheat, on temperature, rainfall, amount of sunshine,
and fertilizer. Such a dependence analysis may enable the prediction or
forecasting of the average crop yield, given information about the explana-
tory variables.

The reader can supply scores of such examples of the dependence of one
variable on one or more other variables. The techniques of regression analy-
sis discussed in this text are specially designed to study such dependence
among variables.
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1.3 STATISTICAL VERSUS DETERMINISTIC RELATIONSHIPS

From the examples cited in Section 1.2, the reader will notice that in re-
gression analysis we are concerned with what is known as the statistical, not
functional or deterministic, dependence among variables, such as those of
classical physics. In statistical relationships among variables we essentially
deal with random or stochastic* variables, that is, variables that have prob-
ability distributions. In functional or deterministic dependency, on the
other hand, we also deal with variables, but these variables are not random
or stochastic.

The dependence of crop yield on temperature, rainfall, sunshine, and
fertilizer, for example, is statistical in nature in the sense that the explana-
tory variables, although certainly important, will not enable the agronomist
to predict crop yield exactly because of errors involved in measuring these
variables as well as a host of other factors (variables) that collectively affect
the yield but may be difficult to identify individually. Thus, there is bound
to be some “intrinsic” or random variability in the dependent-variable crop
yield that cannot be fully explained no matter how many explanatory vari-
ables we consider.

In deterministic phenomena, on the other hand, we deal with relationships
of the type, say, exhibited by Newton’s law of gravity, which states: Every
particle in the universe attracts every other particle with a force directly pro-
portional to the product of their masses and inversely proportional to the
square of the distance between them. Symbolically, F = k(nm1,/r?), where
F =force, my and n, are the masses of the two particles, r = distance, and
k = constant of proportionality. Another example is Ohm’s law, which states:
For metallic conductors over a limited range of temperature the current C is
proportional to the voltage V; that is, C = (%)V where % is the constant of
proportionality. Other examples of such deterministic relationships are
Boyle’s gas law, Kirchhoff’s law of electricity, and Newton'’s law of motion.

In this text we are not concerned with such deterministic relationships.
Of course, if there are errors of measurement, say, in the k& of Newton’s law
of gravity, the otherwise deterministic relationship becomes a statistical re-
lationship. In this situation, force can be predicted only approximately from
the given value of k (and m1, m, and ), which contains errors. The variable
F in this case becomes a random variable.

1.4 REGRESSION VERSUS CAUSATION

Although regression analysis deals with the dependence of one variable on
other variables, it does not necessarily imply causation. In the words of
Kendall and Stuart, “A statistical relationship, however strong and however

4The word stochastic comes from the Greek word stokhos meaning “a bull’s eye.” The out-
come of throwing darts on a dart board is a stochastic process, that is, a process fraught with
misses.
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suggestive, can never establish causal connection: our ideas of causation
must come from outside statistics, ultimately from some theory or other.”>

In the crop-yield example cited previously, there is no statistical reason to
assume that rainfall does not depend on crop yield. The fact that we treat
crop yield as dependent on rainfall (among other things) is due to nonsta-
tistical considerations: Common sense suggests that the relationship cannot
be reversed, for we cannot control rainfall by varying crop yield.

In all the examples cited in Section 1.2 the point to note is that a statisti-
cal relationship in itself cannot logically imply causation. To ascribe
causality, one must appeal to a priori or theoretical considerations. Thus, in
the third example cited, one can invoke economic theory in saying that con-
sumption expenditure depends on real income.®

1.5 REGRESSION VERSUS CORRELATION

Closely related to but conceptually very much different from regression
analysis is correlation analysis, where the primary objective is to measure
the strength or degree of linear association between two variables. The cor-
relation coefficient, which we shall study in detail in Chapter 3, measures
this strength of (linear) association. For example, we may be interested in
finding the correlation (coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high
school grades and college grades, and so on. In regression analysis, as al-
ready noted, we are not primarily interested in such a measure. Instead, we
try to estimate or predict the average value of one variable on the basis
of the fixed values of other variables. Thus, we may want to know whether
we can predict the average score on a statistics examination by knowing a
student’s score on a mathematics examination.

Regression and correlation have some fundamental differences that are
worth mentioning. In regression analysis there is an asymmetry in the way
the dependent and explanatory variables are treated. The dependent vari-
able is assumed to be statistical, random, or stochastic, that is, to have a
probability distribution. The explanatory variables, on the other hand, are
assumed to have fixed values (in repeated sampling),” which was made ex-
plicit in the definition of regression given in Section 1.2. Thus, in Figure 1.2
we assumed that the variable age was fixed at given levels and height mea-
surements were obtained at these levels. In correlation analysis, on the

SM. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers,
New York, 1961, vol. 2, chap. 26, p. 279.

®But as we shall see in Chap. 3, classical regression analysis is based on the assumption that
the model used in the analysis is the correct model. Therefore, the direction of causality may
be implicit in the model postulated.

"It is crucial to note that the explanatory variables may be intrinsically stochastic, but for
the purpose of regression analysis we assume that their values are fixed in repeated sampling
(that is, X assumes the same values in various samples), thus rendering them in effect non-
random or nonstochastic. But more on this in Chap. 3, Sec. 3.2.
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other hand, we treat any (two) variables symmetrically; there is no distinc-
tion between the dependent and explanatory variables. After all, the corre-
lation between scores on mathematics and statistics examinations is the
same as that between scores on statistics and mathematics examinations.
Moreover, both variables are assumed to be random. As we shall see, most
of the correlation theory is based on the assumption of randomness of vari-
ables, whereas most of the regression theory to be expounded in this book is
conditional upon the assumption that the dependent variable is stochastic
but the explanatory variables are fixed or nonstochastic.?

1.6 TERMINOLOGY AND NOTATION

Before we proceed to a formal analysis of regression theory, let us dwell
briefly on the matter of terminology and notation. In the literature the terms
dependent variable and explanatory variable are described variously. A repre-
sentative list is:

Dependent variable Explanatory variable
& ¢
Explained variable Independent variable
¢ ¢
Predictand Predictor
83 83
Regressand Regressor
¢ ¢
Response Stimulus
& ¢
Endogenous Exogenous
¢ &
Outcome Covariate
¢ ¢
Controlled variable Control variable

Although it is a matter of personal taste and tradition, in this text we will use
the dependent variable/explanatory variable or the more neutral, regressand
and regressor terminology.

If we are studying the dependence of a variable on only a single explana-
tory variable, such as that of consumption expenditure on real income,
such a study is known as simple, or two-variable, regression analysis.
However, if we are studying the dependence of one variable on more than

8In advanced treatment of econometrics, one can relax the assumption that the explanatory
variables are nonstochastic (see introduction to Part II).
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one explanatory variable, as in the crop-yield, rainfall, temperature, sun-
shine, and fertilizer examples, it is known as multiple regression analysis.
In other words, in two-variable regression there is only one explanatory
variable, whereas in multiple regression there is more than one explana-
tory variable.

The term random is a synonym for the term stochastic. As noted earlier,
a random or stochastic variable is a variable that can take on any set of
values, positive or negative, with a given probability.’

Unless stated otherwise, the letter Y will denote the dependent variable
and the X’s (X1, X5, ..., X;) will denote the explanatory variables, X being
the kth explanatory variable. The subscript i or ¢t will denote the ith or the tth
observation or value. X}; (or X,) will denote the ith (or tth) observation on
variable X;.. N (or T) will denote the total number of observations or values
in the population, and # (or t) the total number of observations in a sample.
As a matter of convention, the observation subscript i will be used for cross-
sectional data (i.e., data collected at one point in time) and the subscript ¢
will be used for time series data (i.e., data collected over a period of time).
The nature of cross-sectional and time series data, as well as the important
topic of the nature and sources of data for empirical analysis, is discussed in
the following section.

1.7 THE NATURE AND SOURCES OF DATA
FOR ECONOMIC ANALYSIS'®

Types of Data

The success of any econometric analysis ultimately depends on the avail-
ability of the appropriate data. It is therefore essential that we spend some
time discussing the nature, sources, and limitations of the data that one
may encounter in empirical analysis.

Three types of data may be available for empirical analysis: time series,
cross-section, and pooled (i.e., combination of time series and cross-
section) data.

Time Series Data The data shown in Table I.1 of the Introduction are
an example of time series data. A time series is a set of observations on the
values that a variable takes at different times. Such data may be collected
at regular time intervals, such as daily (e.g., stock prices, weather reports),
weekly (e.g., money supply figures), monthly [e.g., the unemployment rate,
the Consumer Price Index (CPI)], quarterly (e.g., GDP), annually (e.g.,

See App. A for formal definition and further details.
19For an informative account, see Michael D. Intriligator, Econometric Models, Techniques,
and Applications, Prentice Hall, Englewood Cliffs, N.J., 1978, chap. 3.
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FIGURE 1.5

government budgets), quinquennially, that is, every 5 years (e.g., the cen-
sus of manufactures), or decennially (e.g., the census of population).
Sometime data are available both quarterly as well as annually, as in the
case of the data on GDP and consumer expenditure. With the advent of
high-speed computers, data can now be collected over an extremely short
interval of time, such as the data on stock prices, which can be obtained lit-
erally continuously (the so-called real-time guote).

Although time series data are used heavily in econometric studies, they
present special problems for econometricians. As we will show in chapters
on time series econometrics later on, most empirical work based on time
series data assumes that the underlying time series is stationary. Although
it is too early to introduce the precise technical meaning of stationarity at
this juncture, loosely speaking a time series is stationary if its mean and vari-
ance do not vary systematically over time. To see what this means, consider
Figure 1.5, which depicts the behavior of the M1 money supply in the
United States from January 1, 1959, to July 31, 1999. (The actual data are
given in exercise 1.4.) As you can see from this figure, the M1 money supply
shows a steady upward trend as well as variability over the years, suggest-
ing that the M1 time series is not stationary.!! We will explore this topic fully
in Chapter 21.
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M1 money supply: United States, 1951:01-1999:09.

To see this more clearly, we divided the data into four time periods: 1951:01 to 1962:12;
1963:01 to 1974:12; 1975:01 to 1986:12, and 1987:01 to 1999:09: For these subperiods the mean
values of the money supply (with corresponding standard deviations in parentheses) were, re-
spectively, 165.88 (23.27), 323.20 (72.66), 788.12 (195.43), and 1099 (27.84), all figures in bil-
lions of dollars. This is a rough indication of the fact that the money supply over the entire pe-
riod was not stationary.
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Cross-Section Data Cross-section data are data on one or more vari-
ables collected at the same point in time, such as the census of population
conducted by the Census Bureau every 10 years (the latest being in year
2000), the surveys of consumer expenditures conducted by the University of
Michigan, and, of course, the opinion polls by Gallup and umpteen other or-
ganizations. A concrete example of cross-sectional data is given in Table 1.1
This table gives data on egg production and egg prices for the 50 states in
the union for 1990 and 1991. For each year the data on the 50 states are
cross-sectional data. Thus, in Table 1.1 we have two cross-sectional samples.

Just as time series data create their own special problems (because of
the stationarity issue), cross-sectional data too have their own problems,
specifically the problem of heterogeneity. From the data given in Table 1.1
we see that we have some states that produce huge amounts of eggs (e.g.,
Pennsylvania) and some that produce very little (e.g., Alaska). When we

U.S. EGG PRODUCTION

State Y, Yo Xi Xo State Y; Yo Xi Xo

AL 2,206 2,186 92.7 91.4 MT 172 164 68.0 66.0
AK 0.7 0.7 151.0 149.0 NE 1,202 1,400 50.3 48.9
AZ 73 74 61.0 56.0 NV 2.2 1.8 53.9 52.7
AR 3,620 3,737 86.3 91.8 NH 43 49 109.0 104.0
CA 7,472 7,444 63.4 58.4 NJ 442 491 85.0 83.0
CO 788 873 77.8 73.0 NM 283 302 74.0 70.0
CT 1,029 948 106.0 104.0 NY 975 987 68.1 64.0
DE 168 164 117.0 113.0 NC 3,033 3,045 82.8 78.7
FL 2,586 2,537 62.0 57.2 ND 51 45 55.2 48.0
GA 4,302 4,301 80.6 80.8 OH 4,667 4,637 59.1 54.7
HI 2275 224.5 85.0 85.5 OK 869 830 101.0 100.0
ID 187 203 79.1 72.9 OR 652 686 77.0 74.6
IL 793 809 65.0 70.5 PA 4,976 5,130 61.0 52.0
IN 5,445 5,290 62.7 60.1 RI 53 50 102.0 99.0
1A 2,151 2,247 56.5 53.0 SC 1,422 1,420 70.1 65.9
KS 404 389 54.5 47.8 SD 435 602 48.0 45.8
KY 412 483 67.7 73.5 TN 277 279 71.0 80.7
LA 273 254 115.0 115.0 TX 3,317 3,356 76.7 72.6
ME 1,069 1,070 101.0 97.0 uT 456 486 64.0 59.0
MD 885 898 76.6 75.4 VT 31 30 106.0 102.0
MA 235 237 105.0 102.0 VA 943 988 86.3 81.2
Mi 1,406 1,396 58.0 53.8 WA 1,287 1,313 741 71.5
MN 2,499 2,697 57.7 54.0 wv 136 174 104.0 109.0
MS 1,434 1,468 87.8 86.7 Wi 910 873 60.1 54.0
MO 1,580 1,622 55.4 51.5 wy 1.7 1.7 83.0 83.0

Note: Y; = eggs produced in 1990 (millions)
Y, = eggs produced in 1991 (millions)
Xy = price per dozen (cents) in 1990
X, = price per dozen (cents) in 1991
Source: World Almanac, 1993, p. 119. The data are from the Economic Research Service, U.S. Department
of Agriculture.
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FIGURE 1.6
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include such heterogeneous units in a statistical analysis, the size or scale
effect must be taken into account so as not to mix apples with oranges. To
see this clearly, we plot in Figure 1.6 the data on eggs produced and their
prices in 50 states for the year 1990. This figure shows how widely scattered
the observations are. In Chapter 11 we will see how the scale effect can be
an important factor in assessing relationships among economic variables.

Pooled Data In pooled, or combined, data are elements of both time
series and cross-section data. The data in Table 1.1 are an example of pooled
data. For each year we have 50 cross-sectional observations and for each
state we have two time series observations on prices and output of eggs, a
total of 100 pooled (or combined) observations. Likewise, the data given in
exercise 1.1 are pooled data in that the Consumer Price Index (CPI) for each
country for 1973-1997 is time series data, whereas the data on the CPI for
the seven countries for a single year are cross-sectional data. In the pooled
data we have 175 observations—25 annual observations for each of the
seven countries.

Panel, Longitudinal, or Micropanel Data This is a special type of
pooled data in which the same cross-sectional unit (say, a family or a firm)
is surveyed over time. For example, the U.S. Department of Commerce car-
ries out a census of housing at periodic intervals. At each periodic survey the
same household (or the people living at the same address) is interviewed to
find out if there has been any change in the housing and financial conditions
of that household since the last survey. By interviewing the same household
periodically, the panel data provides very useful information on the dynam-
ics of household behavior, as we shall see in Chapter 16.
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The Sources of Data'?

The data used in empirical analysis may be collected by a governmental
agency (e.g., the Department of Commerce), an international agency (e.g., the
International Monetary Fund (IMF) or the World Bank), a private organiza-
tion (e.g., the Standard & Poor’s Corporation), or an individual. Literally, there
are thousands of such agencies collecting data for one purpose or another.

The Internet The Internet has literally revolutionized data gathering. If
you just “surf the net” with a keyword (e.g., exchange rates), you will be
swamped with all kinds of data sources. In Appendix E we provide some of
the frequently visited web sites that provide economic and financial data of
all sorts. Most of the data can be downloaded without much cost. You may
want to bookmark the various web sites that might provide you with useful
economic data.

The data collected by various agencies may be experimental or nonex-
perimental. In experimental data, often collected in the natural sciences,
the investigator may want to collect data while holding certain factors con-
stant in order to assess the impact of some factors on a given phenomenon.
For instance, in assessing the impact of obesity on blood pressure, the re-
searcher would want to collect data while holding constant the eating, smok-
ing, and drinking habits of the people in order to minimize the influence of
these variables on blood pressure.

In the social sciences, the data that one generally encounters are nonex-
perimental in nature, that is, not subject to the control of the researcher.'® For
example, the data on GNP, unemployment, stock prices, etc., are not directly
under the control of the investigator. As we shall see, this lack of control often
creates special problems for the researcher in pinning down the exact cause
or causes affecting a particular situation. For example, is it the money supply
that determines the (nominal) GDP or is it the other way round?

The Accuracy of Data'

Although plenty of data are available for economic research, the quality of
the data is often not that good. There are several reasons for that. First, as
noted, most social science data are nonexperimental in nature. Therefore,
there is the possibility of observational errors, either of omission or com-
mission. Second, even in experimentally collected data errors of measure-
ment arise from approximations and roundoffs. Third, in questionnaire-type
surveys, the problem of nonresponse can be serious; a researcher is lucky to

2For an illuminating account, see Albert T. Somers, The U.S. Economy Demystified: What
the Major Economic Statistics Mean and their Significance for Business, D.C. Heath, Lexington,
Mass., 1985.

131n the social sciences too sometimes one can have a controlled experiment. An example is
given in exercise 1.6.

4For a critical review, see O. Morgenstern, The Accuracy of Economic Observations, 2d ed.,
Princeton University Press, Princeton, N.J., 1963.
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get a 40 percent response to a questionnaire. Analysis based on such partial
response may not truly reflect the behavior of the 60 percent who did not
respond, thereby leading to what is known as (sample) selectivity bias. Then
there is the further problem that those who respond to the questionnaire
may not answer all the questions, especially questions of financially sensi-
tive nature, thus leading to additional selectivity bias. Fourth, the sampling
methods used in obtaining the data may vary so widely that it is often diffi-
cult to compare the results obtained from the various samples. Fifth, eco-
nomic data are generally available at a highly aggregate level. For exam-
ple, most macrodata (e.g., GNP, employment, inflation, unemployment) are
available for the economy as a whole or at the most for some broad geo-
graphical regions. Such highly aggregated data may not tell us much about
the individual or microunits that may be the ultimate object of study. Sixth,
because of confidentiality, certain data can be published only in highly
aggregate form. The IRS, for example, is not allowed by law to disclose data
on individual tax returns; it can only release some broad summary data.
Therefore, if one wants to find out how much individuals with a certain level
of income spent on health care, one cannot do that analysis except at a very
highly aggregate level. But such macroanalysis often fails to reveal the
dynamics of the behavior of the microunits. Similarly, the Department of
Commerce, which conducts the census of business every 5 years, is not
allowed to disclose information on production, employment, energy con-
sumption, research and development expenditure, etc., at the firm level. It is
therefore difficult to study the interfirm differences on these items.

Because of all these and many other problems, the researcher should
always keep in mind that the results of research are only as good as the
quality of the data. Therefore, if in given situations researchers find that the
results of the research are “unsatisfactory,” the cause may be not that they
used the wrong model but that the quality of the data was poor. Unfortu-
nately, because of the nonexperimental nature of the data used in most social
science studies, researchers very often have no choice but to depend on the
available data. But they should always keep in mind that the data used may
not be the best and should try not to be too dogmatic about the results ob-
tained from a given study, especially when the quality of the data is suspect.

A Note on the Measurement Scales of Variables's

The variables that we will generally encounter fall into four broad cate-
gories: ratio scale, interval scale, ordinal scale, and nominal scale. 1t is im-
portant that we understand each.

Ratio Scale For a variable X, taking two values, X; and X5, the ratio
X1/X, and the distance (X, — X;) are meaningful quantities. Also, there is a

15The following discussion relies heavily on Aris Spanos, Probability Theory and Statistical
Inference: Econometric Modeling with Observational Data, Cambridge University Press, New
York, 1999, p. 24.



Gujarati: Basic
Econometrics, Fourth
Edition

1. Single-Equation 1. The Nature of © The McGraw-Hill
Regression Models Regression Analysis Companies, 2004

CHAPTER ONE: THE NATURE OF REGRESSION ANALYSIS 31

natural ordering (ascending or descending) of the values along the scale.
Therefore, comparisons such as X, < X; or X; > X; are meaningful. Most
economic variables belong to this category. Thus, it is meaningful to ask
how big is this year’s GDP compared with the previous year’s GDP.

Interval Scale An interval scale variable satisfies the last two properties
of the ratio scale variable but not the first. Thus, the distance between two
time periods, say (2000-1995) is meaningful, but not the ratio of two time
periods (2000/1995).

Ordinal Scale A variable belongs to this category only if it satisfies the
third property of the ratio scale (i.e., natural ordering). Examples are grad-
ing systems (A, B, C grades) or income class (upper, middle, lower). For
these variables the ordering exists but the distances between the categories
cannot be quantified. Students of economics will recall the indifference
curves between two goods, each higher indifference curve indicating higher
level of utility, but one cannot quantify by how much one indifference curve
is higher than the others.

Nominal Scale Variables in this category have none of the features of
the ratio scale variables. Variables such as gender (male, female) and mari-
tal status (married, unmarried, divorced, separated) simply denote cate-
gories. Question: What is the reason why such variables cannot be expressed
on the ratio, interval, or ordinal scales?

As we shall see, econometric techniques that may be suitable for ratio
scale variables may not be suitable for nominal scale variables. Therefore, it
is important to bear in mind the distinctions among the four types of mea-
surement scales discussed above.

1.8 SUMMARY AND CONCLUSIONS

1. The key idea behind regression analysis is the statistical dependence
of one variable, the dependent variable, on one or more other variables, the
explanatory variables.

2. The objective of such analysis is to estimate and/or predict the mean
or average value of the dependent variable on the basis of the known or fixed
values of the explanatory variables.

3. In practice the success of regression analysis depends on the avail-
ability of the appropriate data. This chapter discussed the nature, sources,
and limitations of the data that are generally available for research, espe-
cially in the social sciences.

4. In any research, the researcher should clearly state the sources of the
data used in the analysis, their definitions, their methods of collection, and
any gaps or omissions in the data as well as any revisions in the data. Keep
in mind that the macroeconomic data published by the government are
often revised.
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TABLE 1.2

1. Single-Equation
Regression Models

1. The Nature of

Regression Analysis
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5. Since the reader may not have the time, energy, or resources to track
down the data, the reader has the right to presume that the data used by the
researcher are properly gathered and that the computations and analysis
are correct.

1.1. Table 1.2 gives data on the Consumer Price Index (CPI) for seven industri-
alized countries with 1982-1984 = 100 as the base of the index.

a.

b.
c.

d.

the seven countries?

any explanation?

CPI'IN SEVEN INDUSTRIAL COUNTRIES, 1973-1997 (1982—1984 = 100)

From the given data, compute the inflation rate for each country.'®
Plot the inflation rate for each country against time (i.e., use the hori-
zontal axis for time and the vertical axis for the inflation rate.)

What broad conclusions can you draw about the inflation experience in

Which country’s inflation rate seems to be most variable? Can you offer

Year Canada France Germany Italy Japan U.K. uU.s.
1973  40.80000 34.60000 62.80000 20.60000 47.90000 27.90000  44.40000
1974 4520000 39.30000 67.10000 24.60000 59.00000 32.30000  49.30000
1975  50.10000  43.90000  71.10000 28.80000 65.90000  40.20000  53.80000
1976  53.90000 48.10000  74.20000  33.60000 72.20000 46.80000  56.90000
1977  58.10000 52.70000  76.90000  40.10000  78.10000  54.20000  60.60000
1978  63.30000 57.50000  79.00000 45.10000 81.40000 58.70000  65.20000
1979  69.20000 63.60000 82.20000 52.10000 84.40000 66.60000  72.60000
1980  76.10000 72.30000 86.70000  63.20000 90.90000  78.50000  82.40000
1981  85.60000 81.90000 92.20000  75.40000  95.30000 87.90000  90.90000
1982  94.90000 91.70000 97.10000  87.70000 98.10000  95.40000  96.50000
1983 100.4000 100.4000 100.3000  100.8000 99.80000  99.80000  99.60000
1984 104.7000 108.1000  102.7000  111.5000  102.1000  104.8000  103.9000
1985 109.0000 114.4000 104.8000 121.1000 104.1000  111.1000  107.6000
1986 113.5000 117.3000 104.7000  128.5000  104.8000  114.9000  109.6000
1987 118.4000 121.1000 104.9000  134.4000 104.8000  119.7000  113.6000
1988 123.2000 124.4000 106.3000  141.1000 105.6000 125.6000  118.3000
1989 129.3000 128.7000 109.2000  150.4000  108.1000  135.3000  124.0000
1990 135.5000 133.0000 112.2000 159.6000  111.4000  148.2000  130.7000
1991 143.1000 137.2000  116.3000 169.8000  115.0000  156.9000  136.2000
1992 145.3000 140.5000 122.1000 178.8000  116.9000  162.7000  140.3000
1993 147.9000 143.5000 127.6000  186.4000  118.4000 165.3000  144.5000
1994 148.2000 145.8000 131.1000 193.7000  119.3000  169.4000  148.2000
1995 151.4000 148.4000 133.5000 204.1000  119.1000 175.1000  152.4000
1996 153.8000 151.4000 135.5000 212.0000  119.3000  179.4000  156.9000
1997 156.3000 153.2000 137.8000 215.7000 121.3000  185.0000  160.5000

16Subtract from the current year’s CPI the CPI from the previous year, divide the differ-
ence by the previous year’s CPI, and multiply the result by 100. Thus, the inflation rate for
Canada for 1974 is [(45.2 — 40.8)/40.8] x 100 = 10.78% (approx.).
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Plot the inflation rate of Canada, France, Germany, Italy, Japan, and the
United Kingdom against the United States inflation rate.

. Comment generally about the behavior of the inflation rate in the six

countries vis-a-vis the U.S. inflation rate.

. If you find that the six countries’ inflation rates move in the same direc-

tion as the U.S. inflation rate, would that suggest that U.S. inflation
“causes” inflation in the other countries? Why or why not?

Table 1.3 gives the foreign exchange rates for seven industrialized countries
for years 1977-1998. Except for the United Kingdom, the exchange rate is
defined as the units of foreign currency for one U.S. dollar; for the United
Kingdom, it is defined as the number of U.S. dollars for one U.K. pound.

a.

b.

Plot these exchange rates against time and comment on the general
behavior of the exchange rates over the given time period.

The dollar is said to appreciate if it can buy more units of a foreign
currency. Contrarily, it is said to depreciate if it buys fewer units of a
foreign currency. Over the time period 1977-1998, what has been the
general behavior of the U.S. dollar? Incidentally, look up any textbook
on macroeconomics or international economics to find out what factors
determine the appreciation or depreciation of a currency.

The data behind the M1 money supply in Figure 1.5 are given in Table 1.4.
Can you give reasons why the money supply has been increasing over the
time period shown in the table?

EXCHANGE RATES FOR SEVEN COUNTRIES: 1977-1998

Year

Canada France Germany Japan Sweden  Switzerland U.K.

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998

1.063300 4.916100 2.323600 268.6200  4.480200 2.406500 1.744900
1.140500 4.509100 2.009700 210.3900  4.520700 1.790700 1.918400
1.171300 4.256700 1.834300 219.0200  4.289300 1.664400 2.122400
1.169300 4.225100 1.817500 226.6300  4.231000 1.677200  2.324600
1.199000 5.439700 2.263200 220.6300  5.066000 1.967500 2.024300
1.234400 6.579400 2.428100 249.0600  6.283900 2.032700 1.748000
1.232500 7.620400 2.553900 237.5500 7.671800 2.100700 1.515900
1.295200 8.735600 2.845500 237.4600  8.270800 2.350000 1.336800
1.365900 8.980000 2.942000 238.4700  8.603200 2.455200 1.297400
1.389600 6.925700 2.170500 168.3500  7.127300 1.797900 1.467700
1.325900 6.012200 1.798100 144.6000  6.346900 1.491800 1.639800
1.230600 5.959500 1.757000 128.1700  6.137000 1.464300 1.781300
1.184200 6.380200 1.880800  138.0700  6.455900 1.636900 1.638200
1.166800 5.446700 1.616600 145.0000 5.923100 1.390100 1.784100
1.146000 5.646800 1.661000 134.5900  6.052100 1.435600 1.767400
1.208500 5.293500 1.561800 126.7800  5.825800 1.406400 1.766300
1.290200 5.666900 1.654500  111.0800  7.795600 1.478100 1.501600
1.366400 5.545900 1.621600 102.1800  7.716100 1.366700 1.531900
1.372500 4.986400  1.432100 93.96000 7.140600 1.181200 1.578500
1.363800 5.115800  1.504900 108.7800  6.708200 1.236100 1.560700
1.384900 5.839300 1.734800 121.0600  7.644600 1.451400 1.637600
1.483600 5.899500 1.759700  130.9900  7.952200 1.450600 1.657300

Source: Economic Report of the President, January 2000 and January 2001.
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TABLE 1.4
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SEASONALLY ADJUSTED M1 SUPPLY: 1959:01-1999:09 (BILLIONS OF DOLLARS)

1959:01
1959:07
1960:01
1960:07
1961:01
1961:07
1962:01
1962:07
1963:01
1963:07
1964:01
1964:07
1965:01
1965:07
1966:01
1966:07
1967:01
1967:07
1968:01
1968:07
1969:01
1969:07
1970:01
1970:07
1971:01
1971:07
1972:01
1972:07
1973:01
1973:07
1974:01
1974:07
1975:01
1975:07
1976:01
1976:07
1977:01
1977:07
1978:01
1978:07
1979:01
1979:07
1980:01
1980:07
1981:01
1981:07
1982:01
1982:07
1983:01
1983:07

138.8900
141.7000
139.9800
140.1800
141.0600
142.9200
145.2400
146.4600
148.2600
151.3400
153.7400
156.8000
160.7100
163.0500
169.0800
170.3100
171.8600
178.1300
184.3300
190.4900
198.6900
201.6600
206.2200
207.9800
215.5400
224.8500
230.0900
238.7900
251.4700
257.5400
263.7600
269.2700
273.9000
283.6800
288.4200
297.2000
308.2600
320.1900
334.4000
347.6300
358.6000
377.2100
385.8500
394.9100
410.8300
427.9000
442.1300
449.0900
476.6800
508.9600

139.3900
141.9000
139.8700
141.3100
141.6000
143.4900
145.6600
146.5700
148.9000
151.7800
154.3100
157.8200
160.9400
163.6800
169.6200
170.8100
172.9900
179.7100
184.7100
191.8400
199.3500
201.7300
205.0000
209.9300
217.4200
225.5800
232.3200
240.9300
252.1500
257.7600
265.3100
270.1200
275.0000
284.1500
290.7600
299.0500
311.5400
322.2700
335.3000
349.6600
359.9100
378.8200
389.7000
400.0600
414.3800
427.8500
441.4900
452.4900
483.8500
511.6000

139.7400
141.0100
139.7500
141.1800
141.8700
143.7800
145.9600
146.3000
149.1700
151.9800
154.4800
158.7500
161.4700
164.8500
170.5100
171.9700
174.8100
180.6800
185.4700
192.7400
200.0200
202.1000
205.7500
211.8000
218.7700
226.4700
234.3000
243.1800
251.6700
257.8600
266.6800
271.0500
276.4200
285.6900
292.7000
299.6700
313.9400
324.4800
336.9600
352.2600
362.4500
379.2800
388.1300
405.3600
418.6900
427.4600
442.3700
457.5000
490.1800
513.4100

139.6900
140.4700
139.5600
140.9200
142.1300
144.1400
146.4000
146.7100
149.7000
152.5500
154.7700
159.2400
162.0300
165.9700
171.8100
171.1600
174.1700
181.6400
186.6000
194.0200
200.7100
202.9000
206.7200
212.8800
220.0000
227.1600
235.5800
245.0200
252.7400
259.0400
267.2000
272.3500
276.1700
285.3900
294.6600
302.0400
316.0200
326.4000
339.9200
353.3500
368.0500
380.8700
383.4400
409.0600
427.0600
428.4500
446.7800
464.5700
492.7700
517.2100

140.6800
140.3800
139.6100
140.8600
142.6600
144.7600
146.8400
147.2900
150.3900
153.6500
155.3300
159.9600
161.7000
166.7100
171.3300
171.3800
175.6800
182.3800
187.9900
196.0200
200.8100
203.5700
207.2200
213.6600
222.0200
227.7600
235.8900
246.4100
254.8900
260.9800
267.5600
273.7100
279.2000
286.8300
295.9300
303.5900
317.1900
328.6400
344.8600
355.4100
369.5900
380.8100
384.6000
410.3700
424.4300
430.8800
446.5300
471.1200
499.7800
518.5300

141.1700
139.9500
139.5800
140.6900
142.8800
145.2000
146.5800
147.8200
150.4300
153.2900
155.6200
160.3000
162.1900
167.8500
171.5700
172.0300
177.0200
183.2600
189.4200
197.4100
201.2700
203.8800
207.5400
214.4100
223.4500
228.3200
236.6200
249.2500
256.6900
262.8800
268.4400
274.2000
282.4300
287.0700
296.1600
306.2500
318.7100
330.8700
346.8000
357.2800
373.3400
381.7700
389.4600
408.0600
425.5000
436.1700
447.8900
474.3000
504.3500
520.7900

(Continued)
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(Continued)

1984:01 524.4000 526.9900 530.7800 534.0300 536.5900 540.5400
1984:07 542.1300 542.3900 543.8600 543.8700 547.3200 551.1900
1985:01 555.6600 562.4800 565.7400 569.5500 575.0700 583.1700
1985:07 590.8200 598.0600 604.4700 607.9100 611.8300 619.3600
1986:01 620.4000 624.1400 632.8100 640.3500 652.0100 661.5200
1986:07 672.2000 680.7700 688.5100 695.2600 705.2400 724.2800
1987:01 729.3400 729.8400 733.0100 743.3900 746.0000 743.7200
1987:07 744.9600 746.9600 748.6600 756.5000 752.8300 749.6800
1988:01 755.5500 757.0700 761.1800 767.5700 771.6800 779.1000
1988:07 783.4000 785.0800 784.8200 783.6300 784.4600 786.2600
1989:01 784.9200 783.4000 782.7400 778.8200 774.7900 774.2200
1989:07 779.7100 781.1400 782.2000 787.0500 787.9500 792.5700
1990:01 794.9300 797.6500 801.2500 806.2400 804.3600 810.3300
1990:07 811.8000 817.8500 821.8300 820.3000 822.0600 824.5600
1991:01 826.7300 832.4000 838.6200 842.7300 848.9600 858.3300
1991:07 862.9500 868.6500 871.5600 878.4000 887.9500 896.7000
1992:01 910.4900 925.1300 936.0000 943.8900 950.7800 954.7100

1992:07 964.6000 975.7100 988.8400 1004.340 1016.040 1024.450
1993:01 1030.900 1033.150 1037.990 1047.470 1066.220 1075.610
1993:07 1085.880 1095.560 1105.430 1113.800 1123.900 1129.310
1994:01 1132.200 1136.130 1139.910 1141.420 1142.850 1145.650
1994.07 1151.490 1151.390 1152.440 1150.410 1150.440 1149.750
1995:01 1150.640 1146.740 1146.520 1149.480 1144.650 1144.240
1995:07 1146.500 1146.100 1142.270 1136.430 1133.550 1126.730
1996:01 1122.580 1117.530 1122.590 1124.520 1116.300 1115.470
1996:07 1112.340 1102.180 1095.610 1082.560 1080.490 1081.340
1997:01 1080.520 1076.200 1072.420 1067.450 1063.370 1065.990
1997.07 1067.570 1072.080 1064.820 1062.060 1067.530 1074.870
1998:01 1073.810 1076.020 1080.650 1082.090 1078.170 1077.780
1998:07 1075.370 1072.210 1074.650 1080.400 1088.960 1093.350
1999:01 1091.000 1092.650 1102.010 1108.400 1104.750 1101.110
1999:07 1099.530 1102.400 1093.460

Source: Board of Governors, Federal Reserve Bank, USA.

1.5. Suppose you were to develop an economic model of criminal activities, say,
the hours spent in criminal activities (e.g., selling illegal drugs). What vari-
ables would you consider in developing such a model? See if your model
matches the one developed by the Nobel laureate economist Gary Becker.!”

1.6. Controlled experiments in economics: On April 7, 2000, President Clinton
signed into law a bill passed by both Houses of the U.S. Congress that lifted
earnings limitations on Social Security recipients. Until then, recipients
between the ages of 65 and 69 who earned more than $17,000 a year would
lose 1 dollar’s worth of Social Security benefit for every 3 dollars of income
earned in excess of $17,000. How would you devise a study to assess the
impact of this change in the law? Note: There was no income limitation for
recipients over the age of 70 under the old law.

17G. S. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Econ-
omy, vol. 76, 1968, pp. 169-217.
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TABLE 1.5 IMPACT OF ADVERTISING EXPENDITURE

Impressions, Expenditure,
Firm millions millions of 1983 dollars
1. Miller Lite 32.1 50.1
2. Pepsi 99.6 741
3. Stroh’s 1.7 19.3
4. Fed'l Express 21.9 22.9
5. Burger King 60.8 82.4
6. Coca Cola 78.6 40.1
7. McDonald’s 92.4 185.9
8. MCI 50.7 26.9
9. Diet Cola 214 20.4
10. Ford 40.1 166.2
11. Levi's 40.8 27.0
12. Bud Lite 10.4 45.6
13. ATT/Bell 88.9 154.9
14. Calvin Klein 12.0 5.0
15. Wendy’s 29.2 49.7
16. Polaroid 38.0 26.9
17. Shasta 10.0 5.7
18. Meow Mix 12.3 7.6
19. Oscar Meyer 234 9.2
20. Crest 711 32.4
21. Kibbles ‘N Bits 4.4 6.1

Source: http://lib.stat.cmu.edu/DASL/Datafiles/tvadsdat.html

1.7. The data presented in Table 1.5 was published in the March 1, 1984 issue
of the Wall Street Journal. 1t relates to the advertising budget (in millions of
dollars) of 21 firms for 1983 and millions of impressions retained per week
by the viewers of the products of these firms. The data are based on a sur-
vey of 4000 adults in which users of the products were asked to cite a com-
mercial they had seen for the product category in the past week.

a. Plot impressions on the vertical axis and advertising expenditure on the
horizontal axis.

b. What can you say about the nature of the relationship between the two
variables?

c. Looking at your graph, do you think it pays to advertise? Think about all
those commercials shown on Super Bowl Sunday or during the World
Series.

Note: We will explore further the data given in Table 1.5 in subsequent

chapters.
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TWO-VARIABLE
REGRESSION ANALYSIS:
SOME BASIC IDEAS

In Chapter 1 we discussed the concept of regression in broad terms. In this
chapter we approach the subject somewhat formally. Specifically, this and
the following two chapters introduce the reader to the theory underlying
the simplest possible regression analysis, namely, the bivariate, or two-
variable, regression in which the dependent variable (the regressand) is re-
lated to a single explanatory variable (the regressor). This case is considered
first, not because of its practical adequacy, but because it presents the fun-
damental ideas of regression analysis as simply as possible and some of
these ideas can be illustrated with the aid of two-dimensional graphs. More-
over, as we shall see, the more general multiple regression analysis in which
the regressand is related to one or more regressors is in many ways a logical
extension of the two-variable case.

2.1 AHYPOTHETICAL EXAMPLE'

As noted in Section 1.2, regression analysis is largely concerned with esti-
mating and/or predicting the (population) mean value of the dependent
variable on the basis of the known or fixed values of the explanatory vari-
able(s).? To understand this, consider the data given in Table 2.1. The data

IThe reader whose statistical knowledge has become somewhat rusty may want to freshen
it up by reading the statistical appendix, App. A, before reading this chapter.

>The expected value, or expectation, or population mean of a random variable Y is denoted by
the symbol E(Y). On the other hand, the mean value computed from a sample of values from
the Y population is denoted as Y, read as Y bar.

37
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TABLE 2.1

FIGURE 2.1

WEEKLY FAMILY INCOME X, $

© The McGraw-Hill
Companies, 2004

X—

Y 1 80 100 120 140 160 180 200 220 240 260
Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
- 88 - 113 125 140 - 160 189 185
- - - 115 - - - 162 - 191
Total 325 462 445 707 678 750 685 1043 966 1211
Conditional 65 77 89 101 113 125 137 149 161 173
means of Y,
E(Y1X)

in the table refer to a total population of 60 families in a hypothetical com-
munity and their weekly income (X) and weekly consumption expenditure
(Y), both in dollars. The 60 families are divided into 10 income groups (from
$80 to $260) and the weekly expenditures of each family in the various
groups are as shown in the table. Therefore, we have 10 fixed values of X and
the corresponding Y values against each of the X values; so to speak, there
are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in
each income group, which can be seen clearly from Figure 2.1. But the gen-
eral picture that one gets is that, despite the variability of weekly consump-

$

> 200

150 -

100

Weekly consumption expenditure

50 L——1

® E(YIX)

Conditional distribution of expenditure for various levels of income (data of Table 2.1).

100

120

160

180 200 220 240 260
Weekly income, $
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tion expenditure within each income bracket, on the average, weekly con-
sumption expenditure increases as income increases. To see this clearly, in
Table 2.1 we have given the mean, or average, weekly consumption expen-
diture corresponding to each of the 10 levels of income. Thus, correspond-
ing to the weekly income level of $80, the mean consumption expenditure is
$65, while corresponding to the income level of $200, it is $137. In all we
have 10 mean values for the 10 subpopulations of Y. We call these mean val-
ues conditional expected values, as they depend on the given values of the
(conditioning) variable X. Symbolically, we denote them as E(Y'| X), which
is read as the expected value of Y given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the
unconditional expected value of weekly consumption expenditure, E(Y).
If we add the weekly consumption expenditures for all the 60 families in
the population and divide this number by 60, we get the number $121.20
($7272/60), which is the unconditional mean, or expected, value of weekly
consumption expenditure, E(Y); it is unconditional in the sense that in ar-
riving at this number we have disregarded the income levels of the various
families.? Obviously, the various conditional expected values of Y given in
Table 2.1 are different from the unconditional expected value of Y of
$121.20. When we ask the question, “What is the expected value of weekly
consumption expenditure of a family,” we get the answer $121.20 (the un-
conditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is,

CONDITIONAL PROBABILITIES p(Y | X)) FOR THE DATA OF TABLE 2.1

% X—
P i ) 80 100 120 140 160 180 200 220 240 260
- 1 1 1 1 1 1 1 1 1 1
Conditional s & 5 7 & & 5 1 & 7
probabilities p(Y'| X)) 1 1 1 1 1 ] 1 1 ] ;
5 6 5 7 5 5 5 7 5 7
11 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
11 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
11 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
_1 _ 1 1 1 _ 1 1 1
6 7 6 6 7 6 7
L _ 1 _ _ _ 1 _1
7 7 7
Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

3As shown in App. A, in general the conditional and unconditional mean values are different.
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FIGURE 2.2

say, $140,” we get the answer $101 (the conditional mean). To put it differ-
ently, if we ask the question, “What is the best (mean) prediction of weekly
expenditure of families with a weekly income of $140,” the answer would be
$101. Thus the knowledge of the income level may enable us to better pre-
dict the mean value of consumption expenditure than if we do not have that
knowledge.* This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of
Y against the various X values. If we join these conditional mean values, we
obtain what is known as the population regression line (PRL), or more
generally, the population regression curve.> More simply, it is the regres-
sion of Y on X. The adjective “population” comes from the fact that we are
dealing in this example with the entire population of 60 families. Of course,
in reality a population may have many families.

Geometrically, then, a population regression curve is simply the locus of
the conditional means of the dependent variable for the fixed values of the ex-
planatory variable(s). More simply, it is the curve connecting the means of
the subpopulations of Y corresponding to the given values of the regressor
X. It can be depicted as in Figure 2.2.

Y

(® Conditional mean

E(Y1X)

149

Distribution of
Y given X = $220

101

65

Weekly consumption expenditure, $

s X
80 140 220
Weekly income, $

Population regression line (data of Table 2.1).

4T am indebted to James Davidson on this perspective. See James Davidson, Econometric

Theory, Blackwell Publishers, Oxford, U.K., 2000, p. 11.
5In the present example the PRL is a straight line, but it could be a curve (see Figure 2.3).
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This figure shows that for each X (i.e., income level) there is a population
of Y values (weekly consumption expenditures) that are spread around the
(conditional) mean of those Y values. For simplicity, we are assuming that
these Y values are distributed symmetrically around their respective (condi-
tional) mean values. And the regression line (or curve) passes through these
(conditional) mean values.

With this background, the reader may find it instructive to reread the
definition of regression given in Section 1.2.

2.2 THE CONCEPT OF POPULATION REGRESSION

FUNCTION (PRF)

From the preceding discussion and Figures. 2.1 and 2.2, it is clear that each
conditional mean E(Y'| X;) is a function of X;, where X; is a given value of X.
Symbolically,

EY|X;) = f(Xp) (2.2.1)

where f(X;) denotes some function of the explanatory variable X. In our
example, E(Y | X;) is a linear function of X;. Equation (2.2.1) is known as the
conditional expectation function (CEF) or population regression func-
tion (PRF) or population regression (PR) for short. It states merely that
the expected value of the distribution of Y given X; is functionally related to X;.
In simple terms, it tells how the mean or average response of Y varies with X.

What form does the function f(X;) assume? This is an important ques-
tion because in real situations we do not have the entire population avail-
able for examination. The functional form of the PRF is therefore an empir-
ical question, although in specific cases theory may have something to say.
For example, an economist might posit that consumption expenditure is
linearly related to income. Therefore, as a first approximation or a working
hypothesis, we may assume that the PRF E(Y'| X;) is a linear function of X;,
say, of the type

EY|X;) =B+ B X; (2.2.2)

where 81 and B, are unknown but fixed parameters known as the regression
coefficients; 8, and B, are also known as intercept and slope coefficients,
respectively. Equation (2.2.1) itself is known as the linear population
regression function. Some alternative expressions used in the literature are
linear population regression model or simply linear population regression. In
the sequel, the terms regression, regression equation, and regression
model will be used synonymously.

In regression analysis our interest is in estimating the PRFs like (2.2.2),
that is, estimating the values of the unknowns B8; and 8, on the basis of ob-
servations on Y and X. This topic will be studied in detail in Chapter 3.
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2.3 THE MEANING OF THE TERM LINEAR

Since this text is concerned primarily with linear models like (2.2.2), it is es-
sential to know what the term linear really means, for it can be interpreted
in two different ways.

Linearity in the Variables

The first and perhaps more “natural” meaning of linearity is that the con-
ditional expectation of Y is a linear function of X;, such as, for example,
(2.2.2).° Geometrically, the regression curve in this case is a straight line.
In this interpretation, a regression function such as E(Y|X;) = 1 + p2X?
is not a linear function because the variable X appears with a power or
index of 2.

Linearity in the Parameters

The second interpretation of linearity is that the conditional expectation of
Y, E(Y|X;), is alinear function of the parameters, the 8’s; it may or may not
be linear in the variable X.” In this interpretation E(Y | X;) = p1 + X7 is a
linear (in the parameter) regression model. To see this, let us suppose X
takes the value 3. Therefore, E(Y | X = 3) = 81 + 98,, which is obviously lin-
ear in B; and B,. All the models shown in Figure 2.3 are thus linear regres-
sion models, that is, models linear in the parameters.

Now consider the model E(Y | X;) = 81 + ,3§Xi. Now suppose X = 3; then
we obtain E(Y | X;) = B1 + 3,3%, which is nonlinear in the parameter 8,. The
preceding model is an example of a nonlinear (in the parameter) regres-
sion model. We will discuss such models in Chapter 14.

Of the two interpretations of linearity, linearity in the parameters is rele-
vant for the development of the regression theory to be presented shortly.
Therefore, from now on the term “linear” regression will always mean a regres-
sion that is linear in the parameters; the B’s (that is, the parameters are raised
to the first power only). It may or may not be linear in the explanatory vari-
ables, the X’s. Schematically, we have Table 2.3. Thus, E(Y | X;) = B1 + B2X;,
which is linear both in the parameters and variable, is a LRM, and so is
EY|X;)=p8+ ,BZXiZ, which is linear in the parameters but nonlinear in
variable X.

A function Y = f(X) is said to be linear in X if X appears with a power or index of 1 only
(that is, terms such as X2, +/X, and so on, are excluded) and is not multiplied or divided by any
other variable (for example, X - Z or X/Z, where Z is another variable). If Y depends on X alone,
another way to state that Y is linearly related to X is that the rate of change of Y with respect to
X (i.e., the slope, or derivative, of Y with respect to X, dY/dX) is independent of the value of X.
Thus, if Y = 4X,dY/dX = 4, which is independent of the value of X. But if Y = 4X2,dY/dX =
8X, which is not independent of the value taken by X. Hence this function is not linear in X.

A function is said to be linear in the parameter, say, 81, if 81 appears with a power of 1 only
and is not multiplied or divided by any other parameter (for example, 8182, B2/81, and so on).
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Y Y
Quadratic Exponential
Y =B+ BrX + B3 X? Y = eBi+By X
X X
Y
Cubic
Y =B+ B X +/33X2 + B X3
X
FIGURE 2.3  Linear-in-parameter functions.
TABLE 2.3 LINEAR REGRESSION MODELS
Model linear in parameters? Model linear in variables?
Yes No
Yes LRM LRM
No NLRM NLRM

Note: LRM = linear regression model
NLRM = nonlinear regression model

2.4 STOCHASTIC SPECIFICATION OF PRF

It is clear from Figure 2.1 that, as family income increases, family consump-
tion expenditure on the average increases, too. But what about the con-
sumption expenditure of an individual family in relation to its (fixed) level
of income? It is obvious from Table 2.1 and Figure 2.1 that an individual
family’s consumption expenditure does not necessarily increase as the income
level increases. For example, from Table 2.1 we observe that corresponding
to the income level of $100 there is one family whose consumption expen-
diture of $65 is less than the consumption expenditures of two families
whose weekly income is only $80. But notice that the average consumption
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expenditure of families with a weekly income of $100 is greater than the
average consumption expenditure of families with a weekly income of $80
($77 versus $65).

What, then, can we say about the relationship between an individual fam-
ily’s consumption expenditure and a given level of income? We see from Fig-
ure 2.1 that, given the income level of X;, an individual family’s consump-
tion expenditure is clustered around the average consumption of all families
at that X;, that is, around its conditional expectation. Therefore, we can ex-
press the deviation of an individual ¥; around its expected value as follows:

up =Y, — E(Y|X;)
or

Y = EXY | X;) + u; (2.4.1)

where the deviation #; is an unobservable random variable taking positive
or negative values. Technically, #; is known as the stochastic disturbance
or stochastic error term.

How do we interpret (2.4.1)? We can say that the expenditure of an indi-
vidual family, given its income level, can be expressed as the sum of two
components: (1) E(Y | X;), which is simply the mean consumption expendi-
ture of all the families with the same level of income. This component is
known as the systematic, or deterministic, component, and (2) u;, which
is the random, or nonsystematic, component. We shall examine shortly the
nature of the stochastic disturbance term, but for the moment assume that
it is a surrogate or proxy for all the omitted or neglected variables that may
affect Y but are not (or cannot be) included in the regression model.

If E(Y'| X;) is assumed to be linear in X;, as in (2.2.2), Eq. (2.4.1) may be
written as

Yi=EY|X;) +u
= B+ Xi +u; (2.4.2)
Equation (2.4.2) posits that the consumption expenditure of a family is
linearly related to its income plus the disturbance term. Thus, the individ-

ual consumption expenditures, given X = $80 (see Table 2.1), can be ex-
pressed as

Y1 =55 =81+ p2(80) + 4
Y, =60 = B + 2(80) + w2
Ys = 65 = 1 + £>(80) + u3 (2.4.3)
Yy =70 = By + B2(80) + u4
Ys =75 = B1 + 2(80) + us
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Now if we take the expected value of (2.4.1) on both sides, we obtain

E(Y; | X;) = E[EY | X)]+ E(u; | X;)
= EY|X;)+ E(u; | X;) (2.4.4)

where use is made of the fact that the expected value of a constant is that
constant itself.® Notice carefully that in (2.4.4) we have taken the condi-
tional expectation, conditional upon the given X’s.

Since E(Y; | X;) is the same thing as E(Y | X;), Eq. (2.4.4) implies that

E(u; | X;)=0 (2.4.5)

Thus, the assumption that the regression line passes through the condi-
tional means of Y (see Figure 2.2) implies that the conditional mean values
of u; (conditional upon the given X’s) are zero.

From the previous discussion, it is clear (2.2.2) and (2.4.2) are equivalent
forms if E(u;|X;)=0.° But the stochastic specification (2.4.2) has the
advantage that it clearly shows that there are other variables besides income
that affect consumption expenditure and that an individual family’s con-
sumption expenditure cannot be fully explained only by the variable(s)
included in the regression model.

2.5 THE SIGNIFICANCE OF THE STOCHASTIC
DISTURBANCE TERM

As noted in Section 2.4, the disturbance term u; is a surrogate for all those
variables that are omitted from the model but that collectively affect Y. The
obvious question is: Why not introduce these variables into the model ex-
plicitly? Stated otherwise, why not develop a multiple regression model
with as many variables as possible? The reasons are many.

1. Vagueness of theory: The theory, if any, determining the behavior of ¥
may be, and often is, incomplete. We might know for certain that weekly
income X influences weekly consumption expenditure Y, but we might be
ignorant or unsure about the other variables affecting Y. Therefore, 1; may
be used as a substitute for all the excluded or omitted variables from the
model.

2. Unavailability of data: Even if we know what some of the excluded
variables are and therefore consider a multiple regression rather than a
simple regression, we may not have quantitative information about these

8See App. A for a brief discussion of the properties of the expectation operator E. Note that
E(Y| X;), once the value of X; is fixed, is a constant.
As a matter of fact, in the method of least squares to be developed in Chap. 3, it is assumed
explicitly that E(u; | X;) = 0. See Sec. 3.2.
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variables. It is a common experience in empirical analysis that the data we
would ideally like to have often are not available. For example, in principle
we could introduce family wealth as an explanatory variable in addition to
the income variable to explain family consumption expenditure. But unfor-
tunately, information on family wealth generally is not available. Therefore,
we may be forced to omit the wealth variable from our model despite its
great theoretical relevance in explaining consumption expenditure.

3. Corevariables versus peripheral variables: Assume in our consumption-
income example that besides income X;, the number of children per family
X,, sex Xj, religion X4, education X5, and geographical region X also affect
consumption expenditure. But it is quite possible that the joint influence of
all or some of these variables may be so small and at best nonsystematic or
random that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined
effect can be treated as a random variable ;.10

4. Intrinsic randomness in human behavior: Even if we succeed in intro-
ducing all the relevant variables into the model, there is bound to be some
“intrinsic” randomness in individual Y’s that cannot be explained no matter
how hard we try. The disturbances, the u’s, may very well reflect this intrin-
sic randomness.

5. Poor proxy variables: Although the classical regression model (to be
developed in Chapter 3) assumes that the variables Y and X are measured
accurately, in practice the data may be plagued by errors of measurement.
Consider, for example, Milton Friedman’s well-known theory of the con-
sumption function.!! He regards permanent consumption (Y?) as a function
of permanent income (X?). But since data on these variables are not directly
observable, in practice we use proxy variables, such as current consumption
(Y) and current income (X), which can be observable. Since the observed Y
and X may not equal Y? and X?, there is the problem of errors of measure-
ment. The disturbance term « may in this case then also represent the errors
of measurement. As we will see in a later chapter, if there are such errors of
measurement, they can have serious implications for estimating the regres-
sion coefficients, the B’s.

6. Principle of parsimony: Following Occam’s razor,'* we would like to
keep our regression model as simple as possible. If we can explain the be-
havior of Y “substantially” with two or three explanatory variables and if

12

19A further difficulty is that variables such as sex, education, and religion are difficult to
quantify.

UMilton Friedman, A Theory of the Consumption Function, Princeton University Press,
Princeton, N.J., 1957.

12“That descriptions be kept as simple as possible until proved inadequate,” The World of
Mathematics, vol. 2, J. R. Newman (ed.), Simon & Schuster, New York, 1956, p. 1247, or, “Enti-
ties should not be multiplied beyond necessity,” Donald F. Morrison, Applied Linear Statistical
Methods, Prentice Hall, Englewood Cliffs, N.J., 1983, p. 58.
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our theory is not strong enough to suggest what other variables might be
included, why introduce more variables? Let u; represent all other variables.
Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even if we have theoretically correct vari-
ables explaining a phenomenon and even if we can obtain data on these
variables, very often we do not know the form of the functional relation-
ship between the regressand and the regressors. Is consumption expendi-
ture a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, Y; = 81 + B> X; + u; is the proper functional re-
lationship between Y and X, but if it is the latter, ¥; = g1 + 8. X; + ,33Xi2 +u;
may be the correct functional form. In two-variable models the functional
form of the relationship can often be judged from the scattergram. But in
a multiple regression model, it is not easy to determine the appropriate
functional form, for graphically we cannot visualize scattergrams in multi-
ple dimensions.

For all these reasons, the stochastic disturbances u; assume an extremely
critical role in regression analysis, which we will see as we progress.

2.6 THE SAMPLE REGRESSION FUNCTION (SRF)

By confining our discussion so far to the population of Y values correspond-
ing to the fixed X’s, we have deliberately avoided sampling considerations
(note that the data of Table 2.1 represent the population, not a sample). But
it is about time to face up to the sampling problems, for in most practical sit-
uations what we have is but a sample of Y values corresponding to some
fixed X'’s. Therefore, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known
to us and the only information we had was a randomly selected sample of Y
values for the fixed X’s as given in Table 2.4. Unlike Table 2.1, we now have
only one Y value corresponding to the given X’s; each Y (given X;) in
Table 2.4 is chosen randomly from similar Y’s corresponding to the same X;
from the population of Table 2.1.

The question is: From the sample of Table 2.4 can we predict the aver-
age weekly consumption expenditure Y in the population as a whole
corresponding to the chosen X’s? In other words, can we estimate the PRF
from the sample data? As the reader surely suspects, we may not be able to
estimate the PRF “accurately” because of sampling fluctuations. To see this,
suppose we draw another random sample from the population of Table 2.1,
as presented in Table 2.5.

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in
Figure 2.4. In the scattergram two sample regression lines are drawn so as
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FIGURE 2.4

TABLE 2.4 TABLE 2.5
A RANDOM SAMPLE FROM THE ANOTHER RANDOM SAMPLE FROM
POPULATION OF TABLE 2.1 THE POPULATION OF TABLE 2.1
Y X Y X
70 80 55 80
65 100 88 100
90 120 90 120
95 140 80 140
110 160 118 160
115 180 120 180
120 200 145 200
140 220 135 220
155 240 145 240
150 260 175 260
200
. SRF,
% First sample (Table 2.4) Regression based on -7
- ¢ Second sample (Table 2.5) the second sample - SRF;
[5)
5150 -
;é‘
2 Regression based on
5 the first sample
=
£ 100 |-
o
=
2
g
3 R
2 s0F °
[0}
=
L 1 1 1 1 1 1 1 1 1 1

80 100 120 140 160 180 200 220 240 260
Weekly income, $

Regression lines based on two different samples.

to “fit” the scatters reasonably well: SRF; is based on the first sample, and
SRF; is based on the second sample. Which of the two regression lines rep-
resents the “true” population regression line? If we avoid the temptation of
looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Fig-
ure 2.4 represents the true population regression line (or curve). The re-
gression lines in Figure 2.4 are known as the sample regression lines. Sup-
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posedly they represent the population regression line, but because of sam-
pling fluctuations they are at best an approximation of the true PR. In gen-
eral, we would get N different SRFs for N different samples, and these SRFs
are not likely to be the same.

Now, analogously to the PRF that underlies the population regression
line, we can develop the concept of the sample regression function (SRF)
to represent the sample regression line. The sample counterpart of (2.2.2)
may be written as

Vi = Bi + B X (2.6.1)

where Y is read as “Y-hat” or “Y-cap”
Y; = estimator of E(Y | X;)
B1 = estimator of B4

B2 = estimator of B,

Note that an estimator, also known as a (sample) statistic, is simply a rule
or formula or method that tells how to estimate the population parameter
from the information provided by the sample at hand. A particular numerical
value obtained by the estimator in an application is known as an estimate.'3

Now just as we expressed the PRF in two equivalent forms, (2.2.2) and
(2.4.2), we can express the SRF (2.6.1) in its stochastic form as follows:

Y = Bi + BoXi + 1y (2.6.2)
where, in addition to the symbols already defined, i&i; denotes the (sample)
residual term. Conceptually #; is analogous to u; and can be regarded as
an estimate of u;. It is introduced in the SRF for the same reasons as u; was
introduced in the PRF.

To sum up, then, we find our primary objective in regression analysis is to
estimate the PRF

Y, =81+ BX +u; (2.4.2)

on the basis of the SRF

Y =B1+Bxi =ty (2.6.2)

because more often than not our analysis is based upon a single sample
from some population. But because of sampling fluctuations our estimate of

13As noted in the Introduction, a hat above a variable will signify an estimator of the rele-
vant population value.
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FIGURE 2.5
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Sample and population regression lines.

the PRF based on the SRF is at best an approximate one. This approxima-
tion is shown diagrammatically in Figure 2.5.

For X = X;, we have one (sample) observation Y =Y;. In terms of the
SREF, the observed Y; can be expressed as

Y = i + i) (2.6.3)
and in terms of the PREF, it can be expressed as
Y = EXY | X;)+ u; (2.6.4)

Now obviously in Figure 2.5 Y; overestimates the true E(Y|X;) for the X;
shown therein. By the same token, for any X; to the left of the point A, the
SRF will underestimate the true PRF. But the reader can readily see that
such over- and underestimation is inevitable because of sampling fluctu-
ations.

The critical question now is: Granted that the SRF is but an approxima-
tion of the PRF, can we devise a rule or a method that will make this ap-
proximation as “close” as possible? In other words, how should the SRF be
constructed so that ,31 is as “close” as possible to the true g; and 32 is as
“close” as possible to the true 8, even though we will never know the true g
and ﬂz?
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The answer to this question will occupy much of our attention in Chap-
ter 3. We note here that we can develop procedures that tell us how to
construct the SRF to mirror the PRF as faithfully as possible. It is fascinat-
ing to consider that this can be done even though we never actually deter-
mine the PRF itself.

2.7 AN ILLUSTRATIVE EXAMPLE

We conclude this chapter with an example. Table 2.6 gives data on the level
of education (measured by the number of years of schooling), the mean
hourly wages earned by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained
the data presented in the table, and he derived these data from the current
population survey conducted in May 1985.'% We will explore these data
(with additional explanatory variables) in Chapter 3 (Example 3.3, p. 91).

Plotting the (conditional) mean wage against education, we obtain the
picture in Figure 2.6. The regression curve in the figure shows how mean
wages vary with the level of education; they generally increase with the level
of education, a finding one should not find surprising. We will study in a
later chapter how variables besides education can also affect the mean
wage.

TABLE 2.6 14
MEAN HOURLY WAGE BY EDUCATION ® Mean value
Years of schooling Mean wage, $ Number of people ° 12
g 10
6 4.4567 3 2
7 5.7700 5 § 3
8 5.9787 15 s
9 7.3317 12 6
10 7.3182 17
1 6.5844 27 4 | | | | | ]
12 7.8182 218 6 8 10 12 14 16 18
13 7.8351 37 Education
14 11.0223 56
15 10.6738 13 FIGURE 2.6
16 10.8361 70 Relathnshlp between mean wages and
17 13.6150 24 education.
18 13.5310 31
Total 528

Source: Arthur S. Goldberger, Introductory Econometrics, Harvard
University Press, Cambridge, Mass., 1998, Table 1.1, p. 5 (adapted).

4Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley,
Reading, Mass., 1991. Incidentally, this is an excellent book that the reader may want to read
to find out how econometricians go about doing research.
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2.8 SUMMARY AND CONCLUSIONS

EXERCISES

Questions

1. The key concept underlying regression analysis is the concept of
the conditional expectation function (CEF), or population regression
function (PRF). Our objective in regression analysis is to find out how the
average value of the dependent variable (or regressand) varies with the
given value of the explanatory variable (or regressor).

2. This book largely deals with linear PRFs, that is, regressions that are
linear in the parameters. They may or may not be linear in the regressand or
the regressors.

3. For empirical purposes, it is the stochastic PRF that matters. The
stochastic disturbance term ; plays a critical role in estimating the PRF.

4. The PRF is an idealized concept, since in practice one rarely has
access to the entire population of interest. Usually, one has a sample of ob-
servations from the population. Therefore, one uses the stochastic sample
regression function (SRF) to estimate the PRF. How this is actually ac-
complished is discussed in Chapter 3.

2.1. What is the conditional expectation function or the population regression
function?

2.2. What is the difference between the population and sample regression
functions? Is this a distinction without difference?

2.3. What is the role of the stochastic error term u; in regression analysis? What
is the difference between the stochastic error term and the residual, ;?

2.4. Why do we need regression analysis? Why not simply use the mean value
of the regressand as its best value?

2.5. What do we mean by a linear regression model?

2.6. Determine whether the following models are linear in the parameters, or the
variables, or both. Which of these models are linear regression models?

Model Descriptive title

1
a. Y, =8+ B (Y) + u; Reciprocal
b.Y,=8+8InX;+u; Semilogarithmic
c.InY, =8+ BX: +u; Inverse semilogarithmic
d.InY,=Ing +8InX;,+u Logarithmic or double logarithmic

1

e.InY, =8, -5 (f) + u; Logarithmic reciprocal

Note: In = natural log (i.e., log to the base ¢); u; is the stochastic distur-
bance term. We will study these models in Chapter 6.

2.7. Are the following models linear regression models? Why or why not?
a. Y, = ePrthaXitui

1
b. Y, = 1 4+ ePr+paXitui
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1
c. lnYi=,31+ﬂ2(Xi)+Mi

d. Y; = g1 +(0.75 — By)e P72 4y
e. Y =8 +BX +u
2.8. What is meant by an intrinsically linear regression model? If B, in exer-
cise 2.7d were 0.8, would it be a linear or nonlinear regression model?
*2.9. Consider the following nonstochastic models (i.e., models without the sto-
chastic error term). Are they linear regression models? If not, is it possible,
by suitable algebraic manipulations, to convert them into linear models?

1
a. Y =
ﬂl + 132}(1
X;
Y= —
B1 + B2 X;
1

" 1 +exp(—=p1 — B2Xi)

2.10. You are given the scattergram in Figure 2.7 along with the regression line.
What general conclusion do you draw from this diagram? Is the regres-
sion line sketched in the diagram a population regression line or the sam-
ple regression line?

12

2
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Average annual change in export-GNP ratio

@ East Asia and the Pacific 4 South Asia
¢ Latin America and the Caribbean @ Sub-Saharan Africa
@ Middle East and North Africa

Growth rates of real manufacturing wages and exports. Data are for 50 developing countries during
1970-90.

Source: The World Bank, World Development Report 1995, p. 55. The original source is UNIDO data, World
Bank data.
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FIGURE 2.8

Problems

More manufactures

in exports

More raw materials

in exports

_7 I I I I I I I I I I I ]
0 1 2 3 4 5 6 7 8 9 10 11 12

Abundant land; Scarce land;
less skilled workers more skilled workers
Regional averages @ Latin-America and the Caribbean
@ East Asia and the Pacific 4 South Asia
¢ Industrial market economies @ Sub-Saharan Africa

Skill intensity of exports and human capital endowment. Data are for 126 industrial and developing
countries in 1985. Values along the horizontal axis are logarithms of the ratio of the country’s
average educational attainment to its land area: vertical axis values are logarithms of the ratio of
manufactured to primary-products exports.

Source: World Bank, World Development Report 1995, p. 59. Original sources: Export data from United Nations
Statistical Office COMTRADE data base; education data from UNDP 1990; land data from the World Bank.

2.11.

2.12.

2.13.

2.14.

From the scattergram given in Figure 2.8, what general conclusions do
you draw? What is the economic theory that underlies this scattergram?
(Hint: Look up any international economics textbook and read up on the
Heckscher—Ohlin model of trade.)

What does the scattergram in Figure 2.9 reveal? On the basis of this dia-
gram, would you argue that minimum wage laws are good for economic
well-being?

Is the regression line shown in Figure 1.3 of the Introduction the PRF or
the SRF? Why? How would you interpret the scatterpoints around the re-
gression line? Besides GDP, what other factors, or variables, might deter-
mine personal consumption expenditure?

You are given the data in Table 2.7 for the United States for years
1980-1996.
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Ratio of one year’s salary at
minimum wage to GNP per capita

1.8
1.6
1.4
1.2
1.0
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GNP per capita (thousands of dollars)

T 1T 1T 1 1
L 2

The minimum wage and GNP per capita. The sample consists of 17 developing countries. Years
vary by country from 1988 to 1992. Data are in international prices.

Source: World Bank, World Development Report 1995, p. 75.

LABOR FORCE PARTICIPATION DATA

Year CLFPRM' CLFPRF? UNRM?3 UNRF* AHE825 AHE®
1980 77.4 51.5 6.9 7.4 7.78 6.66
1981 77.0 52.1 7.4 7.9 7.69 7.25
1982 76.6 52.6 9.9 9.4 7.68 7.68
1983 76.4 53.9 9.9 9.2 7.79 8.02
1984 76.4 53.6 7.4 7.6 7.80 8.32
1985 76.3 54.5 7.0 7.4 7.77 8.57
1986 76.3 55.3 6.9 7.1 7.81 8.76
1987 76.2 56.0 6.2 6.2 7.73 8.98
1988 76.2 56.6 5.5 5.6 7.69 9.28
1989 76.4 57.4 5.2 5.4 7.64 9.66
1990 76.4 57.5 5.7 5.5 7.52 10.01
1991 75.8 57.4 7.2 6.4 7.45 10.32
1992 75.8 57.8 7.9 7.0 7.41 10.57
1993 75.4 57.9 7.2 6.6 7.39 10.83
1994 75.1 58.8 6.2 6.0 7.40 11.12
1995 75.0 58.9 5.6 5.6 7.40 11.44
1996 74.9 59.3 5.4 5.4 7.43 11.82

Source: Economic Report of the President, 1997. Table citations below refer to the source document.
'CLFPRM, Civilian labor force participation rate, male (%), Table B-37, p. 343.

2CLFPRF, Civilian labor force participation rate, female (%), Table B-37, p. 343.

3UNRM, Civilian unemployment rate, male (%) Table B-40, p. 346.

4UNRF, Civilian unemployment rate, female (%) Table B-40, p. 346.

SAHES2, Average hourly earnings (1982 dollars), Table B-45, p. 352.

SAHE, Average hourly earnings (current dollars), Table B-45, p. 352.
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2.15.

. Plot the male civilian labor force participation rate against male civil-

ian unemployment rate. Eyeball a regression line through the scatter
points. A priori, what is the expected relationship between the two and
what is the underlying economic theory? Does the scattergram support
the theory?

. Repeat part a for females.
. Now plot both the male and female labor participation rates against

average hourly earnings (in 1982 dollars). (You may use separate dia-
grams.) Now what do you find? And how would you rationalize your
finding?

. Can you plot the labor force participation rate against the unemploy-

ment rate and the average hourly earnings simultaneously? If not, how
would you verbalize the relationship among the three variables?

Table 2.8 gives data on expenditure on food and total expenditure, mea-
sured in rupees, for a sample of 55 rural households from India. (In early
2000, a U.S. dollar was about 40 Indian rupees.)

TABLE 2.8 FOOD AND TOTAL EXPENDITURE (RUPEES)

Food Total Food Total
Observation expenditure expenditure Observation expenditure expenditure
1 217.0000 382.0000 29 390.0000 655.0000
2 196.0000 388.0000 30 385.0000 662.0000
3 303.0000 391.0000 31 470.0000 663.0000
4 270.0000 415.0000 32 322.0000 677.0000
5 325.0000 456.0000 33 540.0000 680.0000
6 260.0000 460.0000 34 433.0000 690.0000
7 300.0000 472.0000 35 295.0000 695.0000
8 325.0000 478.0000 36 340.0000 695.0000
9 336.0000 494.0000 37 500.0000 695.0000
10 345.0000 516.0000 38 450.0000 720.0000
11 325.0000 525.0000 39 415.0000 721.0000
12 362.0000 554.0000 40 540.0000 730.0000
13 315.0000 575.0000 41 360.0000 731.0000
14 355.0000 579.0000 42 450.0000 733.0000
15 325.0000 585.0000 43 395.0000 745.0000
16 370.0000 586.0000 44 430.0000 751.0000
17 390.0000 590.0000 45 332.0000 752.0000
18 420.0000 608.0000 46 397.0000 752.0000
19 410.0000 610.0000 47 446.0000 769.0000
20 383.0000 616.0000 48 480.0000 773.0000
21 315.0000 618.0000 49 352.0000 773.0000
22 267.0000 623.0000 50 410.0000 775.0000
23 420.0000 627.0000 51 380.0000 785.0000
24 300.0000 630.0000 52 610.0000 788.0000
25 410.0000 635.0000 53 530.0000 790.0000
26 220.0000 640.0000 54 360.0000 795.0000
27 403.0000 648.0000 55 305.0000 801.0000
28 350.0000 650.0000

Source: Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for
Developing Countries, Routledge, New York, 1998, p. 457.
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. Plot the data, using the vertical axis for expenditure on food and the

horizontal axis for total expenditure, and sketch a regression line
through the scatterpoints.

. What broad conclusions can you draw from this example?
. A priori, would you expect expenditure on food to increase linearly as

total expenditure increases regardless of the level of total expenditure?
Why or why not? You can use total expenditure as a proxy for total
income.

. Table 2.9 gives data on mean Scholastic Aptitude Test (SAT) scores for

college-bound seniors for 1967-1990.

a.

b.

C.

Use the horizontal axis for years and the vertical axis for SAT scores to
plot the verbal and math scores for males and females separately.
What general conclusions can you draw?

Knowing the verbal scores of males and females, how would you go
about predicting their math scores?

. Plot the female verbal SAT score against the male verbal SAT score.

Sketch a regression line through the scatterpoints. What do you
observe?

MEAN SCHOLASTIC APTITUDE TEST SCORES FOR COLLEGE-BOUND SENIORS,

1967-1990*
Verbal Math

Year Males Females Total Males Females Total
1967 463 468 466 514 467 492
1968 464 466 466 512 470 492
1969 459 466 463 513 470 493
1970 459 461 460 509 465 488
1971 454 457 455 507 466 488
1972 454 452 453 505 461 484
1973 446 443 445 502 460 481

1974 447 442 444 501 459 480
1975 437 431 434 495 449 472
1976 433 430 431 497 446 472
1977 431 427 429 497 445 470
1978 433 425 429 494 444 468
1979 431 423 427 493 443 467
1980 428 420 424 491 443 466
1981 430 418 424 492 443 466
1982 431 421 426 493 443 467
1983 430 420 425 493 445 468
1984 433 420 426 495 449 471

1985 437 425 431 499 452 475
1986 437 426 431 501 451 475
1987 435 425 430 500 453 476
1988 435 422 428 498 455 476
1989 434 421 427 500 454 476
1990 429 419 424 499 455 476

*Data for 1967-1971 are estimates.
Source: The College Board. The New York Times, Aug. 28, 1990, p. B-5.
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As noted in Chapter 2, our first task is to estimate the population regression
function (PRF) on the basis of the sample regression function (SRF) as
accurately as possible. In Appendix A we have discussed two generally used
methods of estimation: (1) ordinary least squares (OLS) and (2) maxi-
mum likelihood (ML). By and large, it is the method of OLS that is used
extensively in regression analysis primarily because it is intuitively appeal-
ing and mathematically much simpler than the method of maximum likeli-
hood. Besides, as we will show later, in the linear regression context the two
methods generally give similar results.

THE METHOD OF ORDINARY LEAST SQUARES

The method of ordinary least squares is attributed to Carl Friedrich Gauss,
a German mathematician. Under certain assumptions (discussed in Sec-
tion 3.2), the method of least squares has some very attractive statistical
properties that have made it one of the most powerful and popular methods
of regression analysis. To understand this method, we first explain the least-
squares principle.

Recall the two-variable PRF:

Y, =p1+BXi +u; (2.4.2)

However, as we noted in Chapter 2, the PRF is not directly observable. We
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estimate it from the SRF:
Y = B + B Xi + iy (2.6.2)
=Y+ (2.6.3)

where Y is the estimated (conditional mean) value of Y.
But how is the SRF itself determined? To see this, let us proceed as fol-
lows. First, express (2.6.3) as

=Y =Y

N . (3.1.1)
=Y — B1 — B X;

which shows that the #&i; (the residuals) are simply the differences between
the actual and estimated Y values.

Now given n pairs of observations on Y and X, we would like to determine
the SRF in such a manner that it is as close as possible to the actual Y. To
this end, we may adopt the following criterion: Choose the SRF in such a
way that the sum of the residuals Y &, = > (Y; — Y:) is as small as possible.
Although intuitively appealing, this is not a very good criterion, as can be
seen in the hypothetical scattergram shown in Figure 3.1.

If we adopt the criterion of minimizing > #;, Figure 3.1 shows that the
residuals 71, and 713 as well as the residuals #1; and 74 receive the same weight
in the sum (& + i, + @13 + 4is), although the first two residuals are much
closer to the SRF than the latter two. In other words, all the residuals receive

Y

X X

1 2

Least-squares criterion.
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TABLE 3.1

equal importance no matter how close or how widely scattered the individ-
ual observations are from the SRF. A consequence of this is that it is quite
possible that the algebraic sum of the #; is small (even zero) although the
4; are widely scattered about the SRF. To see this, let i1, i1, i3, and 14 in
Figure 3.1 assume the values of 10, —2, +2, and —10, respectively. The alge-
braic sum of these residuals is zero although #i; and 714 are scattered more
widely around the SRF than #, and #3. We can avoid this problem if we
adopt the least-squares criterion, which states that the SRF can be fixed in
such a way that

Yo =) -%)

N N 3.1.2
=) Y- B - KX 312
is as small as possible, where @7 are the squared residuals. By squaring #;,
this method gives more weight to residuals such as #; and 7y in Figure 3.1
than the residuals 7, and #i3. As noted previously, under the minimum 3 #;
criterion, the sum can be small even though the ii; are widely spread about
the SRF. But this is not possible under the least-squares procedure, for the
larger the #&i; (in absolute value), the larger the ﬁlz A further justification
for the least-squares method lies in the fact that the estimators obtained by
it have some very desirable statistical properties, as we shall see shortly.
It is obvious from (3.1.2) that

Yo =[(B B) (3.1.3)

that is, the sum of the squared residuals is some function of the estima-
tors ,31 and ,32. For any given set of data, choosing different values for ,31 and
B will give different &’s and hence different values of Y #2. To see this
clearly, consider the hypothetical data on Y and X given in the first two
columns of Table 3.1. Let us now conduct two experiments. In experiment 1,

EXPERIMENTAL DETERMINATION OF THE SRF

Yi Xi ' Oy a2 Yoi Upj 3;
(1) (2) (3) (4) (%) (6) (7) (8)

4 1 2.929 1.071 1.147 4 0 0

5 4 7.000 —2.000 4.000 7 -2 4

7 5 8.357 —1.357 1.841 8 -1 1

12 6 9.714 2.286 5.226 9 9
Sum: 28 16 0.0 12.214 0 14

Notes: Y1;=1.572 + 1.357X; (i.e., f1 = 1.572 and B, = 1.357)
Yi=3.0 + 1.0X; (i.e., f1 = 3and B, = 1.0)
= (Yi— Vi)
o= (Yi— Ya)
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let B; = 1.572 and B, = 1.357 (let us not worry right now about how we got
these values; say, it is just a guess).! Using these  values and the X values
given in column (2) of Table 3.1, we can easily compute the estimated Y;
given in column (3) of the table as Vi (the subscript 1 is to denote the first
experiment). Now let us conduct another experiment, but this time using
the values of ; = 3 and B, = 1. The estimated values of Y; from this experi-
ment are given as V5 in column (6) of Table 3.1. Since the 8 values in the
two experiments are different, we get different values for the estimated
residuals, as shown in the table; i&iy; are the residuals from the first experi-
ment and #; from the second experiment. The squares of these residuals
are given in columns (5) and (8). Obviously, as expected from (3.1.3), these
residual sums of squares are different since they are based on different sets
of p values.

Now which sets of 8 values should we choose? Since the B values of the
first experiment give us a lower Y47 (= 12.214) than that obtained from
the B values of the second experiment (= 14), we might say that the 8’s of the
first experiment are the “best” values. But how do we know? For, if we had
infinite time and infinite patience, we could have conducted many more
such experiments, choosing different sets of A’s each time and comparing the
resulting 3" 22 and then choosing that set of f values that gives us the least
possible value of Y42 assuming of course that we have considered all the
conceivable values of 8; and 8,. But since time, and certainly patience, are
generally in short supply, we need to consider some shortcuts to this trial-
and-error process. Fortunately, the method of least squares provides us such
a shortcut. The principle or the method of least squares chooses f; and B>
in such a manner that, for a given sample or set of data, Y7 is as small as
possible. In other words, for a given sample, the method of least squares
provides us with unique estimates of 8y and B, that give the smallest possi-
ble value of _42. How is this accomplished? This is a straight-forward exer-
cise in differential calculus. As shown in Appendix 3A, Section 3A.1, the
process of differentiation yields the following equations for estimating §;

and Ss:
Y Yi=npi+h ) X (3.1.4)

YYXi=h) Xi+h)y X} (3.1.5)

where # is the sample size. These simultaneous equations are known as the
normal equations.

'For the curious, these values are obtained by the method of least squares, discussed
shortly. See Egs. (3.1.6) and (3.1.7).
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Solving the normal equations simultaneously, we obtain

A nZXiYi _ZXiZYi
2= 2
ny X7 — (X X)
XX -X)(¥ -Y)
XX -Xp
_ D XiYi
XA

(3.1.6)

where X and Y are the sample means of X and Y and where we define x; =
(X; — X) and y; = (Y; — Y). Henceforth we adopt the convention of letting the
lowercase letters denote deviations from mean values.

_ VXYY, -2 X Y XY,

nY X2 — (¥ X;)? (3.1.7)
=V -pX

A1

The last step in (3.1.7) can be obtained directly from (3.1.4) by simple alge-
braic manipulations.

Incidentally, note that, by making use of simple algebraic identities, for-
mula (3.1.6) for estimating B, can be alternatively expressed as

32 _ D Xii
X}
> %Y
= = .1.8)2
> X2 —nX? (3.1.8)

_ > Xiyi
3 X? — nX?

The estimators obtained previously are known as the least-squares
estimators, for they are derived from the least-squares principle. Note the
following numerical properties of estimators obtained by the method of
OLS: “Numerical properties are those that hold as a consequence of the use

WNote 1: Y x? =Y (X; =X =Y X2 -2y X; X+ X2 =Y X? —2XY X; + Y X?, since X
is a constant. Further noting that 3" X; = nX and Y X?> = nX? since X is a constant, we finally
get Yx? = Y X? — nX?. ) ) ) } )

Note 2: Y xiyi =Y (Vi =Y)=Y x5, =YY % =Y 5, - Y>> (Xi — X) =) xY;, since Y
is a constant and since the sum of deviations of a variable from its mean value [e.g., > "(X; — X)]
is always zero. Likewise, > "y = > (¥; —Y) = 0.
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of ordinary least squares, regardless of how the data were generated.”’
Shortly, we will also consider the statistical properties of OLS estimators,
that is, properties “that hold only under certain assumptions about the way
the data were generated.”* (See the classical linear regression model in

Section 3.2.)

I. The OLS estimators are expressed solely in terms of the observable (i.e.,
sample) quantities (i.e., X and Y). Therefore, they can be easily computed.

II. They are point estimators; that is, given the sample, each estimator
will provide only a single (point) value of the relevant population para-
meter. (In Chapter 5 we will consider the so-called interval estimators,
which provide a range of possible values for the unknown population

parameters.)

III. Once the OLS estimates are obtained from the sample data, the sample
regression line (Figure 3.1) can be easily obtained. The regression line
thus obtained has the following properties:

1. It passes through the sample means of Y and X. This fact is obvious
from (3.1.7), for the latter can be written as ¥ = B; + g, X, which is
shown diagrammatically in Figure 3.2.

X

Diagram showing that the sample regression line passes through the sample mean values of Yand X.

3Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993, p. 3.

4Ibid.
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2. The mean value of the estimated Y = ¥; is equal to the mean value of
the actual Y for

Y = Bi + o X;
=Y - BX) + hX; (3.1.9)
=Y+ B(X; — X)

Summing both sides of this last equality over the sample values and
dividing through by the sample size n gives

V=7V (3.1.10)°

where use is made of the fact that Y (X; — X) = 0. (Why?)
3. The mean value of the residuals #; is zero. From Appendix 3A,
Section 3A.1, the first equation is

=23 (Vi = fi— X)) =0

But since @; =Y, — Bl — B.X;, the preceding equation reduces to
—2>4; =0, whence &t = 0.°
As a result of the preceding property, the sample regression

Y = Bi + BoXi + di; (2.6.2)

can be expressed in an alternative form where both Y and X are ex-
pressed as deviations from their mean values. To see this, sum (2.6.2)
on both sides to give

Y Yi=npr+h )y X+

O (3.1.11)
=np+ B ZXi since Zﬁti =0
Dividing Eq. (3.1.11) through by #, we obtain
Y =B+ B X (3.1.12)

which is the same as (3.1.7). Subtracting Eq. (3.1.12) from (2.6.2),
we obtain

Y - Y =5X; — X) + 1y

SNote that this result is true only when the regression model has the intercept term g in it.
As App. 6A, Sec. 6A.1 shows, this result need not hold when g; is absent from the model.

®This result also requires that the intercept term ; be present in the model (see App. 6A,
Sec. 6A.1).
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or

vi = Boxi + il (3.1.13)

where y; and x;, following our convention, are deviations from their
respective (sample) mean values.

Equation (3.1.13) is known as the deviation form. Notice that the
intercept term B1 is no longer present in it. But the intercept term
can always be estimated by (3.1.7), that is, from the fact that the
sample regression line passes through the sample means of Y and X.
An advantage of the deviation form is that it often simplifies com-
puting formulas.

In passing, note that in the deviation form, the SRF can be writ-
ten as

$i = Poxi (3.1.14)

whereas in the original units of measurement it was Y = Bi + BaXi,
as shown in (2.6.1).

. The residuals #; are uncorrelated with the predicted Y;. This state-

ment can be verified as follows: using the deviation form, we can write

D o did =Py Y xidl;

= /éz in(% - Bzxi)

= in}’i —,3§fo (3.1.15)
=By A -p ) A
=0

where use is made of the fact that g, = > XV /inz.

5. The residuals #; are uncorrelated with X;; that is, > i; X; = 0. This

fact follows from Eq. (2) in Appendix 3A, Section 3A.1.

3.2 THE CLASSICAL LINEAR REGRESSION MODEL:
THE ASSUMPTIONS UNDERLYING THE METHOD

OF LEAST SQUARES

If our objective is to estimate By and B, only, the method of OLS discussed in
the preceding section will suffice. But recall from Chapter 2 that in regres-
sion analysis our objective is not only to obtain ; and 8, but also to draw in-
ferences about the true 8; and 8,. For example, we would like to know how
close B; and g, are to their counterparts in the population or how close ¥; is
to the true E(Y'| X;). To that end, we must not only specify the functional
form of the model, as in (2.4.2), but also make certain assumptions about
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the manner in which Y¥; are generated. To see why this requirement is
needed, look at the PRF: Y; = 81 + B2 X; + u;. It shows that ¥; depends on
both X; and u;. Therefore, unless we are specific about how X; and u; are
created or generated, there is no way we can make any statistical inference
about the Y; and also, as we shall see, about 81 and ;. Thus, the assumptions
made about the X; variable(s) and the error term are extremely critical to the
valid interpretation of the regression estimates.

The Gaussian, standard, or classical linear regression model (CLRM),
which is the cornerstone of most econometric theory, makes 10 assump-
tions.” We first discuss these assumptions in the context of the two-variable
regression model; and in Chapter 7 we extend them to multiple regression
models, that is, models in which there is more than one regressor.

Assumption 1: Linear regression model. The regression model is linear in the parame-
ters, as shown in (2.4.2)

Yi= g1+ BoXi+ Ui (2.4.2)

We already discussed model (2.4.2) in Chapter 2. Since linear-in-parameter
regression models are the starting point of the CLRM, we will maintain this
assumption throughout this book. Keep in mind that the regressand Y and
the regressor X themselves may be nonlinear, as discussed in Chapter 2.2

Assumption 2: X values are fixed in repeated sampling. Values taken by the regressor X
are considered fixed in repeated samples. More technically, Xis assumed to be nonstochastic.

This assumption is implicit in our discussion of the PRF in Chapter 2.
But it is very important to understand the concept of “fixed values in re-
peated sampling,” which can be explained in terms of our example given in
Table 2.1. Consider the various Y populations corresponding to the levels of
income shown in that table. Keeping the value of income X fixed, say, at level
$80, we draw at random a family and observe its weekly family consump-
tion expenditure Y as, say, $60. Still keeping X at $80, we draw at random
another family and observe its Y value as $75. In each of these drawings
(i.e., repeated sampling), the value of X is fixed at $80. We can repeat this
process for all the X values shown in Table 2.1. As a matter of fact, the sam-
ple data shown in Tables 2.4 and 2.5 were drawn in this fashion.

What all this means is that our regression analysis is conditional regres-
sion analysis, that is, conditional on the given values of the regressor(s) X.

It is classical in the sense that it was developed first by Gauss in 1821 and since then has
served as a norm or a standard against which may be compared the regression models that do
not satisfy the Gaussian assumptions.

8However, a brief discussion of nonlinear-in-the-parameter regression models is given in
Chap. 14.
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Assumption 3: Zero mean value of disturbance u;. Given the value of X, the mean, or
expected, value of the random disturbance term u;is zero. Technically, the conditional mean
value of u;is zero. Symbolically, we have

E(uj|1 X) = 0 (3.2.1)

Assumption 3 states that the mean value of u;, conditional upon the given
X;, is zero. Geometrically, this assumption can be pictured as in Figure 3.3,
which shows a few values of the variable X and the Y populations associated
with each of them. As shown, each Y population corresponding to a given X
is distributed around its mean value (shown by the circled points on the
PRF) with some Y values above the mean and some below it. The distances
above and below the mean values are nothing but the #;, and what (3.2.1)
requires is that the average or mean value of these deviations corresponding
to any given X should be zero.’

This assumption should not be difficult to comprehend in view of the dis-
cussion in Section 2.4 [see Eq. (2.4.5)]. All that this assumption says is that
the factors not explicitly included in the model, and therefore subsumed in u;,
do not systematically affect the mean value of Y; so to speak, the positive u;

Y

(® Mean

PRF: Y, = B, + B,X,

=

X3

Conditional distribution of the disturbances u;.

For illustration, we are assuming merely that the u’s are distributed symmetrically as
shown in Figure 3.3. But shortly we will assume that the u’s are distributed normally.
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values cancel out the negative u; values so that their average or mean effect
on Yis zero.!?

In passing, note that the assumption E(u; | X;) = 0 implies that E(Y; | X;) =
Bi + B2X;. (Why?) Therefore, the two assumptions are equivalent.

Assumption 4: Homoscedasticity or equal variance of u;. Given the value of X; the vari-
ance of u;is the same for all observations. That is, the conditional variances of u; are identi-
cal. Symbolically, we have
var (u;| X) = E[u; — E(ui| X)I?
= E(u? | X;) because of Assumption 3 (3.2.2)

=02

where var stands for variance.

Eq. (3.2.2) states that the variance of u; for each X; (i.e., the conditional
variance of #;) is some positive constant number equal to 2. Technically,
(3.2.2) represents the assumption of homoscedasticity, or equal (homo)
spread (scedasticity) or equal variance. The word comes from the Greek verb
skedanime, which means to disperse or scatter. Stated differently, (3.2.2)
means that the Y populations corresponding to various X values have the
same variance. Put simply, the variation around the regression line (which
is the line of average relationship between Y and X) is the same across the X
values; it neither increases or decreases as X varies. Diagrammatically, the
situation is as depicted in Figure 3.4.

f @)

Probability density of u;

/
PRE: Y; =B+ B,X;

FIGURE 3.4 Homoscedasticity.

19For a more technical reason why Assumption 3 is necessary see E. Malinvaud, Statistical
Methods of Econometrics, Rand McNally, Chicago, 1966, p. 75. See also exercise 3.3.
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f(u)

1

Probability density of u

Heteroscedasticity.

In contrast, consider Figure 3.5, where the conditional variance of the Y
population varies with X. This situation is known appropriately as het-
eroscedasticity, or unequal spread, or variance. Symbolically, in this situa-
tion (3.2.2) can be written as

var (u; | X;) = oiz (3.2.3)

Notice the subscript on ¢ in Eq. (3.2.3), which indicates that the variance
of the Y population is no longer constant.

To make the difference between the two situations clear, let Y represent
weekly consumption expenditure and X weekly income. Figures 3.4 and 3.5
show that as income increases the average consumption expenditure also
increases. But in Figure 3.4 the variance of consumption expenditure re-
mains the same at all levels of income, whereas in Figure 3.5 it increases with
increase in income. In other words, richer families on the average consume
more than poorer families, but there is also more variability in the con-
sumption expenditure of the former.

To understand the rationale behind this assumption, refer to Figure 3.5. As
this figure shows, var (x| X;) < var(u|X>), ..., < var(u| X;). Therefore, the
likelihood is that the Y observations coming from the population with
X = X; would be closer to the PRF than those coming from populations cor-
responding to X = X5, X = X3, and so on. In short, not all Y values corre-
sponding to the various X’s will be equally reliable, reliability being judged by
how closely or distantly the Y values are distributed around their means, that
is, the points on the PRF. If this is in fact the case, would we not prefer to
sample from those Y populations that are closer to their mean than those
that are widely spread? But doing so might restrict the variation we obtain
across X values.
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By invoking Assumption 4, we are saying that at this stage all Y values
corresponding to the various X’s are equally important. In Chapter 11 we
shall see what happens if this is not the case, that is, where there is het-
eroscedasticity.

In passing, note that Assumption 4 implies that the conditional variances
of Y; are also homoscedastic. That is,

var(Y; | X;) = o2 (3.2.4)

Of course, the unconditional variance of Y is o. Later we will see the im-
portance of distinguishing between conditional and unconditional vari-
ances of Y (see Appendix A for details of conditional and unconditional
variances).

Assumption 5: No autocorrelation between the disturbances. Given any two X values,
Xiand X; (i # j), the correlation between any two u;and u; (i # j) is zero. Symbolically,

cov (uy u | X, X) = Edlui— E(u)] | X} — EW)] | X}
= E(u 1 X)(41X)  (why?) (3:25)
=0

where i and j are two different observations and where cov means covariance.

In words, (3.2.5) postulates that the disturbances u; and u; are uncorre-
lated. Technically, this is the assumption of no serial correlation, or no
autocorrelation. This means that, given X;, the deviations of any two Y val-
ues from their mean value do not exhibit patterns such as those shown in
Figure 3.6a and b. In Figure 3.6a, we see that the u’s are positively corre-
lated, a positive u followed by a positive u or a negative u followed by a
negative u. In Figure 3.6b, the u’s are negatively correlated, a positive u
followed by a negative u and vice versa.

If the disturbances (deviations) follow systematic patterns, such as those
shown in Figure 3.6a and b, there is auto- or serial correlation, and what As-
sumption 5 requires is that such correlations be absent. Figure 3.6¢ shows
that there is no systematic pattern to the u’s, thus indicating zero correlation.

The full import of this assumption will be explained thoroughly in Chap-
ter 12. But intuitively one can explain this assumption as follows. Suppose
in our PRF (Y; = B + B2 X, +u,) that u, and u,_; are positively correlated.
Then Y; depends not only on X; but also on u,_; for u,_; to some extent
determines u,. At this stage of the development of the subject matter, by in-
voking Assumption 5, we are saying that we will consider the systematic
effect, if any, of X; on Y; and not worry about the other influences that might
act on Y as a result of the possible intercorrelations among the u’s. But, as
noted in Chapter 12, we will see how intercorrelations among the distur-
bances can be brought into the analysis and with what consequences.
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Patterns of correlation among the disturbances. (a) positive serial correlation; (b) negative serial
correlation; (c) zero correlation.

Assumption 6: Zero covariance between u; and Xj, or E(u;X)) = 0. Formally,

cov (u; X)) = E[u; — E(u)][Xi — E(X)]

= E[u(Xi— E(X))]  since E(u) =0

= E(uiXj)) — E(X)E(u) since E(X)) is nonstochastic (3.2.6)
= E(uiX)) since E(u) =0

=0 by assumption

Assumption 6 states that the disturbance u and explanatory variable X
are uncorrelated. The rationale for this assumption is as follows: When we
expressed the PRF as in (2.4.2), we assumed that X and « (which may rep-
resent the influence of all the omitted variables) have separate (and additive)
influence on Y. But if X and u are correlated, it is not possible to assess their
individual effects on Y. Thus, if X and u are positively correlated, X increases
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when u increases and it decreases when u decreases. Similarly, if X and u
are negatively correlated, X increases when u decreases and it decreases
when u increases. In either case, it is difficult to isolate the influence of X
and u onY.

Assumption 6 is automatically fulfilled if X variable is nonrandom or
nonstochastic and Assumption 3 holds, for in that case, cov (u;, X;) = [X; —
E(X;)]E[u; — E(u;)] = 0. (Why?) But since we have assumed that our X vari-
able not only is nonstochastic but also assumes fixed values in repeated
samples,!! Assumption 6 is not very critical for us; it is stated here merely to
point out that the regression theory presented in the sequel holds true even
if the X’s are stochastic or random, provided they are independent or at
least uncorrelated with the disturbances u;.'? (We shall examine the conse-
quences of relaxing Assumption 6 in Part II.)

Assumption 7: The number of observations n must be greater than the number of
parameters to be estimated. Alternatively, the number of observations n must be greater
than the number of explanatory variables.

This assumption is not so innocuous as it seems. In the hypothetical
example of Table 3.1, imagine that we had only the first pair of observations
on Y and X (4 and 1). From this single observation there is no way to esti-
mate the two unknowns, i and B,. We need at least two pairs of observa-
tions to estimate the two unknowns. In a later chapter we will see the criti-
cal importance of this assumption.

Assumption 8: Variability in X values. The X values in a given sample must not all be the
same. Technically, var (X) must be a finite positive number.'3

This assumption too is not so innocuous as it looks. Look at Eq. (3.1.6).
If all the X values are identical, then X; = X (Why?) and the denominator of
that equation will be zero, making it impossible to estimate 8, and therefore
B1. Intuitively, we readily see why this assumption is important. Looking at

"Recall that in obtaining the samples shown in Tables 2.4 and 2.5, we kept the same X
values.

12As we will discuss in Part II, if the X’s are stochastic but distributed independently of u;,
the properties of least estimators discussed shortly continue to hold, but if the stochastic X’s are
merely uncorrelated with u;, the properties of OLS estimators hold true only if the sample size
is very large. At this stage, however, there is no need to get bogged down with this theoretical
point.

13The sample variance of X is

var(X) = =&/——— "~

(X — X)?
n—1

where n is sample size.
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our family consumption expenditure example in Chapter 2, if there is very
little variation in family income, we will not be able to explain much of the
variation in the consumption expenditure. The reader should keep in mind
that variation in both Y and X is essential to use regression analysis as a re-
search tool. In short, the variables must vary!

Assumption 9: The regression model is correctly specified. Alternatively, there is no
specification bias or error in the model used in empirical analysis.

As we discussed in the Introduction, the classical econometric methodol-
ogy assumes implicitly, if not explicitly, that the model used to test an eco-
nomic theory is “correctly specified.” This assumption can be explained
informally as follows. An econometric investigation begins with the specifi-
cation of the econometric model underlying the phenomenon of interest.
Some important questions that arise in the specification of the model
include the following: (1) What variables should be included in the model?
(2) What is the functional form of the model? Is it linear in the parameters,
the variables, or both? (3) What are the probabilistic assumptions made
about the Y;, the X;, and the u; entering the model?

These are extremely important questions, for, as we will show in Chap-
ter 13, by omitting important variables from the model, or by choosing the
wrong functional form, or by making wrong stochastic assumptions about
the variables of the model, the validity of interpreting the estimated regres-
sion will be highly questionable. To get an intuitive feeling about this, refer
to the Phillips curve shown in Figure 1.3. Suppose we choose the following
two models to depict the underlying relationship between the rate of change
of money wages and the unemployment rate:

Y =a1 + o X; +u; (3.2.7)
1
Yi=pB1+ B2 (y) +u; (3.2.8)

where Y; = the rate of change of money wages, and X; = the unemployment
rate.

The regression model (3.2.7) is linear both in the parameters and the
variables, whereas (3.2.8) is linear in the parameters (hence a linear regres-
sion model by our definition) but nonlinear in the variable X. Now consider
Figure 3.7.

If model (3.2.8) is the “correct” or the “true” model, fitting the model
(3.2.7) to the scatterpoints shown in Figure 3.7 will give us wrong predic-
tions: Between points A and B, for any given X; the model (3.2.7) is going to
overestimate the true mean value of Y, whereas to the left of A (or to the
right of B) it is going to underestimate (or overestimate, in absolute terms)
the true mean value of Y.
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FIGURE 3.7

Rate of change of money wages

Linear and nonlinear Phillips curves.

The preceding example is an instance of what is called a specification
bias or a specification error; here the bias consists in choosing the wrong
functional form. We will see other types of specification errors in Chapter 13.

Unfortunately, in practice one rarely knows the correct variables to in-
clude in the model or the correct functional form of the model or the correct
probabilistic assumptions about the variables entering the model for the
theory underlying the particular investigation (e.g., the Phillips-type money
wage change-unemployment rate tradeoff) may not be strong or robust
enough to answer all these questions. Therefore, in practice, the econome-
trician has to use some judgment in choosing the number of variables enter-
ing the model and the functional form of the model and has to make some
assumptions about the stochastic nature of the variables included in the
model. To some extent, there is some trial and error involved in choosing the
“right” model for empirical analysis.'*

If judgment is required in selecting a model, what is the need for Assump-
tion 9? Without going into details here (see Chapter 13), this assumption
is there to remind us that our regression analysis and therefore the results
based on that analysis are conditional upon the chosen model and to warn
us that we should give very careful thought in formulating econometric

14But one should avoid what is known as “data mining,” that is, trying every possible
model with the hope that at least one will fit the data well. That is why it is essential that there
be some economic reasoning underlying the chosen model and that any modifications in
the model should have some economic justification. A purely ad hoc model may be difficult to
justify on theoretical or a priori grounds. In short, theory should be the basis of estimation. But
we will have more to say about data mining in Chap. 13, for there are some who argue that in
some situations data mining can serve a useful purpose.
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models, especially when there may be several competing theories trying to
explain an economic phenomenon, such as the inflation rate, or the demand
for money, or the determination of the appropriate or equilibrium value of a
stock or a bond. Thus, econometric model-building, as we shall discover, is
more often an art rather than a science.

Our discussion of the assumptions underlying the classical linear regres-
sion model is now completed. It is important to note that all these assump-
tions pertain to the PRF only and not the SRF. But it is interesting to observe
that the method of least squares discussed previously has some proper-
ties that are similar to the assumptions we have made about the PRF. For
example, the finding that Y &; = 0, and, therefore, &t = 0, is akin to the as-
sumption that E(u; | X;) = 0. Likewise, the finding that " #; X; = 0 is similar
to the assumption that cov(zx;, X;) = 0. It is comforting to note that the
method of least squares thus tries to “duplicate” some of the assumptions
we have imposed on the PRF.

Of course, the SRF does not duplicate all the assumptions of the CLRM.
As we will show later, although cov (u;, uj) = 0(i # j) by assumption, it is
not true that the sample cov (&l;, &1j) = 0(i # j). As a matter of fact, we will
show later that the residuals not only are autocorrelated but also are het-
eroscedastic (see Chapter 12).

When we go beyond the two-variable model and consider multiple re-
gression models, that is, models containing several regressors, we add the
following assumption.

Assumption 10: There is no perfect multicollinearity. That is, there are no perfect linear
relationships among the explanatory variables.

We will discuss this assumption in Chapter 7, where we discuss multiple
regression models.

A Word about These Assumptions

The million-dollar question is: How realistic are all these assumptions? The
“reality of assumptions” is an age-old question in the philosophy of science.
Some argue that it does not matter whether the assumptions are realistic.
What matters are the predictions based on those assumptions. Notable
among the “irrelevance-of-assumptions thesis” is Milton Friedman. To him,
unreality of assumptions is a positive advantage: “to be important...a
hypothesis must be descriptively false in its assumptions.”!>

One may not subscribe to this viewpoint fully, but recall that in any
scientific study we make certain assumptions because they facilitate the

15Milton Friedman, Essays in Positive Economics, University of Chicago Press, Chicago,
1953, p. 14.
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development of the subject matter in gradual steps, not because they are
necessarily realistic in the sense that they replicate reality exactly. As one
author notes, “...if simplicity is a desirable criterion of good theory, all
good theories idealize and oversimplify outrageously.”!®

What we plan to do is first study the properties of the CLRM thoroughly,
and then in later chapters examine in depth what happens if one or more of
the assumptions of CLRM are not fulfilled. At the end of this chapter, we
provide in Table 3.4 a guide to where one can find out what happens to the
CLRM if a particular assumption is not satisfied.

As a colleague pointed out to me, when we review research done by
others, we need to consider whether the assumptions made by the re-
searcher are appropriate to the data and problem. All too often, published
research is based on implicit assumptions about problem and data that are
likely not correct and that produce estimates based on these assumptions.
Clearly, the knowledgeable reader should, realizing these problems, adopt a
skeptical attitude toward the research. The assumptions listed in Table 3.4
therefore provide a checklist for guiding our research and for evaluating the
research of others.

With this backdrop, we are now ready to study the CLRM. In particular,
we want to find out the statistical properties of OLS compared with the
purely numerical properties discussed earlier. The statistical properties of
OLS are based on the assumptions of CLRM already discussed and are
enshrined in the famous Gauss-Markov theorem. But before we turn to
this theorem, which provides the theoretical justification for the popularity
of OLS, we first need to consider the precision or standard errors of the
least-squares estimates.

3.3 PRECISION OR STANDARD ERRORS
OF LEAST-SQUARES ESTIMATES

From Egs. (3.1.6) and (3.1.7), it is evident that least-squares estimates are a
function of the sample data. But since the data are likely to change from
sample to sample, the estimates will change ipso facto. Therefore, what is
needed is some measure of “reliability” or precision of the estimators B
and B,. In statistics the precision of an estimate is measured by its standard
error (se).!” Given the Gaussian assumptions, it is shown in Appendix 3A,
Section 3A.3 that the standard errors of the OLS estimates can be obtained

1Mark Blaug, The Methodology of Economics: Or How Economists Explain, 2d ed.,
Cambridge University Press, New York, 1992, p. 92.

"The standard error is nothing but the standard deviation of the sampling distribution of
the estimator, and the sampling distribution of an estimator is simply a probability or fre-
quency distribution of the estimator, that is, a distribution of the set of values of the estimator
obtained from all possible samples of the same size from a given population. Sampling distri-
butions are used to draw inferences about the values of the population parameters on the basis
of the values of the estimators calculated from one or more samples. (For details, see App. A.)
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as follows:
o2

var(8,) = Zx (3.3.1)
se(Ba) = \/? (3.3.2)

Xi

2
var (,31) = nzgié;az (3.3.3)

2

se(Br) = nzz)i (3.3.4)

where var = variance and se = standard error and where o2 is the constant
or homoscedastic variance of u; of Assumption 4.

All the quantities entering into the preceding equations except o> can be
estimated from the data. As shown in Appendix 3A, Section 3A.5, o2 itself is
estimated by the following formula:

n—2

where 62 is the OLS estimator of the true but unknown o2 and where the
expression 1 — 2 is known as the number of degrees of freedom (df), > #?
being the sum of the residuals squared or the residual sum of squares
(RSS).!?

Once ) 42 is known, 62 can be easily computed. }_ 42 itself can be com-
puted either from (3.1.2) or from the following expression (see Section 3.5

for the proof):
Y=y x (3.3.6)

Compared with Eq. (3.1.2), Eq. (3.3.6) is easy to use, for it does not require
computing &; for each observation although such a computation will be use-
ful in its own right (as we shall see in Chapters 11 and 12).

Since

(3.3.5)

2

Bz _ Z XiYi
X7

8The term number of degrees of freedom means the total number of observations in the
sample (= n) less the number of independent (linear) constraints or restrictions put on them.
In other words, it is the number of independent observations out of a total of n observations.
For example, before the RSS (3.1.2) can be computed, B1 and B> must first be obtained. These
two estimates therefore put two restrictions on the RSS. Therefore, there are n — 2, not n, in-
dependent observations to compute the RSS. Following this logic, in the three-variable regres-
sion RSS will have n — 3 df, and for the k-variable model it will have n — k df. The general rule
is this: df = (n — number of parameters estimated).
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an alternative expression for computing Y 42 is

. Z XY,
doar =)y l) (3.3.7)
In passing, note that the positive square root of 52

Y
n—2

(3.3.8)

o=

is known as the standard error of estimate or the standard error of the
regression (se). It is simply the standard deviation of the Y values about
the estimated regression line and is often used as a summary measure of
the “goodness of fit” of the estimated regression line, a topic discussed in
Section 3.5.

Earlier we noted that, given X;, o2 represents the (conditional) variance
of both u; and Y;. Therefore, the standard error of the estimate can also be
called the (conditional) standard deviation of u; and Y;. Of course, as usual,
o¢ and oy represent, respectively, the unconditional variance and uncondi-
tional standard deviation of Y.

Note the following features of the variances (and therefore the standard
errors) of 81 and f,.

1. The variance of B is directly proportional to o2 but inversely propor-
tional to )" x?. That is, given o2, the larger the variation in the X values, the
smaller the variance of 8, and hence the greater the precision with which 8,
can be estimated. In short, given o2, if there is substantial variation in the X
values (recall Assumption 8), 8, can be measured more accurately than
when the X; do not vary substantially. Also, given }_x?, the larger the vari-
ance of o2, the larger the variance of ;. Note that as the sample size n
increases, the number of terms in the sum, le-z, will increase. As n in-
creases, the precision with which 8, can be estimated also increases. (Why?)

2. The variance of §; is directly proportional to 2 and Y X? but in-
versely proportional to > x? and the sample size n.

3. Since f; and B, are estimators, they will not only vary from sample to
sample but in a given sample they are likely to be dependent on each other,
this dependence being measured by the covariance between them. It is
shown in Appendix 3A, Section 3A.4 that

cov (31» ,32) = —Xvar (Bz)

_ 5 (3.3.9)
-*(a)
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Since var (B,) is always positive, as is the variance of any variable, the nature
of the covariance between 8; and 8, depends on the sign of X. If X is posi-
tive, then as the formula shows, the covariance will be negative. Thus, if the
slope coefficient B, is overestimated (i.e., the slope is too steep), the intercept
coefficient By will be underestimated (i.e., the intercept will be too small).
Later on (especially in the chapter on multicollinearity, Chapter 10), we will
see the utility of studying the covariances between the estimated regression
coefficients.

How do the variances and standard errors of the estimated regression
coefficients enable one to judge the reliability of these estimates? This is a
problem in statistical inference, and it will be pursued in Chapters 4 and 5.

3.4 PROPERTIES OF LEAST-SQUARES ESTIMATORS:
THE GAUSS-MARKOV THEOREM'®

As noted earlier, given the assumptions of the classical linear regression
model, the least-squares estimates possess some ideal or optimum proper-
ties. These properties are contained in the well-known Gauss-Markov
theorem. To understand this theorem, we need to consider the best linear
unbiasedness property of an estimator.? As explained in Appendix A, an
estimator, say the OLS estimator B>, is said to be a best linear unbiased
estimator (BLUE) of S, if the following hold:

1. It is linear, that is, a linear function of a random variable, such as the
dependent variable Y in the regression model.

2. It is unbiased, that is, its average or expected value, E(B), is equal to
the true value, B;.

3. It has minimum variance in the class of all such linear unbiased
estimators; an unbiased estimator with the least variance is known as an
efficient estimator.

In the regression context it can be proved that the OLS estimators are
BLUE. This is the gist of the famous Gauss—-Markov theorem, which can be
stated as follows:

Gauss—Markov Theorem: Given the assumptions of the classical linear regression model,
the least-squares estimators, in the class of unbiased linear estimators, have minimum
variance, that is, they are BLUE.

The proof of this theorem is sketched in Appendix 3A, Section 3A.6. The
full import of the Gauss—Markov theorem will become clearer as we move

19Although known as the Gauss—Markov theorem, the least-squares approach of Gauss ante-
dates (1821) the minimum-variance approach of Markov (1900).

20The reader should refer to App. A for the importance of linear estimators as well as for a
general discussion of the desirable properties of statistical estimators.
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FIGURE 3.8

E(B,) = B,
(a) Sampling distribution of f3,

B>

EB3) = B,
(b) Sampling distribution of 5

Sampling distribution of OLS estimator .
B2 and alternative estimator ;. (¢) Sampling distributions of 8, and 35

along. It is sufficient to note here that the theorem has theoretical as well as
practical importance.?!

What all this means can be explained with the aid of Figure 3.8.

In Figure 3.8(a) we have shown the sampling distribution of the OLS
estimator ﬁz, that is, the distribution of the values taken by /§2 in repeated
sampling experiments (recall Table 3.1). For convenience we have assumed
B> to be distributed symmetrically (but more on this in Chapter 4). As the
figure shows, the mean of the ﬁz values, E(ﬁz), is equal to the true B,. In this
situation we say that ,32 is an unbiased estimator of B,. In Figure 3.8(b) we
have shown the sampling distribution of g5, an alternative estimator of 8,

21For example, it can be proved that any linear combination of the s, such as (81 — 282),
can be estimated by (B1 — 2B>), and this estimator is BLUE. For details, see Henri Theil, Intro-
duction to Econometrics, Prentice-Hall, Englewood Cliffs, N.J., 1978, pp. 401-402. Note a
technical point about the Gauss—Markov theorem: Tt provides only the sufficient (but not nec-
essary) condition for OLS to be efficient. I am indebted to Michael McAleer of the University of
Western Australia for bringing this point to my attention.
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obtained by using another (i.e., other than OLS) method. For convenience,
assume that ,82 , like B, is unbiased, t}}at is, its average or expected value is
equal to B,. Assume further that both 8, and ,82 are linear estimators, that is,
they are linear functions of Y. Which estimator, 8, or /3;, would you choose?

To answer this question, superimpose the two figures, as in Figure 3.8(c).
It is obvious that although both 8, and p, are unbiased the distribution of 8,
is more diffused or widespread around the mean value than the distribution
of B>. In other words, the variance of B, is larger than the variance of Bs.
Now given two estimators that are both linear and unbiased, one would
choose the estimator with the smaller variance because it is more likely to
be close to B, than the alternative estimator. In short, one would choose the
BLUE estimator.

The Gauss-Markov theorem is remarkable in that it makes no assump-
tions about the probability distribution of the random variable u;, and there-
fore of ¥; (in the next chapter we will take this up). As long as the
assumptions of CLRM are satisfied, the theorem holds. As a result, we need
not look for another linear unbiased estimator, for we will not find such an
estimator whose variance is smaller than the OLS estimator. Of course, if one
or more of these assumptions do not hold, the theorem is invalid. For exam-
ple, if we consider nonlinear-in-the-parameter regression models (which are
discussed in Chapter 14), we may be able to obtain estimators that may per-
form better than the OLS estimators. Also, as we will show in the chapter on
heteroscedasticity, if the assumption of homoscedastic variance is not ful-
filled, the OLS estimators, although unbiased and consistent, are no longer
minimum variance estimators even in the class of linear estimators.

The statistical properties that we have just discussed are known as finite
sample properties: These properties hold regardless of the sample size on
which the estimators are based. Later we will have occasions to consider the
asymptotic properties, that is, properties that hold only if the sample size
is very large (technically, infinite). A general discussion of finite-sample and
large-sample properties of estimators is given in Appendix A.

3.5 THE COEFFICIENT OF DETERMINATION r2:
A MEASURE OF “GOODNESS OF FIT”

Thus far we were concerned with the problem of estimating regression
coefficients, their standard errors, and some of their properties. We now con-
sider the goodness of fit of the fitted regression line to a set of data; that is,
we shall find out how “well” the sample regression line fits the data. From Fig-
ure 3.1 it is clear that if all the observations were to lie on the regression line,
we would obtain a “perfect” fit, but this is rarely the case. Generally, there will
be some positive i; and some negative ;. What we hope for is that these
residuals around the regression line are as small as possible. The coefficient
of determination r? (two-variable case) or R* (multiple regression) is a sum-
mary measure that tells how well the sample regression line fits the data.
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FIGURE 3.9

(a) ®) ()

(d) (e) o

The Ballentine view of r?: (a) r>=0; (f) r2 = 1.

Before we show how 2 is computed, let us consider a heuristic explana-
tion of 72 in terms of a graphical device, known as the Venn diagram, or the
Ballentine, as shown in Figure 3.9.2

In this figure the circle Y represents variation in the dependent variable Y
and the circle X represents variation in the explanatory variable X.?3 The
overlap of the two circles (the shaded area) indicates the extent to which the
variation in Y is explained by the variation in X (say, via an OLS regression).
The greater the extent of the overlap, the greater the variation in Y is ex-
plained by X. The r? is simply a numerical measure of this overlap. In the
figure, as we move from left to right, the area of the overlap increases, that
is, successively a greater proportion of the variation in Y is explained by X.
In short, 72 increases. When there is no overlap, r? is obviously zero, but
when the overlap is complete, 72 is 1, since 100 percent of the variation in Y
is explained by X. As we shall show shortly, 72 lies between 0 and 1.

To compute this 72, we proceed as follows: Recall that

Y, =Y +iy (2.6.3)

or in the deviation form

yi =i +i; (3.5.1)

where use is made of (3.1.13) and (3.1.14). Squaring (3.5.1) on both sides

22See Peter Kennedy, “Ballentine: A Graphical Aid for Econometrics,” Australian Economics
Papers, vol. 20, 1981, pp. 414-416. The name Ballentine is derived from the emblem of the well-
known Ballantine beer with its circles.

23The term variation and variance are different. Variation means the sum of squares of the
deviations of a variable from its mean value. Variance is this sum of squares divided by the ap-
propriate degrees of freedom. In short, variance = variation/df.
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and summing over the sample, we obtain

D=+ W +2)
=) ) (3.5.2)
=;§§fo+2fo

since Y ¥;ii; = 0 (why?) and §; = Boxi;.

The various sums of squares appearing in (3.5.2) can be described as
follows: Y y? = > (¥; — Y)? = total variation of the actual Y values about
their sample mean, which may be called the total sum of squares (TSS).
Y2 =3V - V)2 = 3(V; = V)2 = 2 Y x? = variation of the estimated Y
values about their mean (¥ = ¥), which appropriately may be called the
sum of squares due to regression [i.e., due to the explanatory variable(s)], or
explained by regression, or simply the explained sum of squares (ESS).
Y42 = residual or unexplained variation of the Y values about the regres-

sion line, or simply the residual sum of squares (RSS). Thus, (3.5.2) is
TSS = ESS + RSS (3.5.3)

and shows that the total variation in the observed Y values about their mean
value can be partitioned into two parts, one attributable to the regression
line and the other to random forces because not all actual Y observations lie
on the fitted line. Geometrically, we have Figure 3.10.

4; = due to residual

(Y;-Y) = total

(Yi -Y) = due to regression

=

Breakdown of the variation
of Y; into two components. 0
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Now dividing (3.5.3) by TSS on both sides, we obtain

_ESS  RSS
T TSS ' TSS (3.5.4)
% ¥y e .5.
EDC S
YYi =Y (Y -Y)?
We now define 2 as
o _ XY ESS (3.5.5)
T Y% -¥)2  TSS o
or, alternatively, as
1,.2 — 1 _ Zﬁlz
Y, —Y)?
L& -1 (3.5.5a)
_q RSS
TSS

The quantity #? thus defined is known as the (sample) coefficient of deter-
mination and is the most commonly used measure of the goodness of fit of
a regression line. Verbally, #? measures the proportion or percentage of the
total variation in Y explained by the regression model.

Two properties of r? may be noted:

1. It is a nonnegative quantity. (Why?)

2. Its limits are 0 <72 < 1. Anr2 of 1 means a perfect fit, that is, ¥; = ¥;
for each i. On the other hand, an r? of zero means that there is no relation-
ship between the regressand and the regressor whatsoever (i.e., 8 = 0). In
this case, as (3.1.9) shows, ¥; = ﬁl =Y, that is, the best prediction of any Y
value is simply its mean value. In this situation therefore the regression line
will be horizontal to the X axis.

Although 2 can be computed directly from its definition given in (3.5.5),
it can be obtained more quickly from the following formula:

, ESS
V= ———
TSS
D3
> y?

_ Byt

> y?

()

(3.5.6)
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If we divide the numerator and the denominator of (3.5.6) by the sample
size n (or n — 1 if the sample size is small), we obtain

(S
2 ﬂg(s_g) (3.5.7)

where Sy2 and S? are the sample variances of Y and X, respectively.
Since B2 = Y x;i /inz, Eq. (3.5.6) can also be expressed as

2 _ (inyi)z
7= 42792 ny (3.5.8)

an expression that may be computationally easy to obtain.
Given the definition of 2, we can express ESS and RSS discussed earlier as
follows:

ESS =72 .TSS

_ 2 ZVZ (3.5.9)
RSS = TSS — ESS

= TSS(1 — ESS/TSS) (3.5.10)

:Zyi2~(1—r2)

Therefore, we can write

TSS = ESS + RSS
3.5.11
St =t st =) L5 G510

an expression that we will find very useful later.

A quantity closely related to but conceptually very much different from r2
is the coefficient of correlation, which, as noted in Chapter 1, is a measure
of the degree of association between two variables. It can be computed either
from

r=4+r2 (3.5.12)
or from its definition

_ in}’i
(22)(22)
ny XY, - QX))
Jnz 2 — (2 x)n e v - (2 %)

which is known as the sample correlation coefficient.?*

(3.5.13)

24The population correlation coefficient, denoted by p, is defined in App. A.
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FIGURE 3.11  Correlation patterns (adapted from Henri Theil, Introduction to Econometrics, Prentice-Hall,

Englewood Cliffs, N.J., 1978, p. 86).

Some of the properties of » are as follows (see Figure 3.11):

1. Tt can be positive or negative, the sign depending on the sign of the
term in the numerator of (3.5.13), which measures the sample covariation of
two variables.

2. It lies between the limits of —1 and +1; thatis, =1 <r < 1.

3. It is symmetrical in nature; that is, the coefficient of correlation be-
tween X and Y(ryy) is the same as that between Y and X(ryx).

4. Tt is independent of the origin and scale; that is, if we define X; =
aX; +C and Yi* =bY; +d, where a >0, b >0, and ¢ and d are constants,
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then r between X" and Y" is the same as that between the original variables
XandY.

5. If X and Y are statistically independent (see Appendix A for the defi-
nition), the correlation coefficient between them is zero; but if r = 0, it does
not mean that two variables are independent. In other words, zero correla-
tion does not necessarily imply independence. [See Figure 3.11(%).]

6. Itis a measure of linear association or linear dependence only; it has no
meaning for describing nonlinear relations. Thus in Figure 3.11(h), Y = X?
is an exact relationship yet r is zero. (Why?)

7. Although it is a measure of linear association between two variables,
it does not necessarily imply any cause-and-effect relationship, as noted in
Chapter 1.

In the regression context, r? is a more meaningful measure than r, for
the former tells us the proportion of variation in the dependent variable
explained by the explanatory variable(s) and therefore provides an overall
measure of the extent to which the variation in one variable determines
the variation in the other. The latter does not have such value.?> Moreover, as
we shall see, the interpretation of 7 (= R) in a multiple regression model is
of dubious value. However, we will have more to say about r? in Chapter 7.

In passing, note that the r? defined previously can also be computed as the
squared coefficient of correlation between actual Y; and the estimated Y;,
namely, Y;. That is, using (3.5.13), we can write

2 _ [T =N - N’

YV - YR Y - VY

That is,

2 (i)’
(X))

where Y; = actual Y, ¥; = estimated Y, and Y = ¥ = the mean of Y. For
proof, see exercise 3.15. Expression (3.5.14) justifies the description of 2 as
a measure of goodness of fit, for it tells how close the estimated Y values are
to their actual values.

(3.5.14)

3.6 A NUMERICAL EXAMPLE

We illustrate the econometric theory developed so far by considering
the Keynesian consumption function discussed in the Introduction. Recall
that Keynes stated that “The fundamental psychological law . . . is that men

25In regression modeling the underlying theory will indicate the direction of causality
between Y and X, which, in the context of single-equation models, is generally from X to Y.
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TABLE 3.2

HYPOTHETICAL DATA ON
WEEKLY FAMILY CONSUMPTION
EXPENDITURE Y AND
WEEKLY FAMILY INCOME X

Y, $ X $
70 80
65 100
90 120
95 140
110 160
115 180
120 200
140 220
155 240
150 260

[women] are disposed, as a rule and on average, to increase their consump-
tion as their income increases, but not by as much as the increase in their
income,” that is, the marginal propensity to consume (MPC) is greater than
zero but less than one. Although Keynes did not specify the exact functional
form of the relationship between consumption and income, for simplicity
assume that the relationship is linear as in (2.4.2). As a test of the Keynesian
consumption function, we use the sample data of Table 2.4, which for con-
venience is reproduced as Table 3.2. The raw data required to obtain the
estimates of the regression coefficients, their standard errors, etc., are given
in Table 3.3. From these raw data, the following calculations are obtained,
and the reader is advised to check them.

pi1 =24.4545  var(B;) =41.1370 and  se(f;) = 6.4138
B = 05091 var(B)= 0.0013 and  se(B,)=0.0357

. (3.6.1)
cov(B, p) = —02172 6% =42.1591
r>=09621 r=09809 df=38
The estimated regression line therefore is
Y; = 24.4545 + 0.5091X; (3.6.2)

which is shown geometrically as Figure 3.12.

Following Chapter 2, the SRF [Eq. (3.6.2)] and the associated regression
line are interpreted as follows: Each point on the regression line gives an
estimate of the expected or mean value of Y corresponding to the chosen X
value; that is, ¥; is an estimate of E(Y | X;). The value of B> = 0.5091, which
measures the slope of the line, shows that, within the sample range of X
between $80 and $260 per week, as X increases, say, by $1, the estimated
increase in the mean or average weekly consumption expenditure amounts
to about 51 cents. The value of Bl = 24.4545, which is the intercept of the
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TABLE 3.3 RAW DATA BASED ON TABLE 3.2
Xi= yi= R Ui= R
Yi Xi YiXi XP Xi—X Y=Y xf Xiyi Yi Yi-Y; Yid;
( (2 (3) (4) (5) (6) (7) (8) (9) (10) (11)
70 80 5600 6400 -90 —41 8100 3690 65.1818 4.8181 314.0524
65 100 6500 10000 —70 —46 4900 3220 75.3636 —10.3636 —781.0382
90 120 10800 14400 -50 —21 2500 1050 85.5454 4.4545 381.0620
95 140 13300 19600 -30 —16 900 480 95.7272 —-0.7272 —69.6128
110 160 17600 25600 -10 -1 100 10 105.9090 4.0909 433.2631
115 180 20700 32400 10 4 100 40 116.0909 —1.0909 —126.6434
120 200 24000 40000 30 9 900 270 125.2727 —6.2727 —792.0708
140 220 30800 48400 50 29 2500 1450 136.4545 3.5454 483.7858
155 240 37200 57600 70 44 4900 3080 145.6363 8.3636 1226.4073
150 260 39000 67600 90 39 8100 3510 156.8181 —6.8181 —1069.2014
Sum 1110 1700 205500 322000 0 0 33000 16800 1109.9995 0 0.0040
~ 1110.0 ~ 0.0
Mean 111 170 nc nc 0 0 nc nc 110 0 0
A XiVi ~ — n -
52=Z'2' B1=Y— p2X
2 Xi =111 — 0.5091(170)
= 16,800/33,000 — 24.4545
= 0.5091
Notes: ~ symbolizes “approximately equal to”; nc means “not computed.”
Y
Y, = 24.4545 + 0.5091 X,
111
(Y)
B, = 0.5091
24.4545
X

FIGURE 3.12

170
&)

Sample regression line based on the data of Table 3.2.
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line, indicates the average level of weekly consumption expenditure when
weekly income is zero. However, this is a mechanical interpretation of the
intercept term. In regression analysis such literal interpretation of the
intercept term may not be always meaningful, although in the present ex-
ample it can be argued that a family without any income (because of unem-
ployment, layoff, etc.) might maintain some minimum level of consumption
expenditure either by borrowing or dissaving. But in general one has to use
common sense in interpreting the intercept term, for very often the sample
range of X values may not include zero as one of the observed values.

Perhaps it is best to interpret the intercept term as the mean or average
effect on Y of all the variables omitted from the regression model. The value
of r2 of 0.9621 means that about 96 percent of the variation in the weekly
consumption expenditure is explained by income. Since #? can at most be 1,
the observed r? suggests that the sample regression line fits the data very
well.2° The coefficient of correlation of 0.9809 shows that the two variables,
consumption expenditure and income, are highly positively correlated. The
estimated standard errors of the regression coefficients will be interpreted
in Chapter 5.

3.7 ILLUSTRATIVE EXAMPLES

EXAMPLE 3.1

CONSUMPTION-INCOME RELATIONSHIP

(PCE) goes up by about 71 cents. From Keynesian the-
ory, the MPC is less than 1. The intercept value of about
—184 tells us that if income were zero, the PCE would be

IN THE UNITED STATES, 1982-1996

Let us return to the consumption income data given in
Table I.1 of the Introduction. We have already shown the
data in Figure 1.3 along with the estimated regression
line (1.3.3). Now we provide the underlying OLS regres-
sion results. (The results were obtained from the statisti-
cal package Eviews 3.) Note: Y = personal consumption
expenditure (PCE) and X = gross domestic product
(GDP), all measured in 1992 billions of dollars. In this
example, our data are time series data.

Y= —184.0780 + 0.7064X; (3.7.1)

var (81) = 2140.1707

var (B2) = 0.000061
r? = 0.998406

se (1) = 46.2619

se (B2) = 0.007827
52 = 411.4913

Equation (3.7.1) is the aggregate (i.e., for the econ-
omy as a whole) Keynesian consumption function. As this
equation shows, the marginal propensity to consume
(MPC)is about 0.71, suggesting that if income goes up by
a dollar, the average personal consumption expenditure

about —184 billion dollars. Of course, such a mechanical
interpretation of the intercept term does not make eco-
nomic sense in the present instance because the zero
income value is out of the range of values we are work-
ing with and does not represent a likely outcome (see
Table I.1). As we will see on many an occasion, very often
the intercept term may not make much economic sense.
Therefore, in practice the intercept term may not be very
meaningful, although on occasions it can be very mean-
ingful, as we will see in some illustrative examples. The
more meaningful value is the slope coefficient, MPC in
the present case.

The r? value of 0.9984 means approximately 99 per-
cent of the variation in the PCE is explained by variation
in the GDP. Since r? at most can be 1, we can say that
the regression line in (3.7.1), which is shown in Fig-
ure 1.3, fits our data extremely well; as you can see from
that figure the actual data points are very tightly clus-
tered around the estimated regression line. As we will
see throughout this book, in regressions involving time
series data one generally obtains high r? values. In the
chapter on autocorrelation, we will see the reasons be-
hind this phenomenon.

26A formal test of the significance of 2 will be presented in Chap. 8.
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EXAMPLE 3.2 From (3.7.2) we see that if total expenditure increases by
1 rupee, on average, expenditure on food goes up by
FOOD EXPENDITURE IN INDIA about 44 paise (1 rupee = 100 paise). If total expendi-

ture were zero, the average expenditure on food would
be about 94 rupees. Again, such a mechanical interpre-
tation of the intercept may not be meaningful. However,
in this example one could argue that even if total expen-
diture is zero (e.g., because of loss of a job), people may
still maintain some minimum level of food expenditure by
borrowing money or by dissaving.

The r? value of about 0.37 means that only 37 per-
cent of the variation in food expenditure is explained by
FoodExp; = 94.2087 + 0.4368 TotalExp; the total expenditure. This might seem a rather low

(3.7.2) Vvalue, but as we will see throughout this text, in cross-
sectional data, typically one obtains low r? values, possi-

Refer to the data given in Table 2.8 of exercise 2.15. The
data relate to a sample of 55 rural households in India.
The regressand in this example is expenditure on food
and the regressor is total expenditure, a proxy for in-
come, both figures in rupees. The data in this example
are thus cross-sectional data.

On the basis of the given data, we obtained the fol-
lowing regression:

var (B;) = 2560.9401  se (By) = 50.8563 bly because of the diversity of the units in the sample.
var (f2) = 0.0061 se (fz) = 0.0783 We will discuss this topic further in the chapter on het-
/2 — 0.3698 52 _ 44696913 eroscedasticity (see Chapter 11).
EXAMPLE 3.3

THE RELATIONSHIP BETWEEN EARNINGS
AND EDUCATION

In Table 2.6 we looked at the data relating average hourly earnings and education, as mea-
sured by years of schooling. Using that data, if we regress®” average hourly earnings (Y) on
education (X), we obtain the following results.

Yi=—0.0144 + 0.7241 X; (3.7.3)

var (81) = 0.7649 se (B1) = 0.8746
var (f.) = 0.00483 se (B2) = 0.0695
r>=0.9077 5°=0.8816

As the regression results show, there is a positive association between education and earn-
ings, an unsurprising finding. For every additional year of schooling, the average hourly earn-
ings go up by about 72 cents an hour. The intercept term is positive but it may have no eco-
nomic meaning. The r? value suggests that about 89 percent of the variation in average hourly
earnings is explained by education. For cross-sectional data, such a high r? is rather unusual.

3.8 A NOTE ON MONTE CARLO EXPERIMENTS

In this chapter we showed that under the assumptions of CLRM the least-
squares estimators have certain desirable statistical features summarized in
the BLUE property. In the appendix to this chapter we prove this property

27Every field of study has its jargon. The expression “regress Y on X” simply means treat Y
as the regressand and X as the regressor.



Gujarati: Basic 1. Single-Equation 3. Two-Variahle © The McGraw-Hill
Econometrics, Fourth Regression Models Regression Model: The Companies, 2004
Edition Problem of Estimation

92 PARTONE: SINGLE-EQUATION REGRESSION MODELS

more formally. But in practice how does one know that the BLUE property
holds? For example, how does one find out if the OLS estimators are unbi-
ased? The answer is provided by the so-called Monte Carlo experiments,
which are essentially computer simulation, or sampling, experiments.

To introduce the basic ideas, consider our two-variable PRF:

Y, =B1 + B Xi +u; (3.8.1)

A Monte Carlo experiment proceeds as follows:

1. Suppose the true values of the parameters are as follows: g1 = 20 and
B2 = 0.6.

2. You choose the sample size, say n = 25.

3. You fix the values of X for each observation. In all you will have 25 X
values.

4. Suppose you go to a random number table, choose 25 values, and call
them u; (these days most statistical packages have built-in random number
generators).?8

5. Since you know Bi, B2, X;, and u;, using (3.8.1) you obtain 25 Y;
values.

6. Now using the 25 Y; values thus generated, you regress these on the 25
X values chosen in step 3, obtaining g; and B, the least-squares estimators.

7. Suppose you repeat this experiment 99 times, each time using the
same B1, B2, and X values. Of course, the u; values will vary from experiment
to experiment. Therefore, in all you have 100 experiments, thus generating
100 values each of 8; and B,. (In practice, many such experiments are con-
ducted, sometimes 1000 to 2000.)

8. You take the averages of these 100 estimates and call them ﬂ1 and ,32

9. If these average values are about the same as the true values of g; and
B> assumed in step 1, this Monte Carlo experiment “establishes” that the
least-squares estimators are indeed unbiased. Recall that under CLRM

E(B1) = prand E(f2) = .

These steps characterize the general nature of the Monte Carlo experiments.
Such experiments are often used to study the statistical properties of vari-
ous methods of estimating population parameters. They are particularly
useful to study the behavior of estimators in small, or finite, samples. These
experiments are also an excellent means of driving home the concept of
repeated sampling that is the basis of most of classical statistical infer-
ence, as we shall see in Chapter 5. We shall provide several examples of
Monte Carlo experiments by way of exercises for classroom assignment. (See
exercise 3.27.)

28In practice it is assumed that u; follows a certain probability distribution, say, normal,
with certain parameters (e.g., the mean and variance). Once the values of the parameters are
specified, one can easily generate the u; using statistical packages.
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3.9 SUMMARY AND CONCLUSIONS

TABLE 3.4

The important topics and concepts developed in this chapter can be sum-
marized as follows.

1. The basic framework of regression analysis is the CLRM.

2. The CLRM is based on a set of assumptions.

3. Based on these assumptions, the least-squares estimators take on cer-
tain properties summarized in the Gauss—Markov theorem, which states
that in the class of linear unbiased estimators, the least-squares estimators
have minimum variance. In short, they are BLUE.

4. The precision of OLS estimators is measured by their standard
errors. In Chapters 4 and 5 we shall see how the standard errors enable one
to draw inferences on the population parameters, the g coefficients.

5. The overall goodness of fit of the regression model is measured by the
coefficient of determination, »2. It tells what proportion of the variation in
the dependent variable, or regressand, is explained by the explanatory vari-
able, or regressor. This 72 lies between 0 and 1; the closer it is to 1, the bet-
ter is the fit.

6. A concept related to the coefficient of determination is the coeffi-
cient of correlation, r. It is a measure of linear association between two
variables and it lies between —1 and +1.

7. The CLRM is a theoretical construct or abstraction because it is
based on a set of assumptions that may be stringent or “unrealistic.” But
such abstraction is often necessary in the initial stages of studying any field
of knowledge. Once the CLRM is mastered, one can find out what happens
if one or more of its assumptions are not satisfied. The first part of this book
is devoted to studying the CLRM. The other parts of the book consider the
refinements of the CLRM. Table 3.4 gives the road map ahead.

WHAT HAPPENS IF THE ASSUMPTIONS OF CLRM ARE VIOLATED?

Assumption number Type of violation Where to study?
1 Nonlinearity in parameters Chapter 14
2 Stochastic regressor(s) Introduction to Part Il
3 Nonzero mean of u; Introduction to Part Il
4 Heteroscedasticity Chapter 11
5 Autocorrelated disturbances Chapter 12
6 Nonzero covariance between Introduction to Part Il and Part IV
disturbances and regressor
7 Sample observations less Chapter 10
than the number of regressors
8 Insufficient variability in regressors Chapter 10
9 Specification bias Chapters 13, 14
10 Multicollinearity Chapter 10
11* Nonnormality of disturbances Introduction to Part Il

*Note: The assumption that the disturbances u; are normally distributed is not a part of the CLRM. But more
on this in Chapter 4.
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EXERCISES

Questions

3.1.

3.2.

3.3.

34.

3.5.

3.6.

3.7.

Given the assumptions in column 1 of the table, show that the assump-
tions in column 2 are equivalent to them.

ASSUMPTIONS OF THE CLASSICAL MODEL

(M) @)

E(ui|X) =0 E(Yi 1 X) = B2 + p2X
cov (U, u) =01i#j cov (Y, Y)=0i#]j
var (u;| X)) = o2 var (Y;| X) = o®

Show that the estimates #; = 1.572 and f, = 1.357 used in the first exper-
iment of Table 3.1 are in fact the OLS estimators.

According to Malinvaud (see footnote 10), the assumption that E(u; | X;) =
01is quite important. To see this, consider the PRF:Y = 8; + £, X; + u;. Now
consider two situations: (i) 8; =0, 8, = 1, and E(u;) = 0; and (ii) g = 1,
B, =0, and E(u;) = (X; — 1). Now take the expectation of the PRF con-
ditional upon X in the two preceding cases and see if you agree with
Malinvaud about the significance of the assumption E(u; | X;) = 0.
Consider the sample regression

Y = Bi + o Xi + i

Imposing the restrictions (i) Y 1; = 0 and (ii) Y_ @; X; = 0, obtain the esti-
mators B; and B, and show that they are identical with the least-squares
estimators given in (3.1.6) and (3.1.7). This method of obtaining estimators
is called the analogy principle. Give an intuitive justification for imposing
restrictions (i) and (ii). (Hint: Recall the CLRM assumptions about #;.) In
passing, note that the analogy principle of estimating unknown parame-
ters is also known as the method of moments in which sample moments
(e.g., sample mean) are used to estimate population moments (e.g., the
population mean). As noted in Appendix A, a moment is a summary sta-
tistic of a probability distribution, such as the expected value and variance.
Show that r? defined in (3.5.5) ranges between 0 and 1. You may use the
Cauchy-Schwarz inequality, which states that for any random variables X
and Y the following relationship holds true:

[E(XY))? < E(X*)E(Y?)

Let Byx and Byy represent the slopes in the regression of Y on X and X on
Y, respectively. Show that

5 A 2
ByxBxy =71

where r is the coefficient of cgrrglation between X and Y.
Suppose in exercise 3.6 that ByyBxy = 1. Does it matter then if we regress
Y on X or X on Y? Explain carefully.
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Spearman’s rank correlation coefficient r, is defined as follows:

63 d>

s‘:l_
" nn? —1)

where d = difference in the ranks assigned to the same individual or phe-
nomenon and # = number of individuals or phenomena ranked. Derive r
from r defined in (3.5.13). Hint: Rank the X and Y values from 1 to n. Note
that the sum of X and Y ranks is n(n + 1)/2 each and therefore their means
are (n+1)/2.

Consider the following formulations of the two-variable PRF:

Model I: Y, = 81 + B X; + u;
Model IT:  Y; = oy + a2(X; — X) + u;

a. Find the estimators of 8; and «;. Are they identical? Are their variances
identical?

b. Find the estimators of 8, and . Are they identical? Are their variances
identical?

c. What is the advantage, if any, of model II over model I?

Suppose you run the following regression:

Vi = 31 +l§2xi + 4,

where, as usual, y; and x; are deviations from their respective mean values.

What will be the value of 8;? Why? Will 3, be the same as that obtained

from Eq. (3.1.6)? Why?

Let r; = coefficient of correlation between n pairs of values (V;, X;) and

r, = coefficient of correlation between # pairs of values (a X; + b, cY; + d),

where a, b, ¢, and d are constants. Show that »; = r, and hence establish

the principle that the coefficient of correlation is invariant with respect to
the change of scale and the change of origin.

Hint: Apply the definition of r given in (3.5.13).

Note: The operations aX;, X; + b, and aX; + b are known, respectively, as

the change of scale, change of origin, and change of both scale and origin.

If 7, the coefficient of correlation between # pairs of values (X;, Y;), is pos-

itive, then determine whether each of the following statements is true or

false:

a. r between (—X;, —Y;) is also positive.

b. r between (—X;, Y;) and that between (X;, —Y;) can be either positive or
negative.

c. Both the slope coefficients B, and ., are positive, where g,. = slope
coefficient in the regression of Y on X and g,, = slope coefficient in the
regression of X on Y.

If X, X5, and X3 are uncorrelated variables each having the same stan-

dard deviation, show that the coefficient of correlation between X; + X,

and X, + X3 is equal to % Why is the correlation coefficient not zero?

In the regression Y; = By + B, X; + u; suppose we multiply each X value by

a constant, say, 2. Will it change the residuals and fitted values of Y?

Explain. What if we add a constant value, say, 2, to each X value?
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Problems

TABLE 3.5

3.15.

3.16.

3.17.

3.18.

3.19.

Show that (3.5.14) in fact measures the coefficient of determination.

Hint: Apply the definition of r given in (3.5.13) and recall that }_ y;9; =

> (9 +4:)9: = > 97, and remember (3.5.6).

Explain with reason whether the following statements are true, false, or

uncertain:

a. Since the correlation between two variables, Y and X, can range from
—1 to +1, this also means that cov (Y, X) also lies between these limits.

b. If the correlation between two variables is zero, it means that there is
no relationship between the two variables whatsoever.

c. If you regress Y; on ¥; (i.e., actual Y on estimated Y), the intercept and
slope values will be 0 and 1, respectively.

Regression without any regressor. Suppose you are given the model:

Y; = B + u;. Use OLS to find the estimator of ;. What is its variance and

the RSS? Does the estimated g; make intuitive sense? Now consider the

two-variable model Y; = B + 8. X; +u;. Is it worth adding X; to the

model? If not, why bother with regression analysis?

In Table 3.5, you are given the ranks of 10 students in midterm and final
examinations in statistics. Compute Spearman’s coefficient of rank corre-
lation and interpret it.

The relationship between nominal exchange rate and relative prices. From
the annual observations from 1980 to 1994, the following regression
results were obtained, where Y = exchange rate of the German mark to
the U.S. dollar (GM/$) and X = ratio of the U.S. consumer price index
to the German consumer price index; that is, X represents the relative
prices in the two countries:

Y, = 6.682 — 4.318X, r? =0.528
se = (1.22)(1.333)

a. Interpret this regression. How would you interpret r2?

b. Does the negative value of X, make economic sense? What is the un-
derlying economic theory?

c. Suppose we were to redefine X as the ratio of German CPI to the U.S.
CPI. Would that change the sign of X? And why?

3.20. Table 3.6 gives data on indexes of output per hour (X) and real compen-
sation per hour (Y) for the business and nonfarm business sectors of the
U.S. economy for 1959-1997. The base year of the indexes is 1982 = 100
and the indexes are seasonally adjusted.
Student
Rank A B C D E F G H | J
Midterm 1 3 7 10 9 5 4 8 2 6
Final 3 2 8 7 9 6 5 10 1 4
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PRODUCTIVITY AND RELATED DATA, BUSINESS SECTOR, 1959-98
[Index numbers, 1992 = 100; quarterly data seasonally adjusted]

Output per hour Compensation
of all persons’ per hour?
Nonfarm Nonfarm
Year or Business business Business business
quarter sector sector sector sector
1959 ......... 50.5 54.2 13.1 13.7
1960 ......... 51.4 54.8 13.7 14.3
1961 ......... 53.2 56.6 14.2 14.8
1962 ......... 55.7 59.2 14.8 15.4
1963 ......... 57.9 61.2 15.4 15.9
1964 ......... 60.6 63.8 16.2 16.7
1965 ......... 62.7 65.8 16.8 17.2
1966 ......... 65.2 68.0 17.9 18.2
1967 ......... 66.6 69.2 18.9 19.3
1968 ......... 68.9 71.6 20.5 20.8
1969 ......... 69.2 Yans 21.9 222
1970 ......... 70.6 72.7 23.6 23.8
1971 ......... 73.6 75.7 25.1 254
1972 ......... 76.0 78.3 26.7 27.0
1973 ......... 78.4 80.7 29.0 29.2
1974 ......... 771 79.4 31.8 32.1
1975 ......... 79.8 81.6 35.1 35.3
1976 ......... 82.5 84.5 38.2 38.4
1977 ......... 84.0 85.8 41.2 415
1978 ......... 84.9 87.0 44.9 452
1979 ......... 84.5 86.3 49.2 49.5
1980 ......... 84.2 86.0 54.5 54.8
1981 ......... 85.8 87.0 59.6 60.2
1982 ......... 85.3 88.3 64.1 64.6
1983 ......... 88.0 89.9 66.8 67.3
1984 ......... 90.2 91.4 69.7 70.2
1985 ......... 91.7 92.3 73.1 73.4
1986 ......... 94 1 94.7 76.8 77.2
1987 ......... 94.0 94.5 79.8 80.1
1988 ......... 94.7 95.3 83.6 83.7
1989 ......... 95.5 95.8 85.9 86.0
1990 ......... 96.1 96.3 90.8 90.7
1991 ......... 96.7 97.0 95.1 95.1
1992 ......... 100.0 100.0 100.0 100.0
1993 ......... 100.1 100.1 102.5 102.2
1994 ......... 100.7 100.6 104.4 104.2
1995 ......... 101.0 101.2 106.8 106.7
1996 ......... 103.7 103.7 110.7 110.4
1997 ......... 105.4 105.1 114.9 114.5

'Output refers to real gross domestic product in the sector.

2Wages and salaries of employees plus employers’ contributions for social
insurance and private benefit plans. Also includes an estimate of wages, salaries,
and supplemental payments for the self-employed.

Source: Economic Report of the President, 1999, Table B-49, p. 384.
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TABLE 3.7

3.21.

3.22.

a. Plot Y against X for the two sectors separately.

b. What is the economic theory behind the relationship between the two
variables? Does the scattergram support the theory?

c. Estimate the OLS regression of Y on X. Save the results for a further
look after we study Chapter 5.

From a sample of 10 observations, the following results were obtained:

Y Y=1110 ) X;=1700 Y X;¥; = 205,500
> X7 =322,000 ) Y?=132,100

with coefficient of correlation » = 0.9758. But on rechecking these calcu-
lations it was found that two pairs of observations were recorded:

Y X Y X

90 120 instead of 80 110

140 220 150 210

What will be the effect of this error on #? Obtain the correct 7.

Table 3.7 gives data on gold prices, the Consumer Price Index (CPI), and
the New York Stock Exchange (NYSE) Index for the United States for the
period 1977-1991. The NYSE Index includes most of the stocks listed on
the NYSE, some 1500 plus.

New York Stock

Price of gold Consumer Price Exchange

at New York, Index (CPI), (NYSE) Index,
Year $ per troy ounce 1982-84 = 100 Dec. 31, 1965 = 100
1977 147.98 60.6 53.69
1978 193.44 65.2 53.70
1979 307.62 72.6 58.32
1980 612.51 82.4 68.10
1981 459.61 90.9 74.02
1982 376.01 96.5 68.93
1983 423.83 99.6 92.63
1984 360.29 103.9 92.46
1985 317.30 107.6 108.90
1986 367.87 109.6 136.00
1987 446.50 113.6 161.70
1988 436.93 118.3 149.91
1989 381.28 124.0 180.02
1990 384.08 130.7 183.46
1991 362.04 136.2 206.33

Source: Data on CPIl and NYSE Index are from the Economic Report of the
President, January 1993, Tables B-59 and B-91, respectively. Data on gold prices are
from U.S. Department of Commerce, Bureau of Economic Analysis, Business
Statistics, 1963-1991, p. 68.
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Plot in the same scattergram gold prices, CPI, and the NYSE Index.
An investment is supposed to be a hedge against inflation if its price
and/or rate of return at least keeps pace with inflation. To test this
hypothesis, suppose you decide to fit the following model, assuming
the scatterplot in a suggests that this is appropriate:

Gold price, = 81 + B2 CPI, + u,
NYSE index; = B; + B> CPI, + u;

3.23. Table 3.8 gives data on gross domestic product (GDP) for the United
States for the years 1959-1997.

a.

b.

&0

Plot the GDP data in current and constant (i.e., 1992) dollars against
time.

Letting Y denote GDP and X time (measured chronologically starting
with 1 for 1959, 2 for 1960, through 39 for 1997), see if the following
model fits the GDP data:

Y=8+B8X+u

Estimate this model for both current and constant-dollar GDP.

How would you interpret 8,?

If there is a difference between g, estimated for current-dollar GDP and
that estimated for constant-dollar GDP, what explains the difference?

NOMINAL AND REAL GDP, UNITED STATES, 1959-1997

Year NGDP RGDP Year NGDP RGDP
1959 507.2000 2210.200 1979 2557.500 4630.600
1960 526.6000 2262.900 1980 2784.200 4615.000
1961 544.8000 2314.300 1981 3115.900 4720.700
1962 585.2000 2454.800 1982 3242.100 4620.300
1963 617.4000 2559.400 1983 3514.500 4803.700
1964 663.0000 2708.400 1984 3902.400 5140.100
1965 719.1000 2881.100 1985 4180.700 5323.500
1966 787.7000 3069.200 1986 4422.200 5487.700
1967 833.6000 3147.200 1987 4692.300 5649.500
1968 910.6000 3293.900 1988 5049.600 5865.200
1969 982.2000 3393.600 1989 5438.700 6062.000
1970 1035.600 3397.600 1990 5743.800 6136.300
1971 1125.400 3510.000 1991 5916.700 6079.400
1972 1237.300 3702.300 1992 6244.400 6244.400
1973 1382.600 3916.300 1993 6558.100 6389.600
1974 1496.900 3891.200 1994 6947.000 6610.700
1975 1630.600 3873.900 1995 7269.600 6761.700
1976 1819.000 4082.900 1996 7661.600 6994.800
1977 2026.900 4273.600 1997 8110.900 7269.800
1978 2291.400 4503.000

Note: NGDP = nominal GDP (current dollars in billions).
RGDP = real GDP (1992 billions of dollars).
Source: Economic Report of the President, 1999, Tables B-1 and B-2, pp. 326-328.
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e. From your results what can you say about the nature of inflation in
the United States over the sample period?

3.24. Using the data given in Table 1.1 of the Introduction, verify Eq. (3.7.1).

3.25. For the S.A.T. example given in exercise 2.16 do the following:

a. Plot the female verbal score against the male verbal score.

b. If the scatterplot suggests that a linear relationship between the two
seems appropriate, obtain the regression of female verbal score on
male verbal score.

c. If there is a relationship between the two verbal scores, is the rela-
tionship causal?

3.26. Repeat exercise 3.24, replacing math scores for verbal scores.

3.27. Monte Carlo study classroom assignment: Refer to the 10 X values given in
Table 3.2. Let 8 = 25 and B, = 0.5. Assume u; &~ N(0, 9), that is, u; are
normally distributed with mean 0 and variance 9. Generate 100 samples
using these values, obtaining 100 estimates of 8; and B,. Graph these
estimates. What conclusions can you draw from the Monte Carlo study?
Note: Most statistical packages now can generate random variables from
most well-known probability distributions. Ask your instructor for help,
in case you have difficulty generating such variables.

APPENDIX 3A

3A.1 DERIVATION OF LEAST-SQUARES ESTIMATES
Differentiating (3.1.2) partially with respect to ; and B,, we obtain

(32/:3 2 Vi =B —BXi)=-2) i ¢}

1

a(i =2 (Vi B~ B X)X = =2 ) iuX; 2)
2

Setting these equations to zero, after algebraic simplification and manipu-
lation, gives the estimators given in Egs. (3.1.6) and (3.1.7).

3A.2 LINEARITY AND UNBIASEDNESS PROPERTIES
OF LEAST-SQUARES ESTIMATORS

From (3.1.8) we have

pr = Zx” =Y kY, 3)

where
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which shows that B is a linear estimator because it is a linear function of Y;
actually it is a weighted average of Y; with k; serving as the weights. It can
similarly be shown that B; too is a linear estimator.

Incidentally, note these properties of the weights k;:

1. Since the X; are assumed to be nonstochastic, the k; are nonstochas-
tic too.

2. Yk =0.

3. k= I/inz.

4. > kix; = > k;X; = 1. These properties can be directly verified from
the definition of ;.

For example,

i 1 : . .
Z ki = Z (gx 12> = Z—xlz Z xi,  since fora given sample Y x? is known

=0, since Y x;, the sum of deviations from
the mean value, is always zero

Now substitute the PRF Y; = 81 + B2 X; + u; into (3) to obtain
B = ki(Br + B2 Xi + uy)

=l312ki + B2 ZkiXi+Zkiui 4
=p+ Zkiui
where use is made of the properties of k; noted earlier.

Now taking expectation of (4) on both sides and noting that k;, being non-
stochastic, can be treated as constants, we obtain

EB) = P2+ Y kiE(u;)
= p2

since E(u;) = 0 by assumption. Therefore, ,32 is an unbiased estimator of ;.
Likewise, it can be proved that 8 is also an unbiased estimator of ;.

(5)

3A.3 VARIANCES AND STANDARD ERRORS
OF LEAST-SQUARES ESTIMATORS

Now by the definition of variance, we can write
var (B2) = E[f, — E(B2)T
= E(f, — p2)’ since E(f2) = ps
2
=E (Z k,-ul-) using Eq. (4) above
= E(kju + K515 + - - - + kiu, + 2k korg vy + - - - + 2kt kgt 114)

(6)
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Since by assumption, E(uf) = o2 for each i and E(uju;) =0, i # j, it follows
that

var(B,) = o Zkf

2

— (using the definition of k?) (7
Yo af
— Eq. (3.3.1)

The variance of B; can be obtained following the same line of reasoning
already given. Once the variances of ; and B, are obtained, their positive
square roots give the corresponding standard errors.

3A.4 COVARIANCE BETWEEN B; AND B,
By definition,
cov (B, B2) = E{lf1 — E(B)I[B2 — E(B)]}
=E@Bi — B1)(B2—B2)  (Why?)
=—XE(f, — po)° (8)
= —X var ()
= Eq. (3.3.9)

vAvhere use is ma_derf the fact that 8; = Y- BXand E(B) =Y — B X, giving
— E(B1) = —X(B2 — B2). Note: var(B,) is given in (3.3.1).

3A.5 THE LEAST-SQUARES ESTIMATOR OF o2
Recall that

Y = B+ B Xi +u 9)
Therefore,
Y=p8+pX+i (10)
Subtracting (10) from (9) gives
vi = Boxi + (u; — it) (11)
Also recall that
i = yi — Poxi (12)
Therefore, substituting (11) into (12) yields

i = Baxi + (w; — 1) — Pax; (13)
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Collecting terms, squaring, and summing on both sides, we obtain

Yo =B— B x Y (wi—i) —2(B—B2) Y xi(wi —ir) (14)
Taking expectations on both sides gives
E(Yo i) =Y 2B — ) + E[Y (s — ] = 2E[(2 — ) Yt — )]

= lez var () + (n — 1) var (i;) — 2E [Zkiui(xiu,-)]

—o2+(n—1)0%—2E [Zkixiulz] (15)
=02+ (n—1)02-202
=(n—2)o?

where, in the last but one step, use is made of the definition of k; given in
Eq. (3) and the relation given in Eq. (4). Also note that

EZ(ui —a)?=E Z uf — nitz]
_ely _n(%ﬂ

where use is made of the fact that the u; are uncorrelated and the variance
of each u; is o2.
Thus, we obtain

E (Z u2) = (11— 2)o> (16)
Therefore, if we define
~2
PP L a7
n—2
its expected value is
EGY) = E (Z a?) —o?  using (16) (18)
n—2 :

which shows that 62 is an unbiased estimator of true o2.
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3A.6 MINIMUM-VARIANCE PROPERTY
OF LEAST-SQUARES ESTIMATORS

It was shown in Appendix 3A, Section 3A.2, that the least-squares estimator
B, is linear as well as unbiased (this holds true of 8; too). To show that these
estimators are also minimum variance in the class of all linear unbiased
estimators, consider the least-squares estimator Ba:

pr = ZkiK

ki = Z(); __); 5= Zxxz (see Appendix 3A.2) (19)

which shows that 8, is a weighted average of the Y’s, with k; serving as the
weights.
Let us define an alternative linear estimator of 8, as follows:

B = wY; (20)
where w; are also weights, not necessarily equal to k;. Now
E(B3) =Y wiE(Y;)
= Zwi(ﬁl + B2Xi) (21)
=By wit+hy wiX;
Therefore, for g5 to be unbiased, we must have

> wi=0 (22)

where

and
ZWin‘ =1 (23)
Also, we may write
var(B;) = var Zini
= ZW-Z vary; [Note:varY; = varu; = o]

1

= o2 Zw? [Note:cov(Y;, Y;) =0( # j)I

2
2 Xi Xi . .
=0 E W — ——= + —— Note the mathematical trick

( D SE D ) ( )

D) el 5 ()

N2
2622<Wi_£;2) +02(le2> (24)

because the last term in the next to the last step drops out. (Why?)
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Since the last term in (24) is constant, the variance of (,3;) can be mini-
mized only by manipulating the first term. If we let

Xi
w; =
X7
Eq. (24) reduces to
o2
Var(.Bz) = S x 2 (25)
=var ($2)

In words, with weights w; = k;, which are the least-squares weights, the
variance of the linear estimator B, is equal to the variance of the least-
squares estimator B; otherwise var (ﬂz) > var(B,). To put it differently, if
there is a minimum-variance linear unbiased estimator of $;, it must be the
least-squares estimator. Similarly it can be shown that B; is a minimum-
variance linear unbiased estimator of B;.

3A.7 CONSISTENCY OF LEAST-SQUARES ESTIMATORS

We have shown that, in the framework of the classical linear regression
model, the least-squares estimators are unbiased (and efficient) in any
sample size, small or large. But sometimes, as discussed in Appendix A, an
estimator may not satisfy one or more desirable statistical properties in
small samples. But as the sample size increases indefinitely, the estimators
possess several desirable statistical properties. These properties are known
as the large sample, or asymptotic, properties. In this appendix, we will
discuss one large sample property, namely, the property of consistency,
which is discussed more fully in Appendix A. For the two-variable model
we have already shown that the OLS estimator ﬁz is an unbiased estimator
of the true B,. Now we show that 8, is also a consistent estimator of B,. As
shown in Appendix A, a sufficient condition for consistency is that £, is
unbiased and that its variance tends to zero as the sample size n tends to
infinity.

Since we have already proved the unbiasedness property, we need only
show that the variance of 8, tends to zero as n increases indefinitely. We
know that

2 02/1’1
Var(ﬂz) = ? = ZTZ/” (26)
By dividing the numerator and denominator by 7, we do not change the
equality.
Now
2
lim var (8,) = lim (ZUT/;;Z) =0 (27)

n— o0 n— o0
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where use is made of the facts that (1) the limit of a ratio quantity is the
limit of the quantity in the numerator to the limit of the quantity in the de-
nominator (refer to any calculus book); (2) as n tends to infinity, 0 /n tends
to zero because 2 is a finite number; and [(}_ xiz) /n] # 0 because the vari-
ance of X has a finite limit because of Assumption 8 of CLRM.

The upshot of the preceding discussion is that the OLS estimator ; is a
consistent estimator of true 8. In like fashion, we can establish that f; is
also a consistent estimator. Thus, in repeated (small) samples, the OLS esti-
mators are unbiased and as the sample size increases indefinitely the OLS
estimators are consistent. As we shall see later, even if some of the assump-
tions of CLRM are not satisfied, we may be able to obtain consistent esti-
mators of the regression coefficients in several situations.
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CLASSICAL NORMAL
LINEAR REGRESSION
MODEL (CNLRM)

What is known as the classical theory of statistical inference consists
of two branches, namely, estimation and hypothesis testing. We have
thus far covered the topic of estimation of the parameters of the (two-
variable) linear regression model. Using the method of OLS we were able
to estimate the parameters g, £, and o?. Under the assumptions of the
classical linear regression model (CLRM), we were able to show that the
estimators of these parameters, /§1, ,32, and 62, satisfy several desirable sta-
tistical properties, such as unbiasedness, minimum variance, etc. (Recall
the BLUE property.) Note that, since these are estimators, their values will
change from sample to sample. Therefore, these estimators are random
variables.

But estimation is half the battle. Hypothesis testing is the other half.
Recall that in regression analysis our objective is not only to estimate the
sample regression function (SRF), but also to use it to draw inferences
about the population regression function (PRF), as emphasized in Chapter
2. Thus, we would like to find out how close f; is to the true i or how close
62 is to the true o%. For instance, in Example 3.2, we estimated the SRF
as shown in Eq. (3.7.2). But since this regression is based on a sample of
55 families, how do we know that the estimated MPC of 0.4368 represents
the (true) MPC in the population as a whole?

Therefore, since ,31, /§2, and 62 are random variables, we need to find out
their probability distributions, for without that knowledge we will not be
able to relate them to their true values.

107
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4.1 THE PROBABILITY DISTRIBUTION OF DISTURBANCES u;

To find out the probability distributions of the OLS estimators, we proceed
as follows. Specifically, consider 8,. As we showed in Appendix 3A.2,

Br=) kY (4.1.1)

where k; = x;/3_ x?. But since the X’s are assumed fixed, or nonstochastic,
because ours is conditional regression analysis, conditional on the fixed val-
ues of X;, Eq. (4.1.1) shows that $, is a linear function of Y;, which is random
by assumption. But since Y; = 81 + 82 X; + u;, we can write (4.1.1) as

B = ki(B1 + B Xi +ui) (4.1.2)

Because k;, the betas, and X; are all fixed, ;§2 is ultimately a linear function of
the random variable u;, which is random by assumption. Therefore, the
probability distribution of 8, (and also of ;) will depend on the assumption
made about the probability distribution of #;. And since knowledge of the
probability distributions of OLS estimators is necessary to draw inferences
about their population values, the nature of the probability distribution of
u; assumes an extremely important role in hypothesis testing.

Since the method of OLS does not make any assumption about the prob-
abilistic nature of u;, it is of little help for the purpose of drawing infer-
ences about the PRF from the SRF, the Gauss—Markov theorem notwith-
standing. This void can be filled if we are willing to assume that the u's
follow some probability distribution. For reasons to be explained shortly, in
the regression context it is usually assumed that the #’s follow the normal
distribution. Adding the normality assumption for u; to the assumptions of
the classical linear regression model (CLRM) discussed in Chapter 3, we
obtain what is known as the classical normal linear regression model
(CNLRM).

4.2 THE NORMALITY ASSUMPTION FOR u;

The classical normal linear regression model assumes that each u; is dis-
tributed normally with

Mean: E(u;) =0 (4.2.1)
Variance: Elu; — Eu;)P? = E(u?) = o (4.2.2)

1

cov (u;, uj):  E{l(u; — Eu)llv; — Ew))]} = E(u; uj)) =0 i#j (4.2.3)
The assumptions given above can be more compactly stated as

u; ~ N(0, o) (4.2.4)



Gujarati: Basic
Econometrics, Fourth
Edition

1. Single-Equation 4. Classical Normal Linear © The McGraw-Hill
Regression Models Regression Model Companies, 2004
(CNLRM)

CHAPTER FOUR: CLASSICAL NORMAL LINEAR REGRESSION MODEL (CNLRM) 109

where the symbol ~ means distributed as and N stands for the normal distri-
bution, the terms in the parentheses representing the two parameters of the
normal distribution, namely, the mean and the variance.

As noted in Appendix A, for two normally distributed variables, zero
covariance or correlation means independence of the two variables.
Therefore, with the normality assumption, (4.2.4) means that «; and u; are
not only uncorrelated but are also independently distributed.

Therefore, we can write (4.2.4) as

u; ~ NID(0, o2) (4.2.5)

where NID stands for normally and independently distributed.

Why the Normality Assumption?

Why do we employ the normality assumption? There are several reasons:

1. As pointed out in Section 2.5, u; represent the combined influence
(on the dependent variable) of a large number of independent variables that
are not explicitly introduced in the regression model. As noted, we hope that
the influence of these omitted or neglected variables is small and at best
random. Now by the celebrated central limit theorem (CLT) of statistics
(see Appendix A for details), it can be shown that if there are a large num-
ber of independent and identically distributed random variables, then, with
a few exceptions, the distribution of their sum tends to a normal distribu-
tion as the number of such variables increase indefinitely.! It is the CLT that
provides a theoretical justification for the assumption of normality of ;.

2. Avariant of the CLT states that, even if the number of variables is not
very large or if these variables are not strictly independent, their sum may
still be normally distributed.?

3. With the normality assumption, the probability distributions of OLS
estimators can be easily derived because, as noted in Appendix A, one prop-
erty of the normal distribution is that any linear function of normally dis-
tributed variables is itself normally distributed. As we discussed earlier,
OLS estimators A; and B, are linear functions of u;. Therefore, if #; are nor-
mally distributed, so are B; and B,, which makes our task of hypothesis
testing very straightforward.

4. The normal distribution is a comparatively simple distribution in-
volving only two parameters (mean and variance); it is very well known and

'For a relatively simple and straightforward discussion of this theorem, see Sheldon
M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 2d ed., Harcourt
Academic Press, New York, 2000, pp. 193-194. One exception to the theorem is the Cauchy
distribution, which has no mean or higher moments. See M. G. Kendall and A. Stuart, The
Advanced Theory of Statistics, Charles Griffin & Co., London, 1960, vol. 1, pp. 248-249.

2For the various forms of the CLT, see Harald Cramer, Mathematical Methods of Statistics,
Princeton University Press, Princeton, N.J., 1946, Chap. 17.
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its theoretical properties have been extensively studied in mathematical sta-
tistics. Besides, many phenomena seem to follow the normal distribution.

5. Finally, if we are dealing with a small, or finite, sample size, say data
of less than 100 observations, the normality assumption assumes a critical
role. It not only helps us to derive the exact probability distributions of OLS
estimators but also enables us to use the ¢, F, and x? statistical tests for re-
gression models. The statistical properties of ¢, F, and x? probability dis-
tributions are discussed in Appendix A. As we will show subsequently, if
the sample size is reasonably large, we may be able to relax the normality
assumption.

A cautionary note: Since we are “imposing” the normality assumption, it
behooves us to find out in practical applications involving small sample
size data whether the normality assumption is appropriate. Later, we will
develop some tests to do just that. Also, later we will come across situations
where the normality assumption may be inappropriate. But until then
we will continue with the normality assumption for the reasons discussed
previously.

4.3 PROPERTIES OF OLS ESTIMATORS
UNDER THE NORMALITY ASSUMPTION

With the assumption that u; follow the normal distribution as in (4.2.5), the
OLS estimators have the following properties; Appendix A provides a gen-
eral discussion of the desirable statistical properties of estimators.

1. They are unbiased.

2. They have minimum variance. Combined with 1, this means that they
are minimum-variance unbiased, or efficient estimators.

3. They have consistency; that is, as the sample size increases indefi-
nitely, the estimators converge to their true population values.

4. B, (being a linear function of ;) is normally distributed with

Mean: E(B1) = B (4.3.1)
A 2 XX,
var (B1): a5 = anZG = (3.3.3) (4.3.2)

Or more compactly,
A 2
B~ N(,Bly 631)

Then by the properties of the normal distribution the variable Z, which is
defined as

=,l§1—/3*1

%

7z (4.3.3)

1
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follows the standard normal distribution, that is, a normal distribution

with zero mean and unit ( = 1) variance, or

Z~ N(0,1)

5. B, (being a linear function of u;) is normally distributed with

Mean:  E(f) = b
2
var (B2): O/ng = gx-z

Or, more compactly,
B2 ~ N(B2, 052)
Then, as in (4.3.3),

2,32—/32

o8

Z

2

also follows the standard normal distribution.

(4.3.4)

=(3.3.1) (4.3.5)

(4.3.6)

Geometrically, the probability distributions of g; and B, are shown in

Figure 4.1.
B
f(B2)
2z >,
EB) =B 4 j
(@ S E(B) - B, ’
f(2)
2
z =
= =]
5 a
a
El - Bl ﬁz - ﬁZ
Z= =
0 %, 0 Z="ap,
FIGURE 4.1  Probability distributions of 8; and $».
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6. (n—2)(6?/0?) is distributed as the x? (chi-square) distribution with
(n — 2)df.? This knowledge will help us to draw inferences about the true o>
from the estimated o2, as we will show in Chapter 5. (The chi-square distri-
bution and its properties are discussed in Appendix A.)

7. (ﬁl, ,32) are distributed independently of 62. The importance of this
will be explained in the next chapter.

8. B1 and B> have minimum variance in the entire class of unbiased esti-
mators, whether linear or not. This result, due to Rao, is very powerful be-
cause, unlike the Gauss—Markov theorem, it is not restricted to the class of
linear estimators only.* Therefore, we can say that the least-squares estima-
tors are best unbiased estimators (BUE); that is, they have minimum vari-
ance in the entire class of unbiased estimators.

To sum up: The important point to note is that the normality assumption
enables us to derive the probability, or sampling, distributions of 8; and S,
(both normal) and 62 (related to the chi square). As we will see in the next
chapter, this simplifies the task of establishing confidence intervals and test-
ing (statistical) hypotheses.

In passing, note that, with the assumption that z; ~ N(0, 0?),Y;, being a
linear function of u;, is itself normally distributed with the mean and vari-
ance given by

E(Y;) = B1 + B2 Xi 4.3.7)
var(Y;) = o? (4.3.8)

More neatly, we can write
Y, ~ N(Bi + B2Xi, 0%) (4.3.9)

4.4 THE METHOD OF MAXIMUM LIKELIHOOD (ML)

A method of point estimation with some stronger theoretical properties
than the method of OLS is the method of maximum likelihood (ML).
Since this method is slightly involved, it is discussed in the appendix to this
chapter. For the general reader, it will suffice to note that if u; are assumed
to be normally distributed, as we have done for reasons already discussed,
the ML and OLS estimators of the regression coefficients, the f’s, are identi-
cal, and this is true of simple as well as multiple regressions. The ML esti-
mator of o2 is )" 47 /n. This estimator is biased, whereas the OLS estimator

3The proof of this statement is slightly involved. An accessible source for the proof is Robert
V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics, 2d ed., Macmillan, New
York, 1965, p. 144.

4C. R. Rao, Linear Statistical Inference and Its Applications, John Wiley & Sons, New York,
1965, p. 258.
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ofe?2 =) 5112 /(n — 2), as we have seen, is unbiased. But comparing these two
estimators of o2, we see that as the sample size n gets larger the two esti-
mators of o2 tend to be equal. Thus, asymptotically (i.e., as n increases
indefinitely), the ML estimator of o2 is also unbiased.

Since the method of least squares with the added assumption of normal-
ity of u; provides us with all the tools necessary for both estimation and
hypothesis testing of the linear regression models, there is no loss for read-
ers who may not want to pursue the maximum likelihood method because
of its slight mathematical complexity.

4.5 SUMMARY AND CONCLUSIONS

1. This chapter discussed the classical normal linear regression model
(CNLRM).

2. This model differs from the classical linear regression model (CLRM)
in that it specifically assumes that the disturbance term u; entering the
regression model is normally distributed. The CLRM does not require any
assumption about the probability distribution of #;; it only requires that the
mean value of u; is zero and its variance is a finite constant.

3. The theoretical justification for the normality assumption is the
central limit theorem.

4. Without the normality assumption, under the other assumptions dis-
cussed in Chapter 3, the Gauss—-Markov theorem showed that the OLS esti-
mators are BLUE.

5. With the additional assumption of normality, the OLS estimators are
not only best unbiased estimators (BUE) but also follow well-known
probability distributions. The OLS estimators of the intercept and slope are
themselves normally distributed and the OLS estimator of the variance of
u; (= 62) is related to the chi-square distribution.

6. In Chapters 5 and 8 we show how this knowledge is useful in drawing
inferences about the values of the population parameters.

7. An alternative to the least-squares method is the method of maxi-
mum likelihood (ML). To use this method, however, one must make an
assumption about the probability distribution of the disturbance term ;.
In the regression context, the assumption most popularly made is that #;
follows the normal distribution.

8. Under the normality assumption, the ML and OLS estimators of the
intercept and slope parameters of the regression model are identical. How-
ever, the OLS and ML estimators of the variance of u; are different. In large
samples, however, these two estimators converge.

9. Thus the ML method is generally called a large-sample method. The
ML method is of broader application in that it can also be applied to re-
gression models that are nonlinear in the parameters. In the latter case, OLS
is generally not used. For more on this, see Chapter 14.
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10. In this text, we will largely rely on the OLS method for practical rea-
sons: (a) Compared to ML, the OLS is easy to apply; (b) the ML and OLS
estimators of B; and B, are identical (which is true of multiple regressions
too); and (c) even in moderately large samples the OLS and ML estimators
of o2 do not differ vastly.

However, for the benefit of the mathematically inclined reader, a brief
introduction to ML is given in the appendix to this chapter and also in
Appendix A.

APPENDIX 4A

4A.1 MAXIMUM LIKELIHOOD ESTIMATION
OF TWO-VARIABLE REGRESSION MODEL

Assume that in the two-variable model Y; = B; + 8. X; + u; the ¥; are normally

and independently distributed with mean = 8; + ,X; and variance = 2.

[See Eq. (4.3.9).] As a result, the joint probability density function of Y7,
Y5, ..., Y, given the preceding mean and variance, can be written as

f(V,Ya, ..., Y| 1+ B Xi, 0%)

But in view of the independence of the Y’s, this joint probability density
function can be written as a product of # individual density functions as

fV,Ys, ..., Y| 1+ B2 Xi, 0%)
= (V1|81 + BaXi, o) [(Ya| B1 + BaXi, 0%) - - f(Yy| 1 + B2 Xi, 02) (1)

where

f(Y) = 2)

1 exp{—l(z - B —ﬂin)z}
o‘\/ﬂ 2 O'2

which is the density function of a normally distributed variable with the
given mean and variance.
(Note: exp means e to the power of the expression indicated by {}.)
Substituting (2) for each Y; into (1) gives

1 1 (Y; — p1 — B2X;)?
Y;!Y;-~-;Y;q Xl: 2 = —_—
R e e P M=
3)
IfYy,Y,,...,Y, are known or given, but By, B2, and o2 are not known, the

function in (3) is called a likelihood function, denoted by LF(8i, 82, 02),
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and written as!

4)

1Z(Yi - B —ﬂin)z}

o2

1
LF D= ———
(ﬂ1y 132’0 ) GH(\/E)H exp{

The method of maximum likelihood, as the name indicates, consists in
estimating the unknown parameters in such a manner that the probability
of observing the given Y’s is as high (or maximum) as possible. Therefore,
we have to find the maximum of the function (4). This is a straightforward
exercise in differential calculus. For differentiation it is easier to express (4)
in the log term as follows.? (Note: In = natural log.)

n 1 Y — B — foX;)?
InLF:—nlna—Eln(2n)——Z 5

2 -

:—glnaz—gln(Zn)—%Z(K_ﬂlaz'BZXi)z (5)
Differentiating (5) partially with respect to 1, B2, and o2 we obtain

0 1;;1LF = Y B XD (6)

o == Y = i — X)) 0

% e Dy S ®)

Setting these equations equal to zero (the first-order condition for opti-
mization) and letting B, 82, and 62 denote the ML estimators, we obtain?

1 ~ -
=2 (i—pi—pX)=0 9
1 ~ ~
=2 = A —hX)Xi =0 (10)
1 ~ ~
~525 + 573 LG~ B~ BX)T =0 (11)

1Of course, if B1, B2, and o2 are known but the ¥; are not known, (4) represents the joint
probability density function—the probability of jointly observing the ¥;.

2Since a log function is a monotonic function, In LF will attain its maximum value at the
same point as LF.

3We use ~ (tilde) for ML estimators and " (cap or hat) for OLS estimators.
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After simplifying, Egs. (9) and (10) yield

Y Yi=npi+h Yy X (12)
DYXi=h )Y Xi+h ) X (13)

which are precisely the normal equations of the least-squares theory ob-
tained in (3.1.4) and (3.1.5). Therefore, the ML estimators, the B, are the
same as the OLS estimators, the /§'s, given in (3.1.6) and (3.1.7). This equal-
ity is not accidental. Examining the likelihood (5), we see that the last term
enters with a negative sign. Therefore, maximizing (5) amounts to minimiz-
ing this term, which is precisely the least-squares approach, as can be seen
from (3.1.2).

Substituting the ML ( = OLS) estimators into (11) and simplifying, we
obtain the ML estimator of 62 as

1 _
52 = - Z(YE — B — B Xi)
1 L
== i —pi = pX)? (14)
= %Zuf

From (14) it is obvious that the ML estimator 62 differs from the OLS
estimator 62 =[1/(n — 2)]21/71.2, which was shown to be an unbiased esti-
mator of o2 in Appendix 3A, Section 3A.5. Thus, the ML estimator of o2 is
biased. The magnitude of this bias can be easily determined as follows.

Taking the mathematical expectation of (14) on both sides, we obtain

. 1 .
E@E?) = EE(ZL{?)
-2
= (” )02 using Eq. (16) of Appendix 3A, (15)
n Section 3A.5
2
—g2_ 242
n

which shows that 62 is biased downward (i.e., it underestimates the true
0?) in small samples. But notice that as n, the sample size, increases in-
definitely, the second term in (15), the bias factor, tends to be zero. There-
fore, asymptotically (i.e., in a very large sample), 62 is unbiased too, that
is, lim E(6%) = 0% as n — oo. It can further be proved that 52 is also a
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consistent estimator?; that is, as n increases indefinitely 62 converges to its

true value o2.

4A.2 MAXIMUM LIKELIHOOD ESTIMATION
OF FOOD EXPENDITURE IN INDIA

Return to Example 3.2 and regression (3.7.2), which gives the regression of
food expenditure on total expenditure for 55 rural households in India.
Since under the normality assumption the OLS and ML estimators of the
regression coefficients are the same, we obtain the ML estimators as
f1 = Bi1 =94.2087 and B, = f» = 0.4386. The OLS estimator of o2 is
6% = 4469.6913, but the ML estimator is 62 = 4407.1563, which is smaller
than the OLS estimator. As noted, in small samples the ML estimator is
downward biased; that is, on average it underestimates the true variance o2.
Of course, as you would expect, as the sample size gets bigger, the difference
between the two estimators will narrow. Putting the values of the estimators
in the log likelihood function, we obtain the value of —308.1625. If you want
the maximum value of the LF, just take the antilog of —308.1625. No other
values of the parameters will give you a higher probability of obtaining the
sample that you have used in the analysis.

APPENDIX 4A EXERCISES

4.1. “If two random variables are statistically independent, the coefficient of
correlation between the two is zero. But the converse is not necessarily
true; that is, zero correlation does not imply statistical independence. How-
ever, if two variables are normally distributed, zero correlation necessarily
implies statistical independence.” Verify this statement for the following
joint probability density function of two normally distributed variables Y,
and Y, (this joint probability density function is known as the bivariate
normal probability density function):

F, %) ! {5
, = exp)————————
b 27{0‘10‘2\/1 — p? 2(1 - p2?)

» (YI—MI)Z_Z (Yl—ul)(Yz—M2)+(Yz—M2>2
o1 P 0102 o2

4See App. A for a general discussion of the properties of the maximum likelihood estima-
tors as well as for the distinction between asymptotic unbiasedness and consistency. Roughly
speaking, in asymptotic unbiasedness we try to find out the lim E(52) as n tends to infinity,
where n is the sample size on which the estimator is based, whereas in consistency we try to
find out how &2 behaves as 7 increases indefinitely. Notice that the unbiasedness property is a
repeated sampling property of an estimator based on a sample of given size, whereas in con-
sistency we are concerned with the behavior of an estimator as the sample size increases
indefinitely.
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4.2.

4.3.

where 1, = mean of ;
> = mean of Y,
o, = standard deviation of Y;
0, = standard deviation of Y,

o = coefficient of correlation between Y; and Y,

© The McGraw-Hill
Companies, 2004

By applying the second-order conditions for optimization (i.e., second-
derivative test), show that the ML estimators of 8;, 8., and o2 obtained by
solving Egs. (9), (10), and (11) do in fact maximize the likelihood function

).

A random variable X follows the exponential distribution if it has the fol-

lowing probability density function (PDF):

f(X) = (1/6)e "
=0

where 6 > 0 is the parameter of the distribution. Using the ML method,
show that the ML estimator of 6 is § = 3~ X;/n, where n is the sample size.
That is, show that the ML estimator of 6 is the sample mean X.
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TWO-VARIABLE
REGRESSION: INTERVAL
ESTIMATION AND
HYPOTHESIS TESTING

Beware of testing too many hypotheses; the more you torture the data, the more
likely they are to confess, but confession obtained under duress may not be admis-
sible in the court of scientific opinion.!

As pointed out in Chapter 4, estimation and hypothesis testing constitute
the two major branches of classical statistics. The theory of estimation con-
sists of two parts: point estimation and interval estimation. We have dis-
cussed point estimation thoroughly in the previous two chapters where we
introduced the OLS and ML methods of point estimation. In this chapter we
first consider interval estimation and then take up the topic of hypothesis
testing, a topic intimately related to interval estimation.

5.1 STATISTICAL PREREQUISITES

Before we demonstrate the actual mechanics of establishing confidence in-
tervals and testing statistical hypotheses, it is assumed that the reader is fa-
miliar with the fundamental concepts of probability and statistics. Although
not a substitute for a basic course in statistics, Appendix A provides the
essentials of statistics with which the reader should be totally familiar.
Key concepts such as probability, probability distributions, Type I and
Type II errors, level of significance, power of a statistical test, and
confidence interval are crucial for understanding the material covered in
this and the following chapters.

IStephen M. Stigler, “Testing Hypothesis or Fitting Models? Another Look at Mass Extinc-
tions,” in Matthew H. Nitecki and Antoni Hoffman, eds., Neutral Models in Biology, Oxford
University Press, Oxford, 1987, p. 148.
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5.2 INTERVAL ESTIMATION: SOME BASIC IDEAS

To fix the ideas, consider the hypothetical consumption-income example
of Chapter 3. Equation (3.6.2) shows that the estimated marginal propensity
to consume (MPC) B, is 0.5091, which is a single (point) estimate of the
unknown population MPC B,. How reliable is this estimate? As noted in
Chapter 3, because of sampling fluctuations, a single estimate is likely to
differ from the true value, although in repeated sampling its mean value is
expected to be equal to the true value. [Note: E(,éz) = B,.] Now in statistics
the reliability of a point estimator is measured by its standard error. There-
fore, instead of relying on the point estimate alone, we may construct an
interval around the point estimator, say within two or three standard errors
on either side of the point estimator, such that this interval has, say, 95 per-
cent probability of including the true parameter value. This is roughly the
idea behind interval estimation.

To be more specific, assume that we want to find out how “close” is, say,
B> to B,. For this purpose we try to find out two positive numbers § and «,
the latter lying between 0 and 1, such that the probability that the random
interval (ﬁz -4, /§2 + 8) contains the true B, is 1 — a. Symbolically,

Pr(fp—8<pr<Pr+td)=1-« (5.2.1)

Such an interval, if it exists, is known as a confidence interval; 1 — « is
known as the confidence coefficient; and o« (0 <« < 1) is known as the
level of significance.’ The endpoints of the confidence interval are known
as the confidence limits (also known as critical values), B, — 8 being the
lower confidence limit and f, + & the upper confidence limit. In passing,
note that in practice « and 1 — « are often expressed in percentage forms as
100« and 100(1 — &) percent.

Equation (5.2.1) shows that an interval estimator, in contrast to a
point estimator, is an interval constructed in such a manner that it has a
specified probability 1 — « of including within its limits the true value of the
parameter. For example, if « = 0.05, or 5 percent, (5.2.1) would read: The
probability that the (random) interval shown there includes the true g, is
0.95, or 95 percent. The interval estimator thus gives a range of values
within which the true 8, may lie.

It is very important to know the following aspects of interval estimation:

1. Equation (5.2.1) does not say that the probability of 8, lying between
the given limits is 1 — «. Since B;, although an unknown, is assumed to be
some fixed number, either it lies in the interval or it does not. What (5.2.1)

2Also known as the probability of committing a Type I error. A Type I error consists in
rejecting a true hypothesis, whereas a Type II error consists in accepting a false hypothesis.
(This topic is discussed more fully in App. A.) The symbol « is also known as the size of the
(statistical) test.
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states is that, for the method described in this chapter, the probability of
constructing an interval that contains 8, is 1 — a.

2. The interval (5.2.1) is a random interval; that is, it will vary from one
sample to the next because it is based on f,, which is random. (Why?)

3. Since the confidence interval is random, the probability statements
attached to it should be understood in the long-run sense, that is, repeated
sampling. More specifically, (5.2.1) means: If in repeated sampling confi-
dence intervals like it are constructed a great many times on the 1 — « prob-
ability basis, then, in the long run, on the average, such intervals will enclose
in 1 — « of the cases the true value of the parameter.

4. Asnoted in 2, the interval (5.2.1) is random so long as f, is not known.
But once we have a specific sample and once we obtain a specific numerical
value of B, the interval (5.2.1) is no longer random; it is fixed. In this case,
we cannot make the probabilistic statement (5.2.1); that is, we cannot say
that the probability is 1 — « that a given fixed interval includes the true ;. In
this situation B, is either in the fixed interval or outside it. Therefore, the
probability is either 1 or 0. Thus, for our hypothetical consumption-income
example, if the 95% confidence interval were obtained as (0.4268 < 8, <
0.5914), as we do shortly in (5.3.9), we cannot say the probability is 95%
that this interval includes the true ;. That probability is either 1 or 0.

How are the confidence intervals constructed? From the preceding dis-
cussion one may expect that if the sampling or probability distributions
of the estimators are known, one can make confidence interval statements
such as (5.2.1). In Chapter 4 we saw that under the assumption of normal-
ity of the disturbances u; the OLS estimators B; and B, are themselves
normally distributed and that the OLS estimator 672 is related to the x2 (chi-
square) distribution. It would then seem that the task of constructing confi-
dence intervals is a simple one. And it is!

5.3 CONFIDENCE INTERVALS FOR REGRESSION
COEFFICIENTS ; AND B,

Confidence Interval for 8,

It was shown in Chapter 4, Section 4.3, that, with the normality assump-
tion for u;, the OLS estimators B; and B, are themselves normally distrib-
uted with means and variances given therein. Therefore, for example, the
variable

7 B2 —A,Bz
se(B2)

(B )T

g

(5.3.1)
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as noted in (4.3.6), is a standardized normal variable. It therefore seems that
we can use the normal distribution to make probabilistic statements about 8,
provided the true population variance o? is known. If o2 is known, an impor-
tant property of a normally distributed variable with mean 1 and variance o2
is that the area under the normal curve between u & o is about 68 percent,
that between the limits u + 20 is about 95 percent, and that between p + 30
is about 99.7 percent.

But o2 is rarely known, and in practice it is determined by the unbiased
estimator 2. If we replace o by &, (5.3.1) may be written as

_ B — B _ estimator — parameter
 se( B)  estimated standard error of estimator

R (5.3.2)
B (B2 — B2)y/ X x?

o

where the se (8>) now refers to the estimated standard error. It can be shown
(see Appendix 5A, Section 5A.2) that the ¢ variable thus defined follows the ¢
distribution with n — 2 df. [Note the difference between (5.3.1) and (5.3.2).]
Therefore, instead of using the normal distribution, we can use the ¢ distri-
bution to establish a confidence interval for 8, as follows:

Pr(—typ <t <typ)=1-a (5.3.3)
where the ¢ value in the middle of this double inequality is the ¢ value given
by (5.3.2) and where #,,, is the value of the ¢ variable obtained from the ¢
distribution for «/2 level of significance and n — 2 df; it is often called the

critical 7 value at «/2 level of significance. Substitution of (5.3.2) into (5.3.3)
yields

Pr |:—Z‘D,/2 < M < l‘a/z:| =1-« (5.3.4)
Rearranging (5.3.4), we obtain

Prf —tuse (B2) < Po < Po+tupse (B)l=1—a (5.3.5)3

3Some authors prefer to write (5.3.5) with the df explicitly indicated. Thus, they would write

Prfs — ti-2)a25€ (B2) < B2 < P2 + tn-2p25e (B2)] =1 —«

But for simplicity we will stick to our notation; the context clarifies the appropriate df involved.
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Equation (5.3.5) provides a 100(1 — «) percent confidence interval for 5,,
which can be written more compactly as

100(1 — @)% confidence interval for fs:

B2 + tu)2 se(f2) (5.3.6)
Arguing analogously, and using (4.3.1) and (4.3.2), we can then write:
Prfi —tyase (B1) < B1 < Bi +tupse (B)]l=1—a (5.3.7)

or, more compactly,

100(1 — a)% confidence interval for fi:

Br £ty se (Br) (5.3.8)

Notice an important feature of the confidence intervals given in (5.3.6)
and (5.3.8): In both cases the width of the confidence interval is proportional
to the standard error of the estimator. That is, the larger the standard error,
the larger is the width of the confidence interval. Put differently, the larger
the standard error of the estimator, the greater is the uncertainty of esti-
mating the true value of the unknown parameter. Thus, the standard error
of an estimator is often described as a measure of the precision of the esti-
mator, i.e., how precisely the estimator measures the true population value.

Returning to our illustrative consumption-income example, in Chapter 3
(Section 3.6) we found that f, = 0.5091, se(f,) = 0.0357, and df = 8. If we
assume o = 5%, that is, 95% confidence coefficient, then the ¢ table shows
that for 8 df the critical #,/> = 7025 = 2.306. Substituting these values in
(5.3.5), the reader should verify that the 95% confidence interval for B, is as
follows:

0.4268 < B, < 0.5914 (5.3.9)
Or, using (5.3.6), it is
0.5091 + 2.306(0.0357)
that is,
0.5091 £ 0.0823 (5.3.10)

The interpretation of this confidence interval is: Given the confi-
dence coefficient of 95%), in the long run, in 95 out of 100 cases intervals like
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(0.4268, 0.5914) will contain the true B,. But, as warned earlier, we cannot
say that the probability is 95 percent that the specific interval (0.4268 to
0.5914) contains the true 8, because this interval is now fixed and no longer
random; therefore, B, either lies in it or does not: The probability that the
specified fixed interval includes the true B, is therefore 1 or 0.

Confidence Interval for $4

Following (5.3.7), the reader can easily verify that the 95% confidence inter-
val for B; of our consumption-income example is

9.6643 < By <39.2448 (5.3.11)
Or, using (5.3.8), we find it is
24.4545 4+ 2.306(6.4138)
that is,

24.4545 £+ 14.7902 (5.3.12)

Again you should be careful in interpreting this confidence interval. In
the long run, in 95 out of 100 cases intervals like (5.3.11) will contain the
true Bi; the probability that this particular fixed interval includes the true g;
is either 1 or 0.

Confidence Interval for 81 and 8, Simultaneously

There are occasions when one needs to construct a joint confidence interval
for B; and B, such that with a confidence coefficient (1 — «), say, 95%, that in-
terval includes 81 and B, simultaneously. Since this topic is involved, the in-
terested reader may want to consult appropriate references.* We will touch
on this topic briefly in Chapters 8 and 10.

5.4 CONFIDENCE INTERVAL FOR o2

As pointed out in Chapter 4, Section 4.3, under the normality assumption,
the variable
2

xX’=m-2)= (5.4.1)
(o2

4For an accessible discussion, see John Neter, William Wasserman, and Michael H. Kutner,
Applied Linear Regression Models, Richard D. Irwin, Homewood, Ill., 1983, Chap. 5.
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The 95% confidence interval for x? (8 df).

follows the x? distribution with # — 2 df.> Therefore, we can use the x?2 dis-
tribution to establish a confidence interval for o2

Pr(xtop<x><xin)=1-« (5.4.2)

where the x?2 value in the middle of this double inequality is as given by (5.4.1)
and where x7 ,, and X(f/z are two values of x? (the critical x? values) ob-
tained from the chi-square table for n — 2 df in such a manner that they cut
off 100(«e/2) percent tail areas of the x?2 distribution, as shown in Figure 5.1.

Substituting x? from (5.4.1) into (5.4.2) and rearranging the terms, we
obtain

62 62
Pri(n—2)—— <o’ <(n-2)— =1-a (5.4.3)
Xa/2 Xl-a/2

which gives the 100(1 — «)% confidence interval for 2.

To illustrate, consider this example. From Chapter 3, Section 3.6, we ob-
tain 62 = 42.1591 and df = 8. If « is chosen at 5 percent, the chi-square table
for 8 df gives the following critical values: xgo,5 = 17.5346, and x§g,5 =
2.1797. These values show that the probability of a chi-square value exceed-
ing 17.5346 is 2.5 percent and that of 2.1797 is 97.5 percent. Therefore, the
interval between these two values is the 95% confidence interval for x?2, as
shown diagrammatically in Figure 5.1. (Note the skewed characteristic of
the chi-square distribution.)

5For proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics,
2d ed., Macmillan, New York, 1965, p. 144.
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Substituting the data of our example into (5.4.3), the reader should verify
that the 95% confidence interval for o2 is as follows:

19.2347 < 0% < 154.7336 (5.4.4)

The interpretation of this interval is: If we establish 95% confidence
limits on o and if we maintain a priori that these limits will include true o2,

we shall be right in the long run 95 percent of the time.

5.5 HYPOTHESIS TESTING: GENERAL COMMENTS

Having discussed the problem of point and interval estimation, we shall now
consider the topic of hypothesis testing. In this section we discuss briefly
some general aspects of this topic; Appendix A gives some additional details.

The problem of statistical hypothesis testing may be stated simply as fol-
lows: Is a given observation or finding compatible with some stated hypothe-
sis or not? The word “compatible,” as used here, means “sufficiently” close
to the hypothesized value so that we do not reject the stated hypothesis.
Thus, if some theory or prior experience leads us to believe that the true
slope coefficient B8, of the consumption-income example is unity, is the ob-
served B, = 0.5091 obtained from the sample of Table 3.2 consistent with
the stated hypothesis? If it is, we do not reject the hypothesis; otherwise, we
may reject it.

In the language of statistics, the stated hypothesis is known as the null
hypothesis and is denoted by the symbol Hy. The null hypothesis is usu-
ally tested against an alternative hypothesis (also known as maintained
hypothesis) denoted by H;, which may state, for example, that true g, is
different from unity. The alternative hypothesis may be simple or compos-
ite.® For example, H: 8, = 1.5 is a simple hypothesis, but Hj: 8, # 1.5 is a
composite hypothesis.

The theory of hypothesis testing is concerned with developing rules or
procedures for deciding whether to reject or not reject the null hypothesis.
There are two mutually complementary approaches for devising such rules,
namely, confidence interval and test of significance. Both these ap-
proaches predicate that the variable (statistic or estimator) under consider-
ation has some probability distribution and that hypothesis testing involves
making statements or assertions about the value(s) of the parameter(s) of
such distribution. For example, we know that with the normality assump-
tion B, is normally distributed with mean equal to 8, and variance given by
(4.3.5). If we hypothesize that 8, = 1, we are making an assertion about one

®A statistical hypothesis is called a simple hypothesis if it specifies the precise value(s)
of the parameter(s) of a probability density function; otherwise, it is called a composite hy-
pothesis. For example, in the normal pdf (1/0+/27) exp{—%[(X —w)/o1?}, if we assert that
Hi:p =15 and o = 2, it is a simple hypothesis; but if Hj: u = 15 and o > 15, it is a composite
hypothesis, because the standard deviation does not have a specific value.
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of the parameters of the normal distribution, namely, the mean. Most of the
statistical hypotheses encountered in this text will be of this type—making
assertions about one or more values of the parameters of some assumed
probability distribution such as the normal, F, t, or x2. How this is accom-
plished is discussed in the following two sections.

5.6 HYPOTHESIS TESTING:
THE CONFIDENCE-INTERVAL APPROACH

Two-Sided or Two-Tail Test

To illustrate the confidence-interval approach, once again we revert to the
consumption-income example. As we know, the estimated marginal propen-
sity to consume (MPC), 8, is 0.5091. Suppose we postulate that

H()Z,Bz =0.3
Hy: B, #0.3

that is, the true MPC is 0.3 under the null hypothesis but it is less than or
greater than 0.3 under the alternative hypothesis. The null hypothesis is a
simple hypothesis, whereas the alternative hypothesis is composite; actually
it is what is known as a two-sided hypothesis. Very often such a two-sided
alternative hypothesis reflects the fact that we do not have a strong a pri-
ori or theoretical expectation about the direction in which the alternative
hypothesis should move from the null hypothesis.

Is the observed B, compatible with Hy? To answer this question, let us refer
to the confidence interval (5.3.9). We know that in the long run intervals like
(0.4268, 0.5914) will contain the true 8, with 95 percent probability. Conse-
quently, in the long run (i.e., repeated sampling) such intervals provide a
range or limits within which the true 8, may lie with a confidence coefficient
of, say, 95%. Thus, the confidence interval provides a set of plausible null
hypotheses. Therefore, if 8, under H falls within the 100(1 — «)% confidence
interval, we do not reject the null hypothesis; if it lies outside the interval, we
may reject it.” This range is illustrated schematically in Figure 5.2.

Decision Rule: Construct a 100(1 — «)% confidence interval for 8. If the B> under Hy falls
within this confidence interval, do not reject Hy, but if it falls outside this interval, reject Ho.

Following this rule, for our hypothetical example, Hy: 8> = 0.3 clearly lies
outside the 95% confidence interval given in (5.3.9). Therefore, we can reject

“Always bear in mind that there is a 100« percent chance that the confidence interval does
not contain B, under Hy even though the hypothesis is correct. In short, there is a 100« percent
chance of committing a Type I error. Thus, if « = 0.05, there is a 5 percent chance that we
could reject the null hypothesis even though it is true.
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Values of f3, lying in this interval are
plausible under H with 100(1 - )%
confidence. Hence, do not reject

H if B, lies in this region.

P e e i —— — — — — ———
P e e e — —— — —————

Bz “tan se(fo) Bz o se(B,)

FIGURE 5.2 A 100(1 — a)% confidence interval for .

the hypothesis that the true MPC is 0.3, with 95% confidence. If the null
hypothesis were true, the probability of our obtaining a value of MPC of as
much as 0.5091 by sheer chance or fluke is at the most about 5 percent, a
small probability.

In statistics, when we reject the null hypothesis, we say that our finding is
statistically significant. On the other hand, when we do not reject the null
hypothesis, we say that our finding is not statistically significant.

Some authors use a phrase such as “highly statistically significant.” By this
they usually mean that when they reject the null hypothesis, the probability
of committing a Type I error (i.e., «) is a small number, usually 1 percent. But
as our discussion of the p value in Section 5.8 will show, it is better to leave
it to the researcher to decide whether a statistical finding is “significant,”
“moderately significant,” or “highly significant.”

One-Sided or One-Tail Test

Sometimes we have a strong a priori or theoretical expectation (or expecta-
tions based on some previous empirical work) that the alternative hypothe-
sis is one-sided or unidirectional rather than two-sided, as just discussed.
Thus, for our consumption-income example, one could postulate that

Hy: 8, <03 and Hy:6, > 0.3

Perhaps economic theory or prior empirical work suggests that the mar-
ginal propensity to consume is greater than 0.3. Although the procedure to
test this hypothesis can be easily derived from (5.3.5), the actual mechanics
are better explained in terms of the test-of-significance approach discussed
next.

8If you want to use the confidence interval approach, construct a (100 — a)% one-sided or
one-tail confidence interval for g,. Why?
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5.7 HYPOTHESIS TESTING:
THE TEST-OF-SIGNIFICANCE APPROACH

Testing the Significance of Regression Coefficients: The t Test

An alternative but complementary approach to the confidence-interval
method of testing statistical hypotheses is the test-of-significance ap-
proach developed along independent lines by R. A. Fisher and jointly by
Neyman and Pearson.’ Broadly speaking, a test of significance is a pro-
cedure by which sample results are used to verify the truth or falsity of
a null hypothesis. The key idea behind tests of significance is that of a test
statistic (estimator) and the sampling distribution of such a statistic under
the null hypothesis. The decision to accept or reject Hy is made on the basis
of the value of the test statistic obtained from the data at hand.

As an illustration, recall that under the normality assumption the variable

fo B2 — B
s¢ (32)
) (5.3.2)
B (B2 — B2)y/ > x?
o o

follows the ¢ distribution with n — 2 df. If the value of true B, is specified
under the null hypothesis, the ¢ value of (5.3.2) can readily be computed
from the available sample, and therefore it can serve as a test statistic. And
since this test statistic follows the ¢ distribution, confidence-interval state-
ments such as the following can be made:

Pr |:—Ta/2 < P _Bﬂz < Za/2:| =1—-«a (5.7.1)

where ,3; is the value of g, under Hy and where —#,,, and ¢,/ are the values

of ¢ (the critical ¢ values) obtained from the ¢ table for («/2) level of signifi-

cance and n — 2 df [cf. (5.3.4)]. The ¢ table is given in Appendix D.
Rearranging (5.7.1), we obtain

PrB; —tyase(Ba) < Po < By +tupse(B)l=1—a (5.7.2)

which gives the interval in which B, will fall with 1 — « probability, given
B2 = B5. In the language of hypothesis testing, the 100(1 — @)% confidence
interval established in (5.7.2) is known as the region of acceptance (of

Details may be found in E. L. Lehman, Testing Statistical Hypotheses, John Wiley & Sons,
New York, 1959.
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FIGURE 5.3

the null hypothesis) and the region(s) outside the confidence interval is (are)
called the region(s) of rejection (of Hp) or the critical region(s). As noted
previously, the confidence limits, the endpoints of the confidence interval,
are also called critical values.

The intimate connection between the confidence-interval and test-of-
significance approaches to hypothesis testing can now be seen by compar-
ing (5.3.5) with (5.7.2). In the confidence-interval procedure we try to estab-
lish a range or an interval that has a certain probability of including the true
but unknown B, whereas in the test-of-significance approach we hypothe-
size some value for g, and try to see whether the computed B, lies within
reasonable (confidence) limits around the hypothesized value.

Once again let us revert to our consumption-income example. We know
that 8> = 0.5091, se (8,) = 0.0357, and df = 8. If we assume « = 5 percent,
tyjr = 2.306. If we let Hy: B, = ﬂ2 = 0.3 and H;: B> # 0.3, (5.7.2) becomes

Pr (0.2177 < $, < 0.3823) = 0.95 (5.7.3)1°

as shown diagrammatically in Figure 5.3. Since the observed $, lies in the
critical region, we reject the null hypothesis that true 8, = 0.3.

In practice, there is no need to estimate (5.7.2) explicitly. One can com-
pute the ¢ value in the middle of the double inequality given by (5.7.1) and
see whether it lies between the critical ¢ values or outside them. For our
example,

0.5091 - 0.3
= o = 586 (5.7.4)
f(B)
2z
A B> =0.5091
Critical lies in this
region critical region
2.5% 2.5%
. B,

0.2177 0.3 0.3823

The 95% confidence interval for /§2 under the hypothesis that g, = 0.3.

19Tn Sec. 5.2, point 4, it was stated that we cannot say that the probability is 95 percent that
the fixed interval (0.4268, 0.5914) includes the true ;. But we can make the probabilistic state-
ment given in (5.7.3) because ;, being an estimator, is a random variable.
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@

2

£ 95% 1=5.86

o . . .

[a} Critical Region of lies in this
region acceptance critical region
2.5% 2.5%

I

-2.306 0 +2.306

The 95% confidence interval for (8 df).

which clearly lies in the critical region of Figure 5.4. The conclusion remains
the same; namely, we reject Hy.

Notice that if the estimated 8, (= B) is equal to the hypothesized 8,, the
t value in (5.7.4) will be zero. However, as the estimated B, value
departs from the hypothesized B, value, |¢| (that is, the absolute ¢ value; note:
t can be positive as well as negative) will be increasingly large. Therefore, a
“large” |t| value will be evidence against the null hypothesis. Of course, we
can always use the ¢ table to determine whether a particular ¢ value is large
or small; the answer, as we know, depends on the degrees of freedom as well
as on the probability of Type I error that we are willing to accept. If you
take a look at the ¢ table given in Appendix D, you will observe that for any
given value of df the probability of obtaining an increasingly large |¢| value
becomes progressively smaller. Thus, for 20 df the probability of obtain-
ing a |t| value of 1.725 or greater is 0.10 or 10 percent, but for the same
df the probability of obtaining a |¢| value of 3.552 or greater is only 0.002 or
0.2 percent.

Since we use the ¢ distribution, the preceding testing procedure is called
appropriately the t test. In the language of significance tests, a statistic
is said to be statistically significant if the value of the test statistic lies
in the critical region. In this case the null hypothesis is rejected. By the
same token, a test is said to be statistically insignificant if the value of
the test statistic lies in the acceptance region. In this situation, the null
hypothesis is not rejected. In our example, the ¢ test is significant and hence
we reject the null hypothesis.

Before concluding our discussion of hypothesis testing, note that the
testing procedure just outlined is known as a two-sided, or two-tail, test-
of-significance procedure in that we consider the two extreme tails of the
relevant probability distribution, the rejection regions, and reject the null
hypothesis if it lies in either tail. But this happens because our H; was a
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FIGURE 5.5

two-sided composite hypothesis; 8, # 0.3 means B, is either greater than
or less than 0.3. But suppose prior experience suggests to us that the MPC
is expected to be greater than 0.3. In this case we have: Hy: 8, < 0.3 and
H;: B> > 0.3. Although H, is still a composite hypothesis, it is now one-sided.
To test this hypothesis, we use the one-tail test (the right tail), as shown in
Figure 5.5. (See also the discussion in Section 5.6.)

The test procedure is the same as before except that the upper confidence
limit or critical value now corresponds to ¢, = t,ps, that is, the 5 percent level.
As Figure 5.5 shows, we need not consider the lower tail of the ¢ distribution
in this case. Whether one uses a two- or one-tail test of significance will de-
pend upon how the alternative hypothesis is formulated, which, in turn,
may depend upon some a priori considerations or prior empirical experi-
ence. (But more on this in Section 5.8.)

We can summarize the 7 test of significance approach to hypothesis test-
ing as shown in Table 5.1.

f(B2)
2
2 95% .
g Region of B, =0.5091
- acceptance lies in this
critical region
2.5%
B2
0.3 0.3664
[N
I B ~
5+ 1.860 se
) : [B3% (B2)]
|
|
|
|
5 |
g 95% I
3 Region of I
& | t=586
acceptance I lies in this
I critical region
5%
t

0 1.860
~
t0.05 (8 df)

One-tail test of significance.
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THE t TEST OF SIGNIFICANCE: DECISION RULES

Type of Ho: the null H;: the alternative Decision rule:
hypothesis hypothesis hypothesis reject Hy if
Two-tail Bo= P> B2 # B3 [t > t/2,0t
Right-tail B2 < B> B2 > B3 t> 1, q
Left-tail B2> P> B2 < B3 t < —taf

Notes: f is the hypothesized numerical value of fs.

[t means the absolute value of t.

t, or t,;» means the critical t value at the « or «/2 level of significance.

df: degrees of freedom, (n — 2) for the two-variable model, (n — 3) for the three-
variable model, and so on.

The same procedure holds to test hypotheses about 8.

Testing the Significance of 0%: The x? Test

TABLE 5.2

133

As another illustration of the test-of-significance methodology, consider the

following variable:

(5.4.1)

which, as noted previously, follows the x? distribution with n — 2 df. For the
hypothetical example, 6% = 42.1591 and df = 8. If we postulate that Hy: 0% =
85 vs. Hy: 0% # 85, Eq. (5.4.1) provides the test statistic for Hy. Substituting
the appropriate values in (5.4.1), it can be found that under Hy, x> = 3.97. If
we assume « = 5%, the critical x? values are 2.1797 and 17.5346. Since the
computed x? lies between these limits, the data support the null hypothesis
and we do not reject it. (See Figure 5.1.) This test procedure is called the
chi-square test of significance. The x? test of significance approach to

hypothesis testing is summarized in Table 5.2.

A SUMMARY OF THE »® TEST
Ho: the null Hjy: the alternative Critical region:
hypothesis hypothesis reject Hy if
A2
2= a3 02> a3 a6 - 2y
00
df(62
o? =05 o? <ab (Z )<X(21—oz)df
00
df(62
o? =0} o2 # 0% (g >X§/2df
00
2

OF < X(1—ay2),df

Note: og is the value of o2 under the null hypothesis. The first subscript on x2 in the
last column is the level of significance, and the second subscript is the degrees of
freedom. These are critical chi-square values. Note that df is (n — 2) for the two-variable
regression model, (n — 3) for the three-variable regression model, and so on.
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5.8 HYPOTHESIS TESTING: SOME PRACTICAL ASPECTS

The Meaning of “Accepting” or “Rejecting” a Hypothesis

If on the basis of a test of significance, say, the ¢ test, we decide to “accept”
the null hypothesis, all we are saying is that on the basis of the sample evi-
dence we have no reason to reject it; we are not saying that the null hypoth-
esis is true beyond any doubt. Why? To answer this, let us revert to our
consumption-income example and assume that Hy: 82 (MPC) = 0.50. Now
the estimated value of the MPC is 8, = 0.5091 with a se (8,) = 0.0357. Then
on the basis of the ¢ test we find that ¢ =(0.5091 — 0.50)/0.0357 = 0.25,
which is insignificant, say, at « = 5%. Therefore, we say “accept” Hy. But
now let us assume Hp: B, = 0.48. Applying the ¢ test, we obtain ¢ = (0.5091 —
0.48)/0.0357 = 0.82, which too is statistically insignificant. So now we say
“accept” this Hy. Which of these two null hypotheses is the “truth”? We do
not know. Therefore, in “accepting” a null hypothesis we should always be
aware that another null hypothesis may be equally compatible with the
data. It is therefore preferable to say that we may accept the null hypothesis
rather than we (do) accept it. Better still,

.. .just as a court pronounces a verdict as “not guilty” rather than “innocent,” so
the conclusion of a statistical test is “do not reject” rather than “accept.”!!

The “Zero” Null Hypothesis and the “2-t” Rule of Thumb

A null hypothesis that is commonly tested in empirical work is Hy: 8, =0,
that is, the slope coefficient is zero. This “zero” null hypothesis is a kind of
straw man, the objective being to find out whether Y'is related at all to X, the
explanatory variable. If there is no relationship between Y and X to begin
with, then testing a hypothesis such as 8, = 0.3 or any other value is mean-
ingless.

This null hypothesis can be easily tested by the confidence interval or the
t-test approach discussed in the preceding sections. But very often such for-
mal testing can be shortcut by adopting the “2-¢” rule of significance, which
may be stated as

“2-t” Rule of Thumb. If the number of degrees of freedom is 20 or more and if «, the level
of significaqce, is set at 0.05, then the null hypothesis 8> = 0 can be rejected if the t value
[ = B2/se (B2)] computed from (5.3.2) exceeds 2 in absolute value.

The rationale for this rule is not too difficult to grasp. From (5.7.1) we
know that we will reject Hy: B> = 0 if

t = Pa/se(B2) > tuy when f, > 0

Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, p. 114.
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or
t = Ba/se(B2) < —tup2 when , <0
or when
Ba
|t = | >ty (5.8.1)
se (B2) !

for the appropriate degrees of freedom.

Now if we examine the ¢ table given in Appendix D, we see that for df of
about 20 or more a computed ¢ value in excess of 2 (in absolute terms), say,
2.1, is statistically significant at the 5 percent level, implying rejection of the
null hypothesis. Therefore, if we find that for 20 or more df the computed
t value is, say, 2.5 or 3, we do not even have to refer to the ¢ table to assess
the significance of the estimated slope coefficient. Of course, one can always
refer to the ¢ table to obtain the precise level of significance, and one should
always do so when the df are fewer than, say, 20.

In passing, note that if we are testing the one-sided hypothesis 8, =0
versus B, > 0 or B, < 0, then we should reject the null hypothesis if

A

B2
se (f2)

If we fix o at 0.05, then from the ¢ table we observe that for 20 or more df a
t value in excess of 1.73 is statistically significant at the 5 percent level of sig-
nificance (one-tail). Hence, whenever a f value exceeds, say, 1.8 (in absolute
terms) and the df are 20 or more, one need not consult the ¢ table for the
statistical significance of the observed coefficient. Of course, if we choose «
at 0.01 or any other level, we will have to decide on the appropriate ¢ value
as the benchmark value. But by now the reader should be able to do that.

>ty (5.8.2)

It =

Forming the Null and Alternative Hypotheses'2

Given the null and the alternative hypotheses, testing them for statistical
significance should no longer be a mystery. But how does one formulate
these hypotheses? There are no hard-and-fast rules. Very often the phenom-
enon under study will suggest the nature of the null and alternative hy-
potheses. For example, consider the capital market line (CML) of portfolio
theory, which postulates that E; = B; + B8,0;, where E = expected return on
portfolio and o = the standard deviation of return, a measure of risk. Since
return and risk are expected to be positively related—the higher the risk, the

2For an interesting discussion about formulating hypotheses, see J. Bradford De Long
and Kevin Lang, “Are All Economic Hypotheses False?” Journal of Political Economy, vol. 100,
no. 6, 1992, pp. 1257-1272.
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higher the return—the natural alternative hypothesis to the null hypothesis
that 8, = 0 would be B, > 0. That is, one would not choose to consider values
of B, less than zero.

But consider the case of the demand for money. As we shall show later,
one of the important determinants of the demand for money is income.
Prior studies of the money demand functions have shown that the income
elasticity of demand for money (the percent change in the demand for
money for a 1 percent change in income) has typically ranged between 0.7
and 1.3. Therefore, in a new study of demand for money, if one postulates
that the income-elasticity coefficient 8; is 1, the alternative hypothesis could
be that 8, # 1, a two-sided alternative hypothesis.

Thus, theoretical expectations or prior empirical work or both can be
relied upon to formulate hypotheses. But no matter how the hypotheses are
formed, it is extremely important that the researcher establish these hypotheses
before carrying out the empirical investigation. Otherwise, he or she will be
guilty of circular reasoning or self-fulfilling prophesies. That is, if one were to
formulate hypotheses after examining the empirical results, there may be the
temptation to form hypotheses that justify one’s results. Such a practice
should be avoided at all costs, at least for the sake of scientific objectivity.
Keep in mind the Stigler quotation given at the beginning of this chapter!

Choosing «, the Level of Significance

It should be clear from the discussion so far that whether we reject or do not
reject the null hypothesis depends critically on «, the level of significance
or the probability of committing a Type I error—the probability of rejecting
the true hypothesis. In Appendix A we discuss fully the nature of a Type I
error, its relationship to a Type II error (the probability of accepting the false
hypothesis) and why classical statistics generally concentrates on a Type I
error. But even then, why is @ commonly fixed at the 1, 5, or at the most
10 percent levels? As a matter of fact, there is nothing sacrosanct about
these values; any other values will do just as well.

In an introductory book like this it is not possible to discuss in depth why
one chooses the 1, 5, or 10 percent levels of significance, for that will take us
into the field of statistical decision making, a discipline unto itself. A brief
summary, however, can be offered. As we discuss in Appendix A, for a given
sample size, if we try to reduce a Type I errvor, a Type II error increases, and vice
versa. That is, given the sample size, if we try to reduce the probability of re-
jecting the true hypothesis, we at the same time increase the probability of ac-
cepting the false hypothesis. So there is a tradeoff involved between these two
types of errors, given the sample size. Now the only way we can decide about
the tradeoff is to find out the relative costs of the two types of errors. Then,

If the error of rejecting the null hypothesis which is in fact true (Error Type I) is
costly relative to the error of not rejecting the null hypothesis which is in fact
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false (Error Type II), it will be rational to set the probability of the first kind
of error low. If, on the other hand, the cost of making Error Type I is low rela-
tive to the cost of making Error Type 11, it will pay to make the probability of the
first kind of error high (thus making the probability of the second type of error
low).!3

Of course, the rub is that we rarely know the costs of making the two types
of errors. Thus, applied econometricians generally follow the practice of set-
ting the value of ¢ at a 1 or a 5 or at most a 10 percent level and choose a test
statistic that would make the probability of committing a Type II error as
small as possible. Since one minus the probability of committing a Type II
error is known as the power of the test, this procedure amounts to maxi-
mizing the power of the test. (See Appendix A for a discussion of the power
of a test.)

But all this problem with choosing the appropriate value of @ can be
avoided if we use what is known as the p value of the test statistic, which is
discussed next.

The Exact Level of Significance: The p Value

As just noted, the Achilles heel of the classical approach to hypothesis test-
ing is its arbitrariness in selecting «. Once a test statistic (e.g., the ¢ statistic)
is obtained in a given example, why not simply go to the appropriate statis-
tical table and find out the actual probability of obtaining a value of the test
statistic as much as or greater than that obtained in the example? This prob-
ability is called the p value (i.e., probability value), also known as the
observed or exact level of significance or the exact probability of com-
mitting a Type I error. More technically, the p value is defined as the low-
est significance level at which a null hypothesis can be rejected.

To illustrate, let us return to our consumption-income example. Given
the null hypothesis that the true MPC is 0.3, we obtained a ¢ value of 5.86 in
(5.7.4). What is the p value of obtaining a ¢ value of as much as or greater
than 5.86? Looking up the ¢ table given in Appendix D, we observe that for
8 df the probability of obtaining such a ¢ value must be much smaller than
0.001 (one-tail) or 0.002 (two-tail). By using the computer, it can be shown
that the probability of obtaining a ¢ value of 5.86 or greater (for 8 df) is
about 0.000189.'* This is the p value of the observed ¢ statistic. This ob-
served, or exact, level of significance of the ¢ statistic is much smaller than
the conventionally, and arbitrarily, fixed level of significance, such as 1, 5, or
10 percent. As a matter of fact, if we were to use the p value just computed,

13Jan Kmenta, Elements of Econometrics, Macmillan, New York, 1971, pp. 126-127.

14One can obtain the p value using electronic statistical tables to several decimal places.
Unfortunately, the conventional statistical tables, for lack of space, cannot be that refined. Most
statistical packages now routinely print out the p values.
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and reject the null hypothesis that the true MPC is 0.3, the probability of
our committing a Type I error is only about 0.02 percent, that is, only about
2 in 10,000!

As we noted earlier, if the data do not support the null hypothesis, |¢| ob-
tained under the null hypothesis will be “large” and therefore the p value of
obtaining such a |t| value will be “small.” In other words, for a given sample
size, as |t| increases, the p value decreases, and one can therefore reject the
null hypothesis with increasing confidence.

What is the relationship of the p value to the level of significance «? If we
make the habit of fixing « equal to the p value of a test statistic (e.g., the ¢ sta-
tistic), then there is no conflict between the two values. To put it differently,
it is better to give up fixing « arbitrarily at some level and simply
choose the p value of the test statistic. It is preferable to leave it to the
reader to decide whether to reject the null hypothesis at the given p value. If
in an application the p value of a test statistic happens to be, say, 0.145, or
14.5 percent, and if the reader wants to reject the null hypothesis at this
(exact) level of significance, so be it. Nothing is wrong with taking a chance
of being wrong 14.5 percent of the time if you reject the true null hypothe-
sis. Similarly, as in our consumption-income example, there is nothing
wrong if the researcher wants to choose a p value of about 0.02 percent and
not take a chance of being wrong more than 2 out of 10,000 times. After all,
some investigators may be risk-lovers and some risk-averters!

In the rest of this text, we will generally quote the p value of a given test
statistic. Some readers may want to fix a at some level and reject the null
hypothesis if the p value is less than «. That is their choice.

Statistical Significance versus Practical Significance

Let us revert to our consumption-income example and now hypothesize
that the true MPC is 0.61 (Hy: 8, = 0.61). On the basis of our sample result
of B, = 0.5091, we obtained the interval (0.4268, 0.5914) with 95 percent
confidence. Since this interval does not include 0.61, we can, with 95 per-
cent confidence, say that our estimate is statistically significant, that is,
significantly different from 0.61.

But what is the practical or substantive significance of our finding? That
is, what difference does it make if we take the MPC to be 0.61 rather than
0.5091? Is the 0.1009 difference between the two MPCs that important prac-
tically?

The answer to this question depends on what we really do with these es-
timates. For example, from macroeconomics we know that the income mul-
tiplier is 1/(1 — MPC). Thus, if MPC is 0.5091, the multiplier is 2.04, but it is
2.56 if MPC is equal to 0.61. That is, if the government were to increase its
expenditure by $1 to lift the economy out of a recession, income will even-
tually increase by $2.04 if the MPC is 0.5091 but by $2.56 if the MPC is 0.61.
And that difference could very well be crucial to resuscitating the economy.
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The point of all this discussion is that one should not confuse statistical
significance with practical, or economic, significance. As Goldberger notes:

When a null, say, B; = 1, is specified, the likely intent is that §; is close to 1, so
close that for all practical purposes it may be treated as if it were 1. But whether
1.1 is “practically the same as” 1.0 is a matter of economics, not of statistics. One
cannot resolve the matter by relying on a hypothesis test, because the test statis-
tic [t =1(b; — 1)/65; measures the estimated coefficient in standard error units,
which are not meaningful units in which to measure the economic parameter
B;j — 1. It may be a good idea to reserve the term “significance” for the statistical
concept, adopting “substantial” for the economic concept.!>

The point made by Goldberger is important. As sample size becomes very
large, issues of statistical significance become much less important but is-
sues of economic significance become critical. Indeed, since with very large
samples almost any null hypothesis will be rejected, there may be studies in
which the magnitude of the point estimates may be the only issue.

The Choice between Confidence-Interval and
Test-of-Significance Approaches to Hypothesis Testing

In most applied economic analyses, the null hypothesis is set up as a straw
man and the objective of the empirical work is to knock it down, that is, re-
ject the null hypothesis. Thus, in our consumption-income example, the
null hypothesis that the MPC B, = 0 is patently absurd, but we often use it
to dramatize the empirical results. Apparently editors of reputed journals
do not find it exciting to publish an empirical piece that does not reject the
null hypothesis. Somehow the finding that the MPC is statistically different
from zero is more newsworthy than the finding that it is equal to, say, 0.7!

Thus, J. Bradford De Long and Kevin Lang argue that it is better for
economists

...to concentrate on the magnitudes of coefficients and to report confidence
levels and not significance tests. If all or almost all null hypotheses are false, there
is little point in concentrating on whether or not an estimate is indistinguishable
from its predicted value under the null. Instead, we wish to cast light on what
models are good approximations, which requires that we know ranges of para-
meter values that are excluded by empirical estimates.'®

In short, these authors prefer the confidence-interval approach to the test-of-
significance approach. The reader may want to keep this advice in mind.!”

I5Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge,
Massachusetts, 1991, p. 240. Note b; is the OLS estimator of g; and 63; is its standard error. For
a corroborating view, see D. N. McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric
of Significance Tests,” American Economic Review, vol. 75, 1985, pp. 201-205. See also D. N.
McCloskey and S. T. Ziliak, “The Standard Error of Regression,” Journal of Economic Litera-
ture, vol. 37, 1996, pp. 97-114.

16See their article cited in footnote 12, p. 1271.

17For a somewhat different perspective, see Carter Hill, William Griffiths, and George Judge,
Undergraduate Econometrics, Wiley & Sons, New York, 2001, p. 108.
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5.9 REGRESSION ANALYSIS AND ANALYSIS OF VARIANCE

TABLE 5.3

In this section we study regression analysis from the point of view of the
analysis of variance and introduce the reader to an illuminating and com-
plementary way of looking at the statistical inference problem.

In Chapter 3, Section 3.5, we developed the following identity:

Y=Y 9+Y = xF+> i (3.5.2)

that is, TSS = ESS + RSS, which decomposed the total sum of squares
(TSS) into two components: explained sum of squares (ESS) and residual
sum of squares (RSS). A study of these components of TSS is known as the
analysis of variance (ANOVA) from the regression viewpoint.

Associated with any sum of squares is its df, the number of independent
observations on which it is based. TSS has n — 1 df because we lose 1 df in
computing the sample mean Y. RSS has n — 2 df. (Why?) (Note: This is true
only for the two-variable regression model with the intercept 8; present.)
ESS has 1 df (again true of the two-variable case only), which follows from
the fact that ESS = /§22 lez is a function of /§2 only, since lez is known.

Let us arrange the various sums of squares and their associated df in
Table 5.3, which is the standard form of the AOV table, sometimes called the
ANOVA table. Given the entries of Table 5.3, we now consider the following
variable:

MSS of ESS

F=—2" 2
MSS of RSS

A2 2
— ‘%i (5.9.1)
Yz /(n—2)
Bi Y x?
-5z
If we assume that the disturbances u; are normally distributed, which we

do under the CNLRM, and if the null hypothesis (Hp) is that 8, = 0, then it
can be shown that the F variable of (5.9.1) follows the F distribution with

ANOVA TABLE FOR THE TWO-VARIABLE REGRESSION MODEL

Source of variation SS* df msst
Due to regression (ESS) Y. y2 =42y x? 1 B2 "x?

: -2 > 07 .2
Due to residuals (RSS) > 07 n-—2 5 =0
TSS % n—1

*SS means sum of squares.
TMean sum of squares, which is obtained by dividing SS by their df.
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1 df in the numerator and (n — 2) df in the denominator. (See Appendix 5A,
Section 5A.3, for the proof. The general properties of the F distribution are
discussed in Appendix A.)

What use can be made of the preceding F ratio? It can be shown'® that

E(BY x?)=c?+8 Y x (5.9.2)

and
2
ELM _ gty (5.9.3)
n—2

(Note that 8, and o2 appearing on the right sides of these equations are the
true parameters.) Therefore, if 8, is in fact zero, Egs. (5.9.2) and (5.9.3) both
provide us with identical estimates of true o2. In this situation, the explana-
tory variable X has no linear influence on Y whatsoever and the entire vari-
ation in Y is explained by the random disturbances ;. If, on the other hand,
B2 is not zero, (5.9.2) and (5.9.3) will be different and part of the variation
in Y will be ascribable to X. Therefore, the F ratio of (5.9.1) provides a test
of the null hypothesis Hy: 8, = 0. Since all the quantities entering into this
equation can be obtained from the available sample, this F ratio provides a
test statistic to test the null hypothesis that true 8, is zero. All that needs to
be done is to compute the F ratio and compare it with the critical F value
obtained from the F tables at the chosen level of significance, or obtain the
p value of the computed F statistic.

To illustrate, let us continue with our consumption-income example.
The ANOVA table for this example is as shown in Table 5.4. The computed
F value is seen to be 202.87. The p value of this F statistic corresponding
to 1 and 8 df cannot be obtained from the F table given in Appendix D, but
by using electronic statistical tables it can be shown that the p value is
0.0000001, an extremely small probability indeed. If you decide to choose
the level-of-significance approach to hypothesis testing and fix « at 0.01, or
a 1 percent level, you can see that the computed F of 202.87 is obviously sig-
nificant at this level. Therefore, if we reject the null hypothesis that 8, = 0,
the probability of committing a Type I error is very small. For all practical

ANOVA TABLE FOR THE CONSUMPTION-INCOME EXAMPLE

Source of variation SS df MSS

. 8552.73
Due to regression (ESS) 8552.73 1 8552.73 F= 22159
Due to residuals (RSS) 337.27 8 42.159 =202.87
TSS 8890.00 9

18For proof, see K. A. Brownlee, Statistical Theory and Methodology in Science and Engi-
neering, John Wiley & Sons, New York, 1960, pp. 278-280.
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purposes, our sample could not have come from a population with zero 8,
value and we can conclude with great confidence that X, income, does affect
Y, consumption expenditure.

Refer to Theorem 5.7 of Appendix 5A.1, which states that the square of the
t value with k df is an F value with 1df in the numerator and k df in the de-
nominator. For our consumption-income example, if we assume Hp: 8, = 0,
then from (5.3.2) it can be easily verified that the estimated ¢ value is 14.26.
This ¢ value has 8 df. Under the same null hypothesis, the F value was 202.87
with 1 and 8 df. Hence (14.24)?> = F value, except for the rounding errors.

Thus, the ¢ and the F tests provide us with two alternative but comple-
mentary ways of testing the null hypothesis that 8, = 0. If this is the case,
why not just rely on the ¢ test and not worry about the F test and the ac-
companying analysis of variance? For the two-variable model there really is
no need to resort to the F test. But when we consider the topic of multiple
regression we will see that the F test has several interesting applications that
make it a very useful and powerful method of testing statistical hypotheses.

5.10 APPLICATION OF REGRESSION ANALYSIS:
THE PROBLEM OF PREDICTION

On the basis of the sample data of Table 3.2 we obtained the following sam-
ple regression:

A

Y, =24.4545 4 0.5091X; (3.6.2)

where Y, is the estimator of true E(Y;) corresponding to given X. What use
can be made of this historical regression? One use is to “predict” or “fore-
cast” the future consumption expenditure Y corresponding to some given
level of income X. Now there are two kinds of predictions: (1) prediction of
the conditional mean value of Y corresponding to a chosen X, say, Xj, that
is the point on the population regression line itself (see Figure 2.2), and
(2) prediction of an individual Y value corresponding to X,. We shall call
these two predictions the mean prediction and individual prediction.

Mean Prediction'®
To fix the ideas, assume that Xy = 100 and we want to predict E(Y | Xy = 100).
Now it can be shown that the historical regression (3.6.2) provides the point
estimate of this mean prediction as follows:
Yo = B1 + B Xo
= 24.4545 + 0.5091(100) (5.10.1)
= 75.3645

19For the proofs of the various statements made, see App. 5A, Sec. 5A.4.
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where Y, = estimator of E(Y | X,). It can be proved that this point predictor
is a best linear unbiased estimator (BLUE).

Since Y} is an estimator, it is likely to be different from its true value. The
difference between the two values will give some idea about the prediction
or forecast error. To assess this error, we need to find out the sampling
distribution of ¥;. It is shown in Appendix 5A, Section 5A.4, that Y in
Eq. (5.10.1) is normally distributed with mean (8; + B>X) and the variance
is given by the following formula:

(5.10.2)

var (Yp) = o [% + (Xo = )‘()2]

> %

2

By replacing the unknown o2 by its unbiased estimator 62, we see that the

variable

. Yo — (B1 + B2X0)
se (Yp)

(5.10.3)

follows the ¢ distribution with »# — 2 df. The ¢ distribution can therefore be
used to derive confidence intervals for the true E(Yy| Xo) and test hypothe-
ses about it in the usual manner, namely,

PrlB1 + B2 Xo — tuy2 se (Yo) < B1 + B2Xo < B1 + BaXo + tapp se Vo)l =1 —«

(5.10.4)

where se (Yp) is obtained from (5.10.2).
For our data (see Table 3.3),

_ 2
var (Yp) = 42.159 [ ! M}

10 33,000
= 10.4759

and

se (Yp) = 3.2366

Therefore, the 95% confidence interval for true E(Y | Xo) = B1 + B2 X0 is given
by

75.3645 — 2.306(3.2366) < E(Yp | X = 100) < 75.3645 + 2.306(3.2366)

that is,

67.9010 < E(Y| X = 100) < 82.8381 (5.10.5)
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FIGURE 5.6 Confidence intervals (bands) for mean Y and individual Y values.

Thus, given Xy = 100, in repeated sampling, 95 out of 100 intervals like
(5.10.5) will include the true mean value; the single best estimate of the true
mean value is of course the point estimate 75.3645.

If we obtain 95% confidence intervals like (5.10.5) for each of the X val-
ues given in Table 3.2, we obtain what is known as the confidence interval,
or confidence band, for the population regression function, which is
shown in Figure 5.6.

Individual Prediction

If our interest lies in predicting an individual Y value, Yy, corresponding to
a given X value, say, Xp, then, as shown in Appendix 5, Section 5A.3, a best
linear unbiased estimator of Y} is also given by (5.10.1), but its variance is as
follows:

1, Xo- X)z] (5.10.6)

Var(Yo—},}o)=E[Yo—?0]2 =o? |:1+—+ —— 3
n > xf

It can be shown further that Y, also follows the normal distribution with
mean and variance given by (5.10.1) and (5.10.6), respectively. Substituting 62
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for the unknown o2, it follows that

L YooY
 se(Yp—Yo)

also follows the ¢ distribution. Therefore, the ¢ distribution can be used to
draw inferences about the true Y. Continuing with our consumption-income
example, we see that the point prediction of Yy is 75.3645, the same as that
of Yy, and its variance is 52.6349 (the reader should verify this calculation).
Therefore, the 95% confidence interval for ¥y corresponding to Xo = 100 is
seen to be

(58.6345 <Yy | Xo = 100 < 92.0945) (5.10.7)

Comparing this interval with (5.10.5), we see that the confidence interval
for individual Yj is wider than that for the mean value of Yy. (Why?) Com-
puting confidence intervals like (5.10.7) conditional upon the X values given
in Table 3.2, we obtain the 95% confidence band for the individual Y values
corresponding to these X values. This confidence band along with the confi-
dence band for Yj associated with the same X’s is shown in Figure 5.6.

Notice an important feature of the confidence bands shown in Figure 5.6.
The width of these bands is smallest when Xy, = X. (Why?) However, the
width widens sharply as X, moves away from X. (Why?) This change would
suggest that the predictive ability of the historical sample regression line
falls markedly as X, departs progressively from X. Therefore, one should
exercise great caution in “extrapolating” the historical regression line
to predict E(Y | Xp) or Y associated with a given Xj that is far removed
from the sample mean X.

5.11 REPORTING THE RESULTS OF REGRESSION ANALYSIS

There are various ways of reporting the results of regression analysis, but
in this text we shall use the following format, employing the consumption—
income example of Chapter 3 as an illustration:
Y; =24.4545  + 0.5091X;
se = (6.4138) (0.0357) r? =0.9621
t = (3.8128) (14.2605) df =8
p = (0.002571) (0.000000289) Fi13=202.87

(5.11.1)

In Eq. (5.11.1) the figures in the first set of parentheses are the estimated
standard errors of the regression coefficients, the figures in the second set
are estimated ¢ values computed from (5.3.2) under the null hypothesis that
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the true population value of each regression coefficient individually is zero
(e.g., 3.8128 =24.4545 + 6.4138), and the figures in the third set are the
estimated p values. Thus, for 8 df the probability of obtaining a ¢ value of
3.8128 or greater is 0.0026 and the probability of obtaining a ¢ value of
14.2605 or larger is about 0.0000003.

By presenting the p values of the estimated ¢ coefficients, we can see at
once the exact level of significance of each estimated ¢ value. Thus, under
the null hypothesis that the true population intercept value is zero, the
exact probability (i.e., the p value) of obtaining a ¢ value of 3.8128 or greater
is only about 0.0026. Therefore, if we reject this null hypothesis, the proba-
bility of our committing a Type I error is about 26 in 10,000, a very small
probability indeed. For all practical purposes we can say that the true pop-
ulation intercept is different from zero. Likewise, the p value of the esti-
mated slope coefficient is zero for all practical purposes. If the true MPC
were in fact zero, our chances of obtaining an MPC of 0.5091 would be
practically zero. Hence we can reject the null hypothesis that the true MPC
is zero.

Earlier we showed the intimate connection between the F and ¢ statistics,
namely, Fy; = z‘,f. Under the null hypothesis that the true g, =0, (5.11.1)
shows that the F value is 202.87 (for 1 numerator and 8 denominator df)
and the ¢ value is about 14.24 (8 df); as expected, the former value is the
square of the latter value, except for the roundoff errors. The ANOVA table
for this problem has already been discussed.

5.12 EVALUATING THE RESULTS OF REGRESSION ANALYSIS

In Figure 1.4 of the Introduction we sketched the anatomy of econometric
modeling. Now that we have presented the results of regression analysis of
our consumption-income example in (5.11.1), we would like to question the
adequacy of the fitted model. How “good” is the fitted model? We need some
criteria with which to answer this question.

First, are the signs of the estimated coefficients in accordance with theo-
retical or prior expectations? A priori, 8,, the marginal propensity to con-
sume (MPC) in the consumption function, should be positive. In the present
example it is. Second, if theory says that the relationship should be not only
positive but also statistically significant, is this the case in the present appli-
cation? As we discussed in Section 5.11, the MPC is not only positive but
also statistically significantly different from zero; the p value of the esti-
mated ¢ value is extremely small. The same comments apply about the inter-
cept coefficient. Third, how well does the regression model explain variation
in the consumption expenditure? One can use r? to answer this question. In
the present example 72 is about 0.96, which is a very high value considering
that 72 can be at most 1.

Thus, the model we have chosen for explaining consumption expenditure
behavior seems quite good. But before we sign off, we would like to find out
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whether our model satisfies the assumptions of CNLRM. We will not look at
the various assumptions now because the model is patently so simple. But
there is one assumption that we would like to check, namely, the normality
of the disturbance term, u;. Recall that the ¢ and F tests used before require
that the error term follow the normal distribution. Otherwise, the testing
procedure will not be valid in small, or finite, samples.

Although several tests of normality are discussed in the literature, we will
consider just three: (1) histogram of residuals; (2) normal probability plot
(NPP), a graphical device; and (3) the Jarque-Bera test.

Histogram of Residuals. A histogram of residuals is a simple graphic
device that is used to learn something about the shape of the PDF of a ran-
dom variable. On the horizontal axis, we divide the values of the variable
of interest (e.g., OLS residuals) into suitable intervals, and in each class
interval we erect rectangles equal in height to the number of observations
(i.e., frequency) in that class interval. If you mentally superimpose the bell-
shaped normal distribution curve on the histogram, you will get some idea
as to whether normal (PDF) approximation may be appropriate. A concrete
example is given in Section 5.13 (see Figure 5.8). It is always a good practice
to plot the histogram of the residuals as a rough and ready method of test-
ing for the normality assumption.

Normal Probability Plot. A comparatively simple graphical device to
study the shape of the probability density function (PDF) of a random vari-
able is the normal probability plot (NPP) which makes use of normal
probability paper, a specially designed graph paper. On the horizontal, or
x, axis, we plot values of the variable of interest (say, OLS residuals, i1;), and
on the vertical, or y, axis, we show the expected value of this variable if it
were normally distributed. Therefore, if the variable is in fact from the
normal population, the NPP will be approximately a straight line. The NPP
of the residuals from our consumption-income regression is shown in Fig-
ure 5.7, which is obtained from the MINITAB software package, version 13.
As noted earlier, if the fitted line in the NPP is approximately a straight
line, one can conclude that the variable of interest is normally distributed.
In Figure 5.7, we see that residuals from our illustrative example are ap-
proximately normally distributed, because a straight line seems to fit the
data reasonably well.

MINITAB also produces the Anderson-Darling normality test, known
as the A2 statistic. The underlying null hypothesis is that the variable under
consideration is normally distributed. As Figure 5.7 shows, for our example,
the computed A? statistic is 0.394. The p value of obtaining such a value
of A? is 0.305, which is reasonably high. Therefore, we do not reject the
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FIGURE 5.7
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hypothesis that the residuals from our consumption-income example are
normally distributed. Incidentally, Figure 5.7 shows the parameters of the
(normal) distribution, the mean is approximately 0 and the standard devia-
tion is about 6.12.

Jarque-Bera (JB) Test of Normality.?2® The JB test of normality is an
asymptotic, or large-sample, test. It is also based on the OLS residuals. This
test first computes the skewness and kurtosis (discussed in Appendix A)
measures of the OLS residuals and uses the following test statistic:

S (K -3)?

JB_n|:6 + 22 i| (5.12.1)
where n = sample size, S = skewness coefficient, and K = kurtosis coeffi-
cient. For a normally distributed variable, S = 0 and K = 3. Therefore, the
JB test of normality is a test of the joint hypothesis that S and K are 0 and 3,
respectively. In that case the value of the JB statistic is expected to be 0.

Under the null hypothesis that the residuals are normally distributed,
Jarque and Bera showed that asymptotically (i.e., in large samples) the JB
statistic given in (5.12.1) follows the chi-square distribution with 2 df. If the
computed p value of the JB statistic in an application is sufficiently low,
which will happen if the value of the statistic is very different from 0, one
can reject the hypothesis that the residuals are normally distributed. But if

20See C. M. Jarque and A. K. Bera, “A Test for Normality of Observations and Regression
Residuals,” International Statistical Review, vol. 55, 1987, pp. 163-172.
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the p value is reasonably high, which will happen if the value of the statistic
is close to zero, we do not reject the normality assumption.

The sample size in our consumption-income example is rather small.
Hence, strictly speaking one should not use the JB statistic. If we mechani-
cally apply the JB formula to our example, the JB statistic turns out to be
0.7769. The p value of obtaining such a value from the chi-square distribu-
tion with 2 df is about 0.68, which is quite high. In other words, we may not
reject the normality assumption for our example. Of course, bear in mind
the warning about the sample size.

Other Tests of Model Adequacy

Remember that the CNLRM makes many more assumptions than the nor-
mality of the error term. As we examine econometric theory further, we will
consider several tests of model adequacy (see Chapter 13). Until then, keep
in mind that our regression modeling is based on several simplifying as-

sumptions that may not hold in each and every case.

A CONCLUDING EXAMPLE

Let us return to Example 3.2 about food expenditure in
India. Using the data given in (3.7.2) and adopting the
format of (5.11.1), we obtain the following expenditure
equation:

FoodExp;— 94.2087 + 0.4368 TotalExp;

se = (50.8563) (0.0783)
t— (1.8524) (5.5770) (5.12.2)
p= (0.0695) (0.0000)*
r2=0.3698; df =53
F1’53 = 31.1034 (p value = 0.0000)*

where * denotes extremely small.

First, let us interpret this regression. As expected,
there is a positive relationship between expenditure on
food and total expenditure. If total expenditure went up by
a rupee, on average, expenditure on food increased by
about 44 paise. If total expenditure were zero, the average
expenditure on food would be about 94 rupees. Of course,
this mechanical interpretation of the intercept may not
make much economic sense. The r? value of about 0.37
means that 37 percent of the variation in food expenditure
is explained by total expenditure, a proxy for income.

Suppose we want to test the null hypothesis that
there is no relationship between food expenditure and
total expenditure, that is, the true slope coefficient g, = 0.
The estimated value of B, is 0.4368. If the null hypothesis

were true, what is the probability of obtaining a value of
0.4368? Under the null hypothesis, we observe from
(5.12.2) that the t value is 5.5770 and the p value of ob-
taining such a t value is practically zero. In other words,
we can reject the null hypothesis resoundingly. But sup-
pose the null hypothesis were that 8, = 0.5. Now what?
Using the ttest we obtain:

0.4368 — 0.5
= “oores - 0807
The probability of obtaining a |t| of 0.8071 is greater than
20 percent. Hence we do not reject the hypothesis that
the true B2 is 0.5.

Notice that, under the null hypothesis, the true slope
coefficient is zero, the F value is 31.1034, as shown in
(5.12.2). Under the same null hypothesis, we obtained a
t value of 5.5770. If we square this value, we obtain
31.1029, which is about the same as the F value, again
showing the close relationship between the t and the F
statistic. (Note: The numerator df for the F statistic must
be 1, which is the case here.)

Using the estimated residuals from the regression,
what can we say about the probability distribution of
the error term? The information is given in Figure 5.8.
As the figure shows, the residuals from the food expen-
diture regression seem to be symmetrically distributed.
Application of the Jarque—Bera test shows that the JB
statistic is about 0.2576, and the probability of obtaining
such a statistic under the normality assumption is about

(Continued)
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large enough.

A CONCLUDING EXAMPLE (Continued)

14 Series: Residuals
] Sample 1 55

8 121 Observations 55
Qo
£ 101 | Mean ~1.19x107
g Median 7.747849
2 8r Maximum 171.5859
It Minimum  -153.7664
° o Std. dev. 66.23382
8 ] Skewness 0.119816
E 4r T Kurtosis 3.234473
Z

2 Jarque-Bera 0.257585

o T T AH_\ Probability 0.879156

FIGURE 5.8 Residuals from the food expenditure regression.

88 percent. Therefore, we do not reject the hypothesis We leave it to the reader to establish confidence in-
that the error terms are normally distributed. But keep in  tervals for the two regression coefficients as well as to
mind that the sample size of 55 observations may notbe  obtain the normal probability plot and do mean and indi-

-150 -100 -50 0 50 100 150
Residuals

vidual predictions.

5.13 SUMMARY AND CONCLUSIONS

1. Estimation and hypothesis testing constitute the two main branches of
classical statistics. Having discussed the problem of estimation in Chapters 3
and 4, we have taken up the problem of hypothesis testing in this chapter.

2. Hypothesis testing answers this question: Is a given finding compati-
ble with a stated hypothesis or not?

3. There are two mutually complementary approaches to answering the
preceding question: confidence interval and test of significance.

4. Underlying the confidence-interval approach is the concept of inter-
val estimation. An interval estimator is an interval or range constructed in
such a manner that it has a specified probability of including within its lim-
its the true value of the unknown parameter. The interval thus constructed is
known as a confidence interval, which is often stated in percent form, such
as 90 or 95%. The confidence interval provides a set of plausible hypotheses
about the value of the unknown parameter. If the null-hypothesized value
lies in the confidence interval, the hypothesis is not rejected, whereas if it lies
outside this interval, the null hypothesis can be rejected.

5. In the significance test procedure, one develops a test statistic and
examines its sampling distribution under the null hypothesis. The test sta-
tistic usually follows a well-defined probability distribution such as the nor-
mal, ¢, F, or chi-square. Once a test statistic (e.g., the ¢ statistic) is computed
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from the data at hand, its p value can be easily obtained. The p value gives
the exact probability of obtaining the estimated test statistic under the null
hypothesis. If this p value is small, one can reject the null hypothesis, but if
it is large one may not reject it. What constitutes a small or large p value is
up to the investigator. In choosing the p value the investigator has to bear in
mind the probabilities of committing Type I and Type II errors.

6. In practice, one should be careful in fixing «, the probability of com-
mitting a Type I error, at arbitrary values such as 1, 5, or 10 percent. It is
better to quote the p value of the test statistic. Also, the statistical signifi-
cance of an estimate should not be confused with its practical significance.

7. Of course, hypothesis testing presumes that the model chosen for em-
pirical analysis is adequate in the sense that it does not violate one or more
assumptions underlying the classical normal linear regression model.
Therefore, tests of model adequacy should precede tests of hypothesis. This
chapter introduced one such test, the normality test, to find out whether
the error term follows the normal distribution. Since in small, or finite, sam-
ples, the ¢, F, and chi-square tests require the normality assumption, it is
important that this assumption be checked formally.

8. If the model is deemed practically adequate, it may be used for fore-
casting purposes. But in forecasting the future values of the regressand,
one should not go too far out of the sample range of the regressor values.
Otherwise, forecasting errors can increase dramatically.

5.1. State with reason whether the following statements are true, false, or un-
certain. Be precise.

a. The ¢ test of significance discussed in this chapter requires that the
sampling distributions of estimators i and B, follow the normal
distribution.

b. Even though the disturbance term in the CLRM is not normally dis-
tributed, the OLS estimators are still unbiased.

c. If there is no intercept in the regression model, the estimated u; (= 71;)
will not sum to zero.

d. The p value and the size of a test statistic mean the same thing.

e. In a regression model that contains the intercept, the sum of the resid-
uals is always zero.

f. If a null hypothesis is not rejected, it is true.

g. The higher the value of o2, the larger is the variance of §, givenin (3.3.1).

h. The conditional and unconditional means of a random variable are the
same things.

i. In the two-variable PREF, if the slope coefficient g, is zero, the intercept
B, is estimated by the sample mean Y.

j. The conditional variance, var (Y; | X;) = o2 and the unconditional vari-
ance of Y, var (Y) = o, will be the same if X had no influence on Y.
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5.2. Set up the ANOVA table in the manner of Table 5.4 for the regression
model given in (3.7.2) and test the hypothesis that there is no relationship
between food expenditure and total expenditure in India.

5.3. From the data given in Table 2.6 on earnings and education, we obtained
the following regression [see Eq. (3.7.3)]:

Meanwage; = 0.7437 + 0.6416 Education;

se =(0.8355) ( )
t=( ) (9.6536) 2 = 0.8944 n=13

. Fill in the missing numbers.

. How do you interpret the coefficient 0.6416?
¢. Would you reject the hypothesis that education has no effect whatso-

ever on wages? Which test do you use? And why? What is the p value
of your test statistic?

d. Set up the ANOVA table for this example and test the hypothesis that
the slope coefficient is zero. Which test do you use and why?

e. Suppose in the regression given above the r* value was not given to
you. Could you have obtained it from the other information given in
the regression?

5.4. Let p? represent the true population coefficient of correlation. Suppose
you want to test the hypothesis that p?> = 0. Verbally explain how you
would test this hypothesis. Hint: Use Eq. (3.5.11). See also exercise 5.7.

5.5. What is known as the characteristic line of modern investment analysis
is simply the regression line obtained from the following model:

o

Ty = o + Bty + U

where r; = the rate of return on the ith security in time ¢
7« = the rate of return on the market portfolio in time ¢
u, = stochastic disturbance term

In this model g; is known as the beta coefficient of the ith security, a
measure of market (or systematic) risk of a security.”

On the basis of 240 monthly rates of return for the period 1956-1976,
Fogler and Ganapathy obtained the following characteristic line for IBM
stock in relation to the market portfolio index developed at the University
of Chicago':

7ir = 0.7264 4+ 1.0598r,,, r? =0.4710
se = (0.3001)(0.0728) df = 238
Fi 23 = 211.896
a. A security whose beta coefficient is greater than one is said to be a

volatile or aggressive security. Was IBM a volatile security in the time
period under study?

“See Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and Prac-
tice, Prentice-Hall International, Englewood Cliffs, N.J., 1984, Chap. 12.

TH. Russell Fogler and Sundaram Ganapathy, Financial Econometrics, Prentice Hall, Engle-
wood Cliffs, N.J., 1982, p. 13.
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5.6.

5.7.

5.8.

5.9.

b. Is the intercept coefficient significantly different from zero? If it is,
what is its practical meaning?
Equation (5.3.5) can also be written as

Pr(f, — «/25€ (B2) < B2 < o+ laj28€ B)l=1-a

That is, the weak inequality (<) can be replaced by the strong inequality
(<). Why?

R. A. Fisher has derived the sampling distribution of the correlation coef-
ficient defined in (3.5.13). If it is assumed that the variables X and Y are
jointly normally distributed, that is, if they come from a bivariate normal
distribution (see Appendix 4A, exercise 4.1), then under the assumption
that the population correlation coefficient p is zero, it can be shown that
t =rvn—2/v1—r2 follows Student’s ¢ distribution with n — 2 df.” Show
that this 7 value is identical with the 7 value given in (5.3.2) under the null
hypothesis that 8, = 0. Hence establish that under the same null hypoth-
esis F = t*. (See Section 5.9.)

Consider the following regression output’:

¥; = 0.2033 + 0.6560X;,
se =(0.0976) (0.1961)
r? = 0.397 RSS =0.0544 ESS =0.0358

where Y = labor force participation rate (LFPR) of women in 1972 and

X = LFPR of women in 1968. The regression results were obtained from a

sample of 19 cities in the United States.

a. How do you interpret this regression?

b. Test the hypothesis: Hy: 8, = 1 against H;: 8, > 1. Which test do you
use? And why? What are the underlying assumptions of the test(s) you
use?

c. Suppose that the LFPR in 1968 was 0.58 (or 58 percent). On the basis
of the regression results given above, what is the mean LFPR in 1972?
Establish a 95% confidence interval for the mean prediction.

d. How would you test the hypothesis that the error term in the popula-
tion regression is normally distribute? Show the necessary calculations.

Table 5.5 gives data on average public teacher pay (annual salary in dollars)

and spending on public schools per pupil (dollars) in 1985 for 50 states and

the District of Columbia.

“If p is in fact zero, Fisher has shown that r follows the same ¢ distribution provided either
X orY is normally distributed. But if p is not equal to zero, both variables must be normally dis-
tributed. See R. L. Anderson and T. A. Bancroft, Statistical Theory in Research, McGraw-Hill,
New York, 1952, pp. 87-88.

fAdapted from Samprit Chatterjee, Ali S. Hadi, and Bertram Price, Regression Analysis by
Example, 3d ed., Wiley Interscience, New York, 2000, pp. 46-47.
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TABLE 5.5

AVERAGE SALARY AND PER PUPIL SPENDING (DOLLARS), 1985

Observation Salary Spending Observation Salary Spending
1 19,583 3346 27 22,795 3366
2 20,263 3114 28 21,570 2920
3 20,325 3554 29 22,080 2980
4 26,800 4642 30 22,250 3731
5 29,470 4669 31 20,940 2853
6 26,610 4888 32 21,800 2533
7 30,678 5710 33 22,934 2729
8 27,170 5536 34 18,443 2305
9 25,853 4168 35 19,538 2642

10 24,500 3547 36 20,460 3124
1 24,274 3159 37 21,419 2752
12 27,170 3621 38 25,160 3429
13 30,168 3782 39 22,482 3947
14 26,525 4247 40 20,969 2509
15 27,360 3982 41 27,224 5440
16 21,690 3568 42 25,892 4042
17 21,974 3155 43 22,644 3402
18 20,816 3059 44 24,640 2829
19 18,095 2967 45 22,341 2297
20 20,939 3285 46 25,610 2932
21 22,644 3914 47 26,015 3705
22 24,624 4517 48 25,788 4123
23 27,186 4349 49 29,132 3608
24 33,990 5020 50 41,480 8349
25 23,382 3594 51 25,845 3766
26 20,627 2821

Source: National Education Association, as reported by Albuquerque Tribune, Nov. 7, 1986.

5.10.

To find out if there is any relationship between teacher’s pay and per pupil
expenditure in public schools, the following model was suggested: Pay; =
B1 + B> Spend; + u;, where Pay stands for teacher’s salary and Spend
stands for per pupil expenditure.

a.

b.

e

f.

Plot the data and eyeball a regression line.

Suppose on the basis of a you decide to estimate the above regression
model. Obtain the estimates of the parameters, their standard errors,
72, RSS, and ESS.

. Interpret the regression. Does it make economic sense?
. Establish a 95% confidence interval for g,. Would you reject the hy-

pothesis that the true slope coefficient is 3.0?

. Obtain the mean and individual forecast value of Pay if per pupil

spending is $5000. Also establish 95% confidence intervals for the true
mean and individual values of Pay for the given spending figure.

How would you test the assumption of the normality of the error
term? Show the test(s) you use.

Refer to exercise 3.20 and set up the ANOVA tables and test the hypoth-
esis that there is no relationship between productivity and real wage
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5.11.

5.12.

5.13.

5.14.

5.15.

compensation. Do this for both the business and nonfarm business

sectors.

Refer to exercise 1.7.

a. Plot the data with impressions on the vertical axis and advertising
expenditure on the horizontal axis. What kind of relationship do you
observe?

b. Would it be appropriate to fit a bivariate linear regression model to the
data? Why or why not? If not, what type of regression model will you
fit the data to? Do we have the necessary tools to fit such a model?

¢. Suppose you do not plot the data and simply fit the bivariate regres-
sion model to the data. Obtain the usual regression output. Save the
results for a later look at this problem.

Refer to exercise 1.1.

a. Plot the U.S. Consumer Price Index (CPI) against the Canadian CPI.
What does the plot show?

b. Suppose you want to predict the U.S. CPI on the basis of the Canadian
CPI. Develop a suitable model.

c. Test the hypothesis that there is no relationship between the two
CPIs. Use a = 5%. If you reject the null hypothesis, does that mean the
Canadian CPI “causes” the U.S. CPI? Why or why not?

Refer to exercise 3.22.

a. Estimate the two regressions given there, obtaining standard errors
and the other usual output.

b. Test the hypothesis that the disturbances in the two regression models
are normally distributed.

c. In the gold price regression, test the hypothesis that g, = 1, that is,
there is a one-to-one relationship between gold prices and CPI (i.e., gold
is a perfect hedge). What is the p value of the estimated test statistic?

d. Repeat step ¢ for the NYSE Index regression. Is investment in the
stock market a perfect hedge against inflation? What is the null hy-
pothesis you are testing? What is its p value?

e. Between gold and stock, which investment would you choose? What is
the basis of your decision?

Table 5.6 gives data on GNP and four definitions of the money stock for

the United States for 1970-1983. Regressing GNP on the various defini-

tions of money, we obtain the results shown in Table 5.7.

The monetarists or quantity theorists maintain that nominal income
(i.e., nominal GNP) is largely determined by changes in the quantity or the
stock of money, although there is no consensus as to the “right” definition
of money. Given the results in the preceding table, consider these questions:
a. Which definition of money seems to be closely related to nominal GNP?
b. Since the #? terms are uniformly high, does this fact mean that our

choice for definition of money does not matter?

c. If the Fed wants to control the money supply, which one of these
money measures is a better target for that purpose? Can you tell from
the regression results?

Suppose the equation of an indifference curve between two goods is

XY = p1 + B2 X;
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TABLE 5.6

TABLE 5.7

TABLE 5.8

GNP AND FOUR MEASURES OF MONEY STOCK

Money stock measure, $ billion

GNP,
Year $ billion M Mo M3 L
1970 992.70 216.6 628.2 677.5 816.3
1971 1,077.6 230.8 712.8 776.2 903.1
1972 1,185.9 252.0 805.2 886.0 1,023.0
1973 1,326.4 265.9 861.0 985.0 1,141.7
1974 1,434.2 277.6 908.5 1,070.5 1,249.3

1975 1,549.2 291.2 1,023.3 1,174.2 1,367.9
1976 1,718.0 310.4 1,163.6 1,311.9 1,516.6
1977 1,918.3 335.4 1,286.7 1,472.9 1,704.7
1978 2,163.9 363.1 1,389.1 1,647.1 1,910.6
1979 2,417.8 389.1 1,498.5 1,804.8 2,117.1
1980 2,631.7 414.9 1,632.6 1,990.0 2,326.2
1981 2,957.8 441.9 1,796.6 2,238.2 2,599.8
1982 3,069.3 480.5 1,965.4 2,462.5 2,870.8
1983 3,304.8 525.4 2,196.3 2,710.4 3,183.1

Definitions:

My = currency + demand deposits + travelers checks and other
checkable deposits (OCDs)

M, = M + overnight RPs and Eurodollars + MMMF (money market
mutual fund) balances + MMDAs (money market deposit accounts) +
savings and small deposits

M3 = M, + large time deposits + term RPs + Institutional MMMF

L = M3 + other liquid assets

Source: Economic Report of the President, 1985, GNP data from

Table B-1, p. 232; money stock data from Table B-61, p. 303.

GNP-MONEY STOCK REGRESSIONS, 1970-1983

1) GNP, — —787.4723 + 8.0863 My,  r?=0.9912
(77.9664)  (0.2197)

2) GNP, — —44.0626 + 1.5875 My r2 — 0.9905
(61.0134)  (0.0448)

3) GNP, — 159.1366 + 1.2034 My  r2—0.9943
(42.9882) (0.0262)

4) GNP, = 164.2071 + 1.0290 L, r2 —0.9938

(44.7658)  (0.0234)

Note: The figures in parentheses are the estimated standard errors.

Consumption of good X: 1 2 3 4 5
Consumption of good Y: 4 3.5 2.8 1.9 0.8

How would you estimate the parameters of this model? Apply the preced-
ing model to the data in Table 5.8 and comment on your results.

5.16. Since 1986 the Economist has been publishing the Big Mac Index as a
crude, and hilarious, measure of whether international currencies are at
their “correct” exchange rate, as judged by the theory of purchasing
power parity (PPP). The PPP holds that a unit of currency should be able
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to buy the same bundle of goods in all countries. The proponents of PPP
argue that, in the long run, currencies tend to move toward their PPP. The
Economist uses McDonald’s Big Mac as a representative bundle and gives
the information in Table 5.9.

Consider the following regression model:

Y =81+ BXi +u

where Y = actual exchange rate and X = implied PPP of the dollar.

THE HAMBURGER STANDARD

Under (—)/
Big Mac prices Actual $ over (+)

Implied exchange valuation

In local In PPP* of rate against the

currency dollars the dollar April 17, 2001 dollar, %
United States’ $2.54 2.54 - - -
Argentina Pes02.50 2.50 0.98 1.00 -2
Australia A$3.00 1.52 1.18 1.98 —40
Brazil Real3.60 1.64 1.42 2.19 —-35
Britain £1.99 2.85 1.28% 1.43% 12
Canada C$3.33 2.14 1.31 1.56 -16
Chile Peso1260 2.10 496 601 —-17
China Yuan9.90 1.20 3.90 8.28 —53
Czech Rep Koruna56.00 1.43 22.0 39.0 —44
Denmark DKr24.75 2.93 9.74 8.46 15
Euro area €257 2.27 0.99% 0.888 —11
France FFr18.5 2.49 7.28 7.44 -2
Germany DM5.10 2.30 2.01 2.22 -9
Italy Lire4300 1.96 1693 2195 —23
Spain Pta395 2.09 156 189 —-18
Hong Kong HK$10.70 1.37 4.21 7.80 —46
Hungary Forint399 1.32 157 303 —48
Indonesia Rupiah14700 1.35 5787 10855 —47
Japan ¥294 2.38 116 124 —6
Malaysia M$4.52 1.19 1.78 3.80 —53
Mexico Peso021.9 2.36 8.62 9.29 -7
New Zealand NZ$3.60 1.46 1.42 2.47 —43
Philippines Pes059.00 1.17 23.2 50.3 —54
Poland Zloty5.90 1.46 2.32 4.03 —42
Russia Rouble35.00 1.21 13.8 28.9 —52
Singapore S$$3.30 1.82 1.30 1.81 —28
South Africa Rand9.70 1.19 3.82 8.13 —-53
South Korea Won3000 2.27 1181 1325 -1
Sweden SKr24.0 2.33 9.45 10.28 -8
Switzerland SFr6.30 3.65 2.48 1.73 44
Taiwan NT$70.0 2.13 27.6 32.9 —16
Thailand Baht55.0 1.21 21.7 45.5 —52

*Purchasing power parity: local price divided by price in the United States.

fAverage of New York, Chicago, San Francisco, and Atlanta.

*Dollars per pound.
SDollars per euro.

Source: McDonald’s; The Economist, April 21, 2001.
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TABLE 5.10

C.

a. If the PPP holds, what values of g; and g, would you expect a priori?
b.

Do the regression results support your expectation? What formal test
do you use to test your hypothesis?

Should the Economist continue to publish the Big Mac Index? Why or
why not?

5.17. Refer to the S.A.T. data given in exercise 2.16. Suppose you want to pre-
dict the male math (Y) scores on the basis of the female math scores (X)
by running the following regression:

5.19.

C.

d.

Y, = B1+ B Xi +uy

. Estimate the preceding model.

a
b.

From the estimated residuals, find out if the normality assumption can
be sustained.

Now test the hypothesis that 8, = 1, that is, there is a one-to-one cor-
respondence between male and female math scores.

Set up the ANOVA table for this problem.

. Repeat the exercise in the preceding problem but let Y and X denote the

male and female verbal scores, respectively.
Table 5.10 gives annual data on the Consumer Price Index (CPI) and the
Wholesale Price Index (WPI), also called Producer Price Index (PPI), for
the U.S. economy for the period 1960-1999.

a.

Plot the CPI on the vertical axis and the WPI on the horizontal axis.

A priori, what kind of relationship do you expect between the two
indexes? Why?

CPI AND WPI, UNITED STATES, 1960-1999

Year CPI WPI Year CPI WPI
1960 29.8 31.7 1980 86.3 93.8
1961 30.0 31.6 1981 94.0 98.8
1962 30.4 31.6 1982 97.6 100.5
1963 30.9 31.6 1983 101.3 102.3
1964 31.2 31.7 1984 105.3 103.5
1965 31.8 32.8 1985 109.3 103.6
1966 32.9 33.3 1986 110.5 99.70
1967 33.9 33.7 1987 115.4 104.2
1968 35.5 34.6 1988 120.5 109.0
1969 37.7 36.3 1989 126.1 113.0
1970 39.8 37.1 1990 133.8 118.7
1971 411 38.6 1991 137.9 115.9
1972 42.5 411 1992 141.9 117.6
1973 46.2 47.4 1993 145.8 118.6
1974 51.9 57.3 1994 149.7 121.9
1975 55.5 59.7 1995 153.5 125.7
1976 58.2 62.5 1996 158.6 128.8
1977 62.1 66.2 1997 161.3 126.7
1978 67.7 72.7 1998 163.9 122.7
1979 76.7 83.4 1999 168.3 128.0

Source: Economic Report of the President, 2000, pp. 373 and 379.
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b. Suppose you want to predict one of these indexes on the basis of the
other index. Which will you use as the regressand and which as the
regressor? Why?

c. Run the regression you have decided in b. Show the standard output.
Test the hypothesis that there is a one-to-one relationship between the
two indexes.

d. From the residuals obtained from the regression in ¢, can you enter-
tain the hypothesis that the true error term is normally distributed?
Show the tests you use.

5A.1 PROBABILITY DISTRIBUTIONS RELATED TO THE NORMAL DISTRIBUTION

The t, chi-square (x?), and F probability distributions, whose salient fea-
tures are discussed in Appendix A, are intimately related to the normal dis-
tribution. Since we will make heavy use of these probability distributions in
the following chapters, we summarize their relationship with the normal
distribution in the following theorem; the proofs, which are beyond the
scope of this book, can be found in the references.!

Theorem 5.1. If Zy, Z,, ..., Z, are normally and independently distrib-
uted random variables such that Z; ~ N(u;, 01-2), then the sum Z = >k, Z;,
where k; are constants not all zero, is also distributed normally with
mean Y_k;u; and variance Y k?0?; that is, Z ~ N(3_k;ui, Y_k?o?). Note:
u denotes the mean value.

In short, linear combinations of normal variables are themselves normally
distributed. For example, if Z; and Z, are normally and independently dis-
tributed as Z; ~ N(10,2)and Z, ~ N(8, 1.5), then the linear combination Z =
0.8Z; +0.2Z; is also normally distributed with mean = 0.8(10) + 0.2(8) =
9.6 and variance = 0.64(2) + 0.04(1.5) = 1.34, thatis, Z ~ (9.6, 1.34).

Theorem 5.2. If Zy,Z,,...,Z, are normally distributed but are not
independent, the sum Z =) k;Z;, where k; are constants not all
zero, is also normally distributed with mean } ku; and variance

[Yk?o? +2> kikj cov(Z;, Z;),i # j1.

Thus, if Z ~ N(6,2) and Z, ~ N(7,3) and cov(Z, Z,) = 0.8, then the
linear combination 0.6Z; + 0.4Z; is also normally distributed with mean =
0.6(6) + 0.4(7) = 6.4 and variance = [0.36(2) + 0.16(3) + 2(0.6)(0.4)(0.8)] =
1.584.

'For proofs of the various theorems, see Alexander M. Mood, Franklin A. Graybill, and
Duane C. Bose, Introduction to the Theory of Statistics, 3d ed., McGraw-Hill, New York, 1974,
pp. 239-249.
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Theorem 5.3. If Zy, Z,, ..., Z, are normally and independently distrib-
uted random variables such that each Z; ~ N(0, 1), that is, a standardized
normal variable, then " Z? = Z{ + Z3 + - -- 4+ Z2 follows the chi-square
distribution with n df. Symbolically, " Z? ~ x2, where n denotes the
degrees of freedom, df.

In short, “the sum of the squares of independent standard normal vari-
ables has a chi-square distribution with degrees of freedom equal to the
number of terms in the sum.”?

Theorem 5.4. If Z,,Z,, ..., Z, are independently distributed random
variables each following chi-square distribution with k; df, then the
sum Y Z; =Zy+ Z, + -+ Z, also follows a chi-square distribution with

k=Y k dt.

Thus, if Z; and Z, are independent x? variables with df of k; and k;, re-
spectively, then Z = Z; + Z, is also a x? variable with (k; 4 k;) degrees of
freedom. This is called the reproductive property of the x? distribution.

Theorem 5.5. If Z; is a standardized normal variable [Z; ~ N(0, 1)]
and another variable Z, follows the chi-square distribution with k df and
is independent of Z;, then the variable defined as

Z1 ZvVk standard normal variable
VZy/vk  NZ,  \/independent chi-square variable/df

follows Student’s ¢ distribution with k df. Note: This distribution is dis-
cussed in Appendix A and is illustrated in Chapter 5.

Incidentally, note that as k, the df, increases indefinitely (i.e., as k — 00),
the Student’s ¢ distribution approaches the standardized normal distribu-
tion.? As a matter of convention, the notation # means Student’s ¢ distribu-
tion or variable with & df.

Theorem 5.6. If Z; and Z, are independently distributed chi-square
variables with k; and k, df, respectively, then the variable

_ Zi/k

Z>/k;

~ Fiy i,

has the F distribution with k; and k, degrees of freedom, where k; is
known as the numerator degrees of freedom and &, the denominator
degrees of freedom.

2Tbid., p. 243.
3For proof, see Henri Theil, Introduction to Econometrics, Prentice-Hall, Englewood Cliffs,
N.J., 1978, pp. 237-245.
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Again as a matter of convention, the notation Fy, x, means an F variable
with k; and k, degrees of freedom, the df in the numerator being quoted first.

In other words, Theorem 5.6 states that the F variable is simply the ratio
of two independently distributed chi-square variables divided by their re-
spective degrees of freedom.

Theorem 5.7. The square of (Student’s) t variable with k df has an F dis-
tribution with k; = 1 df in the numerator and k, = k df in the denomina-
tor.* That is,

F])k = le

Note that for this equality to hold, the numerator df of the F variable
must be 1. Thus, Fy 4 = 7 or Fy 23 = t}; and so on.

As noted, we will see the practical utility of the preceding theorems as
we progress.

Theorem 5.8. For large denominator df, the numerator df times the F

value is approximately equal to the chi-square value with the numerator
df. Thus,

m Fyn = X2, asmn — 0o

Theorem 5.9. For sufficiently large df, the chi-square distribution can
be approximated by the standard normal distribution as follows:

Z=+2x2—+2k—1~N(,1)

where k denotes df.

5A.2 DERIVATION OF EQUATION (5.3.2)

Let
fr— By (Ba—B2)X7
Z) = = — (1)
se (B2) o
and
52
Zz = (Vl — 2); (2)

Provided o is known, Z; follows the standardized normal distribution; that
is, Z; ~ N(0,1). (Why?) Z,, follows the x? distribution with (n —2)df.>

“For proof, see Egs. (5.3.2) and (5.9.1).
5For proof, see Robert V. Hogg and Allen T. Craig, Introduction to Mathematical Statistics,
2d ed., Macmillan, New York, 1965, p. 144.
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Furthermore, it can be shown that Z, is distributed independently of Z;.®
Therefore, by virtue of Theorem 5.5, the variable

f— an—z
NIA)

follows the t distribution with n — 2 df. Substitution of (1) and (2) into (3)
gives Eq. (5.3.2).

(3)

5A.3 DERIVATION OF EQUATION (5.9.1)

Equation (1) shows that Z; ~ N(0, 1). Therefore, by Theorem 5.3, the pre-
ceding quantity
o BB TR
1 — 0_2
follows the x? distribution with 1 df. As noted in Section 5A.1,

A2
o
o

2
Ui
o2

also follows the x? distribution with # — 2 df. Moreover, as noted in Sec-
tion 4.3, Z, is distributed independently of Z;. Then from Theorem 5.6, it
follows that

B (- g
T L/n-2) " a2 /n-2)

follows the F distribution with 1 and n — 2 df, respectively. Under the null
hypothesis Hy: 8> = 0, the preceding F ratio reduces to Eq. (5.9.1).

5.A.4 DERIVATIONS OF EQUATIONS (5.10.2) AND (5.10.6)

Variance of Mean Prediction

Given X; = Xy, the true mean prediction E(Y} | Xo) is given by

E(Yo | Xo) = B1 + B2Xo (1)
We estimate (1) from

Yo = B1 + B2 Xo (2)
Taking the expectation of (2), given X, we get
E(Yo) = E(B1) + E(B2)Xo
= 1+ B2Xo

*For proof, see J. Johnston, Econometric Methods, McGraw-Hill, 3d ed., New York, 1984,
pp. 181-182. (Knowledge of matrix algebra is required to follow the proof.)
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because B; and B, are unbiased estimators. Therefore,
E(Yp) = E(Yo | Xo) = B1 + B2 Xo (3)

That is, Yp is an unbiased predictor of E(Yp | Xo).
Now using the property that var(a +b) = var(a) + var (b) + 2 cov(a, b),
we obtain

var (Yp) = var (1) + var (8) X2 + 2 cov (B1 82)Xo (4)

Using the formulas for variances and covariance of f; and B, given in
(3.3.1), (3.3.3), and (3.3.9) and manipulating terms, we obtain
. 1 (Xo—X)?
var (Yp) = o2 |:— + %} =(5.10.2)
n X

Variance of Individual Prediction

We want to predict an individual Y corresponding to X = Xj; that is, we
want to obtain

Yo = Bi + B2 Xo +uo (5)
We predict this as
Yo = i + 2 Xo (6)
The prediction error, Yy — Yo, is

Yo — Yo = 1 + B2 Xo + tig — (B1 + B2Xo)

. N (7)
=(B1 — B1) + (B2 — B2)Xo +uo

Therefore,

E(Yy — Vo) = E(B1 — B1) + E(B2 — B2)Xo — Eluo)
=0

because fi, B> are unbiased, X is a fixed number, and E(u) is zero by as-
sumption.

Squaring (7) on both sides and taking expectations, we get var (Yy — Yo) =
var (1) + X(z) var (8,) + 2Xo cov (81, B2) + var (u,). Using the variance and co-
variance formulas for 8; and B, given earlier, and noting that var (i) = o2,
we obtain

1, (X% —502}

Yo — Yo) = o2 - = (5.10.
var (Yp ) =0 [1+n+ S x2 (5.10.6)
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EXTENSIONS OF

THE TWO-VARIABLE
LINEAR REGRESSION
MODEL

Some aspects of linear regression analysis can be easily introduced within
the framework of the two-variable linear regression model that we have
been discussing so far. First we consider the case of regression through the
origin, that is, a situation where the intercept term, By, is absent from the
model. Then we consider the question of the units of measurement, that is,
how the Y and X variables are measured and whether a change in the units
of measurement affects the regression results. Finally, we consider the ques-
tion of the functional form of the linear regression model. So far we have
considered models that are linear in the parameters as well as in the vari-
ables. But recall that the regression theory developed in the previous chap-
ters requires only that the parameters be linear; the variables may or may
not enter linearly in the model. By considering models that are linear in the
parameters but not necessarily in the variables, we show in this chapter how
the two-variable models can deal with some interesting practical problems.

Once the ideas introduced in this chapter are grasped, their extension to
multiple regression models is quite straightforward, as we shall show in
Chapters 7 and 8.

REGRESSION THROUGH THE ORIGIN

There are occasions when the two-variable PRF assumes the following form:
Y, = BX; +u; (6.1.1)

In this model the intercept term is absent or zero, hence the name regres-
sion through the origin.
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As an illustration, consider the Capital Asset Pricing Model (CAPM) of
modern portfolio theory, which, in its risk-premium form, may be expressed
1
as

(ER; —7f) = Bi(ERy, — 7¢) (6.1.2)

where ER; = expected rate of return on security i
ER,, = expected rate of return on the market portfolio as represented
by, say, the S&P 500 composite stock index
r¢ = risk-free rate of return, say, the return on 90-day Treasury bills
Bi = the Beta coefficient, a measure of systematic risk, i.e., risk
that cannot be eliminated through diversification. Also, a
measure of the extent to which the ith security’s rate of return
moves with the market. A 8; > 1 implies a volatile or aggres-
sive security, whereas a 8; < 1 a defensive security. (Note: Do
not confuse this B; with the slope coefficient of the two-
variable regression, ,.)

If capital markets work efficiently, then CAPM postulates that security s
expected risk premium (= ER; — ry) is equal to that security’s 8 coefficient
times the expected market risk premium (= ER,, — ry). If the CAPM holds,
we have the situation depicted in Figure 6.1. The line shown in the figure is
known as the security market line (SML).

For empirical purposes, (6.1.2) is often expressed as

Ri—T‘f Zﬁi<Rm—Tf>+ui (613)

or
Ri—ry=0a;+ Bi(Rpm —ry) +uy (6.1.4)

ERi—I’f

Security market line

ERi—Vf
1
0 ﬁi

FIGURE 6.1  Systematic risk.

ISee Haim Levy and Marshall Sarnat, Portfolio and Investment Selection: Theory and
Practice, Prentice-Hall International, Englewood Cliffs, N.J., 1984, Chap. 14.
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FIGURE 6.2

=

i~

o Security risk premium

Bi

Systematic risk

The Market Model of Portfolio Theory
(assuming «; = 0).

The latter model is known as the Market Model.? If CAPM holds, «; is
expected to be zero. (See Figure 6.2.)

In passing, note that in (6.1.4) the dependent variable, Y, is (R; — #y) and
the explanatory variable, X, is g;, the volatility coefficient, and not (R, — ry).
Therefore, to run regression (6.1.4), one must first estimate g;, which is usu-
ally derived from the characteristic line, as described in exercise 5.5. (For
further details, see exercise 8.28.)

As this example shows, sometimes the underlying theory dictates that the
intercept term be absent from the model. Other instances where the zero-
intercept model may be appropriate are Milton Friedman’s permanent in-
come hypothesis, which states that permanent consumption is proportional
to permanent income; cost analysis theory, where it is postulated that the
variable cost of production is proportional to output; and some versions of
monetarist theory that state that the rate of change of prices (i.e., the rate of
inflation) is proportional to the rate of change of the money supply.

How do we estimate models like (6.1.1), and what special problems do they
pose? To answer these questions, let us first write the SRF of (6.1.1), namely,

Y = BoX; + 1 (6.1.5)

Now applying the OLS method to (6.1.5), we obtain the following formu-
las for B, and its variance (proofs are given in Appendix 6A, Section 6A.1):
5 _ Y XY

TLx

2See, for instance, Diana R. Harrington, Modern Portfolio Theory and the Capital Asset
Pricing Model: A User’s Guide, Prentice Hall, Englewood Cliffs, N.J., 1983, p. 71.

(6.1.6)




Gujarati: Basic
Econometrics, Fourth
Edition

1. Single-Equation 6. Extensions of the © The McGraw-Hill
Regression Models Two-Variable Linear Companies, 2004
Regression Model

CHAPTER SIX: EXTENSIONS OF THE TWO-VARIABLE LINEAR REGRESSION MODEL 167

2

. o
var (f;) = e (6.1.7)
where o2 is estimated by
-2
62 = nz_”ll (6.1.8)

It is interesting to compare these formulas with those obtained when the
intercept term is included in the model:

fr = 22xe (3.1.6)
A 62
var (f;) = S0 (3.3.1)
~2
62 = % (3.3.5)

The differences between the two sets of formulas should be obvious: In
the model with the intercept term absent, we use raw sums of squares and
cross products but in the intercept-present model, we use adjusted (from
mean) sums of squares and cross products. Second, the df for computing 62
is (n — 1) in the first case and (n — 2) in the second case. (Why?)

Although the interceptless or zero intercept model may be appropriate on
occasions, there are some features of this model that need to be noted. First,
> i, which is always zero for the model with the intercept term (the
conventional model), need not be zero when that term is absent. In short,
> 11; need not be zero for the regression through the origin. Second, r?, the
coefficient of determination introduced in Chapter 3, which is always non-
negative for the conventional model, can on occasions turn out to be nega-
tive for the interceptless model! This anomalous result arises because the 7>
introduced in Chapter 3 explicitly assumes that the intercept is included in
the model. Therefore, the conventionally computed 7?> may not be appropri-
ate for regression-through-the-origin models.3

r? for Regression-through-Origin Model

As just noted, and as further discussed in Appendix 6A, Section 6A.1, the con-
ventional 7% given in Chapter 3 is not appropriate for regressions that do not
contain the intercept. But one can compute what is known as the raw #?2 for
such models, which is defined as

2
raw r2 = (Z XiYi) (6.1.9)

XXXV

3For additional discussion, see Dennis J. Aigner, Basic Econometrics, Prentice Hall,
Englewood Cliffs, N.J., 1971, pp. 85-88.
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Note: These are raw (i.e., not mean-corrected) sums of squares and cross
products.

Although this raw 72 satisfies the relation 0 < #? < 1, it is not directly com-
parable to the conventional #? value. For this reason some authors do not re-
port the 2 value for zero intercept regression models.

Because of these special features of this model, one needs to exercise
great caution in using the zero intercept regression model. Unless there is
very strong a priori expectation, one would be well advised to stick to the
conventional, intercept-present model. This has a dual advantage. First, if
the intercept term is included in the model but it turns out to be statistically
insignificant (i.e., statistically equal to zero), for all practical purposes we
have a regression through the origin.* Second, and more important, if in
fact there is an intercept in the model but we insist on fitting a regression
through the origin, we would be committing a specification error, thus
violating Assumption 9 of the classical linear regression model.

AN ILLUSTRATIVE EXAMPLE: TABLE 6.1
THE CHARACTERISTIC LINE OF PORTFOLIO ANNUAL RATES OF RETURN ON AFUTURE FUND
THEORY AND ON THE FISHER INDEX (MARKET PORTFOLIO),
) 1971-1980
Table 6.1 gives data on the annual rates of return (%) on
Afuture Fund, a mutual fund whose primary investment Return on Return on
objective is maximum capital gain, and on the market Afuture Fisher
portfolio, as measured by the Fisher Index, for the period Fund, % Index, %
1971-1980. Year Y X
In exercise 5.5 we introduced the characteristic line
of investment analysis, which can be written as 1971 67.5 19.5
Yiz it BiXi+ Uy (6.1.10) 1972 19.2 8.5
1973 -35.2 —-29.3

where Y;=annual rate of return (%) on Afuture Fund

Xi = annual rate of return (%) on the market port- 1974 —42.0 —265
folio 1975 63.7 61.9
Bi=slope coefficient, also known as the Beta 197¢ 19.3 455
coefflment in portfolio theory, and 1977 36 95
a; = the intercept
1978 20.0 14.0
Inthe li here i he pri
n the literature t ere is no consensus about t e prior 1979 40.3 35.3
value of «;. Some empirical results have shown it to be
positive and statistically significant and some have 1980 37.5 31.0
shown it to be not statistically significantly different from
zero; in the latter case we could write the model as Source: Haim Levy and Marshall Sarnat, Portfolio and
Investment Selection: Theory and Practice, Prentice-Hall
Yi = BiXi + ui (6.1.11)  International, Englewood Cliffs, N.J., 1984, pp. 730 and 738.
These data were obtained by the authors from Weisenberg
that is, a regression through the origin. Investment Service, Investment Companies, 1981 edition.
(Continued)

“Henri Theil points out that if the intercept is in fact absent, the slope coefficient may be es-
timated with far greater precision than with the intercept term left in. See his Introduction to
Econometrics, Prentice Hall, Englewood Cliffs, N.J., 1978, p. 76. See also the numerical exam-
ple given next.
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AN ILLUSTRATIVE EXAMPLE (Continued)

If we decide to use model (6.1.11), we obtain the fol-
lowing regression results

Note: The r? values of (6.1.12) and (6.1.13) are not di-
rectly comparable. From these results one cannot reject
the hypothesis that the true intercept is equal to zero,
thereby justifying the use of (6.1.1), that is, regression

Y= 1.0899 X;
(0.1916) raw r2 = 0.7825 (6.1.12)  through the origin.
t=(5.6884)

which shows that g;is significantly greater than zero. The
interpretation is that a 1 percent increase in the market
rate of return leads on the average to about 1.09 percent
increase in the rate of return on Afuture Fund.

How can we be sure that model (6.1.11), not (6.1.10),
is appropriate, especially in view of the fact that there is
no strong a priori belief in the hypothesis that «; is in fact
zero? This can be checked by running the regression
(6.1.10). Using the data given in Table 6.1, we obtained
the following results:

Y, = 1.2797 + 1.0691X;
(7.6886) (0.2383)
t=(0.1664) (4.4860)

(6.1.13)
r>=0.7155

In passing, note that there is not a great deal of dif-
ference in the results of (6.1.12) and (6.1.13), although

the estimated standard error of 8 is slightly lower for the
regression-through-the-origin  model, thus supporting
Theil’s argument given in footnote 4 that if «; is in fact
zero, the slope coefficient may be measured with greater
precision: using the data given in Table 6.1 and the re-
gression results, the reader can easily verify that the
95% confidence interval for the slope coefficient of the
regression-through-the-origin model is (0.6566, 1.5232)
whereas for the model (6.1.13) itis (0.5195, 1.6186); that
is, the former confidence interval is narrower that the
latter.

6.2 SCALING AND UNITS OF MEASUREMENT

To grasp the ideas developed in this section, consider the data given in
Table 6.2, which refers to U.S. gross private domestic investment (GPDI) and
gross domestic product (GDP), in billions as well as millions of (chained)

1992 dollars.

TABLE 6.2 GROSS PRIVATE DOMESTIC INVESTMENT AND GDP, UNITED STATES, 1988-1997
Observation GPDIBL GPDIM GDPB GDPM
1988 828.2000 828200.0 5865.200 5865200
1989 863.5000 863500.0 6062.000 6062000
1990 815.0000 815000.0 6136.300 6136300
1991 738.1000 738100.0 6079.400 6079400
1992 790.4000 790400.0 6244.400 6244400
1993 863.6000 863600.0 6389.600 6389600
1994 975.7000 975700.0 6610.700 6610700
1995 996.1000 996100.0 6761.600 6761600
1996 1084.1000 1084100.0 6994.800 6994800
1997 1206.4000 1206400.0 7269.800 7269800

Note: GPDIBL = gross private domestic investment, billions of 1992 dollars.
GPDIM = gross private domestic investments, millions of 1992 dollars.

GDPB = gross domestic product, billions of 1992 dollars.
GDPM = gross domestic product, millions of 1992 dollars.

Source: Economic Report of the President, 1999, Table B-2, p. 328.
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Suppose in the regression of GPDI on GDP one researcher uses data in
billions of dollars but another expresses data in millions of dollars. Will the
regression results be the same in both cases? If not, which results should
one use? In short, do the units in which the regressand and regressor(s) are
measured make any difference in the regression results? If so, what is the
sensible course to follow in choosing units of measurement for regression
analysis? To answer these questions, let us proceed systematically. Let

Y = B + B Xi + iy (6.2.1)
where Y = GPDI and X = GDP. Define

Y =w,Y; (6.2.2)

1

X, =wyX; (6.2.3)
where w; and w, are constants, called the scale factors; w; may equal w,
or be different.

From (6.2.2) and (6.2.3) it is clear that Y and X; are rescaled Y; and X;.

Thus, if Y¥; and X; are measured in bilhorlls of dollars and one wants to
express them in millions of dollars, we will have Y; = 1000 Y; and X; =
1000 X;; here w; = w> = 1000.

Now consider the regression using Y; and X; variables:
Y, =i+ X+ (6.2.4)

where Y. =w1Y;, X; =w,X;, and &i; = wydi;. (Why?)
We want to find out the relationships between the following pairs:

1. Biand /§1

iy and B, R

. var (f;) and var (8;)
. var ($,) and var (5;)
. 6%2and 62

2 2
Ty andrn.

NuUltbh WN

From least-squares theory we know (see Chapter 3) that

B =Y —pX (6.2.5)
5 Do XiYi
B = ng (6.2.6)
2
var(B) = X 2 (6.2.7)

o
ny x?
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R o2
var(f;) = lez (6.2.8)
A2
52 = 2t (6.2.9)
n—2

B =V - BX (6.2.10)

By = szxyz (6.2.11)
*2

var (8)) = nzz)ii*z 0”2 (6.2.12)

A 0..*2

var (8,) = S22 (6.2.13)
£42

5 (E_”"z) (6.2.14)

From these results it is easy to establish relationships between the two sets
of parameter estimates. All that one has to do is recall these definitional
relationships: Y, = w1Y; (ory; =w1y:); X; =wX; (orx; =wax;); &t = wiil;
Y*=w;Y and X" = w,X. Making use of these definitions, the reader can
easily verify that

B, = (ﬂ)éz (6.2.15)
)

Bl =wipi (6.2.16)

62 =wis? (6.2.17)

var (8;) = w? var () (6.2.18)

2

Var(ﬁ;) = <M£> var (8,) (6.2.19)
)

Ty =Thy (6.2.20)

From the preceding results it should be clear that, given the regression
results based on one scale of measurement, one can derive the results based
on another scale of measurement once the scaling factors, the w’s, are
known. In practice, though, one should choose the units of measurement
sensibly; there is little point in carrying all those zeros in expressing num-
bers in millions or billions of dollars.
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From the results given in (6.2.15) through (6.2.20) one can easily derive
some special cases. For instance, if w; = w,, that is, the scaling factors are
identical, the slope coefficient and its standard error remain unaffected in
going from the (Y}, X;) to the (Ylfk, X:) scale, which should be intuitively clear.
However, the intercept and its standard error are both multiplied by w;. But
if the X scale is not changed (i.e., w, = 1) and the Y scale is changed by the
factor wy, the slope as well as the intercept coefficients and their respective
standard errors are all multiplied by the same w factor. Finally, if the Y scale
remains unchanged (i.e., w; = 1) but the X scale is changed by the factor w,,
the slope coefficient and its standard error are multiplied by the factor
(1/w,) but the intercept coefficient and its standard error remain unaffected.

It should, however, be noted that the transformation from the (Y, X) to
the (Y", X") scale does not affect the properties of the OLS estimators dis-
cussed in the preceding chapters.

ANUMERICAL EXAMPLE: THE RELATIONSHIP BETWEEN GPDI AND GDP, UNITED
STATES, 1988-1997

To substantiate the preceding theoretical results, let us return to the data given in Table 6.2 and
examine the following results (numbers in parentheses are the estimated standard errors).
Both GPDI and GDP in billions of dollars:

GPDI, = —1026.498 + 0.3016 GDP,

(6.2.21)
se= (257.5874) (0.0399) r?>=0.8772
Both GPDI and GDP in millions of dollars:
G/Pﬁ,z —1,026,498 + 0.3016 GDP;
(6.2.22)

se= (257,587.4) (0.0399) r?>=0.8772

Notice that the intercept as well as its standard error is 1000 times the corresponding values

in the regression (6.2.21) (note that wy = 1000 in going from billions to millions of dollars), but

the slope coefficient as well as its standard error is unchanged, in accordance with theory.
GPDI in billions of dollars and GDP in millions of dollars:

@,: —1026.498 + 0.000301 GDP;

(6.2.23)
se= (257.5874) (0.0000399)  r2=0.8772

As expected, the slope coefficient as well as its standard error is 1/1000 its value in
(6.2.21), since only the X, or GDP, scale is changed.
GPDI in millions of dollars and GDP in billions of dollars:

G/Fﬁ,: —1,026,498 + 301.5826 GDP;

(6.2.24)
se= (257,587.4) (39.89989) r2=0.8772

Again notice that both the intercept and the slope coefficients as well as their respective stan-
dard errors are 1000 times their values in (6.2.21), in accordance with our theoretical results.

Notice that in all the regressions presented above the r? value remains the same, which
is not surprising because the r? value is invariant to changes in the unit of measurement, as
it is a pure, or dimensionless, number.
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A Word about Interpretation

Since the slope coefficient 8, is simply the rate of change, it is measured in
the units of the ratio

Units of the dependent variable

Units of the explanatory variable

Thus in regression (6.2.21) the interpretation of the slope coefficient
0.3016 is that if GDP changes by a unit, which is 1 billion dollars, GPDI on the
average changes by 0.3016 billion dollars. In regression (6.2.23) a unit change
in GDP, which is 1 million dollars, leads on average to a 0.000302 billion dol-
lar change in GPDI. The two results are of course identical in the effects of
GDP on GPDI; they are simply expressed in different units of measurement.

6.3 REGRESSION ON STANDARDIZED VARIABLES

We saw in the previous section that the units in which the regressand and
regressor(s) are expressed affect the interpretation of the regression coeffi-
cients. This can be avoided if we are willing to express the regressand and
regressor(s) as standardized variables. A variable is said to be standardized
if we subtract the mean value of the variable from its individual values and
divide the difference by the standard deviation of that variable.

Thus, in the regression of Y and X, if we redefine these variables as

. Y -Y

Y =

1 SY
X, - X

X; = 6.3.2
l Sy (6.3.2)

(6.3.1)

where Y = sample mean of Y, Sy = sample standard deviation of ¥, X =
sample mean of X, and Sy is the sample standard deviation of X; the vari-
ables Y, and X; are called standardized variables.

An interesting property of a standardized variable is that its mean value is al-
ways zero and its standard deviation is always 1. (For proof, see Appendix 6A,
Section 6A.2.)

As a result, it does not matter in what unit the regressand and regres-
sor(s) are measured. Therefore, instead of running the standard (bivariate)
regression:

Y = B1+ B2 Xi +uy (6.3.3)

we could run regression on the standardized variables as
Y, =By + B Xi +u; (6.3.4)
=B, X; +u; (6.3.5)



Gujarati: Basic 1. Single-Equation 6. Extensions of the © The McGraw-Hill
Econometrics, Fourth Regression Models Two-Variable Linear Companies, 2004
Edition Regression Model

174 PART ONE: SINGLE-EQUATION REGRESSION MODELS

since it is easy to show that, in the regression involving standardized re-
gressand and regressor(s), the intercept term is always zero.> The regression
coefficients of the standardized variables, denoted by 8, and g;, are known
in the literature as the beta coefficients.® Incidentally, notice that (6.3.5) is
a regression through the origin.

How do we interpret the beta coefficients? The interpretation is that if the
(standardized) regressor increases by one standard deviation, on average, the
(standardized) regressand increases by B, standard deviation units. Thus, un-
like the traditional model (6.3.3), we measure the effect not in terms of the
original units in which Y and X are expressed, but in standard deviation units.

To show the difference between (6.3.3) and (6.3.5), let us return to the
GPDI and GDP example discussed in the preceding section. The results of
(6.2.21) discussed previously are reproduced here for convenience.

GPDI, = —1026.498 + 0.3016 GDP,

(6.3.6)
se= (257.5874) (0.0399) r? =0.8872

where GPDI and GDP are measured in billions of dollars.
The results corresponding to (6.3.5) are as follows, where the starred
variables are standardized variables:

GPDIL, = 0.9387 GDP;
se =(0.1149)

(6.3.7)

We know how to interpret (6.3.6): If GDP goes up by a dollar, on average
GPDI goes up by about 30 cents. How about (6.3.7)? Here the interpretation
is that if the (standardized) GDP increases by one standard deviation, on av-
erage, the (standardized) GPDI increases by about 0.94 standard deviations.

What is the advantage of the standardized regression model over the
traditional model? The advantage becomes more apparent if there is more
than one regressor, a topic we will take up in Chapter 7. By standardizing all
regressors, we put them on equal basis and therefore can compare them
directly. If the coefficient of a standardized regressor is larger than that of
another standardized regressor appearing in that model, then the latter con-
tributes more relatively to the explanation of the regressand than the latter.
In other words, we can use the beta coefficients as a measure of relative
strength of the various regressors. But more on this in the next two chapters.

Before we leave this topic, two points may be noted. First, for the stan-
dardized regression (6.3.7) we have not given the > value because this is a
regression through the origin for which the usual #? is not applicable, as
pointed out in Section 6.1. Second, there is an interesting relationship be-
tween the B coefficients of the conventional model and the beta coefficients.

SRecall from Eq. (3.1.7) that intercept = mean value of the dependent variable — slope
times the mean value of the regressor. But for the standardized variables the mean values of the
dependent variable and the regressor are zero. Hence the intercept value is zero.

®Do not confuse these beta coefficients with the beta coefficients of finance theory.
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For the bivariate case, the relationship is as follows:

By = Bz(%) (6.3.8)
y
where S, = the sample standard deviation of the X regressor and S, = the
sample standard deviation of the regressand. Therefore, one can crisscross
between the B and beta coefficients if we know the (sample) standard devi-
ation of the regressor and regressand. We will see in the next chapter that
this relationship holds true in the multiple regression also. It is left as an
exercise for the reader to verify (6.3.8) for our illustrative example.

6.4 FUNCTIONAL FORMS OF REGRESSION MODELS

As noted in Chapter 2, this text is concerned primarily with models that are
linear in the parameters; they may or may not be linear in the variables. In
the sections that follow we consider some commonly used regression mod-
els that may be nonlinear in the variables but are linear in the parameters or
that can be made so by suitable transformations of the variables. In partic-
ular, we discuss the following regression models:

1. The log-linear model

2. Semilog models

3. Reciprocal models

4. The logarithmic reciprocal model

We discuss the special features of each model, when they are appropriate, and
how they are estimated. Each model is illustrated with suitable examples.

6.5 HOW TO MEASURE ELASTICITY: THE LOG-LINEAR MODEL

Consider the following model, known as the exponential regression model:
Y; = i Xet (6.5.1)

which may be expressed alternatively as’
ll’lK =In B1+ B2 In X +u; (652)

where In = natural log (i.e., log to the base e, and where e = 2.718).8
If we write (6.5.2) as

InY, =a+ B InX; +u; (6.5.3)

"Note these properties of the logarithms: (1) In(AB) =InA +InB, (2)In(A/B)=InA —In B,
and (3) In (A%) = kIn A, assuming that A and B are positive, and where k is some constant.

8In practice one may use common logarithms, that is, log to the base 10. The relationship
between the natural log and common log is: In, X = 2.3026logj¢ X. By convention, In means
natural logarithm, and log means logarithm to the base 10; hence there is no need to write the
subscripts e and 10 explicitly.
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FIGURE 6.3

where o = In B4, this model is linear in the parameters « and B,, linear in the
logarithms of the variables Y and X, and can be estimated by OLS regression.
Because of this linearity, such models are called log-log, double-log, or log-
linear models.

If the assumptions of the classical linear regression model are fulfilled,
the parameters of (6.5.3) can be estimated by the OLS method by letting
Y =a+ paX; +u (6.5.4)

1

where ¥ =InY; and X; = In X;. The OLS estimators & and $, obtained will
be best linear unbiased estimators of @ and B;, respectively.

One attractive feature of the log-log model, which has made it popular in
applied work, is that the slope coefficient 8, measures the elasticity of YV
with respect to X, that is, the percentage change in Y for a given (small) per-
centage change in X.° Thus, if Y represents the quantity of a commodity
demanded and X its unit price, B, measures the price elasticity of demand,
a parameter of considerable economic interest. If the relationship between
quantity demanded and price is as shown in Figure 6.3a, the double-log

Y Iny
]
<
ke
E :
<
g < InY=Inp-B,InX;
g z
2 i
E g
= o
= S
3 o
on
o
=
- - InX
Price Log of price
(@) ()

Constant-elasticity model.

°The elasticity coefficient, in calculus notation, is defined as (dY/Y)/(dX/X) =
[(dY/dX)(X/Y)]. Readers familiar with differential calculus will readily see that g, is in fact the
elasticity coefficient.

A technical note: The calculus-minded reader will note that d(InX)/dX=1/X or
d(In X) = dX/X, that is, for infinitesimally small changes (note the differential operator d) the
change in In X is equal to the relative or proportional change in X. In practice, though, if the
change in X is small, this relationship can be written as: change in In X = relative change in X,
where = means approximately. Thus, for small changes,

(InX; —InX,_1) = (X; — X;_1)/X;—1 = relative change in X

Incidentally, the reader should note these terms, which will occur frequently: (1) absolute
change, (2) relative or proportional change, and (3) percentage change, or percent growth
rate. Thus, (X; — X;_1) represents absolute change, (X; — X;_1)/X,_1 = (X;/X;_1 — 1) is rela-
tive or proportional change and [(X; — X;_1)/X;-11100 is the percentage change, or the growth
rate. X; and X;_ are, respectively, the current and previous values of the variable X.
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transformation as shown in Figure 6.3b will then give the estimate of the
price elasticity (—85).

Two special features of the log-linear model may be noted: The model
assumes that the elasticity coefficient between Y and X, 8,, remains con-
stant throughout (why?), hence the alternative name constant elasticity
model.'? In other words, as Figure 6.3b shows, the change in In Y per unit
change in In X (i.e., the elasticity, ;) remains the same no matter at which
In X we measure the elasticity. Another feature of the model is that al-
though @ and B, are unbiased estimates of & and ,, B (the parameter enter-
ing the original model) when estimated as 8; = antilog (&) is itself a biased
estimator. In most practical problems, however, the intercept term is of
secondary importance, and one need not worry about obtaining its unbi-
ased estimate.!!

In the two-variable model, the simplest way to decide whether the log-
linear model fits the data is to plot the scattergram of InY; against In X;
and see if the scatter points lie approximately on a straight line, as in Fig-
ure 6.3b.

AN ILLUSTRATIVE EXAMPLE:
EXPENDITURE ON DURABLE GOODS
IN RELATION TO TOTAL PERSONAL

are as follows:

CONSUMPTION EXPENDITURE

Table 6.3 presents data on total personal consumption
expenditure (PCEXP), expenditure on durable goods
(EXPDUR), expenditure on nondurable goods
(EXPNONDUR), and expenditure on services
(EXPSERVICES), all measured in 1992 billions of
dollars.™

Suppose we wish to find the elasticity of expenditure
on durable goods with respect to total personal con-
sumption expenditure. Plotting the log of expenditure on
durable goods against the log of total personal con-
sumption expenditure, you will see that the relationship
between the two variables is linear. Hence, the double-
log model may be appropriate. The regression results

InEXDUR,= -9.6971 + 1.9056 In PCEX;
se= (0.4341)  (0.0514) (6.5.5)

t=(-22.3370)* (37.0962)*  r2=0.9849

where * indicates that the p value is extremely small.

As these results show, the elasticity of EXPDUR with
respect to PCEX is about 1.90, suggesting that if total per-
sonal expenditure goes up by 1 percent, on average, the
expenditure on durable goods goes up by about 1.90 per-
cent. Thus, expenditure on durable goods is very respon-
sive to changes in personal consumption expenditure.
This is one reason why producers of durable goods keep
a keen eye on changes in personal income and personal
consumption expenditure. In exercises 6.17 and 6.18, the
reader is asked to carry out a similar exercise for non-
durable goods expenditure and expenditure on services.

(Continued)

19A constant elasticity model will give a constant total revenue change for a given percent-
age change in price regardless of the absolute level of price. Readers should contrast this result
with the elasticity conditions implied by a simple linear demand function, Y; = 81 + B2 X; + u;.
However, a simple linear function gives a constant quantity change per unit change in price.
Contrast this with what the log-linear model implies for a given dollar change in price.

Concerning the nature of the bias and what can be done about it, see Arthur S. Goldberger,
Topics in Regression Analysis, Macmillan, New York, 1978, p. 120.

2Durable goods include motor vehicles and parts, furniture, and household equipment;
nondurable goods include food, clothing, gasoline and oil, fuel oil and coal; and services in-
clude housing, electricity and gas, transportation, and medical care.
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AN ILLUSTRATIVE EXAMPLE: ... (Continued)

TABLE 6.3

TOTAL PERSONAL EXPENDITURE AND CATEGORIES

Observation EXPSERVICES EXPDUR EXPNONDUR PCEXP
1993-| 24453 504.0 1337.5 4286.8
199311 2455.9 519.3 1347.8 4322.8
1993-Ill 2480.0 529.9 1356.8 4366.6
1993-IV 2494 .4 542.1 1361.8 4398.0
1994-| 2510.9 550.7 1378.4 4439.4
1994-11 2531.4 558.8 1385.5 44722
1994-1ll 2543.8 561.7 1393.2 4498.2
1994-V 2555.9 576.6 1402.5 4534.1
1995-| 2570.4 575.2 1410.4 4555.3
1995-11 2594.8 583.5 1415.9 4593.6
1995-1ll 2610.3 595.3 14185 4623.4
1995-IV 2622.9 602.4 1425.6 4650.0
1996-| 2648.5 611.0 1433.5 4692.1
1996-I1 2668.4 629.5 1450.4 4746.6
1996-Ill 2688.1 626.5 1454.7 4768.3
1996-IV 2701.7 637.5 1465.1 4802.6
1997-| 27221 656.3 1477.9 4853.4
1997-Il 2743.6 653.8 1477.1 4872.7
1997-1ll 2775.4 679.6 1495.7 4947.0
1997-IV 2804.8 648.8 1494.3 4981.0
1998-| 2829.3 710.3 1521.2 5055.1
1998-II 2866.8 729.4 1540.9 5130.2
1998-Ill 2904.8 7337 1549.1 5181.8

Note: EXPSERVICES = expenditure on services, billions of 1992 dollars.

Source: Economic Report of the President, 1999, Table B-17, p. 347.

EXPDUR = expenditure on durable goods, billions of 1992 dollars.
EXPNONDUR = expenditure on nondurable goods, billions of 1992 dollars.
PCEXP = total personal consumption expenditure, billions of 1992 dollars.

6.6 SEMILOG MODELS: LOG-LIN AND LIN-LOG MODELS

How to Measure the Growth Rate: The Log-Lin Model

Economists, businesspeople, and governments are often interested in find-
ing out the rate of growth of certain economic variables, such as population,

GNP, money supply, employment, productivity, and trade deficit.

Suppose we want to find out the growth rate of personal consumption
expenditure on services for the data given in Table 6.3. Let Y; denote real
expenditure on services at time ¢ and Y} the initial value of the expenditure
on services (i.e., the value at the end of 1992-1IV). You may recall the follow-
ing well-known compound interest formula from your introductory course

in economics.

Y, =Yo(1 +r)

(6.6.1)
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where r is the compound (i.e., over time) rate of growth of Y. Taking the
natural logarithm of (6.6.1), we can write

InY; =InYy +¢tIn(1 +r) (6.6.2)
Now letting
p1 =1InYp (6.6.3)
p=In(1+r) (6.6.4)
we can write (6.6.2) as
InY, = g1 + Bot (6.6.5)

Adding the disturbance term to (6.6.5), we obtain!3
InY; = By + Baot + 1y (6.6.6)

This model is like any other linear regression model in that the parame-
ters B; and B, are linear. The only difference is that the regressand is the
logarithm of Y and the regressor is “time,” which will take values of 1, 2,
3, etc.

Models like (6.6.6) are called semilog models because only one variable
(in this case the regressand) appears in the logarithmic form. For descrip-
tive purposes a model in which the regressand is logarithmic will be called
a log-lin model. Later we will consider a model in which the regressand is
linear but the regressor(s) are logarithmic and call it a lin-log model.

Before we present the regression results, let us examine the properties
of model (6.6.5). In this model the slope coefficient measures the constant
proportional or relative change in Y for a given absolute change in the value of
the regressor (in this case the variable ¢), that is,'#

relative change in regressand

B> (6.6.7)

~ absolute change in regressor

If we multiply the relative change in Y by 100, (6.6.7) will then give the
percentage change, or the growth rate, in Y for an absolute change in X, the
regressor. That is, 100 times B, gives the growth rate in Y; 100 times B, is

13We add the error term because the compound interest formula will not hold exactly. Why
we add the error after the logarithmic transformation is explained in Sec. 6.8.

14Using differential calculus one can show that f; =d(InY)/dX = (1/Y)(dY/dX) =
(dY/Y)/dX, which is nothing but (6.6.7). For small changes in Y and X this relation may be
approximated by

G —Yi)/Yiy
(Xe — X-1)

Note: Here X = 1.
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known in the literature as the semielasticity of Y with respect to X. (Ques-
tion: To get the elasticity, what will we have to do?)

AN ILLUSTRATIVE EXAMPLE: THE RATE OF the end of the fourth quarter of 1992). The regression
GROWTH EXPENDITURE ON SERVICES line obtained in Eq. (6.6.8) is sketched in Figure 6.4.
To illustrate the growth model (6.6.6), consider the data
on expenditure on services given in Table 6.3. The re- 3.00
gression results are as follows: g
Q
InEXS;=  7.7890 + 0.00743t § 7.96 | E
se = (0.0023)  (0.00017) (6.6.8) 5 .
o 7.92F o
t=(3387.619)* (44.2826)* r2=0.9894 E W
o] o
Note: EXS stands for expenditure on services and * de- g 7881 o °
notes that the p value is extremely small. % .°
The interpretation of Eq. (6.6.8) is that over the quar- S 7.84 00’
terly period 1993:1 to 1998:3, expenditure on services in- e o °
creased at the (quarterly) rate of 0.743 percent. Roughly, — .0 | | | | |
S 7.80
this is equal to an annual growth rate of 2.97 percent. 0 4 8 12 16 20 24
Since 7.7890 = log of EXS at the beginning of the study Time
period, by taking its antilog we obtain 2413.90 (billion
dollars) as the beginning value of EXS (i.e., the value at FIGURE 6.4

Instantaneous versus Compound Rate of Growth. The coefficient of
the trend variable in the growth model (6.6.6), B>, gives the instantaneous
(at a point in time) rate of growth and not the compound (over a period of
time) rate of growth. But the latter can be easily found from (6.6.4) by tak-
ing the antilog of the estimated 8, and subtracting 1 from it and multiply-
ing the difference by 100. Thus, for our illustrative example, the estimated
slope coefficient is 0.00743. Therefore, [antilog(0.00743) — 1] = 0.00746
or 0.746 percent. Thus, in the illustrative example, the compound rate of
growth on expenditure on services was about 0.746 percent per quarter,
which is slightly higher than the instantaneous growth rate of 0.743 percent.
This is of course due to the compounding effect.

Linear Trend Model. Instead of estimating model (6.6.6), researchers
sometimes estimate the following model:

Yi = B1+ Bat + (6.6.9)

That is, instead of regressing the log of Y on time, they regress Y on time,
where Y is the regressand under consideration. Such a model is called a
linear trend model and the time variable 7 is known as the trend variable. Tf
the slope coefficient in (6.6.9) is positive, there is an upward trend in Y,
whereas if it is negative, there is a downward trend in Y.
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For the expenditure on services data that we considered earlier, the re-
sults of fitting the linear trend model (6.6.9) are as follows:

EXS, = 2405.848 + 19.6920¢

(6.6.10)
t= (322.9855) (36.2479) 2 =0.9843

In contrast to Eq. (6.6.8), the interpretation of Eq. (6.6.10) is as follows:
Over the quarterly period 1993-1 to 1998-III, on average, expenditure on
services increased at the absolute (note: not relative) rate of about 20 billion
dollars per quarter. That is, there was an upward trend in the expenditure on
services.

The choice between the growth rate model (6.6.8) and the linear trend
model (6.6.10) will depend upon whether one is interested in the relative or
absolute change in the expenditure on services, although for comparative
purposes it is the relative change that is generally more relevant. In passing,
observe that we cannot compare the r* values of models (6.6.8) and (6.6.10)
because the regressands in the two models are different. We will show in Chap-
ter 7 how one compares the R%s of models like (6.6.8) and (6.6.10).

The Lin—Log Model

Unlike the growth model just discussed, in which we were interested in find-
ing the percent growth in Y for an absolute change in X, suppose we now
want to find the absolute change in Y for a percent change in X. A model
that can accomplish this purpose can be written as:

Y, =B1+ B InX; +u; (6.6.11)

For descriptive purposes we call such a model a lin-log model.
Let us interpret the slope coefficient ,.!> As usual,

change in Y

B2 =

~ change inln X

change in Y

~ relative change in X

The second step follows from the fact that a change in the log of a number is
a relative change.

15Again, using differential calculus, we have
dy 1
ﬂ = lg2<)7>

dy
B2 = 7y = (6.6.12)
X

Therefore,
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Symbolically, we have
_AY
AX/X

where, as usual, A denotes a small change. Equation (6.6.12) can be written,
equivalently, as

B2 (6.6.12)

AY = B> (AX/X) (6.6.13)

This equation states that the absolute change in Y (= AY) is equal to slope
times the relative change in X. If the latter is multiplied by 100, then (6.6.13)
gives the absolute change in Y for a percentage change in X. Thus, if (AX/X)
changes by 0.01 unit (or 1 percent), the absolute change in Y is 0.01(5,); if
in an application one finds that 8, =500, the absolute change in Y is
(0.01)(500) = 5.0. Therefore, when regression (6.6.11) is estimated by OLS,
do not forget to multiply the value of the estimated slope coefficient by 0.01,
or, what amounts to the same thing, divide it by 100. If you do not keep this
in mind, your interpretation in an application will be highly misleading.

The practical question is: When is a lin—log model like (6.6.11) useful? An
interesting application has been found in the so-called Engel expenditure
models, named after the German statistician Ernst Engel, 1821-1896. (See
exercise 6.10.) Engel postulated that “the total expenditure that is devoted to
food tends to increase in arithmetic progression as total expenditure in-

creases in geometric progression.”!®
AN ILLUSTRATIVE EXAMPLE 700
As an illustration of the lin-log model, let us revisit our Q 600 °
example on food expenditure in India, Example 3.2. ?U’ o
There we fitted a linear-in-variables model as a first ap- § 500 - ° °°
proximation. But if we plot the data we obtain the plot in = ° 0 %0
Figure 6.5. As this figure suggests, food expenditure in- S 400 - 32,%% Coc
creases more slowly as total expenditure increases, per- ‘E‘ 00°% °°‘; 2% °.0°
haps giving credence to Engel’s law. The results of fitting 5 300 Y °° g °
the lin—log model to the data are as follows: 5 ° o
S 200 o
FoodExpi = —1283.912  + 257.2700 In TotalExp; = 100 L
t—  (—4.3848)" (5.6625)*  r2—0.3769 300 400 500 600 700 800 900
(6.6.14) Total expenditure (Rs.)
Note: * denotes an extremely small p value. FIGURE 6.5
(Continued)

16See Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analy-
sis for Developing Countries, Routledge, London, 1998, p. 158. This quote is attributed to
H. Working, “Statistical Laws of Family Expenditure,” Journal of the American Statistical Asso-
ciation, vol. 38, 1943, pp. 43-56.
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Interpreted in the manner described earlier, the coefficient given before, namely,
slope coefficient of about 257 means that an increase in
the total food expenditure of 1 percent, on average,
leads to about 2.57 rupees increase in the expendi-
ture on food of the 55 families included in the sample.
(Note: We have divided the estimated slope coefficient As a matter of fact, once the functional form of a

Before proceeding further, note that if you want to  ing the preceding definition. (Table 6.6, given later,
compute the elasticity coefficient for the log—lin or lin-log  summarizes the elasticity coefficients for the various
models, you can do so from the definition of the elasticity = models.)
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- ay X
Elasticity = axy

model is known, one can compute elasticities by apply-

6.7 RECIPROCAL MODELS

Models of the following type are known as reciprocal models.

Yi=5+82 <Xi> + u; (6.7.1)

Although this model is nonlinear in the variable X because it enters in-
versely or reciprocally, the model is linear in 81 and 8, and is therefore a lin-
ear regression model.!”

This model has these features: As X increases indefinitely, the term
B2(1/X) approaches zero (note: B, is a constant) and Y approaches the limit-
ing or asymptotic value B;. Therefore, models like (6.7.1) have built in them
an asymptote or limit value that the dependent variable will take when the
value of the X variable increases indefinitely.!?

Some likely shapes of the curve corresponding to (6.7.1) are shown in
Figure 6.6. As an illustration of Figure 6.6a, consider the data given in
Table 6.4. These are cross-sectional data for 64 countries on child mortality
and a few other variables. For now, concentrate on the variables, child mor-
tality (CM) and per capita GNP, which are plotted in Figure 6.7.

As you can see, this figure resembles Figure 6.6a: As per capita GNP in-
creases, one would expect child mortality to decrease because people can
afford to spend more on health care, assuming all other factors remain con-
stant. But the relationship is not a straight line one: As per capita GNP in-
creases, initially there is dramatic drop in CM but the drop tapers off as per
capita GNP continues to increase.

I we let X} = (1/X;), then (6.7.1) is linear in the parameters as well as the variables Y;
and X7.

18The slope of (6.7.1) is: dY/dX = —B,(1/X?), implying that if g, is positive, the slope is neg-
ative throughout, and if 8, is negative, the slope is positive throughout. See Figures 6.6a and
6.6¢, respectively.
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FIGURE 6.6

FIGURE 6.7
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If we try to fit the reciprocal model (6.7.1), we obtain the following re-
gression results:

CM; = 81.79436 + 27,273.17(PGNPi>

6.7.2
se =(10.8321)  (3759.999) ( )

t= (7.5511) (7.2535) r? =0.4590

As per capita GNP increases indefinitely, child mortality approaches its
asymptotic value of about 82 deaths per thousand. As explained in foot-
note 18, the positive value of the coefficient of (I/PGNP;) implies that the
rate of change of CM with respect to PGNP is negative.

One of the important applications of Figure 6.6b is the celebrated Phillips
curve of macroeconomics. Using the data on percent rate of change of
money wages (Y) and the unemployment rate (X) for the United Kingdom
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FERTILITY AND OTHER DATA FOR 64 COUNTRIES

Observaton CM FLFP PGNP TFR Observaton CM FLFP PGNP TFR
1 128 37 1870 6.66 33 142 50 8640 7.17
2 204 22 130 6.15 34 104 62 350 6.60
3 202 16 310 7.00 35 287 31 230 7.00
4 197 65 570 6.25 36 41 66 1620 3.91
5 96 76 2050 3.81 37 312 11 190 6.70
6 209 26 200 6.44 38 77 88 2090 4.20
7 170 45 670 6.19 39 142 22 900 5.43
8 240 29 300 5.89 40 262 22 230 6.50
9 241 11 120 5.89 41 215 12 140 6.25

10 55 55 290 2.36 42 246 9 330 7.10
11 75 87 1180 3.93 43 191 31 1010 7.10
12 129 55 900 5.99 44 182 19 300 7.00
13 24 93 1730 3.50 45 37 88 1730  3.46
14 165 31 1150 7.41 46 103 35 780  5.66
15 94 77 1160 4.21 47 67 85 1300 4.82
16 96 80 1270 5.00 48 143 78 930  5.00
17 148 30 580 5.27 49 83 85 690 4.74
18 98 69 660 5.21 50 223 33 200 8.49
19 161 43 420 6.50 51 240 19 450 6.50
20 118 47 1080 6.12 52 312 21 280 6.50
21 269 17 290 6.19 53 12 79 4430 1.69
22 189 35 270 5.05 54 52 83 270 3.25
23 126 58 560 6.16 55 79 43 1340 717
24 12 81 4240 1.80 56 61 88 670  3.52
25 167 29 240 4.75 57 168 28 410 6.09
26 135 65 430 4.10 58 28 95 4370 2.86
27 107 87 3020 6.66 59 121 41 1310  4.88
28 72 63 1420 7.28 60 115 62 1470  3.89
29 128 49 420 8.12 61 186 45 300 6.90
30 27 63 19830 5.23 62 47 85 3630 4.10
31 152 84 420 5.79 63 178 45 220 6.09
32 224 23 530 6.50 64 142 67 560 7.20

Note: CM = Child mortality, the number of deaths of children under age 5 in a year per 1000 live births.
FLFP = Female literacy rate, percent.
PGNP = per capita GNP in 1980.
TFR = total fertility rate, 1980—1985, the average number of children born to a woman, using age-
specific fertility rates for a given year.
Source: Chandan Mukherjee, Howard White, and Marc Whyte, Econometrics and Data Analysis for
Developing Countries, Routledge, London, 1998, p. 456.

for the period 1861-1957, Phillips obtained a curve whose general shape
resembles Figure 6.6b (Figure 6.8).1°

As Figure 6.8 shows, there is an asymmetry in the response of wage
changes to the level of the unemployment rate: Wages rise faster for a unit
change in unemployment if the unemployment rate is below U", which is

19A. W. Phillips, “The Relationship between Unemployment and the Rate of Change of
Money Wages in the United Kingdom, 1861-1957,” Economica, November 1958, vol. 15,
pp- 283-299. Note that the original curve did not cross the unemployment rate axis, but Fig. 6.8
represents a later version of the curve.
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FIGURE 6.8

The natural rate of unemployment

Unemployment rate, %

Rate of change of money wages, %
=

_ﬂl ———————————————————

The Phillips curve.

called the natural rate of unemployment by economists [defined as the rate of
unemployment required to keep (wage) inflation constant], and then they fall
for an equivalent change when the unemployment rate is above the natural
rate, B1, indicating the asymptotic floor for wage change. This particular fea-
ture of the Phillips curve may be due to institutional factors, such as union
bargaining power, minimum wages, unemployment compensation, etc.

Since the publication of Phillips’ article, there has been very extensive
research on the Phillips curve at the theoretical as well as empirical levels.
Space does not permit us to go into the details of the controversy surround-
ing the Phillips curve. The Phillips curve itself has gone through several
incarnations. A comparatively recent formulation is provided by Olivier
Blanchard.?? If we let 7; denote the inflation rate at time ¢, which is defined
as the percentage change in the price level as measured by a representative
price index, such as the Consumer Price Index (CPI), and UN; denote the
unemployment rate at time ¢, then a modern version of the Phillips curve
can be expressed in the following format:

m — 7€ = 2 (UN; — U") + 1y (6.7.3)

where m; = actual inflation rate at time ¢
nf = expected inflation rate at time ¢, the expectation being
formed in year (r — 1)

20See Olivier Blanchard, Macroeconomics, Prentice Hall, Englewood Cliffs, N.J., 1997,
Chap. 17.
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UN, = actual unemployment rate prevailing at time ¢
U" = natural rate of unemployment at time ¢
u, = stochastic error term?!

Since nf is not directly observable, as a starting point one can make the
simplifying assumption that #f = 7,_y; that is, the inflation expected this
year is the inflation rate that prevailed in the last year; of course, more com-
plicated assumptions about expectations formation can be made, and we
will discuss this topic in Chapter 17, on distributed lag models.

Substituting this assumption into (6.7.3) and writing the regression
model in the standard form, we obtain the following estimating equation:

= -1 = 1+ B2UN; + 1y (6.7.4)

where By = —B,U". Equation (6.7.4) states that the change in the inflation
rate between two time periods is linearly related to the current unemploy-
ment rate. A priori, 8; is expected to be negative (why?) and B; is expected
to be positive (this figures, since B; is negative and U" is positive).

Incidentally, the Phillips relationship given in (6.7.3) is known in the liter-
ature as the modified Phillips curve, or the expectations-augmented
Phillips curve (to indicate that 7r,_; stands for expected inflation), or the ac-
celeratonist Phillips curve (to suggest that a low unemployment rate leads
to an increase in the inflation rate and hence an acceleration of the price level).

As an illustration of the modified Phillips curve, we present in Table 6.5
data on inflation as measured by year-to-year percentage in the Consumer
Price Index (CPIflation) and the unemployment rate for the period
1960-1998. The unemployment rate represents the civilian unemployment
rate. From these data we obtained the change in the inflation rate (7; — 7,_1)
and plotted it against the civilian unemployment rate; we are using the CPI
as a measure of inflation. The resulting graph appears in Figure 6.9.

As expected, the relation between the change in inflation rate and the un-
employment rate is negative—a low unemployment rate leads to an increase
in the inflation rate and therefore an acceleration of the price level, hence
the name accelerationist Phillips curve.

Looking at Figure 6.9, it is not obvious whether a linear (straight line)
regression model or a reciprocal model fits the data; there may be a curvi-
linear relationship between the two variables. We present below regressions
based on both the models. However, keep in mind that for the reciprocal
model the intercept term is expected to be negative and the slope positive,
as noted in footnote 18.

Linear model: (7, — 7, 1) = 4.1781 —  0.6895 UN,

(6.7.5)
t=1(3.9521) (—4.0692) r? =0.3150

21Economists believe this error term represents some kind of supply shock, such as the
OPEC oil embargoes of 1973 and 1979.
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TABLE 6.5 INFLATION RATE AND UNEMPLOYMENT RATE, UNITED STATES, 1960-1998

Observation INFLRATE UNRATE Observation INFLRATE UNRATE
1960 1.7 5.5 1980 135 71
1961 1.0 6.7 1981 10.3 7.6
1962 1.0 5.5 1982 6.2 9.7
1963 1.3 5.7 1983 3.2 9.6
1964 1.3 5.2 1984 4.3 7.5
1965 1.6 4.5 1985 3.6 7.2
1966 2.9 3.8 1986 1.9 7.0
1967 3.1 3.8 1987 3.6 6.2
1968 4.2 3.6 1988 4.1 5.5
1969 5.5 3.5 1989 4.8 5.3
1970 5.7 4.9 1990 5.4 5.6
1971 4.4 5.9 1991 4.2 6.8
1972 3.2 5.6 1992 3.0 7.5
1973 6.2 4.9 1993 3.0 6.9
1974 11.0 5.6 1994 2.6 6.1
1975 9.1 8.5 1995 2.8 5.6
1976 5.8 7.7 1996 3.0 5.4
1977 6.5 71 1997 2.3 4.9
1978 7.6 6.1 1998 1.6 4.5
1979 11.3 5.8

Note: The inflation rate is the percent year-to-year change in CPI. The unemployment rate is the civilian
unemployment rate.

Source: Economic Report of the President, 1999, Table B-63, p. 399, for CPI changes and Table B-42,
p. 376, for the unemployment rate.
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FIGURE 6.9 The modified Phillips curve. Unemployment rate (%)

Reciprocal model:

- 1
M) = —32 . —
(i —m_1) = —3.2514 + 18 5508<UNt> (6.1.6)

t =(-2.9715) (3.0625) r? =0.2067

All the estimated coefficients in both the models are individually statistically
significant, all the p values being lower than the 0.005 level.
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Model (6.7.5) shows that if the unemployment rate goes down by 1 per-
centage point, on average, the change in the inflation rate goes up by about
0.7 percentage points, and vice versa. Model (6.7.6) shows that even if the
unemployment rate increases indefinitely, the most the change in the infla-
tion rate will go down will be about 3.25 percentage points. Incidentally,
from Eq. (6.7.5), we can compute the underlying natural rate of unemploy-
ment as:

B 41781
- —4,  0.6895
That is, the natural rate of unemployment is about 6.06%. Economists put

the natural rate between 5 to 6%, although in the recent past in the United
States the actual rate has been much below this rate.

UVl

= 6.0596 (6.7.7)

Log Hyperbola or Logarithmic Reciprocal Model

FIGURE 6.10

We conclude our discussion of reciprocal models by considering the loga-
rithmic reciprocal model, which takes the following form:

InY;, =81 -5 (Xi> + u; (6.7.8)

Its shape is as depicted in Figure 6.10. As this figure shows, initially Y in-
creases at an increasing rate (i.e., the curve is initially convex) and then it
increases at a decreasing rate (i.e., the curve becomes concave).?? Such a

Y

The log reciprocal model.

22From calculus, it can be shown that

d 1 1
2xn0 =53 ) =2 53 )

But
d 1dYy
ax"V=yax
Making this substitution, we obtain
dy Y
ax = Pxa

which is the slope of Y with respect to X.
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model may therefore be appropriate to model a short-run production func-
tion. Recall from microeconomics that if labor and capital are the inputs
in a production function and if we keep the capital input constant but in-
crease the labor input, the short-run output-labor relationship will resem-
ble Figure 6.10. (See Example 7.4, Chapter 7.)

6.8 CHOICE OF FUNCTIONAL FORM

TABLE 6.6

In this chapter we discussed several functional forms an empirical model
can assume, even within the confines of the linear-in-parameter regression
models. The choice of a particular functional form may be comparatively
easy in the two-variable case, because we can plot the variables and get
some rough idea about the appropriate model. The choice becomes much
harder when we consider the multiple regression model involving more
than one regressor, as we will discover when we discuss this topic in the next
two chapters. There is no denying that a great deal of skill and experience
are required in choosing an appropriate model for empirical estimation.
But some guidelines can be offered:

1. The underlying theory (e.g., the Phillips curve) may suggest a partic-
ular functional form.

2. Itis good practice to find out the rate of change (i.e., the slope) of the
regressand with respect to the regressor as well as to find out the elasticity
of the regressand with respect to the regressor. For the various models con-
sidered in this chapter, we provide the necessary formulas for the slope and
elasticity coefficients of the various models in Table 6.6. The knowledge of
these formulas will help us to compare the various models.

) dy - dy X
Model Equation Slope <: d_X> Elasticity <: d_XV>
. X *
Linear Y =81+ BaX B2 52(7>
Log-linear INY=p81+pB2In X ﬂ2<§> B2
Log-lin INY=p81+p X B2 (Y) B2 (X)*
1 1\~
Lin—log Y=81+B2In X ﬂ2<7> /32<7>
1 1 Ty
Reciprocal Y=+ ﬁ2<7) 7,32(7) 7’62(W>
. 1 Y 1\*
Log reciprocal InY=p— ,32(7) B2 (F) ﬂz(y)

Note: * indicates that the elasticity is variable, depending on the value taken by X or Y or both. When no X
and Y values are specified, in practice, very often these elasticities are measured at the mean values of these
variables, namely, X and Y.
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3. The coefficients of the model chosen should satisfy certain a priori
expectations. For example, if we are considering the demand for automo-
biles as a function of price and some other variables, we should expect a
negative coefficient for the price variable.

4. Sometime more than one model may fit a given set of data reasonably
well. In the modified Phillips curve, we fitted both a linear and a reciprocal
model to the same data. In both cases the coefficients were in line with prior
expectations and they were all statistically significant. One major difference
was that the r? value of the linear model was larger than that of the recipro-
cal model. One may therefore give a slight edge to the linear model over the
reciprocal model. But make sure that in comparing two r? values the depen-
dent variable, or the regressand, of the two models is the same; the regressor(s)
can take any form. We will explain the reason for this in the next chapter.

5. In general one should not overemphasize the r* measure in the sense
that the higher the > the better the model. As we will discuss in the next
chapter, r? increases as we add more regressors to the model. What is of
greater importance is the theoretical underpinning of the chosen model, the
signs of the estimated coefficients and their statistical significance. If a
model is good on these criteria, a model with a lower > may be quite ac-
ceptable. We will revisit this important topic in greater depth in Chapter 13.

*6.9 A NOTE ON THE NATURE OF THE STOCHASTIC ERROR TERM:
ADDITIVE VERSUS MULTIPLICATIVE STOCHASTIC ERROR TERM

Consider the following regression model, which is the same as (6.5.1) but
without the error term:

Y = g1 X» (6.9.1)

For estimation purposes, we can express this model in three different forms:

Y = g1 XPu (6.9.2)
Y; = i XPet (6.9.3)
Y = B X +u (6.9.4)

Taking the logarithms on both sides of these equations, we obtain

InY,=e+ A InX;+In u (6.9.2a)
InY, =a+ B InX; +u; (6.9.3a)
InY; = In (81 X + ;) (6.9.4a)

where a = In ;.

*Qptional
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Models like (6.9.2) are intrinsically linear (in-parameter) regression mod-
els in the sense that by suitable (log) transformation the models can be
made linear in the parameters « and ;. (Note: These models are nonlinear
in B1.) But model (6.9.4) is intrinsically nonlinear-in-parameter. There is no
simple way to take the log of (6.9.4) because In(A + B) # InA +In B.

Although (6.9.2) and (6.9.3) are linear regression models and can be esti-
mated by OLS or ML, we have to be careful about the properties of the
stochastic error term that enters these models. Remember that the BLUE
property of OLS requires that «; has zero mean value, constant variance,
and zero autocorrelation. For hypothesis testing, we further assume that u;
follows the normal distribution with mean and variance values just dis-
cussed. In short, we have assumed that u; ~ N(0, o'2).

Now consider model (6.9.2). Its statistical counterpart is given in (6.9.2a).
To use the classical normal linear regression model (CNLRM), we have to
assume that

In u; ~ N(O, 02) (6.9.5)

Therefore, when we run the regression (6.9.2a), we will have to apply the
normality tests discussed in Chapter 5 to the residuals obtained from this
regression. Incidentally, note that if Inu; follows the normal distribution
with zero mean and constant variance, then statistical theory shows that ;
in (6.9.2) must follow the log-normal distribution with mean ¢’/ and
variance e°”(e°” — 1).

As the preceding analysis shows, one has to pay very careful attention to
the error term in transforming a model for regression analysis. As for
(6.9.4), this model is a nonlinear-in-parameter regression model and will
have to be solved by some iterative computer routine. Model (6.9.3) should
not pose any problems for estimation.

To sum up, pay very careful attention to the disturbance term when you
transform a model for regression analysis. Otherwise, a blind application of
OLS to the transformed model will not produce a model with desirable sta-
tistical properties.

6.10 SUMMARY AND CONCLUSIONS

This chapter introduced several of the finer points of the classical linear
regression model (CLRM).

1. Sometimes a regression model may not contain an explicit intercept
term. Such models are known as regression through the origin. Although
the algebra of estimating such models is simple, one should use such mod-
els with caution. In such models the sum of the residuals > #; is nonzero;
additionally, the conventionally computed 2 may not be meaningful. Unless
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there is a strong theoretical reason, it is better to introduce the intercept in
the model explicitly.

2. The units and scale in which the regressand and the regressor(s) are
expressed are very important because the interpretation of regression co-
efficients critically depends on them. In empirical research the researcher
should not only quote the sources of data but also state explicitly how the
variables are measured.

3. Just as important is the functional form of the relationship between
the regressand and the regressor(s). Some of the important functional
forms discussed in this chapter are (a) the log-linear or constant elasticity
model, (b) semilog regression models, and (¢) reciprocal models.

4. In the log-linear model both the regressand and the regressor(s) are
expressed in the logarithmic form. The regression coefficient attached to
the log of a regressor is interpreted as the elasticity of the regressand with
respect to the regressor.

5. In the semilog model either the regressand or the regressor(s) are in
the log form. In the semilog model where the regressand is logarithmic and
the regressor X is time, the estimated slope coefficient (multiplied by 100)
measures the (instantaneous) rate of growth of the regressand. Such mod-
els are often used to measure the growth rate of many economic phenom-
ena. In the semilog model if the regressor is logarithmic, its coefficient mea-
sures the absolute rate of change in the regressand for a given percent
change in the value of the regressor.

6. In the reciprocal models, either the regressand or the regressor is
expressed in reciprocal, or inverse, form to capture nonlinear relationships
between economic variables, as in the celebrated Phillips curve.

7. In choosing the various functional forms, great attention should be
paid to the stochastic disturbance term ;. As noted in Chapter 5, the CLRM
explicitly assumes that the disturbance term has zero mean value and con-
stant (homoscedastic) variance and that it is uncorrelated with the regres-
sor(s). It is under these assumptions that the OLS estimators are BLUE.
Further, under the CNLRM, the OLS estimators are also normally distributed.
One should therefore find out if these assumptions hold in the functional
form chosen for empirical analysis. After the regression is run, the researcher
should apply diagnostic tests, such as the normality test, discussed in Chapter
5. This point cannot be overemphasized, for the classical tests of hypothesis,
such as the t, F, and yx?, rest on the assumption that the disturbances are nor-
mally distributed. This is especially critical if the sample size is small.

8. Although the discussion so far has been confined to two-variable re-
gression models, the subsequent chapters will show that in many cases the
extension to multiple regression models simply involves more algebra with-
out necessarily introducing more fundamental concepts. That is why it is so
very important that the reader have a firm grasp of the two-variable regres-
sion model.
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EXERCISES

Questions
6.1.
6.2.
6.3.

Consider the regression model

Yi = B1 + Baxi + u;

where y; = (Y; —Y) and x; = (X; — X). In this case, the regression line
must pass through the origin. True or false? Show your calculations.

The following regression results were based on monthly data over the pe-
riod January 1978 to December 1987:

Y, = 0.00681 + 0.75815X;
se = (0.02596) (0.27009)
t =1(0.26229) (2.80700)
p value = (0.7984) (0.0186) r? = 0.4406
Y, = 0.76214X,
se = (0.265799)
t =(2.95408)
p value = (0.0131) r? =0.43684

where Y = monthly rate of return on Texaco common stock, %, and X =

monthly market rate of return,%."

a. What is the difference between the two regression models?

b. Given the preceding results, would you retain the intercept term in the

first model? Why or why not?

. How would you interpret the slope coefficients in the two models?

. What is the theory underlying the two models?

. Can you compare the 72 terms of the two models? Why or why not?

. The Jarque-Bera normality statistic for the first model in this problem

is 1.1167 and for the second model it is 1.1170. What conclusions can
you draw from these statistics?

g. The t value of the slope coefficient in the zero intercept model is about
2.95, whereas that with the intercept present is about 2.81. Can you ra-
tionalize this result?

Consider the following regression model:

1 1
E=ﬂ1+ﬂ2<z)+ui

Note: Neither Y nor X assumes zero value.
a. Is this a linear regression model?
b. How would you estimate this model?

-0 e

“The underlying data were obtained from the data diskette included in Ernst R. Berndt, The
Practice of Econometrics: Classic and Contemporary, Addison-Wesley, Reading, Mass., 1991.
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c. What is the behavior of Y as X tends to infinity?
d. Can you give an example where such a model may be appropriate?
6.4. Consider the log-linear model:

InY; =8+ B InX; +u

Plot Y on the vertical axis and X on the horizontal axis. Draw the curves
showing the relationship between Y and X when 8, = 1, and when g8, > 1,
and when 8, < 1.

6.5. Consider the following models:

Model I: Y = B + B Xi + u;
Model II: Y, = a; + w2 X, + 1

where Y* and X" are standardized variables. Show that &, = $,(S,/S,)
and hence establish that although the regression slope coefficients are inde-
pendent of the change of origin they are not independent of the change of
scale.

6.6. Consider the following models:

InY, =a; +o InX; +u;
InY; =81+ B InX; +u;

where Y, = w,¥; and X; = w,X;, the w’s being constants.
a. Establish the relationships between the two sets of regression coeffi-
cients and their standard errors.
b. Is the r? different between the two models?
6.7. Between regressions (6.6.8) and (6.6.10), which model do you prefer?
Why?
6.8. For the regression (6.6.8), test the hypothesis that the slope coefficient is
not significantly different from 0.005.
6.9. From the Phillips curve given in (6.7.3), is it possible to estimate the nat-
ural rate of unemployment? How?
6.10. The Engel expenditure curve relates a consumer’s expenditure on a com-
modity to his or her total income. Letting Y = consumption expenditure on
a commodity and X = consumer income, consider the following models:

Y, =81+ B Xi +u
Yi = g1 + B.(1/X;) + u;
InY; =Ingy + B In X; + u;
InY; =In g + B(1/X;) + u;
Y=+ InX;, +u
Which of these model(s) would you choose for the Engel expenditure

curve and why? (Hint: Interpret the various slope coefficients, find out the
expressions for elasticity of expenditure with respect to income, etc.)
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Problems

6.11. Consider the following model:

ePr+phaXi
As it stands, is this a linear regression model? If not, what “trick,” if any,
can you use to make it a linear regression model? How would you inter-
pret the resulting model? Under what circumstances might such a model
be appropriate?

6.12. Graph the following models (for ease of exposition, we have omitted the
observation subscript, 7):
a. YZ,BIXﬁZ, forﬁz > l,ﬁz =1,0< ,32 <1,....
b. Y = ﬁ]@ﬂzx, fOI',Bz > 0 and ﬂz < 0.
Discuss where such models might be appropriate.

6.13. You are given the data in Table 6.7." Fit the following model to these data
and obtain the usual regression statistics and interpret the results:

100 (1)
100 — Y, =p1+ B X

TABLE 6.7

Y, 86 79 76 69 65 62 52 51 51 48
Xi 3 7 12 17 25 35 45 55 70 120

6.14. To measure the elasticity of substitution between capital and labor inputs
Arrow, Chenery, Minhas, and Solow, the authors of the now famous CES
(constant elasticity of substitution) production function, used the follow-
ing model:

v
log<z> =log B + B2 log W +u

where (V/L) = value added per unit of labor
L = labor input
W = real wage rate

The coefficient 8, measures the elasticity of substitution between labor
and capital (i.e., proportionate change in factor proportions/proportion-
ate change in relative factor prices). From the data given in Table 6.8, ver-
ify that the estimated elasticity is 1.3338 and that it is not statistically sig-
nificantly different from 1.

6.15. Table 6.9 gives data on the GDP (gross domestic product) deflator for
domestic goods and the GDP deflator for imports for Singapore for the
period 1968-1982. The GDP deflator is often used as an indicator of in-
flation in place of the CPI. Singapore is a small, open economy, heavily
dependent on foreign trade for its survival.

*Source: Adapted from J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York,
1984, p. 87. Actually this is taken from an econometric examination of Oxford University in 1975.

f“Capital-Labor Substitution and Economic Efficiency,” Review of Economics and Statistics,
August 1961, vol. 43, no. 5, pp. 225-254.
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TABLE 6.8

Industry log(V/L) log W
Wheat flour 3.6973 2.9617
Sugar 3.4795 2.8532
Paints and varnishes 4.0004 3.1158
Cement 3.6609 3.0371
Glass and glassware 3.2321 2.8727
Ceramics 3.3418 2.9745
Plywood 3.4308 2.8287
Cotton textiles 3.3158 3.0888
Woolen textiles 3.5062 3.0086
Jute textiles 3.2352 2.9680
Chemicals 3.8823 3.0909
Aluminum 3.7309 3.0881
Iron and steel 3.7716 3.2256
Bicycles 3.6601 3.1025
Sewing machines 3.7554 3.1354

Source: Damodar Gujarati, “A Test of ACMS Production Function:
Indian Industries, 1958,” Indian Journal of Industrial Relations, vol. 2,
no. 1, July 1966, pp. 95-97.

TABLE 6.9
GDP deflator GDP deflator
for domestic goods, for imports,

Year Y X
1968 1000 1000
1969 1023 1042
1970 1040 1092
1971 1087 1105
1972 1146 1110
1973 1285 1257
1974 1485 1749
1975 1521 1770
1976 1543 1889
1977 1567 1974
1978 1592 2015
1979 1714 2260
1980 1841 2621
1981 1959 2777
1982 2033 2735

Source: Colin Simkin, “Does Money Matter in Singapore?” The
Singapore Economic Review, vol. XXIX, no.1, April 1984, Table 6, p. 8.

To study the relationship between domestic and world prices, you are
given the following models:

1. Yt=0[1+(12Xt+MI
2. Y, =B X, +uy

where Y = GDP deflator for domestic goods and X = GDP deflator for
imports.
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APPENDIX 6A

a. How would you choose between the two models a priori?
b. Fit both models to the data and decide which gives a better fit.
c¢. What other model(s) might be appropriate for the data?

6.16. Refer to the data given in exercise 6.15. The means of Y and X are 1456
and 1760, respectively, and the corresponding standard deviations are 346
and 641. Estimate the following regression:

Y: = o +O[2X;( + u,;
where the starred variables are standardized variables, and interpret the
results.

6.17. Refer to Table 6.3. Find out the rate of growth of expenditure on durable
goods. What is the estimated semielasticity? Interpret your results. Would
it make sense to run a double-log regression with expenditure on durable
goods as the regressand and time as the regressor? How would you inter-
pret the slope coefficient in this case.

6.18. From the data given in Table 6.3, find out the growth rate of expenditure
on nondurable goods and compare your results with those obtained from
problem 6.17.

6.19. Revisit exercise 1.7. Now that you know several functional forms, which
one might be appropriate to study the relationship between advertising
impressions retained and the amount of money spent on advertising?
Show the necessary calculations.

6A.1 DERIVATION OF LEAST-SQUARES ESTIMATORS FOR
REGRESSION THROUGH THE ORIGIN

We want to minimize
Zﬁzz = Z(Yi — B X:)? (1)

with respect to fs.
Differentiating (1) with respect to 8,, we obtain

dy it
dp,
Setting (2) equal to zero and simplifying, we get

=2 Z(Yi — B X)) (—X;) (2)

. _ L XY
RS
Now substituting the PRF: Y; = 8,X; + u; into this equation, we obtain
by = 2 Xi(BXi +ui)
’ > X7
> Xiu;
> X7

(6.1.6) = (3)

4)

=B+
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[Note: E(B>) = B,.] Therefore,

ZK%] 5)

Y X7

Expanding the right-hand side of (5) and noting that the X; are nonstochas-
tic and the u; are homoscedastic and uncorrelated, we obtain

E(f> — p2)* = E[

o2

vm@ﬁ=ﬂ&—&f=zx? (6.1.7) = (6)
Incidentally, note that from (2) we get, after equating it to zero
> X =0 (7

From Appendix 3A, Section 3A.1 we see that when the intercept term is pre-
sent in the model, we get in addition to (7) the condition }_ #;; = 0. From the
mathematics just given it should be clear why the regression through the
origin model may not have the error sum, Y #i;, equal to zero.

Suppose we want to impose the condition that )" i;; = 0. In that case we

have
ZYi = B> ZXi +Zﬁi

(8)
=B ZXi’ since Z 2i; = 0 by construction
This expression then gives
=y
1
_ 9)

Y meanvalueof Y

- X ~ mean value of X

But this estimator is not the same as (3) above or (6.1.6). And since the B,
of (3) is unbiased (why?), the B, of (9) cannot be unbiased.

The upshot is that, in regression through the origin, we cannot have both
> @;X; and )" #@i; equal to zero, as in the conventional model. The only con-
dition that is satisfied is that ;X is zero.

Recall that

Y, =Y+ (2.6.3)

Summing this equation on both sides and dividing by N, the sample size, we
obtain

Y=V+a (10)

Since for the zero intercept model ) #&i; and, therefore 41, need not be zero,
it then follows that

Y£7 (11)
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that is, the mean of actual Y values need not be equal to the mean of the es-
timated Y values; the two mean values are identical for the intercept-present
model, as can be seen from (3.1.10).

It was noted that, for the zero-intercept model, 7> can be negative, whereas
for the conventional model it can never be negative. This condition can be
shown as follows.

Using (3.5.5a), we can write

i (12)

Now for the conventional, or intercept-present, model, Eq. (3.3.6) shows
that

RSS=) if =) v =) x <) ¥ (13)

unless .32 is zero (i.e., X has no influence on Y whatsoever). That is, for the
conventional model, RSS < TSS, or, ? can never be negative.
For the zero-intercept model it can be shown analogously that

RSS=> it =Y YV -B ) X} (14)

(Note: The sums of squares of Y and X are not mean-adjusted.) Now there is
no guarantee that this RSS will always be less than }_ y? = 3" ¥? — NY? (the
TSS), which suggests that RSS can be greater than TSS, implying that 2, as
conventionally defined, can be negative. Incidentally, notice that in this case
RSS will be greater than TSS if 5 " X? < NY?2.

6A.2 PROOF THAT A STANDARDIZED VARIABLE
HAS ZERO MEAN AND UNIT VARIANCE

Consider the random variable (r.v.) Y with the (sample) mean value of Y and
(sample) standard deviation of S,. Define

A
S
Hence Y, is a standardized variable. Notice that standardization involves a
dual operation: (1) change of the origin, which is the numerator of (15), and
(2) change of scale, which is the denominator. Thus, standardization in-
volves both a change of the origin and change of scale.
Now

(15)

b 1Y0-T) _

) . 0 (16)
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since the sum of deviation of a variable from its mean value is always zero.
Hence the mean value of the standardized value is zero. (Note: We could pull
out the S, term from the summation sign because its value is known.)

Now
Y, —=Y)?/(n—1)
Syz,, = Z S
1 _
T - DS > - an
3 (n— 1)85 _
= oD I)Sf =
Note that
D v ¢ e

Y n—1

which is the sample variance of Y.



Gujarati: Basic I. Single-Equation 6. Extensions of the © The McGraw-Hill
Econometrics, Fourth Regression Models Two-Variable Linear Companies, 2004
Edition Regression Model

202 PARTONE: SINGLE-EQUATION REGRESSION MODELS



Gujarati: Basic 1. Single-Equation 7. Multiple Regression © The McGraw-Hill
Econometrics, Fourth Regression Models Analysis: The Problem of Companies, 2004
Edition Estimation

MULTIPLE REGRESSION
ANALYSIS: THE PROBLEM
OF ESTIMATION

The two-variable model studied extensively in the previous chapters is often
inadequate in practice. In our consumption-income example, for instance,
it was assumed implicitly that only income X affects consumption Y. But
economic theory is seldom so simple for, besides income, a number of other
variables are also likely to affect consumption expenditure. An obvious ex-
ample is wealth of the consumer. As another example, the demand for a com-
modity is likely to depend not only on its own price but also on the prices of
other competing or complementary goods, income of the consumer, social
status, etc. Therefore, we need to extend our simple two-variable regression
model to cover models involving more than two variables. Adding more
variables leads us to the discussion of multiple regression models, that is,
models in which the dependent variable, or regressand, Y depends on two or
more explanatory variables, or regressors.

The simplest possible multiple regression model is three-variable regres-
sion, with one dependent variable and two explanatory variables. In this and
the next chapter we shall study this model. Throughout, we are concerned
with multiple linear regression models, that is, models linear in the para-
meters; they may or may not be linear in the variables.

7.1 THE THREE-VARIABLE MODEL.:
NOTATION AND ASSUMPTIONS

Generalizing the two-variable population regression function (PRF) (2.4.2),
we may write the three-variable PRF as

Y = Bi+ BaXoi + B3 Xz +u; (7.1.1)

202
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where Y is the dependent variable, X> and X3 the explanatory variables (or
regressors), u the stochastic disturbance term, and i the ith observation; in
case the data are time series, the subscript ¢ will denote the ¢th observation.!

In Eq. (7.1.1) By is the intercept term. As usual, it gives the mean or aver-
age effect on Y of all the variables excluded from the model, although its
mechanical interpretation is the average value of Y when X, and X3 are set
equal to zero. The coefficients 8, and B3 are called the partial regression
coefficients, and their meaning will be explained shortly.

We continue to operate within the framework of the classical linear
regression model (CLRM) first introduced in Chapter 3. Specifically, we
assume the following:

Zero mean value of u;, or
E(u; | X5, X31) =0 for each i (7.1.2)
No serial correlation, or
cov(uj,uj) =0 i#] (7.1.3)
Homoscedasticity, or
var (4;) = o2 (7.1.4)
Zero covariance between u; and each X variable, or
cov (u;, Xo;) = cov(u;, X3;) =0 (7.1.5)?
No specification bias, or
The model is correctly specified (7.1.6)
No exact collinearity between the X variables, or
No exact linear relationship between X, and X3 (7.1.7)

In addition, as in Chapter 3, we assume that the multiple regression model
is linear in the parameters, that the values of the regressors are fixed in re-
peated sampling, and that there is sufficient variability in the values of the
regressors.

The rationale for assumptions (7.1.2) through (7.1.6) is the same as that
discussed in Section 3.2. Assumption (7.1.7), that there be no exact linear
relationship between X, and X3, technically known as the assumption of

For notational symmetry, Eq. (7.1.1) can also be written as
Yi = B1X1i + B2 Xoi + B3 Xi +u

with the provision that Xj; = 1 for all 7.
2This assumption is automatically fulfilled if X5 and X3 are nonstochastic and (7.1.2) holds.
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no collinearity or no multicollinearity if more than one exact linear rela-
tionship is involved, is new and needs some explanation.
Informally, no collinearity means none of the regressors can be written as
exact linear combinations of the remaining regressors in the model.
Formally, no collinearity means that there exists no set of numbers,
A2 and A3, not both zero such that

A Xoi +213X3 =0 (7.1.8)

If such an exact linear relationship exists, then X, and X3 are said to be
collinear or linearly dependent. On the other hand, if (7.1.8) holds true only
when 1, = A3 =0, then X, and X3 are said to be linearly independent.

Thus, if

le' = —4X3l' or XZi + 4X3i =0 (7.1.9)

the two variables are linearly dependent, and if both are included in a re-
gression model, we will have perfect collinearity or an exact linear relation-
ship between the two regressors.

Although we shall consider the problem of multicollinearity in depth in
Chapter 10, intuitively the logic behind the assumption of no multi-
collinearity is not too difficult to grasp. Suppose that in (7.1.1) Y, X5, and X3
represent consumption expenditure, income, and wealth of the consumer,
respectively. In postulating that consumption expenditure is linearly related
to income and wealth, economic theory presumes that wealth and income
may have some independent influence on consumption. If not, there is no
sense in including both income and wealth variables in the model. In the ex-
treme, if there is an exact linear relationship between income and wealth,
we have only one independent variable, not two, and there is no way to as-
sess the separate influence of income and wealth on consumption. To see
this clearly, let X35; = 2X5; in the consumption-income-wealth regression.
Then the regression (7.1.1) becomes

Y: = B1 + BaXoi + B3(2X2) 4+
=p1+ (B2 +2B3)Xai +u; (7.1.10)
= B +aXo +u;
where a = (B, + 2B3). That is, we in fact have a two-variable and not a three-
variable regression. Moreover, if we run the regression (7.1.10) and obtain «,

there is no way to estimate the separate influence of X, (= ;) and X3 (= 83)
onY, for « gives the combined influence of X, and X3 on Y.3

3Mathematically speaking, o = (8, + 283) is one equation in two unknowns and there is no
unique way of estimating 8 and B3 from the estimated «.



Gujarati: Basic
Econometrics, Fourth
Edition

1. Single-Equation 7. Multiple Regression © The McGraw-Hill
Regression Models Analysis: The Problem of Companies, 2004
Estimation

CHAPTER SEVEN: MULTIPLE REGRESSION ANALYSIS: THE PROBLEM OF ESTIMATION 205

In short the assumption of no multicollinearity requires that in the PRF
we include only those variables that are not exact linear functions of one or
more variables in the model. Although we will discuss this topic more fully
in Chapter 10, a couple of points may be noted here.

First, the assumption of no multicollinearity pertains to our theoretical
(i.e., PRF) model. In practice, when we collect data for empirical analysis
there is no guarantee that there will not be correlations among the regres-
sors. As a matter of fact, in most applied work it is almost impossible to find
two or more (economic) variables that may not be correlated to some
extent, as we will show in our illustrative examples later in the chapter.
What we require is that there be no exact relationships among the regres-
sors, as in Eq. (7.1.9).

Second, keep in mind that we are talking only about perfect linear rela-
tionships between two or more variables. Multicollinearity does not rule out
nonlinear relationships between variables. Suppose X3; = X3,. This does not
violate the assumption of no perfect collinearity, as the relationship between
the variables here is nonlinear.

7.2 INTERPRETATION OF MULTIPLE REGRESSION EQUATION

Given the assumptions of the classical regression model, it follows that, on
taking the conditional expectation of Y on both sides of (7.1.1), we obtain

E(Y; | X2, X3i) = B1 + B2 Xoi + B3i X3 (7.2.1)

In words, (7.2.1) gives the conditional mean or expected value of Y con-
ditional upon the given or fixed values of X, and X3. Therefore, as in the
two-variable case, multiple regression analysis is regression analysis condi-
tional upon the fixed values of the regressors, and what we obtain is the
average or mean value of Y or the mean response of Y for the given values of
the regressors.

7.3 THE MEANING OF PARTIAL REGRESSION COEFFICIENTS

As mentioned earlier, the regression coefficients 8, and B3 are known as par-
tial regression or partial slope coefficients. The meaning of partial re-
gression coefficient is as follows: 