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Preface

As you may have guessed, this book discusses data analysis, especially data analysis
using Stata. We intend for this book to be an introduction to Stata; at the same time,
the book also explains, for beginners, the techniques used to analyze data.

Data Analysis Using Stata does not merely discuss Stata commands but demon-
strates all the steps of data analysis using practical examples. The examples are related
to public issues, such as income differences between men and women, and elections, or
to personal issues, such as rent and living conditions. This approach allows us to avoid
using social science theory in presenting the examples and to rely on common sense.
We want to emphasize that these familiar examples are merely standing in for actual
scientific theory, without which data analysis is not possible at all. We have found that
this procedure makes it easier to teach the subject and use it across disciplines. Thus
this book is equally suitable for biometricians, econometricians, psychometricians, and
other “metricians”—in short, for all who are interested in analyzing data.

Our discussion of commands, options, and statistical techniques is in no way ex-
haustive but is intended to provide a fundamental understanding of Stata. Having read
this book and solved the problems in it, the reader should be able to solve all further
problems to which Stata is applicable.

We strongly recommend to both beginners and advanced readers that they read
the preface and the first chapter (entitled The first time) attentively. Both serve as a
guide throughout the book. Beginners should read the chapters in order while sitting in
front of their computers and trying to reproduce our examples. More-advanced users of
Stata may benefit from the extensive index and may discover a useful trick or two when
they look up a certain command. They may even throw themselves into programming
their own commands. Those who do not (yet) have access to Stata are invited to read
the chapters that focus on data analysis, to enjoy them, and maybe to translate one
or another hint (for example, about diagnostics) into the language of the statistical
package to which they do have access.

Structure

The first time (chapter 1) shows what a typical session of analyzing data could look like.
To beginners, this chapter conveys a sense of Stata and explains some basic concepts
such as variables, observations, and missing values. To advanced users who already
have experience in other statistical packages, this chapter offers a quick entry into Stata.
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Advanced users will find within this chapter many cross-references, which can therefore
be viewed as an extended table of contents. The rest of the book is divided into three
parts, described below.

Chapters 2–6 serve as an introduction to the basic tools of Stata. Throughout the
subsequent chapters, these tools are used extensively. It is not possible to portray the
basic Stata tools, however, without using some of the statistical techniques explained in
the second part of the book. The techniques described in chapter 6 may not seem useful
until you begin working with your own results, so you may want to skim chapter 6 now
and read it more carefully when you need it.

Throughout chapters 7–10, we show examples of data analysis. In chapter 7, we
present techniques for describing and comparing distributions. Chapter 8 covers statis-
tical inference and explains whether and how one can transfer judgments made from a
statistic obtained in a dataset to something that is more than just the dataset. Chap-
ter 9 introduces linear regression using Stata. It explains in general terms the technique
itself and shows how to run a regression analysis using an example file. Afterward, we
discuss how to test the statistical assumptions of the model. We conclude the chapter
with a discussion of sophisticated regression models and a quick overview of further
techniques. Chapter 10, in which we describe regression models for categorical depen-
dent variables, is structured in the same way as the previous chapter to emphasize the
similarity between these techniques.

Chapters 11–13 deal with more-advanced Stata topics that beginners may not need.
In chapter 11, we explain how to read and write files that are not in the Stata format.
At the beginning of chapter 12, we introduce some special tools to aid in writing do-files.
You can use these tools to create your own Stata commands and then store them as
ado-files, which are explained in the second part of the chapter. It is easy to write Stata
commands, so many users have created a wide range of additional Stata commands
that can be downloaded from the Internet. In chapter 13, we discuss these user-written
commands and other resources.

Using this book: Materials and hints

The only way to learn how to analyze data is to do it. To help you learn by doing, we
have provided data files (available on the Internet) that you can use with the commands
we discuss in this book. You can access these files from within Stata or by downloading
a zip archive.

Please do not hesitate to contact us if you have any trouble obtaining these data
files and do-files.1

1. The data we provide and all commands we introduce assume that you use Stata 12 or higher.
Please contact us if you have an older version of Stata.
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• If the machine you are using to run Stata is connected to the Internet, you can
download the files from within Stata. To do this, type the following commands
in the Stata Command window (see the beginning of chapter 1 for information
about using Stata commands).

. mkdir c:\data\kk3

. cd c:\data\kk3

. net from http://www.stata-press.com/data/kk3/

. net get data

These commands will install the files needed for all chapters except section 11.4.
Readers of this section will need an additional data package. You can download
these files now or later on by typing

. mkdir c:\data\kk3\kksoep

. cd c:\data\kk3\kksoep

. net from http://www.stata-press.com/data/kk3/

. net get kksoep

. cd ..

If you are using a Mac or Unix system, substitute a suitable directory name in
the first two commands, respectively.

• The files are also stored as a zip archive, which you can download by pointing
your browser to http://www.stata-press.com/data/kk3/kk3.zip.

To extract the file kk3.zip, create a new folder: c:\data\kk3. Copy kk3.zip

into this folder. Unzip the file kk3.zip using any program that can unzip zip
archives. Most computers have such a program already installed; if not, you can
get one for free over the Internet.2 Make sure to preserve the kksoep subdirectory
contained in the zip file.

Throughout the book, we assume that your current working directory (folder) is the
directory where you have stored our files. This is important if you want to reproduce
our examples. At the beginning of chapter 1, we will explain how you can find your
current working directory. Make sure that you do not replace any file of ours with a
modified version of the same file; that is, avoid using the command save, replace

while working with our files.

We cannot say it too often: the only way to learn how to analyze data is to analyze
data yourself. We strongly recommend that you reproduce our examples in Stata as you
read this book. A line that is written in this font and begins with a period (which
itself should not be typed by the user) represents a Stata command, and we encourage
you to enter that command in Stata. Typing the commands and seeing the results or
graphs will help you better understand the text, because we sometimes omit output to
save space.

As you follow along with our examples, you must type all commands that are shown,
because they build on each other within a chapter. Some commands will only work if

2. For example, “pkzip” is free for private use, developed by the company PKWARE. You can find it
at http://pkzip.en.softonic.com/.
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you have entered the previous commands. If you do not have time to work through a
whole chapter at once, you can type the command

. save mydata, replace

before you exit Stata. When you get back to your work later, type

. use mydata

and you will be able to continue where you left off.

The exercises at the end of each chapter use either data from our data package or
data used in the Stata manuals. StataCorp provides these datasets online.3 They can
be used within Stata by typing the command webuse filename. However, this command
assumes that your computer is connected to the Internet; if it is not, you have to
download the respective files manually from a different computer.

This book contains many graphs, which are almost always generated with Stata. In
most cases, the Stata command that generates the graph is printed above the graph,
but the more complicated graphs were produced by a Stata do-file. We have included
all of these do-files in our file package so that you can study these files if you want to
produce a similar graph (the name of the do-file needed for each graph is given in a
footnote under the graph).

If you do not understand our explanation of a particular Stata command or just
want to learn more about it, use the Stata help command, which we explain in chap-
ter 1. Or you can look in the Stata manuals, which are available in printed form and
as PDF files. When we refer to the manuals, [R] summarize, for example, refers to
the entry describing the summarize command in the Stata Base Reference Manual.
[U] 18 Programming Stata refers to chapter 18 of the Stata User’s Guide. When
you see a reference like these, you can use Stata’s online help (see section 1.3.16) to get
information on that keyword.

Teaching with this manual

We have found this book to be useful for introductory courses in data analysis, as well
as for courses on regression and on the analysis of categorical data. We have used it in
courses at universities in Germany and the United States. When developing your own
course, you might find it helpful to use the following outline of a course of lectures of
90 minutes each, held in a computer lab.

To teach an introductory course in data analysis using Stata, we recommend that
you begin with chapter 1, which is designed to be an introductory lecture of roughly 1.5
hours. You can give this first lecture interactively, asking the students substantive ques-
tions about the income difference between men and women. You can then answer them
by entering Stata commands, explaining the commands as you go. Usually, the students

3. They are available at http://www.stata-press.com/data/r12/.
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name the independent variables used to examine the stability of the income difference
between men and women. Thus you can do a stepwise analysis as a question-and-answer
game. At the end of the first lecture, the students should save their commands in a log
file. As a homework assignment, they should produce a commented do-file (it might be
helpful to provide them with a template of a do-file).

The next two lectures should work with chapters 3–5 and can be taught a bit more
conventionally than the introduction. It will be clear that your students will need to
learn the language of a program first. These two lectures need not be taught interactively
but can be delivered section by section without interruption. At the end of each section,
give the students time to retype the commands and ask questions. If time is limited,
you can skip over sections 3.3 and 5.7. You should, however, make time for a detailed
discussion of sections 5.1.4 and 5.1.5 and the examples in them; both sections contain
concepts that will be unfamiliar to the student but are very powerful tools for users of
Stata.

One additional lecture should suffice for an overview of the commands and some
interactive practice in the graphs chapter (chapter 6).

Two lectures can be scheduled for chapter 7. One example for a set of exercises to
go along with this chapter is given by Donald Bentley and is described on the web-
page http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html. The neces-
sary files are included in our file package.

A reasonable discussion of statistical inference will take two lectures. The material
provided in chapter 8 shows necessary elements for simulations, which allows for a
hands-on discussion of sampling distributions. The section on multiple imputation can
be skipped in introductory courses.

Three lectures should be scheduled for chapter 9. According to our experience, even
with an introductory class, you can cover sections 9.1, 9.2, and 9.3 in one lecture each.
We recommend that you let the students calculate the regressions of the Anscombe data
(see page 279) as a homework assignment or an in-class activity before you start the
lecture on regression diagnostics.

We recommend that toward the end of the course, you spend two lectures on chap-
ter 11 introducing data entry, management, and the like, before you end the class with
chapter 13, which will point the students to further Stata resources.

Many of the instructional ideas we developed for our book have found their way
into the small computing lab sessions run at the UCLA Department of Statistics. The
resources provided there are useful complements to our book when used for introductory
statistics classes. More information can be found at http://www.stat.ucla.edu/labs/,
including labs for older versions of Stata.
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In addition to using this book for a general introduction to data analysis, you can
use it to develop a course on regression analysis (chapter 9) or categorical data analysis
(chapter 10). As with the introductory courses, it is helpful to begin with chapter 1,
which gives a good overview of working with Stata and solving problems using Stata’s
online help. Chapter 13 makes a good summary for the last session of either course.
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1 The first time

Welcome! In this chapter, we will show you several typical applications of computer-
aided data analysis to illustrate some basic principles of Stata. Advanced users of data
analysis software may want to look through the book for answers to specific problems
instead of reading straight through. Therefore, we have included many cross-references
in this chapter as a sort of distributed table of contents.

If you have never worked with statistical software, you may not immediately under-
stand the commands or the statistical techniques behind them. Do not be discouraged;
reproduce our steps anyway. If you do, you will get some training and experience work-
ing with Stata. You will also get used to our jargon and get a feel for how we do things.
If you have specific questions, the cross-references in this chapter can help you find
answers.

Before we begin, you need to know that Stata is command-line oriented, meaning
that you type a combination of letters, numbers, and words at a command line to
perform most of Stata’s functions. With Stata 8 and later versions, you can access
most commands through pulldown menus. However, we will focus on the command
line throughout the book for several reasons. 1) We think the menu is rather self-
explanatory. 2) If you know the commands, you will be able to find the appropriate
menu items. 3) The look and feel of the menu depends on the operating system installed
on your computer, so using the command line will be more consistent, no matter what
system you are using. 4) Switching between the mouse and the keyboard can be tedious.
5) And finally, once you are used to typing the commands, you will be able to write entire
analysis jobs, so you can later replicate your work or easily switch across platforms. At
first you may find using the command line bothersome, but as soon as your fingers get
used to the keyboard, it becomes fun. Believe us, it is habit forming.

1.1 Starting Stata

We assume that Stata is installed on your computer as described in the Getting Started
manual for your operating system. If you work on a PC using the Windows operating
system, you can start Stata by selecting Start > All Programs > Stata 12. On a
Mac system, you start Stata by double-clicking on the Stata symbol. Unix users type
the command xstata in a shell.

After starting Stata, you should see the default Stata windowing: a Results win-
dow; a Command window, which contains the command line; a Review window; and a
Variables window, which shows the variable names.

1
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1.2 Setting up your screen

Instead of explaining the different windows right away, we will show you how to change
the default windowing. In this chapter, we will focus on the Results window and the
command line. You may want to choose another font for the Results window so that it
is easier to read. Right-click within the Results window. In the pop-up menu, choose
Font... and then the font you prefer.1 If you choose the suggested font size, the Results
window may not be large enough to display all the text. You can resize the Results
window by dragging the borders of the window with the mouse pointer until you can
see the entire text again. If you cannot do this because the Stata background window
is too small, you must resize the Stata background window before you can resize the
Results window.

Make sure that the Command window is still visible. If necessary, move the Com-
mand window to the lower edge of the Stata window. To move a window, left-click
on the title of the window and hold down the mouse button as you drag the window
to where you want it. Beginners may find it helpful to dock the Command window
by double-clicking on the background window. Stata for Windows has many options
for manipulating the window layout; see [GS] 2 The Stata user interface for more
details.

Your own windowing layout will be saved as the default when you exit Stata. You
can restore the initial windowing layout by selecting Edit > Preferences > Load
Preference Set > Widescreen Layout (default). You can have multiple sets of
saved preferences; see [GS] 17 Setting font and window preferences.

1.3 Your first analysis

1.3.1 Inputting commands

Now we can begin. Type the letter d in the command line, and press Enter or Return.
You should see the following text in the Results window:

. d

Contains data
obs: 0
vars: 0
size: 0

Sorted by:

You have now typed your first Stata command. The letter d is an abbreviation for
the command describe, which describes data files in detail. Because you are not yet
working with a data file, the result is not very exciting. However, you can see that
entering a command in Stata means that you type a letter or several letters (or words)
and press Enter.

1. In Mac OS X, right-click on the window you want to work with, and from Font Size, select
the font size you prefer. In Unix, right-click on the window you want to work with, and select
Preferences... to display a dialog allowing you to choose the fonts for the various windows.
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Throughout the book, every time you see a word in this font preceded by a pe-
riod, you should type the word in the command line and press Enter. You type the
word without the preceding period, and you must preserve uppercase and lowercase
letters because Stata is case sensitive. In the example below, you type describe in the
command line:

. describe

1.3.2 Files and the working memory

The output of the above describe command is more interesting than it seems. In
general, describe provides information about the number of variables and number of
observations in your dataset.2 Because we did not load a dataset, describe shows zero
variables (vars) and observations (obs).

describe also indicates the size of the dataset in bytes. Unlike many other statistical
software packages, Stata loads the entire data file into the working memory of your
computer. Most of the working memory is reserved for data, and some parts of the
program are loaded only as needed. This system ensures quick access to the data and is
one reason why Stata is much faster than many other conventional statistical packages.

The working memory of your computer gives a physical limit to the size of the
dataset with which you can work. Thus you might have to install more memory to load
a really big data file. But given the usual hardware configurations today, problems with
the size of the data file are rare.

Besides buying new memory, there are a few other things you can do if your computer
is running out of memory. We will explain what you can do in section 11.6.

1.3.3 Loading data

Let us load a dataset. To make things easier in the long run, change to the directory
where the data file is stored. In what follows, we assume that you have copied our
datasets into c:\data\kk3.

To change to another directory, use the command cd, which stands for “change
directory”, followed by the name of the directory to which you want to change. You
can enclose the directory name in double quotes if you want; however, if the directory
name contains blanks (spaces), you must enclose the name in double quotes. To move
to the proposed data directory, type

. cd "c:\data\kk3"

With Mac, you can use colons instead of slashes. Alternatively, slashes can be used on
all operating systems.

2. You will find more about the terms “variable” and “observation” on pages 5–6.
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Depending on your current working directory and operating system, there may be
easier ways to change to another directory (see [D] cd for details). You will also find
more information about folder names in section 3.1.8 on page 56.

Check that your current working directory is the one where you stored the data files
by typing dir, which shows a list of files that are stored in the current folder:

. dir
<dir> 1/24/12 19:22 .
<dir> 1/24/12 19:22 ..
0.9k 1/24/12 12:54 an1cmdkk.do
0.3k 1/24/12 12:54 an1kk.do
1.9k 1/24/12 12:54 an2kk.do
0.4k 1/24/12 12:54 an2_0kk.do
1.5k 1/24/12 12:54 analwe.dta
1.5k 1/19/12 17:10 anbeta.do
0.8k 1/17/12 12:50 anincome.do
2.4k 1/17/12 12:50 ansamples.do
2.1k 1/24/12 12:54 anscombe.dta

(output omitted )

Depending on your operating system, the output may look slightly different. You will
not see the line indicating that some of the output is omitted. We use this line through-
out the book to save space.

In displaying results, Stata pauses when the Results window fills, and it displays
more on the last line if there are more results to display. You can display the next

line of results by pressing Enter or the next page of results by pressing any other key
except the letter q. You can use the scroll bar at the side of the Results window to go
back and forth between pages of results.

When you typed dir, you should have seen a file called data1.dta among those
listed. If there are a lot of files in the directory, it may be hard to find a particular file.
To reduce the number of files displayed at a time, you can type

. dir *.dta

to display only those files whose names end in .dta. You can also display only the desired
file by typing dir data1.dta. Once you know that your current working directory is
set to the correct directory, you can load the file data1.dta by typing

. use data1

The command use loads Stata files into working memory. The syntax is straight-
forward: Type use and the name of the file you want to use. If you do not type a file
extension after the filename, Stata assumes the extension .dta.

For more information about loading data, see chapter 11. That chapter may be of
interest if your data are not in a Stata file format. Some general hints about filenames
are given in section 3.1.8.
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1.3.4 Variables and observations

Once you load the data file, you can look at its contents by typing

. describe

Contains data from data1.dta
obs: 5,411 SOEP 2009 (Kohler/Kreuter)
vars: 65 13 Feb 2012 17:08
size: 568,155

storage display value
variable name type format label variable label

persnr long %12.0g Never changing person ID
hhnr2009 long %12.0g * Current household number
state byte %22.0g state * State of Residence
ybirth int %8.0g * Year of birth
sex byte %20.0g sex Gender
mar byte %29.0g mar * Marital Status of Individual
edu byte %28.0g edu * Education
yedu float %9.0g * Number of Years of Education
voc byte %40.0g voc Vocational trainig/university
emp byte %44.0g emp * Status of Employment
egp byte %45.0g egp * Social Class (EGP)
income long %10.0g * Individual Labor Earnings
hhinc long %10.0g * HH Post-Government Income
hhsize byte %8.0g * Number of Persons in HH
hhsize0to14 byte %8.0g * Number of hh members age 0-14
rel2head byte %20.0g rel2head * Relationship to HH Head
ymove int %8.0g * Year moved into dwelling
ybuild byte %21.0g ybuild * Year house was build
condit byte %24.0g condit * Condition of house
dsat byte %45.0g scale11 * Satisfaction with dwelling
size int %12.0g * Size of housing unit in ft.^2
seval byte %20.0g seval * Adequacy of living space in

housing unit
rooms byte %8.0g * Number of rooms larger than 65

ft.^2
renttype byte %20.0g renttype * Status of living
rent int %12.0g * Rent minus heating costs in USD
reval byte %20.0g reval * Adequacy of rent
eqphea byte %20.0g scale2 * Dwelling has central floor head
eqpter byte %20.0g scale2 * Dwelling has balcony/terrace
eqpbas byte %20.0g scale2 * Dwelling has basement
eqpgar byte %20.0g scale2 * Dwelling has garden

(output omitted )

The data file data1.dta is a subset of the year 2009 German Socio-Economic Panel
(GSOEP), a longitudinal study of a sample of private households in Germany. The same
households, individuals, and families have been surveyed yearly since 1984 (GSOEP-
West). To protect data privacy, the file used here contains only information on a random
subsample of all GSOEP respondents, with minor random changes of some information.
The data file includes 5,411 respondents, called observations (obs). For each respon-
dent, different information is stored in 65 variables (vars), most of which contain the
respondent’s answers to questions from the GSOEP survey questionnaire.
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Throughout the book, we use the terms “respondent” and “observations” inter-
changeably to refer to units for which information has been collected. A detailed expla-
nation of these and other terms is given in section 11.1.

Below the second solid line in the output is a description of the variables. The
first variable is persnr, which, unlike most of the others, does not contain survey data.
It is a unique identification number for each person. The remaining variables include
information about the household to which the respondent belongs, the state in which
he or she lives, the respondent’s year of birth, and so on. To get an overview of the
names and contents of the remaining variables, scroll down within the Results window
(remember, you can view the next line by pressing Enter and the next page by pressing
any other key except the letter q).

To begin with, we want to focus on a subset of variables. For now, we are less inter-
ested in the information about housing than we are about information on respondents’
incomes and employment situations. Therefore, we want to remove from the working
dataset all variables in the list from the variable recording the year the respondent
moved into the current place (ymove) to the very last variable holding the respondents’
cross-sectional weights (xweights):

. drop ymove-xweights
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1.3.5 Looking at data

Using the command list, we get a closer look at the data. The command lists all the
contents of the data file. You can look at each observation by typing

. list

1. persnr hhnr2009 state ybirth sex mar
8501 85 N-Rhein-Westfa. 1932 Male Married

edu yedu
Elementary 10

voc emp
Vocational training not employed

egp income hhinc hhsize
Retired . 22093 2

hhsiz~14 rel2head
0 Head

2. persnr hhnr2009 state ybirth sex mar
8502 85 N-Rhein-Westfa. 1939 Female Married

edu yedu
Elementary 8.7

voc emp
Does not apply not employed

egp income hhinc hhsize
Retired . 22093 2

hhsiz~14 rel2head
0 Partner

(output omitted )

In a moment, you will see how to make list show only certain observations and
how to reduce the amount of output. The first observation is a man born in 1932 and
from the German state North Rhine-Westphalia; he is married, finished school at the
elementary level and had vocational training, and is retired. The second observation is
a married woman, born in 1939; because she lives in the same household as the first
observation, she presumably is his wife. The periods as the entries for the variable
income for both persons indicate that there is no information recorded in this variable
for the two persons in household 85. There are various possible reasons for this; for
example, perhaps the interviewer never asked this particular question to the persons in
this household or perhaps they refused to answer it. If a period appears as an entry,
Stata calls it a “missing value” or just “missing”.
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In Stata, a period or a period followed by any character a to z indicates a missing
value. Later in this chapter, we will show you how to define missings (see page 11). A
detailed discussion on handling missing values in Stata is provided in section 5.5, and
some more general information can be found on page 413.

1.3.6 Interrupting a command and repeating a command

Not all the observations in this dataset can fit on one screen, so you may have to scroll
through many pages to get a feel for the whole dataset. Before you do so, you may want
to read this section.

Scrolling through more than 5,000 observations is tedious, so using the list com-
mand is not very helpful with a large dataset like this. Even with a small dataset,
list can display too much information to process easily. However, sometimes you can
take a glance at the first few observations to get a first impression or to check on the
data. In this case, you would probably rather stop listing and avoid scrolling to the
last observation. You can stop the printout by pressing q, for quit. Anytime you see
more on the screen, pressing q will stop listing results.

Rarely will you need the key combination Ctrl+Break (Windows), command+.
(Mac), or Break (Unix), which is a more general tool to interrupt Stata.

1.3.7 The variable list

Another way to reduce the amount of information displayed by list is to specify a
variable list. When you append a list of variable names to a command, the command
is limited to that list. By typing

. list sex income

you get information on gender and monthly net income for each observation.

To save some typing, you can access a previously typed list command by pressing
Page Up, or you can click once on the command list displayed in the Review window.
After the command is displayed again in the command line, simply insert the variable
list of interest. Another shortcut is to abbreviate the command itself, in this case by
typing the letter l (lowercase letter L). A note on abbreviations: Stata commands are
usually short. However, several commands can be shortened even more, as we will
explain in section 3.1.1. You can also abbreviate variable names; see Abbreviation rules
in section 3.1.2.

Scrolling through 5,411 observations might not be the best way to learn how the
two variables sex and income are related. For example, we would not be able to judge
whether there are more women or men in the lower-income groups.
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1.3.8 The in qualifier

To get an initial impression of the relationship between gender and income, we might
examine the gender of the 10 respondents who earn the least. It would be reasonable
to first sort the data on the variable income and then list the first 10 observations. We
can list only the first 10 observations by using the in qualifier:

. sort income

. list sex income in 1/10

sex income

1. Male 0
2. Male 0
3. Male 0
4. Female 0
5. Male 0

6. Female 0
7. Male 0
8. Female 0
9. Female 0

10. Male 0

The in qualifier allows you to restrict the list command or almost any other Stata
command to certain observations. You can write an in qualifier after the variable list
or, if there is no variable list, after the command itself. You can use the in qualifier to
restrict the command to data that occupy a specific position within the dataset. For
example, you can obtain the values of all variables for the first observation by typing

. list in 1

and you can obtain the values for the second to the fourth observations by typing

. list in 2/4

The current sort order is crucial for determining each observation’s position in the
dataset. You can change the sort order by using the sort command. We sorted by
income, so the person with the lowest income is found at the first position in the dataset.
Observations with the same value (in this case, income) are sorted randomly. However,
you could sort by sex among persons with the same income by using two variable names
in the sort command, for example, sort income sex. Further information regarding
the in qualifier can be found in section 3.1.4.

1.3.9 Summary statistics

Researchers are not usually interested in the specific answers of each respondent for a
certain variable. In our example, looking at every value for the income variable did
not provide much insight. Instead, most researchers will want to reduce the amount of
information and use graphs or summary statistics to describe the content of a variable.
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Probably the best-known summary statistic is the arithmetic mean, which you can
obtain using the summarize command. The syntax of summarize follows the same
principles as the list command and most other Stata commands: the command itself
is followed by a list of the variables that the command should apply to.

You can obtain summary statistics for income by typing

. summarize income

Variable Obs Mean Std. Dev. Min Max

income 4779 20540.6 37422.49 0 897756

This table contains the arithmetic mean (Mean) as well as information on the number
of observations (Obs) used for this computation, the standard deviation (Std. Dev.) of
the variable income, and the smallest (Min) and largest (Max) values of income in the
dataset.

As you can see, only 4,779 of the 5,411 observations were used to compute the mean
because there is no information on income available for the other 632 respondents—
they have a missing value for income. The year 2009 average annual income of those
respondents who reported their income is e 20,540.60 (approximately $30,000). The
minimum is e 0 and the highest reported income in this dataset is e 897,756 per year.
The standard deviation of income is approximately e 37,422.

As with the list command, you can summarize a list of variables. If you use
summarize without specifying a variable, summary statistics for all variables in the
dataset are displayed:

. summarize

Variable Obs Mean Std. Dev. Min Max

persnr 5411 4692186 3096841 8501 1.11e+07
hhnr2009 5411 79260.42 48474.2 85 167012

state 5411 7.899649 4.440415 0 16
ybirth 5411 1959.493 18.12642 1909 1992

sex 5411 1.522269 .49955 1 2

mar 5410 1.718854 1.020349 1 5
edu 5183 2.382597 1.392508 1 5
yedu 5039 11.80419 2.676028 8.7 18
voc 4101 2.460619 1.870365 1 6
emp 5256 3.050038 1.868658 1 5

egp 4789 9.29004 6.560561 1 18
income 4779 20540.6 37422.49 0 897756
hhinc 5407 37149.97 26727.97 583 507369

hhsize 5411 2.610238 1.164874 1 5
hhsize0to14 5411 .3418961 .70429 0 3

rel2head 5411 1.577342 .7471922 1 5

In chapter 7, we will discuss further statistical methods and graphical techniques for
displaying variables and distributions.
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1.3.10 The if qualifier

Assume for a moment that you are interested in possible income inequality between
men and women. You can determine if the average income is different for men and for
women by using the if qualifier. The if qualifier allows you to process a command,
such as the computation of an average, conditional on the values of another variable.
However, to use the if qualifier, you need to know that in the sex variable, men are
coded as 1 and women are coded as 2. How you discover this will be shown on page 110.

If you know the actual values of the categories in which you are interested, you can
use the following commands:

. summarize income if sex==1

Variable Obs Mean Std. Dev. Min Max

income 2320 28190.75 47868.24 0 897756

. summarize income if sex==2

Variable Obs Mean Std. Dev. Min Max

income 2459 13322.89 21286.44 0 612757

You must type a double equal-sign in the if qualifier. Typing a single equal-sign
within the if qualifier is probably the most common reason for the error message
“invalid syntax”.

The if qualifier restricts a command to those observations where the value of a
variable satisfies the if condition. Thus you see in the first table the summary statistics
for the variable income only for those observations that have 1 as a value for sex

(meaning men). The second table contains the mean income for all observations that
have 2 stored in the variable sex (meaning women). As you can see now, the average
income of women is much lower than the average income of men: e 13,322.89 compared
with e 28,190.75.

Most Stata commands can be combined with an if qualifier. As with the in qualifier,
the if qualifier must appear after the command and after the variable list, if there is
one. When you are using an in qualifier with an if qualifier, the order in which they
are listed in the command line does not matter.

Sometimes you may end up with very complicated if qualifiers, especially when you
are using logical expressions such as “and” or “or”. We will discuss these in section 3.1.5.

1.3.11 Defining missing values

As you have seen in the table above, men earn on average substantially more than
women: e 28,191 compared with e 13,323. However, we have seen that some respon-
dents have a personal income of zero, and you might argue that we should compare
only those people who actually have a personal income. To achieve this goal, you can
expand the if qualifier, for example, by using a logical “and” (see section 3.1.5).
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Another way to exclude persons without incomes is to change the content of income.
That is, you change the income variable so that all incomes of zero are recorded as a
missing value, here stored with the missing-value code .c. This change automatically
omits these cases from the computation. To do this, use the command mvdecode:

. mvdecode income, mv(0=.c)
income: 1369 missing values generated

This command will exclude the value zero in the variable income from future analysis.

There is much more to be said about encoding and decoding missing values. In
section 5.5, you will learn how to reverse the command you just entered and how you
can specify different types of missing values. For general information about using missing
values, see page 413 in chapter 11.

1.3.12 The by prefix

Now let us see how you can use the by prefix to obtain the last table with a single
command. A prefix is a command that precedes the main Stata command, separated
from it by a colon. The command prefix by has two parts: the command itself and a
variable list. We call the variable list that appears within the by prefix the bylist. When
you include the by prefix, the original Stata command is repeated for all categories of
the variables in the bylist. The dataset must be sorted by the variables in the bylist.
Here is one example in which the bylist contains only the variable sex:

. sort sex

. by sex: summarize income

-> sex = Male

Variable Obs Mean Std. Dev. Min Max

income 1746 37458.5 51939.73 46 897756

-> sex = Female

Variable Obs Mean Std. Dev. Min Max

income 1664 19688.09 23330.87 163 612757

The output above is essentially the same as that on page 11, although the values have
changed slightly because we changed the income variable using the mvdecode command.
The by prefix changed only the table captions. However, compared with the if qualifier,
the by prefix offers some advantages. The most important is that you do not have to
know the values of each category. When you use by, you need not know whether the
different genders are coded with 1 and 2 or with 0 and 1, for example.3 The by prefix
saves typing time, especially when the grouping variable has more than two categories
or when you use more than one grouping variable. The by prefix allows you to use

3. You can learn more about coding variables on page 413.
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several variables in the bylist. If the bylist contains more than one variable, the Stata
command is repeated for all possible combinations of the categories of all variables in
the bylist.

The by prefix is one of the most useful features of Stata. Even advanced users of other
statistical software packages will be pleasantly surprised by its usefulness, especially
when used in combination with commands to generate or change variables. For more
on this topic, see sections 3.2.1 and 5.1.4.

1.3.13 Command options

Let us go back to exploring income inequality between genders. You might argue that
using the arithmetic mean of income, even when combined with its minimum and max-
imum, is an inadequate way to compare the two subgroups. These values are not
sufficient to describe the income distribution, especially if, as you may suspect, the
distribution is positively skewed (skewed to the right). You can obtain more statistics
from the summarize command by specifying options. Options are available for almost
all Stata commands.

In contrast to the prefix commands and qualifiers discussed so far, options are com-
mand specific. For most commands, a certain set of options is available with a command-
specific meaning. You specify options at the end of the command, after a comma.

The summarize command has only a few options. An important one is detail.
Specifying this option returns several types of percentiles, among them the median (the
50th percentile) and the first and third quartiles (the 25th and 75th percentiles, respec-
tively); the already known mean, minimum, and maximum; and the second through
fourth “moments”: the variance, skewness, and kurtosis.

. summarize income, detail

Individual Labor Earnings

Percentiles Smallest
1% 548 46
5% 1852 90

10% 3864 134 Obs 3410
25% 10040 163 Sum of Wgt. 3410

50% 22841 Mean 28786.96
Largest Std. Dev. 41537.7

75% 36930 710920
90% 53251.5 749421 Variance 1.73e+09
95% 69806 869446 Skewness 11.27167
99% 107981 897756 Kurtosis 188.2845

The detail option does the same thing, even if you use if and in qualifiers and
the by prefix command. You can add any list of variables or any if or in qualifiers, as
well as any prefix; the function of the option is always the same. You can check this
yourself by typing

. by sex: summarize income if edu==4, detail
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After entering this command, you will obtain the income difference between men and
women for all respondents who at least have the Abitur (which is the German quali-
fication for university entrance). Interestingly enough, the income inequality between
men and women remains, even if we restrict the analysis to the more highly educated
respondents.

More general information about options can be found in section 3.1.3.

1.3.14 Frequency tables

In addition to simple descriptive statistics, frequencies and cross-classified tables (uni-
variate and bivariate frequency tables) are some of the most common tools used for
beginning a data analysis. The Stata command for generating frequency tables is
tabulate. This command must include a variable list, consisting of one or two variables.
If you use one variable, you get a one-way frequency table of the variable specified in
the command:

. tabulate sex

Gender Freq. Percent Cum.

Male 2,585 47.77 47.77
Female 2,826 52.23 100.00

Total 5,411 100.00

If you specify two variables, you get a two-way frequency table:

. tabulate emp sex

Status of Gender
Employment Male Female Total

full time 1,346 695 2,041
part time 59 540 599
irregular 70 218 288

not employed 1,014 1,314 2,328

Total 2,489 2,767 5,256

The first variable entered in the variable list of the tabulate command forms the row
variable of the cross-classified table, and the second variable forms the column variable.
Absolute frequencies are written in the table cells, the contents of which you can change
using appropriate options. The crucial options for this command are row and column,
which return row and column percentages. Other tabulate command options return
information about the strength of the relationship between the two variables. As we
explained for the summarize command, you can use options with if or in qualifiers, as
well as command prefixes.
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For more information about tabulate, see section 7.2.1. See below for an example
of column percentages in a cross-classified table.

. tabulate emp sex, colum nofreq

Status of Gender
Employment Male Female Total

full time 54.08 25.12 38.83
part time 2.37 19.52 11.40
irregular 2.81 7.88 5.48

not employed 40.74 47.49 44.29

Total 100.00 100.00 100.00

1.3.15 Graphs

Graphs provide a quick and informative way to look at data, especially distributions.
Comparative box-and-whisker plots are a nice way to compare a distribution of one
variable, such as income, across different subgroups (in this case, employment status):

. graph box income if income <= 250000, over(emp)
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This graph command is composed of the graph box command, the variable income,
the if qualifier, and the option over(emp), which specifies the grouping variable. (See
chapter 6 for a discussion of other possible options.)

Looking at the four box plots shown in the Graph window, you can see that income is
right-skewed for all subgroups, with many outliers. The median (indicated by the middle
line in the box) for the full-time employees is, as we assumed, higher than that for all
the other groups. If there are relatively more part-time working women represented in
the dataset, the median gross income must be smaller. Therefore, we might observe
that income inequality is due to the division of labor within couples rather than due to
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gender discrimination at work. When we further analyze income inequality, we should
at least control for employment status.

1.3.16 Getting help

From the results we obtained in the previous section, it seems reasonable to take into
account the difference in employment status. In part, we took care of that by excluding
all persons without income from our analysis. However, that did not affect the issue
of part-time employees. One possible way to consider the effects of employment status
and gender on income is to use linear regression.

We do not expect you to know how to do linear regression analysis at this point;
we discuss it in detail in chapter 9. However, the following paragraphs should be—we
hope—easy to understand, even if the techniques are not familiar.

Unfortunately, you do not yet know the Stata command for running a linear regres-
sion. This is, in fact, a very common situation: you learn about a statistical technique
and would like to know if Stata has a built-in command for it. You can find out by
using the search command.

The search command scans through a database of Stata resources for the expressions
you entered and displays any entries that match. search is not case sensitive.

Here you could begin searching for one of the following terms:

. search Linear Regression

. search Model

. search OLS

Typing these commands will provide you with a series of entries, all of them somehow
related to the searched-for term. For the first two commands, the list is rather long;
the last command is quickest. Ordinary least squares (OLS) is an estimation technique
used for linear regression. Some entries refer to articles in the Stata Journal (SJ) or its
predecessor, the Stata Technical Bulletin (STB). Other entries are answers to frequently
asked questions (FAQs) that have been given on Stata webpages. All of these, as well
as other resources and information about Stata, will be described in section 13.1.

Usually, the entries refer to commands, and their accompanying references refer to
the online help functions. For example, among other entries you will find

[R] regress . . . . . . . . . . . . . . . . . . . . . . Linear regression

(help regress)

Now you know that there is a regress command for linear regression; you can see a
detailed explanation by typing

. help regress

or by clicking on the blue word “regress” in your search results.
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To display the online help system, type help at the command line. You do not need
Internet access to use the online help—all the necessary information is already stored
on your machine. The online help contains help text for every Stata command. The
help text will be displayed on the screen, and you can scan the pages of the help text
as usual. To see the help file for a specific command, type help followed by the name
of the command.

Help entries are all structured the same way. They begin with the structure of
the command—the “syntax diagram”—followed by a fairly detailed explanation of the
command’s function and in turn by a description of available options. At the end of
each help entry, you will find examples showing how to use the command, together with
cross-references to related commands.

For example, the description of regress tells you that it fits a model of depvar

on indepvars using linear regression. To do this, you must type the command itself
followed by the dependent (endogenous) variable and then type the list of independent
(exogenous) variables. Below we give an example of linear regression, and we will explain
regression in chapter 9. For more information about reading Stata syntax, see chapter 3.

1.3.17 Recoding variables

In our analysis of income inequality, income is the dependent variable while gender
and employment status are independent variables. Unfortunately, the two independent
variables are problematic:

1. Gender is a dichotomous nominal variable. Conventionally, such variables are
included in a linear regression analysis coded 0 and 1 for the two outcomes. How-
ever, in our dataset, sex is coded as 1 and 2, so we recommend constructing a
new variable in the required form:

. generate men = 1 if sex== 1

. replace men = 0 if sex== 2

This set of commands says, “Generate the variable men with the value 1 if the
value of the variable sex is equal to 1, or leave it as missing otherwise. Then
replace the values in the variable men with 0 if the value of the variable sex is
equal to 2.”

2. Employment status is a nominal variable. But because it is not dichotomous, we
cannot use its values the way they appear in the data file. Fortunately, Stata’s
regression command has a way to deal with nominal variables. However, we might
want to limit our analysis of income to persons who were employed at the time
of the survey. Therefore, we create a new variable emp3 with valid values for
full-time, part-time, and irregular employment and missing otherwise:

. generate emp3 = emp if emp <= 2

. replace emp3 = 3 if emp == 4
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You can check the results of these last commands by looking at a cross-tabulation
of emp and emp3 including the missing values:

. tabulate emp emp3, missing

Status of emp3
Employment 1 2 3 . Total

full time 2,041 0 0 0 2,041
part time 0 599 0 0 599
irregular 0 0 288 0 288

not employed 0 0 0 2,328 2,328
. 0 0 0 155 155

Total 2,041 599 288 2,483 5,411

As you can see, full-time employed persons have value 1 on the new variable, part-
time employed have value 2, and irregularly employed persons have value 3. All
other respondents were assigned to the missing value.

You will find more examples and a detailed description of the commands for creating
and changing variables in chapter 5. Recoding variables is probably the most time-
consuming part of data analysis, so we recommend that you spend some time learning
these commands.

1.3.18 Variable labels and value labels

Looking at the output of variable emp3 just created, you realize that the rows of the
table show the numerals 1 to 3. Without knowing what these numbers mean, you will
not know how to interpret them. Assigning labels to the variables and their values—and
even to the entire dataset—can help make their meaning clear. In Stata, you assign
labels by using the label command.

See section 5.6 for a detailed explanation of the label command. Here we will
simply show you how the label command works generally. First, let’s create a label
for the variable emp3 holding “Status of employment (3 categories)”:

. label variable emp3 "Status of employment (3 categories)"

The command is the same whether or not a label was previously assigned to the
variable. To assign value labels to the values of emp3, we type in the command below.

. label define emp3 1 "full time" 2 "part time" 3 "irregular"

. label values emp3 emp3

You may want to reenter the tabulate command used above so that you can see the
results of the labeling commands. The following command displays column percentages
and suppresses the display of frequencies:
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. tabulate emp3

Status of
employment

(3
categories) Freq. Percent Cum.

full time 2,041 69.71 69.71
part time 599 20.46 90.16
irregular 288 9.84 100.00

Total 2,928 100.00

1.3.19 Linear regression

Now that you have generated all the variables you want to include in the regression
model, the remaining task is simple. The command to compute a linear regression is
regress. Just type regress and, after the command itself, the name of the dependent
variable, followed by a list of independent variables. In the list of independent variables,
type i. in front of nominal scaled variables.

. regress income men i.emp3

Source SS df MS Number of obs = 2886
F( 3, 2882) = 112.71

Model 5.2597e+11 3 1.7532e+11 Prob > F = 0.0000
Residual 4.4830e+12 2882 1.5555e+09 R-squared = 0.1050

Adj R-squared = 0.1041
Total 5.0089e+12 2885 1.7362e+09 Root MSE = 39440

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

men 12754.37 1675.482 7.61 0.000 9469.105 16039.63

emp3
2 -15295.93 2074.688 -7.37 0.000 -19363.95 -11227.9
3 -28981.25 2688.387 -10.78 0.000 -34252.61 -23709.89

_cons 30950.82 1410.999 21.94 0.000 28184.15 33717.49

The average annual income of respondents with values of zero on all independent
variables—that is, the full-time working women—is e 30,950.82. Their part-time work-
ing colleagues earn on average around e 15,295.93 less. Irregularly employed women earn
on average e 28,981.25 less than full-time employed women, and hence only e 1,969.57
per year. Independent of the income differences between the three categories of employ-
ment, men still earn on average e 12,754.37 more than women. Therefore, the income
inequality between men and women cannot be explained by the higher proportion of
part-time working women in the data file.

The validity of these conclusions depends on many different factors, among which
are several statistical aspects that we will address in chapter 9.
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1.4 Do-files

Suppose that the regression results computed in the preceding section are interesting
enough that we want to keep them. When analyzing data, you want to make sure you
can reproduce the results. We will discuss this basic rule of scientific work in chapter 2,
but some of its aspects are so important to us that we want to introduce the basic
procedure at this point.

To begin, type the command

. doedit

This command calls the Stata Do-file Editor, which allows you to create and modify
Stata do-files and other ASCII text files. You can also use any text editor, such as
Notepad, TextPad, UltraEdit, or (X)Emacs.4

The Do-file Editor is in the foreground. It is basically an empty sheet in which you
can enter any text—including, of course, Stata commands, which is what we want to
do now. To begin, type the following lines:

begin: an1.do
1: use data1, clear
2:

3: mvdecode income, mv(0=.a)
4:

5: generate men = 1 if sex == 1
6: replace men = 0 if sex == 2
7:

8: generate emp3 = emp if emp <= 2
9: replace emp3 = 3 if emp == 4
10:

11: label variable emp3 "Status of employment (3 categories)"
12: label define emp3 1 "full time" 2 "part time" 3 "irregular"
13: label values emp3 emp3
14:

15: regress income men i.emp3
end: an1.do

Be sure that you type only the plain text. Do not type the solid lines, an1.do, or the
numbers with the colons at the beginning of each line. We have indicated the text to
be entered by placing it between the two solid lines. The line numbers help us refer
to specific lines in text files. The word an1.do shown at the top is the filename under
which you should save your text when you finish.

The lines you typed are the commands that you will need to reproduce the regression
analysis. The only new thing here is the option clear in the use command, which is
needed because there are already data in memory that need to be replaced by the
dataset you want to use.

4. See http://fmwww.bc.edu/repec/bocode/t/textEditors.html for a discussion of different text edi-
tors.
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Now save the text using the filename an1.do. Make sure that you save the file in the
same directory that you are using while working with Stata. (If you followed our earlier
suggestion, this will be c:\data\kk3.) To save the file with the Stata Do-file Editor,
select File > Save As..., or choose its equivalent if you use another text editor. In
many Windows editors, you must specify the file type to be saved; be sure to save it as
an ASCII text file with a .do extension.

Now switch back to Stata by clicking on any Stata window. Another way to switch
between an editor and Stata is to use the key combination Alt+Tab. (On a Mac
keyboard, you use the key combination command+Tab.)

As soon as you are back at the Stata command line, type

. do an1.do

You should see a list of all the Stata commands you entered in the Do-file Editor. The
command do causes Stata to execute the do-file that contains all the Stata commands
that you want to execute, so to run the do-file an1.do, you typed do an1.do. However,
you can omit the extension .do and simply type do an1; Stata will understand that
you are running a do-file (see section 3.1.8). If you are still in the Do-file Editor, you
can select Tools > Execute (do).

If you saw an error message, you most likely made a typing error in your do-file.
As soon as Stata detects an error, it stops executing the do-file and displays the corre-
sponding error message. In this case, switch back to your editor and carefully check the
commands you entered. Correct the error, save the file, and switch back to Stata. Try
the do-file again. Remember that you can repeat a command by pressing Page Up. It
might be a good idea to repeat the sequence of switching to an editor, saving, switching
back to Stata, and executing the do-file a few times, to make it a habit.

If you received the error message

file an1.do not found
r(601)

you may not have saved an1.do in the correct directory. You can check whether the file
is in your current working directory by typing

. dir an1.do

If an1.do does not appear in the list, type

. pwd

to determine the location of your current working directory. Then switch back to your
editor and save the file in the correct directory.
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1.5 Exiting Stata

Now you are at the end of your first Stata session. Before you quit, save all the com-
mands you typed in this session. You save the commands by right-clicking anywhere
in the Review window, selecting Save All... from the pulldown menu, and saving the
contents to the file an1cmd.do. Make sure that this file is stored in the same working
directory you have been using during this session! We will come back to this file in the
next chapter.

Now you can finish your first Stata session. Type the command exit.

. exit
no; data in memory would be lost
r(4);

Well, that is obviously not the way to do it. The reason is that commands like
generate and replace have changed the data. Exiting Stata without saving the changes
in the dataset would cause those changes to be lost forever. To do this, you must
explicitly request that Stata exit without saving your changes by using the clear option.
If you want to save the data, you can use the save command. You should specify a
filename after save, and it is fine to use a new filename, such as mydata:

. save mydata

The file will be saved in the current working directory with the name mydata.dta.
If you pick a name that is already in use for another file, you will get an error message.
Stata tries to ensure that you do not accidentally overwrite data. The only way to
overwrite a file is to use the option replace, for example, save mydata, replace.

In most cases, you should avoid using the command save, replace, which will use
the name of the file you currently have loaded and cause an irreversible loss of the
original version of the data.

Now that you have saved the file, you can exit Stata with exit.

You do not really need to save the changes to the data because you have already
saved the commands that created the changes. You can reproduce the current state of
your work by running the do-file again on the original data. If you do not want to save
the file—and we recommend that you not save it (see chapter 2)—you can simply exit
Stata by typing

. exit, clear
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1.6 Exercises

1. The command cd changes the working directory to the specified drive and direc-
tory. Explore the command by changing Stata’s working directory to the following
directories:

For Windows users

a. c:\Documents and Settings\All Users\Desktop

b. Starting from the desktop, go up one directory in the directory tree.

c. c:\Program Files

d. c:\data\kk3\

For Linux users

a. ~/Desktop

b. Starting from the desktop, go up one directory in the directory tree.

c. /usr/local

d. ~/data/kk3/

2. Try the following commands. Write a short description of the task they perform:

a. copy

b. mkdir

c. type

d. winexec

3. Load data1.dta into memory and try the following commands. Again write a
short description of the task they perform:

a. codebook

b. inspect

c. browse

d. edit

e. lookfor

4. Find the Stata commands to execute the tasks listed below. Give an example with
data1.dta for each of these commands (you do not need to understand what the
commands actually do).

a. Delete variables

b. Chi-squared test for bivariate tables

c. Correlation matrix

d. Cronbach’s alpha

e. Factor analysis

f. Kernel density estimation

g. Locally weighted scatterplot smoother





2 Working with do-files

Science claims to be objective. A central criterion for objectivity is intersubjective
traceability (Popper 1994, 18); in other words, other people should be able to confirm
the results by using the same methods or to criticize the results on the grounds of
problematic details. This requires that you diligently document every decision you
make during your research.

Few areas of scientific work are as easy to document as statistical data evaluation,
yet every now and then, some students cannot show how they obtained a particular
result. This problem is not restricted to students. When trying to reproduce 62 em-
pirical economic studies from the renowned Journal of Money, Credit, and Banking,
Dewald, Thursby, and Anderson (1986) found that only 22 of the addressed authors
provided their data and programs. Twenty of them did not reply, and for 20 others, the
data did not exist. Only one of the 22 articles for which the data and programs were
available was well documented.1

Poor organization is likely the cause of the cases of nonexistent data and the 21
analyses that were badly, or not at all, documented. This chapter will show you how to
prevent such problems by using do-files. As discussed in section 1.4, do-files are simple
text files containing Stata commands that are executed one after the other. Using do-
files is the best way to guarantee reproducibility, but you must take care to organize
your do-files properly.

2.1 From interactive work to working with a do-file

Even though do-files are important, we usually begin our analyses interactively. We try
different models, delete outliers, transform variables, construct indices, and so on. As
you work on an analysis, you should, however, try to document the essential steps you
take in a do-file so you can reproduce them later. Stata provides two ways to record
your steps.

1. Quoted from Diekmann (1998).

25
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2.1.1 Alternative 1

At the end of chapter 1, we asked you to right-click on the Review window and save
the review contents to the file an1cmd.do. Once you save the review contents to a file,
you can produce a do-file from those saved commands. To do this, type the following
command:2

. doedit an1cmd.do

The doedit command opens the Stata Do-file Editor. If you specify a filename with
the command, that file is opened in the Do-file Editor. If you did not follow our example
in chapter 1, you can open the file an1cmdkk.do, which you previously downloaded; see
the Preface. Your file an1cmd.do should look something like our an1cmdkk.do, the first
several lines of which contain

begin: an1cmdkk.do
1: d
2: describe
3: cd c:\data\kk3
4: dir
5: dir *.dta
6: use data1
7: describe
8: drop ymove - xweights
9: list

end: an1cmdkk.do

Whatever your file looks like, it reproduces the commands you typed while following
the examples in chapter 1. It is a list of Stata commands, and hence nearly a complete
do-file. But you will want to remove any commands that you do not need. Most
obviously, you will want to remove all commands that returned an error. Those are
spotted quickly if you scan for commands that were entered two times in a row; the
second command usually will then be the correct one.

Some commands are unnecessary in a do-file, such as describe, list, and variations
of summarize. The only really essential commands in our example are those that are
directly related to the regression analysis, that is, those needed to reproduce the results
or those that deliver important extra information. Decide for yourself which commands
you want to delete. This is what your file might look like after you have deleted some
commands:

2. Remember that your working directory is c:\data\kk3. For details, see page 3.
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begin: an2.do
1: use data1
2: drop ymove - xweights
3: summarize income
4: mvdecode income, mv(0=.a)
5: sort sex
6: by sex: summarize income
7: summarize income, detail
8: generate men = 1 if sex == 1
9: replace men = 0 if sex == 2
10: generate emp3 = emp if emp <= 2
11: replace emp3 = 3 if emp == 4
12: label variable emp3 "Status of employment (3 categories)"
13: label define emp3 1 "full time" 2 "part time" 3 "irregular"
14: label values emp3 emp3
15: regress income men i.emp3

end: an2.do

This do-file could now be run in Stata without error.

Before we discuss a second way to save your work as a do-file, please save your
current file as a do-file. We recommend that you name it an2.do. Make sure that you
save the file in the directory (for example, c:\data\kk3) in which you are working in
Stata with this book.

2.1.2 Alternative 2

In the previous section, you preserved your interactive work by saving the contents of the
Review window. Another way to preserve your work is to use the cmdlog command. We
will show you an example of how to use this command, but be aware that the example
uses advanced statistical techniques. Do not worry about the statistics; just concentrate
on creating the do-file.

Our example extends the analysis from chapter 1, where we found that women
generally earn less than men do. A multiple regression model showed that this inequality
is only partly due to the higher rate of part-time employment among women.

You, however, still have doubts about your results. You argue:

• The income of the working population increases with age. At the same time,
women are still more likely than men to give up working in favor of family respon-
sibilities. The group of working women therefore is proportionally younger and
therefore earns less than the group of working men.

• The income inequality between men and women is dying out. For many years,
women ranked the objective of a career lower than that of starting a family, re-
sulting in generally lower professional ambition and correspondingly lower incomes
for working women. The situation is different today, with young women pursuing
their careers as ambitiously as men do, so the income inequality is found only
among older women.
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To verify these hypotheses, you must first determine the necessary steps of the
analysis. You can start by doing some interactive trials. Change to the Stata Command
window. Before you begin, you should reproduce your original findings. To save some
typing, we have made creating the two new variables slightly more elegant. You can
find out more on page 80.

. use data1, clear

. mvdecode income, mv(0=.a)

. generate men = sex == 1

. generate emp3 = emp if emp!=5

. regress income men i.emp3

Now you can begin to turn your hypotheses into analyses. Because you already
know that your trials should result in a do-file, you should record your interactive
session. Type the following command:

. cmdlog using an2.do
file an2.do already exists
r(602)

Typing cmdlog using instructs Stata to create a file in which all subsequent com-
mands will be recorded. Along with the command, you must specify the name of the
file to be created (here an2.do). If you do not type the filename extension (.do), Stata
will use the extension .txt.

An error message then informs you that the file an2.do already exists, which is true
because you saved such a file above (page 27). As always, you cannot lose data in Stata
unless you explicitly request to lose them. You can use the replace option to overwrite
the previous do-file with a new one. However, that would not be good advice in this
case. The file an2.do contains all your analyses up to now, which you would also like
to keep. You need to use a different name, or better still, add the subsequent analysis
directly to the previous analyses already saved in an2.do. This is what the option
append is for:

. cmdlog using an2.do, append

You think the results are biased because young women with low incomes make up
much of the group of working women. You should therefore control for age by creating
an age variable from the year of birth:

. generate age = 2009 - ybirth

You should center the age variable (a continuous variable), that is, subtract the mean
from every value; otherwise, the constant in the multiple regression gives you the esti-
mated average income of 0-year-olds, which has no use.

When centering your age variable, you should subtract the mean age of those cases
for which you run the regression analysis. These are the working persons with valid
values for all the variables used in the regression model. There are many ways to do
this, which we encourage you to find for yourself. If you like, you can type the command
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. cmdlog off

You can then try out commands, which will not be saved in an2.do. When you have
found a solution, type

. cmdlog on

and retype the command you want to use. After you type cmdlog on, your entries are
once again saved in an2.do.

To center age based on the observations in the model, we take advantage of the
function missing() to summarize age for those observations that are not missing on
the variables used in the regression model (income and emp3):

. summarize age if !missing(income,emp3)

Variable Obs Mean Std. Dev. Min Max

age 2886 44.0395 11.227 18 87

Afterward, we create the new variable age c, in which the mean age (44.0395) is
subtracted from the age of every person:3

. generate age_c = age - 44.0395

For the second hypothesis, you believe that income inequality is not an issue among
younger persons. This can be modeled by what is called an “interaction effect”, which
we will describe thoroughly in section 9.4.2. The easiest way to create interaction
effects in regression models is with factor-variable notation, which we will describe in
sections 9.4.1 and 9.4.2. For now, it is enough to type the following command.

. regress income i.emp3 c.men##c.age_c

Source SS df MS Number of obs = 2886
F( 5, 2880) = 78.38

Model 5.9995e+11 5 1.1999e+11 Prob > F = 0.0000
Residual 4.4090e+12 2880 1.5309e+09 R-squared = 0.1198

Adj R-squared = 0.1182
Total 5.0089e+12 2885 1.7362e+09 Root MSE = 39127

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

emp3
2 -16120.07 2076.971 -7.76 0.000 -20192.57 -12047.57
4 -29188.95 2669.66 -10.93 0.000 -34423.58 -23954.31

men 12151.78 1668.855 7.28 0.000 8879.512 15424.05
age_c 190.1975 94.01761 2.02 0.043 5.84891 374.5461

c.men#c.age_c 412.3474 130.3497 3.16 0.002 156.7592 667.9356

_cons 31363.58 1408.624 22.27 0.000 28601.57 34125.6

3. A much more elegant way of centering variables can be found in chapter 4.
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Now you can evaluate your hypotheses: The model fits the mean annual income of
average-aged, full-time working women as e 31,363.58. The coefficient of 190.1975 for
the variable age c implies that the mean income of women increases by e 190.20 for
each 1-year increase in age. For men, the net effect of a 1-year increase in age is equal
to the coefficient on age c plus the coefficient on the interaction term c.men#c.age c

(412.3474), which equals 602.5449. Hence, the mean annual income of men increases by
e 602.54 for each 1-year increase in age. Therefore, the income inequality between men
and women, which at the mean age amounts to e 12,151.78, is higher among the older
interviewees and lower among the younger interviewees.

This result also seems interesting enough to be preserved in a reproducible way.
Because you have recorded your commands, that is no longer a problem. Close the log
file, and change back to the Do-file Editor:

. cmdlog close

. doedit an2.do

You find the commands you entered last at the end of the file an2.do. The commands
are already formatted for a do-file. Only faulty commands need to be deleted.

You might need to make some cosmetic changes to your do-file, which we will explain
next.

2.2 Designing do-files

The do-file below should be very similar to your an2.do except that it will include some
modifications: comments, line breaks, and some Stata commands that are useful for
do-files. The do-file below also includes line numbers, which are not part of the do-file
but are there to orient you when we talk about specific parts of the file. In the following
paragraphs, we will walk you through these modifications.

begin: an2.do
1: * Income inequality between men and women in Germany (GSOEP-data)
2: * ---------------------------------------------------------------
3:

4: version 12
5: set more off
6: capture log close
7: log using an2, replace
8:

9: * Data: Subsample of GSOEP 2009
10: use data1, clear // -> Note 1
11: drop ymove - xweights
12:

13: * Descriptive statistic of income
14: summarize income
15: mvdecode income, mv(0=.a) // -> Note 2
16: sort sex
17: by sex: summarize income
18: summarize income, detail
19:



2.2.1 Comments 31

20: * Employment by sex
21: tabulate emp sex, colum nofreq // -> Note 3
22:

23: * Preparation for regression analysis
24: generate men = sex == 1 // Dummy for gender
25: generate emp3 = emp if emp!=5 // -> Note 4
26: label define emp3 ///
27: 1 "full time" ///
28: 2 "part time" ///
29: 3 "irregular"
30: label values emp3 emp3
31:

32: * Regression analysis I
33: regress income men i.emp3
34:

35: * Preparation for regression analysis II
36: generate age = 2009 - ybirth // Age
37: summarize age if !missing(income,emp) // -> Note 5
38: generate age_c = age - r(mean)
39:

40: * Regression analysis II
41: regress income i.emp c.men##c.age_c
42:

43: log close
44: exit
45:

46: Description
47: -----------
48:

49: This is an analysis of income inequality between men and women in Germany.
50: Hypotheses: see Kohler/Kreuter (2012, ch. 1-2). The higher amount
51: of part-time working women is not a sufficient explanation for the inequality
52: in average income between men and women. In addition, even though there
53: is a higher income inequality among older people, younger women
54: are still affected.
55:

56: Notes:
57: ------
58:

59: 1) SOEP - Education sample of samples A-D and F without random group 5
60: (created with crdata1.do).
61: 2) Respondents with zero incomes are excluded from further analysis.
62: 3) Women are more often part-time employed than men. It is reasonable to
63: control for employment status.
64: 4) This command excludes all respondents who are not employed.
65: 5) Centering the age variable: see Aiken/West (1991).

end: an2.do

2.2.1 Comments

One change in an2.do is that we included comments to make it easier for you to under-
stand the do-file. Using comments, you can insert titles, explain why an analysis was
carried out, or attach keywords to the results.

There are three ways to add comments. 1) You can add a comment line by putting
an asterisk (*) at the beginning of the line; see lines 1, 2, and 9 of an2.do for an example.
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2) You can also add comments within a line by adding //. Everything that is written on
a line after // is ignored when running the do-file; see lines 10, 15, and 24 for examples.
3) You can use the /* */ syntax to add comments; Stata ignores everything between
/* and */, including line breaks, when running a do-file.

2.2.2 Line breaks

Now please take a look at the command label define in line 26 of an2.do. The
command label define is an example of a command that can be very long. This
is not a problem for Stata; it can deal with such long lines. But avoiding long lines
makes your do-file more readable. Moreover, some text editors might split long lines
into several lines, causing Stata to produce an error when running your do-file. So it is
a good idea to restrict lines to 75–80 characters.

For long commands, you may have to continue the command over several lines. In
Stata, commands end with a line break. If you put a line break at the end of a line and
write part of a command on the next line, Stata thinks that you have already entered
the entire command in the first line and interprets the second line as a new command.

There are two ways to continue commands over more than one line. The first method
is to add three slashes, as shown in lines 26, 27, and 28 of our example do-file. You
already know that after //, everything up to the line break is interpreted as a comment—
but the line break itself is interpreted as a line break. With ///, the line break is part
of the comment, so Stata does not notice the line break, and the command continues
on the next line.

The second method to continue commands across lines is by using the #delimit

command. #delimit defines the character that indicates the end of a command. You
can use either a line break (the default) or a semicolon. You can change delimiters
within do-files. For example, you could type

#delimit ;
label define emp
1 "Full-time"
2 "Part-time"
3 "Retraining"
4 "Irregular"
5 "Unemployed"
6 "Milit. serv."
7 "N. working";

#delimit cr

Typing #delimit ; changes the character marking the end of the command to the
semicolon. The label define command now spans several lines. Typing #delimit cr

changes the delimiter back to the line break (carriage return).

Some Stata users always use the semicolon to mark the end of commands in do-files.
We do not do this because we often run only extracts of our do-file, which is much more
cumbersome to do when using the semicolon as the command delimiter.
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2.2.3 Some crucial commands

Some commands are recommended in all do-files. Every do-file should begin with a
series of similar commands:4

begin: an2.do
"

4: version 12
5: set more off
6: capture log close
7: log using an2, replace

end: an2.do

With version, you specify the version of Stata for which the do-file was written.
By doing so, you ensure that your do-file will still run without errors in future versions
of Stata. When you include the command version, Stata works the same way as the
specified version for the duration of the do-file. Thus version should always be the
first command in a do-file.

After the version command, the sequence can vary. In our example, we have first
deactivated the partitioned display of output. With set more off, the do-file runs
without interruption. However useful it may be to break up the output into screen
pages in interactive sessions, it is useless when you are running a do-file—at least if you
are saving the results of the do-file in a file. You do not need to undo this setting at
the end of the do-file. The specification is valid locally, that is, only for the do-file.

Now you should ensure that the results of your do-file are actually saved in a file.
Generally, you will use the log using command for this, which is why we call files
with Stata results “log files”. (We make sure that no log file is already open with
the capture log close command, which we explain shortly.) log using works very
much like cmdlog using. It instructs Stata to create a file in which the output of all
subsequent commands will be written. If you specify a filename, the log file will have
that name; here it is called an2. If you do not specify a filename extension, Stata uses
the extension .smcl. After you enter log using an2, everything that appears on the
screen is saved in the file an2.smcl until you enter log close.

Stata stores the results in a format called the Stata Markup and Control Language
(SMCL). With SMCL, log files stored on the hard disk display in the same format as
output in the Results window. You can view the log files by typing the view command,
which opens a new window, the Stata Viewer, containing the contents of the specified
file. For example, to view the file named an2.smcl, you type

. view an2.smcl

4. The recommendations presented here are taken from the Stata NetCourse 151. For information on
the Stata Internet courses, see section 13.1.
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SMCL is also useful for translating log files to HTML or LATEX. If you want to insert
Stata output into a word processor, such as Microsoft Word, you may want to translate
the log file to plain ASCII with translate:

. translate an2.smcl an2.log

You can even save your log files as plain ASCII from the beginning by specifying the
filename after log using with the extension .log.

Now let us return to our example do-file. Here we use log using without the
extension because we want Stata to save the log file in SMCL. We always use the same
filename for the log file as for the do-file; that is, the do-file an2.do stores its results in
an2.smcl. Because the file an2.smcl may already exist—maybe created by an earlier
version of an2.do—you should specify the replace option to overwrite the obsolete log
file.

The log using command does not directly follow the set more off command.
Instead, we use the log close command to ensure that no log file is already open.
However, we placed capture before the log close command. If a log file had not
been open when we ran the do-file, entering log close would have resulted in an error
message—and aborted the do-file. So we included the capture command before the
log close command. capture forces Stata to ignore the error message and continue
running the do-file.

You can place capture before any Stata command to cause Stata to ignore any
error messages from that command and continue running the command. In this case, it
ensured that the do-file would continue to run if there were no open log file to be closed.
Usually, you will not want to capture error messages; if a command does not work
properly, you will want to know about it. However, using capture with log close

within a do-file is an exception because log close leads to an error message only if no
log file is open. In this case, you do not need log close, and the do-file can simply
continue with the next command, here log using an2, replace.

If you had omitted capture log close, an error message would occur every time
you ran this do-file with a log file already open. This can happen if you have previously
written some interactively entered commands in a log file and have forgotten to close
the log file.

The end of every do-file should contain the following commands:

begin: an2.do
"

43: log close
44: exit

end: an2.do

log close, as we explained, is necessary for closing the previously opened log file.
log close is executed only if the do-file runs without errors. If the do-file does not run
completely because of an error, the log file remains open.
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exit is more interesting. Although chapter 1 presented exit as a command for exit-
ing Stata, in do-files exit ends the do-file and returns you to the interactive command-
entry mode. In fact, typing exit in a do-file is not necessary, but there are two good
reasons for doing so. First, the last command in a do-file must include a line break.
Had we not pressed Enter after typing log close, the log file would not have been
closed, and everything we did after the do-file was finished would also be logged. By
including the exit command in our do-file, we ensure that the previous command ends
in a line break. Second, Stata stops executing do-files as soon as the exit command
is reached, which allows us to include notes at the end of the file without having to
use the comment syntax mentioned previously. Notice our description of the file and
implementation notes at the end of our example do-file.

2.3 Organizing your work

Creating concise and easy-to-read do-files is only the first step toward achieving repro-
ducibility of analyses. The second step is a suitable work plan to ensure that

• important files are not lost,

• you can find your do-files for a particular result again without problems,

• all steps are clearly documented, and

• all analyses can be reproduced easily.

To fulfill these objectives, we suggest the following procedure, which you can tailor
to your needs, based on the distinction between two types of do-files: creation do-files
and analysis do-files.5

It is impossible to distinguish completely between these two types of files. In an
analysis do-file, the datasets may still need to be edited, but we try to avoid this and do
as much editing as possible in the creation do-files. We will never use a creation do-file
to carry out an analysis, and we will never save a dataset with an analysis do-file.

This distinction is useful only if it can be inferred from the filenames. For this
reason, the names of all of our creation do-files begin with the letters cr, whereas the
names of analysis do-files begin with the letters an.

The results of the analysis do-files are always recorded in a log file, which has the
same name as the do-file but with the extension log or smcl—whichever you prefer.
The analysis do-file we created in this chapter is called an2.do. It creates the log file
an2.smcl.

You use creation do-files to create new datasets. This means that we read in a
certain dataset, create new variables, recode existing variables, or delete observations

5. We have taken this suggestion from the Stata NetCourse 151. For details on the Stata Internet
courses, see section 13.1. Also see Long (2009) for an alternative proposal.
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and variables, etc. We then save the newly created dataset as a data file that has the
name of the creation do-file without the letters cr. For example, we are using for most
of our examples in this book a dataset from a creation do-file called crdata1.do.6 The
data file associated with the do-file crdata1.do therefore has the name data1.dta.

The separation of creation and analysis do-files makes sense only if you are going to
use a particular dataset for several analyses. Modifications of a dataset that apply only
to one specific analysis are more likely to belong in the analysis do-file. Modifications
that apply to several analyses are better stored in a creation do-file because you need
to modify the file only once, saving a lot of time in some cases. You need to decide
carefully which dataset modifications you want to save in a creation do-file.

Apart from the creation and analysis do-files, our work plan comprises a further
type of do-file: the master do-file, or master file for short, which contains a list of do

commands.

When we begin a new project, we create a do-file with the name master.do. In this
do-file, we at first write only a title representing the name of our project. Because our
master file is a do-file, this title must be marked as a comment (and the file must end
with exit). The first few entries in master.do could, for example, look like this:

begin: master˙example.do
1: // Exemplary analyses for Kohler/Kreuter, Data Analysis Using Stata

"

17: exit
end: master˙example.do

Then the actual work begins.

Suppose that we were conducting an analysis to use in a fictitious book. For the
first chapter of our book, we wanted to present a small example analysis. We first
needed to clarify the nature of the problem, so we did some interactive trials and then
finally created a dataset containing data from the social sciences. To create the final
version of this dataset, we wrote a do-file called crdata1.do. Of course, it took several
attempts to create a do-file that ran absolutely error-free. Then we once again accessed
the master file, added the line do crdata1, and commented this entry:

begin: master˙example.do
1: // Exemplary analyses for Kohler/Kreuter, Data Analysis Using Stata
2: do crdata1 // creation extract of SOEP´09

"

17: exit
end: master˙example.do

After creating data1.dta from crdata1.do, we carried out a plausibility analysis;
that is, we intensively searched for errors in the dataset. Such error checking is important
to avoid recoding errors. We decided to document our error checking in a do-file so that
we can later reconstruct which error sources we checked (and which we did not). We
called this ancheck1.do. When we created this do-file, it took several attempts to get

6. For documentation, we have included crdata1.do among the files you installed.
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it to run error-free. We recorded each attempt in a log file called ancheck1.smcl, which
therefore always contained the latest results. When we could run the do-file without
error messages, we extended our master.do file as follows:

begin: master˙example.do
1: // Exemplary analyses for Kohler/Kreuter, Data Analysis Using Stata
2: do crdata1 // creation extract of SOEP´09
3: do ancheck1 // error checks in data1.dta

"

17: exit
end: master˙example.do

Inspecting the results of our error checking, as recorded in ancheck1.smcl, we no-
ticed a small error in the variable for occupational status. We corrected this in a new
creation do-file (crdata1V2.do), which in turn now creates data1V2.dta. After com-
pleting crdata1V2.do, we again checked for errors and found no more. We did this
error check with a do-file (ancheck1V2.do), and we included both do-files in the master
file and added comments:

begin: master˙example.do
1: // Exemplary analyses for Kohler/Kreuter, Data Analysis Using Stata
2: do crdata1 // creation extract of SOEP´09
3: do ancheck1 // error checks in data1.dta
4: do crdata1V2 // correction of errors in data1.dta
5: do ancheck1V2 // error checks in data1V2.dta

"

17: exit
end: master˙example.do

We then began the actual analyses. The first analysis dealt with the income inequal-
ity between women and men and is contained in an1.do. We also tested this do-file
several times before including the line do an1 in our file master.do.

These examples can be extended further. Whenever you complete an analysis, you
can add the corresponding do-file to master.do, thus reproducing the sequence of all
analyses done in the course of a project. From the comments in master.do, you can
quickly determine the rough contents of the respective analyses and reconstruct the
analysis from the beginning. You can repeat all the analyses from the beginning by
running the master do-file, although this will usually not be necessary.

Once you have added a do-file to master.do, you should not modify the do-file again.
If you discover an error in a do-file listed in the master file, correct the do-file and add it
under a new name to the end of master.do. This applies especially if you have already
carried out many analyses using a dataset that was created by a faulty creation do-file.
For example, in our example above, we found in the do-file ancheck1.do that data1.dta
contained an error. Instead of correcting the error in crdata1.do and running the do-
file again, we corrected this error in a second version of that do-file (crdata1V2.do).
We would do the same if we had already done several analyses between the time we
created the dataset and the time we discovered the error. Assume that your master file
contained the following sequence:
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begin: master˙example.do
1: // Exemplary analyses for Kohler/Kreuter, Data Analysis Using Stata
2: do crdata1 // creation extract of SOEP´09
3: do ancheck1 // error checks in data1.dta
4: do crdata1V2 // correction of errors in data1.dta
5: do ancheck1V2 // error checks in data1V2.dta

"

7: do an1 // income inequality men/women
8: do anrent // description of rents
9: do anpi // partisanship by ownership

"

17: exit
end: master˙example.do

During your current analysis, you realize that data1V2.dta contains a previously
undetected error resulting from a faulty recoding in crdata1V2.do. Instead of cor-
recting the error in crdata1V2.do, you should document the error in a do-file (for
example, anerror.do), correct it in a further do-file (for example, crdata1V3.do), and
then repeat the analyses from an1.do to anpi.do. Because you now refer to the new
dataset, data1V3.dta, you should save the corresponding modifications in an1V2.do to
anpiV2.do under new filenames and document them accordingly in the master file. The
result might then resemble the following:

begin: master˙example.do
"

7: do an1 // income inequality men/women
8: do anrent // description of rents
9: do anpi // partisanship by ownership

10:

11: // Error in data1V2, -> correction and repetition in an1 - anpi
12: do anerror // discovery of error in data1V2.do
13: do crdata1V3 // correction of errors in data1V2.dta
14: do an1V2 // corrected results of an1.do
15: do anrentV2 // corrected results of anmiete.do
16: do anpiV2 // corrected results of anpi.do
17: exit

end: master˙example.do

If you follow this procedure, you can reproduce the entire process, even the mistake
itself, at any time. You might think that this will not be useful, but a long time can
pass between the error and its discovery, and you may have cited faulty figures in your
writing (even some you have published). With the procedure we have outlined, it will
be relatively easy, even after a long time, to detect the cause of erroneous figures. There
are few things as frustrating as chasing after the determinants of a figure that no longer
correspond to the results of a current analysis.

To conserve space on your hard disk, you may not want to create many permanent
datasets. Delete every dataset that you have created with a creation do-file as soon as
you no longer need it for your current analysis. Examples are the datasets data1.dta

and data1V2.dta in the above do-file, which both had problems and were no longer
needed after we corrected them. You can delete these datasets by using the Stata
command erase. Be sure to document this in the master file:
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begin: master˙example.do
"

5: do ancheck1V2 // error checks in data1V2.dta
6: erase data1.dta
7: do an1 // income inequality men/women

end: master˙example.do

If you later want to rerun an older analysis do-file, you may see the error message
“file data1V2.dta not found”. You can, however, quickly reproduce the dataset with
the corresponding creation do-file.

Likewise, you can also delete log files and then reproduce them accurately later.
Finally, you need to make backup copies only of your do-files and the original data file.
You can reproduce all the datasets and log files you have created during your project
at any time by using the command do master.

2.4 Exercises

1. Open the Stata Do-file Editor.

2. Write a do-file that performs the following tasks:

a. opens a log file

b. opens data1.dta

c. generates a new variable with the name satisfaction that is equal to the
sum of the existing variables lsat, hsat, and dsat

d. drops all variables except satisfaction and income

e. summarizes satisfaction and income

f. saves the new dataset with the name 2erase.dta

g. closes the log file

3. Run your do-file in the following manner:

a. Use the button in the Do-file Editor two times in a row.

b. Save the do-file with the name cr2erase.do and run it from the Command
window.

c. Exit and relaunch Stata, and then start the do-file from the command line
without opening the Do-file Editor.

d. Exit Stata and copy the do-file to another directory. Relaunch Stata and
start the do-file from the command line.

4. Think of strategies to create do-files that run under all the above conditions.

5. Open and print out the log file created by cr2erase.do using the Stata Viewer.

6. Create a do-file that starts cr2erase.do, and run it.
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3.1 The elements of Stata commands

As you have seen, Stata commands are made up of specific elements. This section
describes these elements of the Stata language and the general rules governing them.
These rules apply to all Stata commands, making it easy for you to learn quickly how
to use new Stata commands.

Each element of a Stata command can be required, permitted, or prohibited. Obvi-
ously, you can use an element of a Stata command only when it is at least permitted.
The online help provides information about these elements. For example, if you look at
the online help for summarize, you will find the following syntax diagram:

summarize
[
varlist

] [
if
] [

in
] [

weight
] [

, options
]

Here you can find most of the elements of the Stata language. For example, varlist

is an abbreviation for “variable list”, which is a language element used in almost every
Stata command. if stands for the language elements “if qualifier” and “expression”.
You can use any element that is displayed in the syntax diagram. Elements displayed
in square brackets are optional; those displayed without them are required.

Now let us examine the elements one by one. We will first describe the command
itself and the variable list used in the command. We will then describe options, which
further specify the command, and qualifiers, which restrict the command processing to
subsets of the data. We will discuss weight at the end of the chapter, after we introduce
other commonly used commands.

To follow our examples, you will need to use our example dataset:1

. use data1, clear

3.1.1 Stata commands

Each Stata command has a name that specifies the task Stata should do. Commands
written by StataCorp are called official commands, and those that users write are called
user-written commands. You might want to do something in Stata and find that there is
no official Stata command for that. You may find that there is a user-written command

1. Be sure that your working directory is c:\data\kk3 (see page 3).

41
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written by someone else. Chapter 13 of this book shows you how to find and install such
additional commands; chapter 12 teaches you how to program user-written commands.

Some official commands may be abbreviated. The shortest possible abbreviation for
each command is shown in the syntax diagram of the online help with an underline
beneath the smallest part of the command that needs to be typed. You can use every
possible abbreviation between the shortest allowed up to the entire command. For
example, from the syntax diagram on page 41, you learn that you can use each of the
following abbreviations for summarize:

. su

. sum

. summ

. summa

. summar

. summari

. summariz

However, it is not always a good idea to use the shortest possible abbreviation for
each command, especially in do-files, because overusing abbreviations can make your
do-file hard to read. Table 3.1 shows some frequently used commands and their abbrevi-
ations with the shortest possible abbreviation underlined. We also show a recommended
abbreviation, but this is not always the shortest possible abbreviation and sometimes is
not an abbreviation at all. We have followed international usage drawn from postings
to Statalist (see page 469), but these recommendations are only our opinion.

Table 3.1. Abbreviations of frequently used commands

Command Recommended Usage
abbreviation

describe d Describe data in memory
generate gen Create new variables

graph graph Graph data

help h Call online help
list l List data
regress reg Linear regression

summarize sum Means, etc.
save save Save data in memory
sort sort Sort data
tabulate tab Tables of frequencies
use use Load data into memory

For ease of reading and following of examples, we try not to use abbreviations in
this book.
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3.1.2 The variable list

In most commands, you can use a variable list. Within the online help, this is indicated
by the term varlist. A variable list is a list of variable names separated by spaces.

List of variables: Required or optional

Some commands allow a variable list but do not require one, whereas others require
a variable list. You can learn whether a command requires a variable list by looking
at the online help. If the term varlist appears in square brackets, the variable list is
optional. If varlist appears without square brackets, it is required.

Many commands that do not require a variable list will use all existing variables
unless you provide a list. For example, specifying summarize without a variable list
returns the means and standard deviations of all the variables in the dataset. Other
commands redisplay their previous results if you do not provide a list of variables (for
example, regress).

Some commands require a list of variables. This is the case if you cannot repeat the
command, or if it is not possible or not useful to apply the command to all variables. If
you want to force Stata to apply these commands to all variables, you can specify all

instead of a variable list. The command drop, for example, deletes specified variables
from the dataset. Thus the command

. drop ymove ybuild

deletes the variables ymove and ybuild. You cannot reverse this command. Once you
drop a variable, the only way to get the variable back is to reload the data file. Therefore,
using drop without a varlist will not apply the drop command to all variables, because
this would mean dropping the entire dataset. If you really wanted to delete all the
variables, you would use drop all.2

Abbreviation rules

You can abbreviate the variable names in a list of variables to as few characters for
a variable as you need to identify it uniquely. For example, the variable condit in
data1.dta is uniquely identified by using the character c; no other variable in this
dataset begins with c. The variable ybirth, on the other hand, cannot be distinguished
by its first character from the variables ymove, ybuild, and yedu. You must type at
least ybi to let Stata know you are referring to ybirth.

2. If you have typed drop all right now, be sure to reload the file before you continue reading.
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In addition, you can use the tilde (˜) to omit one or more characters of a variable
name. For example, you can type

. summarize y~h

to summarize ybirth, because there is only one variable that begins with y and ends
with h.

Both types of abbreviations must match a single variable. If the abbreviation does
not uniquely identify a variable, Stata displays an error message. To specify more than
one variable, you must do so explicitly. This leads us to the second type of shortcut for
variable lists: specifying more than one variable at once. There are three ways to do so:

1. You can use a question mark to specify variables that have the same names except
for one character. For example,

. summarize pi?

summarizes all variables having names beginning with pi followed by one charac-
ter. Question marks may be used anywhere in the variable name—at the begin-
ning, in the middle, or at the end.

2. You can use the asterisk (*) as a wildcard character to specify variables that share
parts of their names but differ in one or more characters. For example,

. summarize wor* e*

summarizes all variables that begin with wor or with e, regardless of how many
characters follow. Just like question marks, wildcards may be used anywhere in a
variable name.

3. You can use a hyphen to specify a range of variables that come one after another
in the dataset. The order of the variables in the dataset can be found in the
output of the describe command. From the output of

. describe

you can see that there are some variables describing the dwellings in the dataset.
The first one is condit and the last one is eqpnrj. To summarize those variables,
you can type

. summarize condit-eqpnrj

It is easy to overuse shortcuts for lists of variables. Instead of typing

. summarize ybirth voc emp egp

you could also have typed

. su y~h v-eg

This is nice if you are working interactively. However, if you need to preserve your work
for later, the first version is easier to decipher. We recommend not using abbreviations
for variable names in do-files.
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Special listings

For some commands, you will see terms like varname or depvar in the syntax diagram.
These terms are used for variable lists that consist of one variable. These single-variable
lists are sometimes combined with general variable lists when the order of the variables
matters. For example, in the command for linear regression, you must specify the
dependent or endogenous variable by putting its name before the list of independent
variables. Here the order of the variable list matters, so the syntax diagram of the
command looks like this:

regress depvar
[
indepvars

]
. . .

The term depvar stands for the dependent variable, whereas indepvars stands for
the independent variables. As always, the order of the variables within the indepvars

does not matter.

For every Stata command that fits a statistical model, you must specify the depen-
dent variable before a list of independent variables.

3.1.3 Options

Options are used to change the default behavior of a command and are provided for
almost every Stata command. In the syntax diagram, you can see that options are
allowed if you find the word options after a comma. Below the syntax diagram, you
find a list of the options available for the specific command. The syntax diagram of
summarize, for example, allows detail, meanonly, format, and separator() options:

summarize . . .
[
, options

]

options Description

Main

detail display additional statistics
meanonly suppress the display; calculate only the mean; programmer’s

option
format use variable’s display format
separator(#) draw separator line after every # variables; default is

separator(5)

Sometimes options are required. Then you will not find a square bracket before the
comma in the syntax diagram.

You specify options by placing a comma at the end of the command and then listing
the options with spaces between them. The comma begins a list of options, but you
should not have more than one comma no matter how many options you have. The order
of the options does not matter. Here is an example for the tabulate command. In the
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tabulate syntax diagram (which you can display by typing help tabulate twoway),
you find among many others the options column and missing.

tabulate . . .
[
, options

]

options Description

Main

. . .
column report relative frequency within its column of each cell
. . .
missing treat missing values like other values
. . .

Using the column option with the tabulate command will give you the percentages
within each column of the table (column percentages) in addition to the frequencies. If
you add the missing option, the table includes respondents who have missing values on
the variables specified in the tabulate command. In the example below, 26 respondents
who refused to respond to the question and 66 persons for whom we do not know why
the information is missing are added to the table. For more information about frequency
tables, see section 7.2.1.

. tabulate wor06 sex, column missing

Key

frequency

column percentage

Worried about
consequences from Gender

climate change Male Female Total

Very concerned 664 828 1,492
25.69 29.30 27.57

Somewhat concerned 1,385 1,597 2,982
53.58 56.51 55.11

Not concerned at all 493 352 845
19.07 12.46 15.62

. 32 34 66
1.24 1.20 1.22

Refusal 11 15 26
0.43 0.53 0.48

Total 2,585 2,826 5,411
100.00 100.00 100.00
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Most options can be abbreviated, and the shortest abbreviation is underlined in the
online help syntax diagram. Some commands have a long list of options, so you should
carefully review the command-specific online help.

3.1.4 The in qualifier

The in qualifier, like the if qualifier discussed in the next section, is a command element
that limits the execution of the command to a subset of observations. The in qualifier
is allowed for every Stata command that displays

[
in
]

in its syntax diagram. The in

qualifier is composed of the word in and a range of observations specified in terms of
their position in the dataset. If you think about the dataset as a huge table with rows
and columns, the number of an observation in the dataset refers to the number of a row
in that table.

The range can be a single observation or a range from a certain observation (row)
to a second observation below the former observation. You type a slash (/) between the
first position and the final position in the range.

For example, you can look at the person ID, the gender, and the year of birth of the
10th observation in the dataset by restricting the command list to that observation:

. list persnr sex ybirth in 10

persnr sex ybirth

10. 29101 Female 1954

And you can get the same information for observations 10–14 by using

. list persnr sex ybirth in 10/14

persnr sex ybirth

10. 29101 Female 1954
11. 29102 Male 1956
12. 29103 Male 1985
13. 34901 Male 1951
14. 34902 Male 1955

There is no other way to specify a range other than those shown in these two ex-
amples. You cannot specify lists of observations or combinations of ranges. Commands
such as list sex in 1 15 26 or list sex in 1/10 16 would result in an error mes-
sage. However, you can use a minus sign to specify a range:
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. list persnr sex ybirth in -5/-1

persnr sex ybirth

5407. 11104701 Female 1963
5408. 11109701 Male 1934
5409. 11116001 Female 1937
5410. 11119401 Male 1984
5411. 11126401 Female 1938

Here -1 means the observation on the last line of the dataset, that is, the last
observation. Correspondingly, -5 means the fifth observation from the last, so the
command above shows the last five observations of the dataset. If the data have been
sorted by year of birth, these will be for the youngest five persons.

When you use the minus sign, do not to confuse the order within the range. The fifth-
to-last observation precedes the last observation in the dataset, so you need to insert -5
before -1. The command list persnr sex ybirth in -1/-5 would be invalid. As
long as you account for the order of the observations, you can even use combinations of
the count order:

. list persnr sex ybirth in 5406/-5

is valid, because the fifth-to-last observation is 5,407th and therefore is after 5,406th.
Instead of 1 and -1, you can use f and l to indicate the first and last observations in
the dataset.

3.1.5 The if qualifier

The if qualifier is allowed for every Stata command that displays
[
if
]

in its syntax
diagram. Like the in qualifier, the if qualifier is used to run a command only with
data from certain observations. The if qualifier is composed of the word if and an
expression. To take full advantage of the if qualifier, you need to be familiar with
expressions; see section 3.1.6.

A command with an if qualifier uses only those observations for which the expression
is true, or more precisely, for which the expression is not zero.

In chapter 1, we showed a simple example using the if qualifier:

. summarize income if sex == 1

Variable Obs Mean Std. Dev. Min Max

income 2320 28190.75 47868.24 0 897756

In this example, the if qualifier is if sex==1. Note the double equal-sign. With
this if qualifier, we tell Stata to evaluate the expression sex==1 for each observation in
the data and to use only observations for which the expression is true (not zero).
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We have been speaking generally, but let us look at this example in more detail.
First, let us again look at the income and gender of observations 10–14 of our dataset:

. list income sex in 10/14, nolabel

income sex

10. 31902 2
11. 50391 1
12. 4807 1
13. 34805 1
14. 46664 1

In the first row of the output, we find an observation with an income of e 31,902 and
a gender of 2. We wonder what the expression sex==1 evaluates to for this observation.
We would probably say that the expression is false for this observation, but in Stata-
talk, the expression evaluates to 0 for this observation. For the second observation, you
would say that the expression sex==1 is true, whereas Stata says that the expression
evaluates to 1.

If you add an if qualifier to a command, Stata evaluates the expression for every
observation in the dataset the same way we just did. Stata then executes the command
for all the observations for which the expression is nonzero.

Because the if qualifier consists of the word if and an expression, the general rules
for expressions apply (see section 3.1.6). In practice, however, you will most often build
expressions that can be true (1) or false (0). Such expressions usually will contain
relational operators. Here are just three examples. First, the command

. summarize income if ybirth < 1979

shows the mean income for respondents who were born before 1979. All of these obser-
vations have a value for year of birth that is smaller than 1979. We can extend the first
command to

. summarize income if ybirth <= 1979

showing the mean income for respondents born in 1979 and before. The command

. summarize income if ybirth != 1979

shows the mean income of all respondents except those born in 1979 (which would also
include those where ybirth was missing, because missing values are also not equal to
1979). Finally, the command

. summarize income if ybirth != 1979 & !missing(ybirth)

would summarize the income of all of those not born in 1979 only among those who had
a nonmissing year of birth.
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We wrote above that a command with an if qualifier uses only observations for
which the expression is not zero. You can take this literally by stating an if qualifier
like this:

. summarize income if income

With this command, Stata summarizes income for all observations for which the ex-
pression behind if is not zero. These are respondents who have a value on income that
is not zero. Note carefully that missings are counted as being not zero, too. However,
in this case, missings on income are discarded from the analysis because the command
in front of the if-qualifier discards them anyway.

The way we have coded the last command is very useful in connection with dummy
variables, that is, variables that only contain values 0 and 1. In chapter 1, we created
such a dummy variable with

. generate men = 1 if sex==1

. replace men = 0 if sex==2

which allows us to code

. summarize income if men

to summarize the income of men.3

There is one trap associated with the if qualifier that you should be aware of—and
you might want to mark this paragraph with the brightest color you have. The difficulty
arises in expressions that contain the name of a variable with missing values, which are
set to +∞ in Stata. Expressions having the relational operator > or ≥ therefore evaluate
to 1 for observations with missing values.

Take this command, for example:

. tabulate edu, missing nolabel

Education Freq. Percent Cum.

1 1,836 33.93 33.93
2 1,571 29.03 62.96
3 266 4.92 67.88
4 977 18.06 85.94
5 533 9.85 95.79
.a 228 4.21 100.00

Total 5,411 100.00

3. This would also summarize income for those respondents with a missing value on men if there had
been missing values on sex or men in our data.
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We see that the variable edu—representing education—contains 977 + 533 = 1,510
nonmissing observations with an education greater than or equal to 4 (whatever that
means). There are 228 more observations for which the education is listed as .a, which
is one of several ways to code that we have no information about the education of those
persons. And we can see the dot only because we used the missing option with the
tabulate command.

Now let us summarize the year of birth for those observations having an educational
level of 4 or higher:

. summarize ybirth if edu >= 4

Variable Obs Mean Std. Dev. Min Max

ybirth 1738 1965.155 18.41194 1912 1992

Here we get a table based on 1,738 observations instead of 1,510. This is because the
228 observations with missing values are set to +∞ inside Stata, and +∞ clearly is
higher than 4.

To summarize the observations without including the respondents with unknown
education, we need to exclude them explicitly. We can do this by stating complicated
expressions. Now we will explain expressions in more detail.

3.1.6 Expressions

Expressions are allowed or required wherever the syntax diagram of a Stata command
displays the term exp, so expressions can be used at different places within a Stata com-
mand. A short version of the syntax diagram of the generate command, for example,
looks like this:

generate newvar = exp
[
if
] [

in
]

This command requires an expression after the command name. Expressions can also
be found at several other places in the Stata language.

Think of an expression as an arithmetic problem, such as 2 + 3. With Stata, this
problem is easy to solve because Stata ships with its own pocket calculator: the display
command.

. display 2+3
5

That was a snap! Just like every pocket calculator, the display command calculates ex-
pressions and displays the result. And as with most pocket calculators, we can calculate
somewhat more complicated expressions by combining operators and functions.
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Operators

For an overview of the operators used in expressions, see the online help:

. help operators

From this list, we see that we can easily calculate the following expressions:

. display 2-3
-1

. display 2*3
6

. display 2/3

.66666667

. display 2^3
8

We can combine more than one expression, and we can use parentheses to change the
order of the calculations:

. display 2*3 + 2/3 - 2^3
-1.3333333

. display 2*(3 + 2)/(3 - 2)^3
10

Using expressions with logical and relational operators may seem complicated, but
it is easy: expressions with relational operators can be true or false, corresponding to 1
or 0, respectively, in Stata.

Stata uses a double equal-sign to test for equality.4 That is, the expression 2==3

makes Stata determine if 2 and 3 are equal:

. display 2==3
0

. display 2==2
1

As you can see, Stata says that the expression 2==3 is 0 because this expression is
not true: two does not equal three. The expression 2==2 on the other hand is true and
therefore evaluates to 1.

The logical operators are most often used to combine different expressions containing
relational operators, just like the expressions 2==3 and 2==2. Suppose that you wanted
to find out if both expressions are true. You would have Stata evaluate if expression 1
and expression 2 are true:

. display 2==3 & 2==2
0

4. A single equal-sign instructs Stata to make two things equal. Single equal-signs cannot be used in
expressions.
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To find out if at least one of the expressions is true, you would have Stata evaluate
if expression 1 or expression 2 is true:

. display 2==3 | 2==2
1

You can use many operators in an expression. If you build complicated expressions,
you should use parentheses to indicate the order in which to perform the calculations—
even if they are not strictly needed.

Stata expressions can also deal with strings (words and letters) if they are enclosed in
quotation marks. Let us give an example by asking Stata the following crucial question:

. display ("SPSS"=="Stata")
0

Now we know that this is wrong.

Finally, let us illustrate some uses of expressions with operators in if qualifiers. To
start with, each of the commands

. summarize ybirth if edu == 4 | edu == 5

. summarize ybirth if edu >= 4 & edu <= 6

. summarize ybirth if edu >= 4 & !missing(edu)

summarize ybirth for observations with values on edu above 4 without blundering into
the trap of including the missing value. The command

. summarize yedu if (2009 - ybirth) < 18

summarizes yedu for all respondents below the age of 18, while

. summarize yedu if !((2009 - ybirth) < 18)

summarizes yedu for all respondents who are not below the age of 18. Prefixing an
expression with the logical operator for “not” also works for expressions with dummy
variables. The command

. summarize income if !men

summarizes income for all respondents who are not men (that is, respondents who
are women). Again, if our data had missing value on gender, this would also include
respondents for whom the variable men is missing, because for those, the value of men
is not equal to 1.

If you have more than just one dummy variable, this approach can be further ex-
tended. To illustrate, we create a dummy variable for full-time employment:

. generate fulltime = 0 if !missing(emp)

. replace fulltime = 1 if emp == 1
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We summarize the labor earnings of full-time employed men with

. summarize income if men & fulltime

Likewise, the average labor earning of full-time employed women and not full-time
employed men and women can be obtained with

. summarize income if men & !fulltime

. summarize income if !men & fulltime

. summarize income if !men & !fulltime

Functions

Other important tools for building expressions are Stata’s functions, which are rules
that assign one specific value to each of a range of given values. A simple function can
be expressed as f(x) = 1. This function assigns the value 1 to every number x. A
slightly more complicated function is f(x) =

√
x, which assigns the square root of x to

every number x. Here we will deal only with such nontrivial functions.

Stata has many predefined functions, including the square root, the logarithm, and
the exponential. All of these functions consist of a function name followed by an argu-
ment within parentheses: function name(argument).

The function name describes its purpose. sqrt() calculates the square root, ln()
calculates the natural logarithm, and so on.

The argument specifies the values for which the function should be calculated. The
argument is itself an expression; that is, you can use simple numbers or complicated
expressions of functions and operators inside the parentheses.

Let us try some examples of expressions with functions. The following commands

calculate
√

2,
√

2 + (3/5), and e
√

|−1|, respectively:

. display sqrt(2)
1.4142136

. display sqrt(2 + 3/5)
1.6124515

. display exp(sqrt(abs(-1)))
2.7182818

You can find out about all of Stata’s functions by typing

. help functions

Depending on your statistical knowledge, you may find this list too large to com-
prehend. However, if you read on, you will find us introducing more and more of these
functions whenever they came in handy. For now, we just want to mention three func-
tions that are often used in the context of if qualifiers.
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A very helpful function is missing(a,b,. . . ) or its shorthand version mi(a,b,. . . ).
The function returns 1 if one of its arguments is the missing value and returns 0 other-
wise. You can use missing() to summarize the income of those observations that are
missing on edu with

. summarize income if missing(edu)

The more frequent use, however, is in connection with the “not” operator. The command

. summarize income if yedu >= 4 & !missing(edu)

is yet another way to circumvent the trap with missing values described on page 3.1.5.
If you add further arguments to missing(), you can even restrict the execution of a
command on those observations who are not missing on a list of variables.

. summarize income if !missing(edu,emp)

The functions inlist(z,a,b,. . . ) and inrange(z,a,b) are also often used in if

qualifiers. The function inlist(z,a,b,. . . ) evaluates whether its first argument (z ) is
equal to one of the following arguments (a, b, . . . ). If this is the case, the function
returns 1; otherwise it returns 0. The function can be used to restrict the execution of
a command on observations that have a set of values on a certain variable. Here we
use the command to summarize the income of observations who are married (mar==1),
widowed (mar==3), or divorced (mar==5).

. summarize income if inlist(mar,1,3,5)

Negation of inlist() uses all other observations. This is neat, but be aware that the
missing value is also neither 1, nor 3, nor 5:

. summarize income if !inlist(mar,1,3,5) & !missing(mar)

Similarly to inlist(z,a,b,. . . ), the function inrange(z,a,b) checks whether the
first argument is inside the range specified by the two other arguments. Here we use
this function to summarize the income of observations born between 1989 and 1992:

. summarize income if inrange(ybirth,1989,1992)

3.1.7 Lists of numbers

In the syntax diagrams of some commands, you will find the term numlist, which stands
for a list of numbers that Stata understands as numbers. Because Stata is quite smart
about understanding numbers, you can abbreviate lists of numbers as shown in table 3.2.
Examples for useful applications of lists of numbers can be found in sections 3.2.2
and 6.3.4.
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Table 3.2. Abbreviations of lists of numbers and their meanings

Input Meaning

1,2,3,4 1, 2, 3, 4
1 2 3 4 1, 2, 3, 4
1/4 1, 2, 3, 4
2 4 to 8 2, 4, 6, 8
8 6 to 2 8, 6, 4, 2
2 4: 8 2, 4, 6, 8
8 6: 2 8, 6, 4, 2
2(2)8 2, 4, 6, 8
8(-2)2 8, 6, 4, 2
8/10 15 to 30 32 to 36 8, 9, 10, 15, 20, 25, 30, 32, 34, 36
8/10(5)30(2)36 8, 9, 10, 15, 20, 25, 30, 32, 34, 36

3.1.8 Using filenames

In the syntax diagrams of some Stata commands, you will find the element using

filename, indicating that these are commands that read or write a file. You refer to the
file by inserting the term using and the complete name of the file. Sometimes you can
omit the term using.

Generally, a complete filename consists of a directory, a name, and an extension.
The directory is where the file can be found. The name is the name of the file itself,
and the extension is usually a file type indicator. The file most often used in this book,
c:\data\kk3\data1.dta, is in the directory c:\data\kk3, has the name data1, and
has the extension .dta, which is the extension for Stata datasets.

How you specify file addresses depends on your operating system: you use colons to
separate folder names under Mac, slashes under Unix, and backslashes under Windows.
Stata also lets you use the slash to separate folder names in all operating systems, which
is why we generally use it.

You specify the filename the same way in all operating systems: just type the file-
name. If the filename (or address) contains blanks or other special characters, you will
need to place quotation marks around the complete name. For example, to describe
the (fictitious) file AT & T.dta in the folder My Data, you would type describe using

"c:\My Data\AT & T.dta".

Whenever you specify a filename, Stata must have the complete name, but this does
not mean that you need to type the complete name. Here is what happens if you omit
one part or another:
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• If you type a filename without the directory, Stata looks in the working (current)
directory. You can find the address of the working directory by typing the pwd

(print working directory) command:

. pwd

• If you type a filename without the extension, Stata looks for a file with an extension
that is appropriate for the specified command. Table 3.3 below shows commonly
used commands that look for or save files with the given extension.

Table 3.3. Names of commands and their associated file extensions

Extension Command

.dta use; save; append; merge; joinby; describe

.raw infile (with varlist);
infix (with varlist); insheet; outsheet;

outfile

.dct infile (without varlist);
infix (without varlist)

.smcl log (.smcl or .log depending on whether file
format is SMCL or ASCII)

.txt cmdlog

.do do; run

.gph graph using; graph, saving()

Finally, the filename does not necessarily refer to a file on your computer but can
also mean a file somewhere on the Internet. If your computer has a connection to the
Internet, you can load a Stata dataset directly from an Internet location, for example:

. use http://www.stata-press.com/data/kk3/data1

The same applies for all commands that load a file. However, you cannot write to the
web.

3.2 Repeating similar commands

In everyday data analysis, you will often need to retype similar commands over and over
again. For example, our data file contains 12 variables that refer to people’s concerns
about different aspects of their lives. To compare the answers of men and women for
these 12 variables, you would repeat a tabulate command 12 times:
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. tabulate wor01 sex

. tabulate wor02 sex

. tabulate wor03 sex

. tabulate wor04 sex

. tabulate wor05 sex

. tabulate wor06 sex

. tabulate wor07 sex

. tabulate wor08 sex

. tabulate wor09 sex

. tabulate wor10 sex

. tabulate wor11 sex

. tabulate wor12 sex

Retyping similar commands is boring and, for complex commands, error-prone. To
avoid this, you can benefit from the tools we describe here.

Stata has several tools for repeating similar commands. We will discuss three of
them: the by prefix, the foreach loop, and the forvalues loop (also see Cox 2002a,b).
The simplest one is the by prefix, which is used to repeat a single command for different
observations. The other two are used to loop over elements of lists or number sequences.

3.2.1 The by prefix

The by prefix repeats a command for every group of observations for which the values
in the variable list are the same. Most Stata commands accept the by prefix; this is
indicated immediately following the syntax diagram and options table, for example,

by may be used with summarize; see [D] by.

The by prefix consists of the word by or bysort, a variable list (which we will call
the bylist), and a colon. Using the by prefix generally requires that the dataset be sorted
by the variables of the bylist, but there are ways to sort the data on the fly.

The best way to understand the by prefix is to use it. Let us summarize the income
for each group of the variable sex. For this, we need to sort the data by gender and
then issue summarize with the by prefix:

. sort sex

. by sex: summarize income

-> sex = Male

Variable Obs Mean Std. Dev. Min Max

income 2320 28190.75 47868.24 0 897756

-> sex = Female

Variable Obs Mean Std. Dev. Min Max

income 2459 13322.89 21286.44 0 612757
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As you can see, the by prefix forces Stata to summarize the income for every group
or category of the bylist. First, Stata summarizes the income of the first group (the
men), and then it summarizes the income of the second group (the women).

This works equally well if we use a bylist with more than just two groups:

. by edu, sort: summarize income

We have used the option sort of the by prefix to sort the data by education (edu).
sort is part of the by prefix and not part of the command after the colon.

Finally, you could have typed

. bysort edu: summarize income

because bysort is just by with the sort option. Choose whichever syntax you like—and
stick with it.

If you provide more than one variable in the bylist, Stata does what you have told
it to do for each possible combination formed by the values of the bylist variables.
Therefore, the command

. by sex edu, sort: summarize income

first has Stata summarize the income of all men with elementary education. Then it
does the same for all men with intermediate education, and so on. After summarizing
the incomes of all educational groups of males, it does the same for each educational
group of females.

Some Stata commands allow the by() option, which is easy to mistake for the
by prefix. You need to know the difference: a by() option is part of a specific Stata
command, and its function is defined in that command. In other words, the by() option
works differently with different commands. The by prefix, on the other hand, does the
same thing with every Stata command that allows it: by repeats the command for each
group indicated by the variable list.

3.2.2 The foreach loop

The foreach loop is used to repeat a specific task for each element of a list. This task
can be a single, consistently applied command—as with the by prefix—or a command
that varies slightly within each replication, or even an entire series of Stata commands.

Because the foreach loop is so flexible, its syntax is slightly more complicated. A
simplified syntax diagram of foreach is as follows:

foreach lname listtype list {

commands

}
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A foreach loop always has at least three lines: the first line, which begins the loop,
ends with an opening brace. The second line is a Stata command (you can include
more lines containing Stata commands). The last line contains a closing brace. You
cannot place anything else in the line after the opening brace or in the line containing
the closing brace (except for comments).

In the syntax diagram above, the first element of the first line is the command name:
foreach. Following that are elements you must type: the element name (lname), the
list type (listtype), and the foreach list (list). Next comes the opening brace.

The foreach list is a list of parameters, such as a variable list, a list of numbers, or
a list of arbitrary parameters. But you need to tell Stata the list type. For example,
if you want to specify a variable list, you use of varlist. Finally, you must specify
a name for each element of the foreach list. The element name is used in the Stata
commands between the braces to refer to the elements of the foreach list.

There is more to a foreach loop, but it is best explained with an example. In what
follows, you will type some commands, but make sure you read the fine points carefully
before you begin typing.

. foreach X of varlist wor01-wor12 {

. tabulate `X´ sex

. }

Here are the fine points. The first line begins the loop. After you press Enter, you
will see the number 2 on your screen. This is just to remind you that everything you
are going to type is being processed by foreach. You do not need to do anything about
that. Just type the tabulate command as usual, press Enter, and then type the third
“command”, the closing brace. If you make an error somewhere, just press Enter, type
the closing brace, and press Enter again; you will need to start over from the first line.
But remember that you can access the commands you previously entered in the Review
window by clicking on the command or by pressing Page Up.

Note the symbols before and after the X in this command. The symbol before the X

is a single open quotation mark, and the symbol after the X is a single close quotation
mark. The two symbols are not the same even though they look alike in some fonts. The
open quote is a backtick or accent grave, whereas the closing right quote is a forward
quote or apostrophe. On many American keyboards, the opening quote is found at the
top left (near the Esc key), whereas the closing quote is found on the right (near the
Enter key). On European keyboards, the position of both characters vary from country
to country. The opening quote is often used to produce the French accent grave, which
forces you to press the Spacebar before the symbol appears on the screen.

Now you may begin entering the commands. If everything works, you will get the
output for 12 tabulate commands.

The of varlist declares the list type to be a variable list, meaning that the foreach
list is a list of variable names. The element name is declared to be “X”, so we use X to
represent the current element of the list. Stata requires that you put single quotation
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marks around the element name in the part within the braces. After the closing brace,
Stata begins the loop, successively replacing the ‘X’ in the second command with the
name of each variable in the foreach list. Thus tabulate ‘X’ sex becomes tabulate
wor01 sex in the first round of the loop, tabulate wor02 sex in the second round,
and so on.

The types of foreach lists

As we said, you can specify different types of foreach lists:

• of varlist for lists of variables

• of newlist for lists of new variables

• of numlist for lists of numbers

• in for arbitrary lists of letters, words, and numbers separated by spaces

You have already seen an example of a foreach loop with a variable list. The
following examples, which we have saved in foreachkk.do, show the other list types.
You may want to open the file in the Do-file Editor to play with these examples:

. doedit foreachkk.do

You might want to save the edited version of foreachkk.do to, say, myforeach.do and
run that do-file, or you can type the commands interactively. You will find that in our
example do-file, we have indented the part between the opening and the closing brace.
Doing so is good style and lets you more easily see what code the foreach loop affects.
It is also good style to align the closing brace with the first letter of foreach. For more
about style issues with Stata commands, type

. view http://fmwww.bc.edu/repec/bocode/s/stylerules.hlp

Our first example uses the list type of newlist, which you will find in lines 11–13 of
foreachkk.do. Here we generate 10 variables containing uniformly distributed random
numbers between 0 and 1 by using the Stata function runiform(), which creates random
numbers:

begin: foreachkk.do
"

10: // Example with new varlist
11: foreach var of newlist r1-r10 {
12: generate `var´ = runiform()
13: }

end: foreachkk.do

Instead of using the list type of newlist, we could have used the list type of

numlist in this example (see the next example). However, with of newlist Stata
checks the validity of the variable names to be generated before beginning the loop.
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Next we use of numlist to replace the variables with newly generated random
numbers. Because the variables r1 to r10 already exist, we need to use replace instead
of generate within the loop:

begin: foreachkk.do
"

15: // Example with numlist
16: foreach num of numlist 1/10 {
17: replace r`num´ = runiform()
18: }

end: foreachkk.do

Finally, here is an example with an arbitrary list:

begin: foreachkk.do
"

20: // Example with anylist
21: foreach piece in This sentence has 5 pieces {
22: display "`piece´"
23: }

end: foreachkk.do

Several commands within a foreach loop

You can put more than one command within a foreach loop, as shown in the next
example, in which we generate a centered version of the variables for income and year
of birth. To produce a centered version of a variable, we need to subtract its arithmetic
mean from each of its values:

begin: foreachkk.do
"

25: // Example with more than one line
26: foreach var of varlist ybirth income {
27: summarize `var´, meanonly
28: generate `var´_c = `var´ - r(mean)
29: label variable `var´_c "`var´ (centered)"
30: }

end: foreachkk.do

We begin by calculating the arithmetic mean (line 27), and then we generate a new
variable (line 28) that has the name of the old variable with c appended. The term
r(mean) refers to a saved result of the summarize command; the saved result contains
the value of the mean we just calculated. We will discuss saved results in chapter 4.
Finally, we define a variable label for each of the new variables.

3.2.3 The forvalues loop

Once we understand the foreach loop, the forvalues loop is easy: it is just a shorter
way to set up a foreach loop with of numlist as the listtype.
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The simplified syntax diagram of forvalues is as follows:

forvalues lname = range {

commands

}

This looks very much like the syntax diagram of foreach. Again there are at least
three lines: the first line begins the loop. The second line is a Stata command (and may
be followed by more lines with Stata commands). The last line contains only a closing
brace. You cannot place anything in the first line after the opening brace or in the same
line as the closing brace other than comments.

In the first line of the syntax diagram, you find the command itself—forvalues—
followed by an element name (lname), an equal-sign, a range, and then the opening
brace. The range is similar to a numlist. You can specify a range of numbers by using
the rules you have learned from section 3.1.7 except that you cannot list single numbers
or more than one range. For example, you can specify 1(1)10 for all integer numbers
from 1 to 10, but you cannot specify 1(1)10 15 19 or 1(1)10 12(2)20.

The element name is an arbitrary name for each number of the range. It is used in
the Stata commands between the braces to refer to the specified numbers.

Let us try an example. Type the following lines:

. forvalues num=1/10 {

. replace r`num´ = runiform()

. }

num is enclosed in single quotes just like the element name in the foreach loop. After
you type the third line, Stata should begin the loop, successively replacing ‘num’ with
each number of the specified range: Stata will replace once more the contents of the
variables r1 to r10.

The forvalues loop may seem unnecessary, given that it is the same as a foreach

loop with the list type of numlist. However, foreach with a numlist cannot have more
than 1,600 numbers in the list. There is no such limitation with forvalues. Moreover,
forvalues is more efficient for Stata to process.

3.3 Weights

This section is slightly more difficult than the previous sections. We will explain weights
as simply as possible, but you may get lost anyway. If so, just skip this section and
return to it later.

Weights are allowed for every Stata command that has
[
weight

]
in its syntax dia-

gram. Think of weights as a way for Stata to treat some observations as more important
than others when calculating statistics.
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You specify weights through the following general syntax:

[weighttype = varname]

You must always enclose weights within square brackets. These square brackets have
nothing to do with the ones in the syntax diagram that identify optional arguments;
they are part of the notation of the weights themselves. Inside the square brackets,
you specify the weight type and the name of the variable that contains the weights
(the weight variable). You must specify the correct weight type. Make sure you really
understand the different weight types before using them (and be somewhat suspicious
of results of software packages that do not have different weight types).

There are three main weight types:

• fweight frequency weights,

• aweight analytic weights, and

• pweight sampling weights.

If you simply specify weight as the weight type, Stata chooses a type for you; differ-
ent commands have different default weight types. Some commands also use the weight
type iweight, or importance weights. These weights do not have a formal statistical
definition, so you should carefully read the description of commands allowing impor-
tance weights to learn how they are used. Importance weights are used in programming
contexts and are not needed by regular users. The three main weight types have clear
statistical definitions, which we describe next.

Frequency weights

Frequency weights are used for weight variables that contain the number of equal obser-
vations in the dataset. Because this may sound a bit puzzling, we will explain it with
an example. To begin, type the following command:

. summarize ybirth

Variable Obs Mean Std. Dev. Min Max

ybirth 5411 1959.493 18.12642 1909 1992

This command displays a table summarizing data on the year of birth. The calculation
is based on 5,411 observations, each of which is a respondent that occurs in the dataset
only once.
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Now please load and describe freqwe.dta from our file package:

. use freqwe, clear
(Frequency weighted data from data1.dta)

. describe

Contains data from freqwe.dta
obs: 82 Frequency weighted data from

data1.dta
vars: 2 13 Feb 2012 17:08
size: 328

storage display value
variable name type format label variable label

ybirth int %8.0g * Year of birth
n int %12.0g Frequency

* indicated variables have notes

Sorted by: ybirth

You can see that these data contain only 82 observations and 2 variables—year of birth
(ybirth) and n.

Now summarize again the year of birth but use the weights this time:

. summarize ybirth [fweight = n]

Variable Obs Mean Std. Dev. Min Max

ybirth 5411 1959.493 18.12642 1909 1992

Comparing these results with those above, we see that they are the same. Again we
have 5,411 observations with a mean of 1959.49 and a standard deviation of 18.13.

Because our dataset contains only 82 observations, it may come as a surprise that
Stata reports 5,411 observations. We should take a closer look at our dataset. Be-
cause the dataset is sorted by year of birth, we might profit from simply listing some
observations one by one:

. list in 1/5

ybirth n

1. 1909 1
2. 1912 4
3. 1913 1
4. 1914 2
5. 1915 2
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In the dataset, there is only one observation for each year of birth, that is, only
one observation for year 1909, only one observation for 1912, and so on. But each
observation is weighted according to the variable n. The observation for year 1909 is
weighted with the factor 1; the observation for 1912 is weighted with the factor 4; and
if you skip to other observations, you will find that the observation for 1967 is weighted
with 106.

If you use frequency weights, Stata interprets the weighting variable as if each ob-
servation existed in as many copies as are specified in the weighting variable. The
summarize command above therefore sees not only one but four observations for 1912,
and so on.

freqwe.dta contains the same information about the year of birth as the entire
data1.dta. But rather than listing people with the same year of birth one by one—
that is, one observation for 1909, four observations for 1912, etc.—freqwe.dta lists
identical observations only once, indicating how many such observations exist. Using
frequency-weighted data is therefore a more parsimonious way to store the same data
and may be more useful for handling datasets that are too big for the working memory
of your computer.

To change a dataset from being unweighted to being frequency weighted, you can
use the command contract; the command expand is used for the reverse operation.
expand is useful if a specific command does not allow frequency weights.

Analytic weights

We will explain the idea of analytic weights with yet another example. Load analwe.dta

into Stata. Summarize the variable ybirth once with frequency weights and then a
second time with analytic weights:

. use analwe
(Example data with analytic weights)

. summarize ybirth [fweight = n]

Variable Obs Mean Std. Dev. Min Max

ybirth 5411 1959.547 1.790374 1954.894 1962.191

. summarize ybirth [aweight = n]

Variable Obs Weight Mean Std. Dev. Min Max

ybirth 14 5411 1959.547 1.857787 1954.894 1962.191

You get the same mean with both weight types. But take a look at the standard devi-
ation (Std. Dev.), which is about 1.79 with frequency weights and 1.86 with analytic
weights. Not only are the two values different, but they both differ considerably from
the standard deviations calculated in the last section. Which one is correct?



3.3 Weights 67

The answer depends on how the data were created. If the weights reflect the num-
ber of respondents (observations) born at the respective year of birth, the frequency
weighted result would be correct. But our example dataset was created differently. Let
us take a look at some of the data:

. list in 1/5

state ybirth n

1. Berlin 1962.19 208
2. Schleswig-Hols. 1956.61 166
3. Hamburg/Bremen 1954.89 101
4. Lower Saxony 1957.38 412
5. N-Rhein-Westfa. 1960.82 1145

The first observation is from Berlin, a German city that is also a German state. The
second observation is from Schleswig-Holstein, another state in the far north of Germany.
The complete dataset contains 14 observations, one for each state of Germany.5 For
each state, there is a variable for the average year of birth and a weighting variable.
The year of birth is the mean of all respondents from the same state, and the weighting
variable is the number of respondents used to calculate that mean. Such data sometimes
are called aggregate data.

Clearly, not all respondents used to calculate the mean for each state have the same
year of birth. We do not have 5,411 observations; rather, we have 14 means made from
different numbers of observations.6 You need to use analytic weights for such data.
With analytically weighted data, each observation on a variable is itself a mean, and
the weight represents the sample size used to compute the mean.

Sampling weights

The third weight type is probably the most interesting—and may be one of your reasons
for preferring Stata over other statistical packages.

Often you analyze data using a sample from a population and use the sample to infer
something about the larger population. Many statistical tools assume that the sample
is chosen by simple random sampling with replacement, meaning that each element of
the population has the same sampling probability. In practice, you rarely have simple
random samples. Complex samples—that is, samples with observations of different
sampling probabilities—are much more common.

5. Actually, Germany has 16 states. However, we merged the data from Hamburg and Bremen and
the data from Rheinland-Pfalz and Saarland into one category for data protection.

6. See the file cranalwe.do for how we created analwe.dta from data1.dta.
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If you use statistical tools that assume simple random samples but your dataset
comes from complex samples, you can make two mistakes. First, you get biased point
estimators; that is, the means, medians, regression coefficients, etc., do not reflect the
true values in the population. Second, you incorrectly calculate the sampling distribu-
tion of your point estimators, leading you to evaluate confidence intervals erroneously,
and so on (Kish 1965).

To avoid the first mistake, you could weight your data with the reciprocal of the
sampling probability. Then it would not matter if you use frequency weights or analytic
weights, because both lead to the same results. With the second mistake, the issue
is more complicated. Both frequency and analytic weights lead to incorrect results.
An observation cannot be regarded as referring to more than one respondent, nor can
one observation be regarded as an aggregate measure of more than one respondent.
Each observation is just one simple observation. Stata’s probability weights give correct
standard errors in this case.

Stata’s tools for dealing with probability weights are part of a broader class of
commands for dealing with complex samples. These are called survey commands, which
we will introduce in chapter 8.

3.4 Exercises

1. Compute a mean and a standard deviation for each of the following variables in
our data file data1.dta:

• All variables that begin with “wor”.

• All variables with information on the quality of dwellings.

• All variables related to “satisfaction”.

2. Abbreviate the following commands as much as you can (and so that Stata will
still recognize them):

. summarize ymove ybuild condit eqphea area1 area2

. regress wor01 ybirth income

3. Use the command gen inc = hhinc to create a new variable inc that is equal
to hhinc, and rerun your last command. Explain why the same command now
produces a different result.

4. Read help set varabbrev and consider the advantages and disadvantages of set
varabbrev off.

5. List the person ID, interviewer number, year of birth, household income, and life
satisfaction of the 10 observations with the lowest household income. Then rerun
the command without the observation numbers and add a line for the means of
the variables in your list.
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6. Create a table with gender as a column variable and life satisfaction as a row
variable. Include only respondents from West Germany (state<10) in the table.
Have Stata display only column percentages.

7. Create a table with gender as a column variable and life satisfaction as a row
variable, separate for each state.

8. The following sequence of commands creates a standardized variable for year of
birth:

. summarize ybirth

. generate ybirth_s = (ybirth - r(mean))/r(std)

Create a loop to standardize the following variables in a similar fashion: ymove,
size, rooms, lsat, rent, hhsize, yedu, hhinc, and income.

9. Include a command in your loop that labels the variables above (ymove, size,
etc.) as “standardized”.





4 General comments on the statistical
commands

In this book, we refer to all commands that do some statistical calculation as statistical
commands. In chapter 1, for example, we used the statistical commands summarize,
tabulate, and regress. Despite their different purposes, statistical commands have
one feature in common: they store their results internally. This chapter describes these
saved results and what you can do with them. You can do further calculations with
them, save them as variables, export them to other programs, or just display them on
the screen.

With saved results, Stata distinguishes between regular statistical commands (r-
class) and estimation commands (e-class). We start our discussion with regular statis-
tical commands and move over to estimation commands afterward.

To follow our examples, load data1.dta:1

. use data1, clear

4.1 Regular statistical commands

All the names of stored results used for regular statistical commands have the format
r(name), where name varies between the various results stored by one command.

The command summarize, for example, is an r-class command that stores its results
in the following repositories:

r(N) number of observations r(sd) standard deviation
r(sum w) sum of the weights r(min) minimum
r(mean) arithmetic mean r(max) maximum
r(Var) variance r(sum) sum of variable

Specifying the detail option with the summarize command saves more statistics.

Why do we need saved results? They have many uses. Generally, whenever you
need the result of a command to set up another command, you should use the saved

1. You may want to check that your current working directory is c:\data\kk3; see page 3.
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results. The rule is this: Never transcribe the results of commands by hand into other
commands; use the saved results instead. Here are some examples with the saved results
of summarize.

You can use the saved results to center variables, that is, to subtract the mean of a
variable from each of its values:

. summarize income

. generate inc_c = income - r(mean)

You can also use the saved results to standardize variables. You first center your
variable and then divide it by its standard deviation:

. summarize income

. generate inc_s = (income - r(mean))/(r(sd))

You can use the saved results to make the high values of your variable low and vice
versa (mirroring):

. summarize income

. generate inc_m = (r(max) + 1) - income

You can also use the saved results to calculate the lower and upper bounds of the
95% confidence interval around the mean. Under standard assumptions, the boundaries
of the 95% confidence interval are given by CI = x±1.96×

√
s2/n, where x is the mean,

s2 is the variance, and n is the number of observations. These figures can be found in
the saved results of summarize:

. summarize income

. display r(mean) + 1.96 * sqrt(r(Var)/r(N))

. display r(mean) - 1.96 * sqrt(r(Var)/r(N))

Every statistical command of Stata saves its main results. To work with a specific
result, you must know where Stata stores that result. You can find where saved results
are stored in the following sources:

• The Reference manuals and help files: The entry for each statistical command has
a section called Saved results, which states the names and meanings of the saved
results.

• The command return list shows the names and contents of the saved results of
the last issued r-class command:

. summarize income

. return list

Each new r-class command deletes the saved results of the previous r-class command.
For example, the commands

. summarize income

. tabulate edu sex

. generate inco_c = income - r(mean)
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do not generate a centered version of income because tabulate deletes all saved results
of summarize and saves its own results. Some results from tabulate have the same
names as those of summarize, and others do not. tabulate does not save r(mean), for
example, so the new variable inco c contains missing values.

The transitory nature of the saved results often forces us to save those results more
permanently. You can do this using local macros, which unlike saved results are not
overwritten until you explicitly do so.2

You define local macros using the command local. For example, typing

. summarize income

Variable Obs Mean Std. Dev. Min Max

income 4779 20540.6 37422.49 0 897756

. local x = r(mean)

stores the contents of the saved result r(mean) in a local macro called x. You can use
another name as long as the name is not longer than 31 characters. After defining the
local macro, you can use the name of the local macro whenever you need to refer to the
result of the summarize command above. The contents of the local macro will not be
overwritten unless you explicitly redefine the macro.

To use the local macro, you must explicitly tell Stata that x is the name of a local
macro by putting the name between single quotes. To simply display the content of the
local macro x, you would type

. display `x´
20540.6

If this command does not work for you, you probably incorrectly typed the opening
and closing quotes. The opening quote is a backtick or accent grave, whereas the
closing right quote is a forward quote or apostrophe. On many American keyboards,
the opening quote is found at the top left (near the Esc key), whereas the closing quote
is found at the middle right (near the Enter key). On European keyboards, the position
of both characters varies from country to country. The opening quote is often used to
produce the French accent grave, which forces you to press the Spacebar before the sign
appears on the screen.

2. At the end of a do-file or program, any local macros created by that do-file or program are dropped;
see chapter 12.
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Now let us turn to a practical application. You can calculate the difference between
the means of a variable for two groups as follows:

. summarize income if sex == 1

Variable Obs Mean Std. Dev. Min Max

income 2320 28190.75 47868.24 0 897756

. local meanincmen = r(mean)

. summarize income if sex == 2

Variable Obs Mean Std. Dev. Min Max

income 2459 13322.89 21286.44 0 612757

. display r(mean) - `meanincmen´
-14867.866

The display command takes the mean of income computed for women (stored
in r(mean)) and subtracts the previously computed mean of income computed for men
(which we stored in meanincmen), yielding a difference of e−14,867.866. Unfortunately,
you cannot store all saved results of statistical commands in local macros because some-
times results are stored as matrices. To permanently store the results in matrices, you
need to use the Stata matrix commands, which are mainly programming tools, so we
will not deal with them here. For more information, see [U] 14 Matrix expressions
or type

. help matrix

4.2 Estimation commands

We use the term estimation command or, more specifically, e-class command for all
commands that store their results in repositories with names of the format e(name).
Almost always these are commands that fit statistical models, such as linear or logistic
regression (see chapters 9 and 10).

Most of what we discussed for r-class commands also holds for e-class commands,
but there are a few subtle differences.

• While the manual and help file entries list the saved results of estimation com-
mands under Saved results just as for the r-class commands, you have to use the
command ereturn list instead of return list to see the names and contents
of the saved results of the last issued e-class command:

. regress income yedu

. ereturn list

• Like r-class commands, each new e-class command deletes the saved results of the
previous e-class command. However, while each new e-class command also deletes
all saved results of the previous r-class command, e-class command results are not
overwritten by r-class commands.
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• The names of repositories of r-class commands differ wildly between commands,
while the names of repositories of e-class commands tend to be the same for all
estimation commands. Specifically, all Stata estimation commands save at least
two specific results, e(b) and e(V). These saved results are the vector of the fit
model coefficients and their variance–covariance matrix. Type

. matrix list e(b)

. matrix list e(V)

to see what is in these results.

• You can access a single piece of the values stored in e(b) with b[name]. For
example, to access the estimated regression coefficient for yedu—the first value in
the column headed with Coef. of the regression output—you type

. display _b[yedu]

• In the output of the statistical models, the column headed with Std. Err. con-
tains the standard error (see section 8.2.2) of the regression coefficient. The value
is equal to the square root of the entry in the main diagonal of the variance–
covariance matrix left behind as e(V). You can access that standard error with
se[name], where name is the name of the coefficient you are interested in:

. display _se[yedu]

In a nutshell, Stata handles the saved results of statistical models with more care than
those of regular statistical commands. The reason for this is that data analysts often
want to investigate further the results of statistical models. It is therefore necessary
that the results of statistical models are kept longer than those of regular statistical
commands.

If normal durability of e-class results is not long enough, Stata allows for saving the
regression results even more permanently. Specifically, you can use estimates store

to save the results of statistical models in the computer’s memory:

. estimates store myreg1

During a Stata session, estimation results stored with estimates store can be restored
with estimates restore:

. estimates restore myreg1
(results myreg1 are active now)

. ereturn display

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

yedu 3900.475 204.9923 19.03 0.000 3498.589 4302.362
_cons -24845.36 2497.585 -9.95 0.000 -29741.86 -19948.85
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This ability to store and restore results of regression models will turn out to be very
useful if you wish to compare the coefficients between several statistical models (see
section 9.5).

4.3 Exercises

1. Load a subset from the National Longitudinal Survey into Stata memory by typing

. webuse labor, clear

2. Request a list of the stored results that are available after running the following
commands:

. summarize whrs

. summarize whrs hhrs

. summarize hhrs, detail

. tabulate kl6

. tabulate cit kl6

. count if cit

. correlate whrs ww

. correlate whrs ww faminc

3. Find out whether the following commands are e-class or r-class:

. summarize whrs

. mean whrs

. ci whrs

. regress ww whrs we

. logit cit faminc

4. Generate a variable containing a centered version of the variable faminc; do not
input the statistics by hand.

5. Generate a variable containing a z-standardized version of the variable faminc; do
not input the statistics by hand. Note: The z-standardized values of the variable
x are calculated with zi = (xi − x)/sx, where x is the mean of variable x and sx

is the standard deviation of x.

6. Create a local macro containing the number of cases in the dataset, and display
the content of this macro.

7. Display the range of faminc.
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In everyday data analysis, creating and changing variables takes most of the time.
Stata has two general commands for these tasks: generate and replace, which are the
bread and butter of Stata users. egen and recode are also often used; they allow some
shortcuts for tasks that would be tedious using generate and replace.

When we work with data that have not been prepared and preprocessed nicely,
we sometimes run into complex data manipulation problems. There is no single tech-
nique for solving these problems—which can challenge experienced users as well as
newcomers—though generate and replace are useful. Although we cannot describe
all possible data manipulation challenges you might encounter, we will give you some
general advice for generating variables for use in Stata. This chapter will give you the
tools to solve even the most difficult problems.1

To use our examples, load data1.dta:2

. use data1, clear

Then execute the command

. numlabel _all, add

which we will explain in detail in section 5.6 below. For now it is enough to know that
the command makes creating and changing variables somewhat more comfortable.

5.1 The commands generate and replace

generate creates a new variable, whereas replace changes the contents of an existing
variable. To ensure that you do not accidentally lose data, you cannot overwrite an
existing variable with generate and you cannot generate a new variable with replace.
The two commands have the same command syntax: you specify the name of the
command followed by the name of the variable to be created or replaced. Then you
place an equal-sign after the variable name, and specify an expression to be created or
replaced. The by prefix is allowed, as are the if and in qualifiers.

1. Difficult recoding problems appear almost weekly in Statalist. For practice, you should try solving
some of them and read the solutions suggested by other readers. For more about Statalist, see
chapter 13.

2. You may want to check that your current working directory is c:\data\kk3; see page 3.
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You can use generate to create new variables. For example,

. generate newvar = 1

generates the new variable called newvar with the value of 1 for each observation:

. tabulate newvar

newvar Freq. Percent Cum.

1 5,411 100.00 100.00

Total 5,411 100.00

You can also create a new variable out of existing variables, for example,

. generate pchinc = hhinc/hhsize

where you divide the household income (hhinc) by the number of persons in the house-
hold (hhsize). generate automatically does this for every observation in the data,
and the results of the calculations are written to the variable for household income per
capita (pchinc).

. list hhinc hhsize pchinc in 1/4

hhinc hhsize pchinc

1. 22093 2 11046.5
2. 22093 2 11046.5
3. 62078 2 31039
4. 62078 2 31039

replace changes the content of a variable. Below we change the content of the
variable newvar to 0.

. replace newvar = 0

The variable now contains the value 0 for all observations instead of the value 1:

. tabulate newvar

newvar Freq. Percent Cum.

0 5,411 100.00 100.00

Total 5,411 100.00

5.1.1 Variable names

When working with generate, remember some rules about variable names. The names
of variables can be up to 32 characters long. However, it is a good idea to keep the
names concise to save time when you have to type them repeatedly. To ensure that
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your Stata displays the entire variable name in the output of describe, you may want
to restrict yourself to names up to 14 characters long.

You can build your names with letters (A–Z and a–z), numbers (0–9), and under-
scores ( ), but you cannot begin the variable name with a number. The following names
are not allowed:

all double long rc
b float n skip
byte if N str#
coef in pi using
cons int pred with

Some variable names are not recommended even though they are allowed. Avoid
using the single letter e to prevent confusion with the “e” in scientific notation. Avoid
names beginning with an underscore, because such names are used by Stata for internal
system variables. Future enhancements may lead to conflicts with such names, even if
they are not on the above list.

5.1.2 Some examples

Variables created or modified with generate or replace are assigned the value of the
expression after the equal-sign. The general rules for expressions given in section 3.1.6
also apply here.

When generating new variables, you can perform simple calculations. For example,

. generate hhinc_USD = hhinc * 1.46028
(4 missing values generated)

multiplies all values in the variable hhinc (household income) with the 2009 average
exchange rate3 of 1.46028 to convert the values from Euros into U.S. dollars. The new
variable hhinc USD has four missing values because hhinc had four missing values.

. generate age = 2009-ybirth

determines the age of each respondent at the time the survey was conducted.

You can also use mathematical functions to generate new variables. For example,

. generate loginc = log(income)
(2001 missing values generated)

calculates the natural logarithm of personal income for each observation and stores the
result in the variable loginc. The command

. replace loginc = log(income)/log(2)
(3410 real changes made)

3. http://www.oanda.com/lang/de/currency/average
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produces the base-2 logarithm instead of the natural logarithm. The result of the
calculation overwrites the variable loginc.

Or you can use statistical functions, such as

. generate r = runiform()

which generates a random variable from a uniform distribution with values ranging from
0 to nearly 1. A random variable with a standard normal distribution (a variable with
a mean of 0 and a standard deviation of 1) is generated with

. generate r01 = rnormal()

You can use every function introduced in section 3.1.6 with generate or replace,
and you can combine them with the operators replace with the algebraic operators
addition, subtraction, multiplication, division, and power is quite straightforward. You
might be surprised, however, that you can also use relational operators with generate

and replace. Let us walk through some examples of using generate and replace with
relational operators.

Suppose that we need to generate the variable minor to indicate respondents who
had not reached the age of legal adulthood in 2009, the time the survey was conducted.
This means the respondent will have a value greater than 1991 on the variable for year
of birth (ybirth). The new variable minor must contain the value 1 for all respondents
younger than 18 and the value 0 for all other persons. One way to create this variable
is to generate the variable minor having a value equal to 0 for all respondents, and then
to replace the values of this newly generated variable with 1 for all respondents younger
than 18.

. generate minor = 0

. replace minor = 1 if ybirth > 1991 & !missing(ybirth)
(66 real changes made)

Another way to create the variable minor is based on what we explained in sec-
tion 3.1.5: expressions with relational operators can be true (1) or false (0). Knowing
this, we can create a variable indicating minors in a single line; we will call the variable
minor2 this time.

. generate minor2 = ybirth > 1991

The expression ybirth > 1991 is false (0 in Stata) for all interviewees born before
1991, so all those interviewees get the value 0 for the new variable minor2. For those
born in 1991 and later, the expression ybirth > 1991 is true (1 in Stata); therefore,
the new variable becomes a 1 for these observations:
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. tabulate minor2

minor2 Freq. Percent Cum.

0 5,345 98.78 98.78
1 66 1.22 100.00

Total 5,411 100.00

Note that minor2 will also equal 1 for any observations for which ybirth is missing,
because Stata treats missing values as very large numbers. The command

. generate minorshh = ybirth > 1991 & hhsize == 1 if !missing(ybirth)

generates the variable minorsh that equals 1 for all respondents younger than 18 who
lived alone at the time of the interview (hhsize == 1) and that equals 0 elsewhere.

As we just demonstrated, you can easily generate variables with the values 0 and
1. Such variables are called dummy variables, or sometimes just dummies. You will
use them quite often, but be careful if there are missing values among the variables
from which you build your dummy. We recommend that you restrict the command to
the valid cases by using an if qualifier. For more about handling missing values, see
section 5.5.

You can mix relational and algebraic operators in your expressions. For example,
you can construct an additive index for quality of a dwelling by summing expressions
for all the characteristics of a dwelling. Using generate and what you have learned
about expressions with relational operators that are either true or not true, you can
create the additive index for dwelling quality like this:

. generate quality = (eqphea==1) + (eqpter==1) + (eqpbas==1)
> + (eqpgar==1) + (eqpalm==1) + (eqpsol==1) + (eqpair==1)
> + (eqplif==1) + (eqpnrj==1)

. tabulate quality

quality Freq. Percent Cum.

0 7 0.13 0.13
1 87 1.61 1.74
2 464 8.58 10.31
3 1,709 31.58 41.90
4 2,560 47.31 89.21
5 504 9.31 98.52
6 72 1.33 99.85
7 5 0.09 99.94
8 3 0.06 100.00

Total 5,411 100.00
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But note that

. generate quality2 = eqphea==1 + eqpter==1 + eqpbas==1
> + eqpgar==1 + eqpalm==1 + eqpsol==1 + eqpair==1 + eqplif==1 + eqpnrj==1

. tabulate quality2

quality2 Freq. Percent Cum.

0 5,411 100.00 100.00

Total 5,411 100.00

would not have led to the result desired.

You do need parentheses around the relational operators in this example. Addition
has priority over equality testing, so in Stata the expression kitchen == 1 + shower

== 1 + · · · reads as kitchen == (1 + (shower == 1 + · · · )). So be careful with
complicated expressions! Use parentheses to make complicated expressions clear, even
in cases when the parentheses are not required by Stata.

Of course, you can use generate and replace not only to create dummy variables
but also for all kinds of recoding. Say, for example, that we would like to reduce our
quality index to three categories: poor, medium, and high, where poor indicates two or
fewer amenities, medium is three to five, and high is more than five.

It is easy to forget to look for missing values when you generate a new variable from
another. Therefore, we recommend generating a new variable with all 0s to start with.
After that, you can do all your codings with replace.

. generate quality3 = 0

. replace quality3 = 1 if quality <= 2
(558 real changes made)

. replace quality3 = 2 if quality > 2 & quality <= 5
(4773 real changes made)

. replace quality3 = 3 if quality == 6 | quality == 7 | quality == 8
(80 real changes made)

Use tabulate to check your work. For the example above, this would be tabulate

quality quality3. If there still are any cases with 0 in the new variable, you may have
forgotten to specify a value for some cases. You can set the remaining cases to missing
by replacing the 0 with a dot.

5.1.3 Useful functions

We wrote above that you can place any expression after the equal-sign of generate or
replace and that the general rules for expressions given in section 3.1.6 apply. From
this, it follows that you can use all general Stata functions mentioned in [D] functions.
In this section, we will briefly describe some functions that are often used in the context
of generate and replace but seldom described. If you like this section, you will find
more of this in Cox (2011).
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Sometimes one wishes to round numbers up or down. Several functions exist for this
purpose, but round(a,b) seems to be the most natural choice. If you use the function
with just one argument, it rounds that argument to the nearest integer. For example,
the variable hhinc USD created on page 79 contains many digits behind the decimal
point. The command

. generate hhinc_USDr1 = round(hhinc_USD)
(4 missing values generated)

rounds these values to the nearest integer value. By adding the second argument to the
function, you can also round to multiples of that second argument. Here we round the
values in hhinc USD to multiples of 500:

. generate hhinc_USDr2 = round(hhinc_USD,500)
(4 missing values generated)

. list hhinc_USDr1 hhinc_USDr2 hhinc_USD in 1/5

hhinc_~1 hhinc_~2 hhinc_~D

1. 32262 32500 32261.97
2. 32262 32500 32261.97
3. 90651 90500 90651.27
4. 90651 90500 90651.27
5. 35891 36000 35890.76

Dichotomous variables with values 0 and 1 (dummy variables) are often used in data
analysis. The functions inlist(z,a,b,. . . ) and inrange(z,a,b), which we already
described in section 3.1.6, are very useful for creating such dummy variables from exist-
ing polytomous or continuous variables. Take as a first example the variable pib, which
holds the political party that each respondent supports.

. tabulate pib

Political party
supported Freq. Percent Cum.

1. SPD 733 34.89 34.89
2. CDU/CSU 795 37.84 72.73

3. FDP 144 6.85 79.58
4. Greens/B90 211 10.04 89.62

5. Linke 145 6.90 96.53
6. DVU, Rep., NPD 32 1.52 98.05
7. Other parties 29 1.38 99.43

8. Several parties 12 0.57 100.00

Total 2,101 100.00

Of these parties, the “SPD”, the “Greens/B90”, and the “Linke” are usually consid-
ered to be left parties. If you wish to create a dummy variable for left parties, you can
type

. generate left1 = (pib==1) | (pib==4) | (pib==5) if !missing(pib)
(3310 missing values generated)
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or, much shorter using inlist(z,a,b,. . . ),

. generate left2 = inlist(pib,1,4,5) if !missing(pib)

Likewise, the function inrange(z,a,b) can be used to create a dummy variable for
persons aged between 25 and 65:

. generate age25to65 = inrange(age,25,65) if !missing(age)

The function inlist() has a hidden gem: You can use the function not only for
checking whether the values of a variable are equal to one of the specified values, but also
for checking the other way around, that is, checking whether any of a list of variables
contains a specified value. Here we use this idea to check whether any of the respondents
has the value 3 (“not concerned at all”) on at least one of the variables about worries
for the future:

. generate optimist = inlist(3,wor01,wor02,wor03,wor04,wor05,wor06,wor07,
> wor08,wor09,wor10,wor11,wor12)

Another useful function is cond(a,b,c). The function returns the result of expres-
sion b if the expression a is true (nonzero) and returns the result of expression c if
expression a is false (zero). In the following example, we use the function to create a
variable that is equal to the smaller value of the two variables wor02 (“worried about
finances”) and wor03 (“worried about stability of financial markets”). Hence, the vari-
able holds the respondents’ worries about finances if they are more concerned about the
stability of financial markets, while it holds the respondents’ worries about the stability
of financial markets if they are more concerned about finances.

. generate wor_finance = cond(wor02<wor03,wor02,wor03) if !missing(wor02,wor03)
(122 missing values generated)

Finally, there are recode(a,b,. . . ), and irecode(a,b,. . . ). Both of these functions
bin neighboring values together. Let us begin with an example of the recode() function.
The command

. generate income_groups = recode(income,10000,20000,50000,100000)
(632 missing values generated)

creates the new variable income groups, which becomes 10,000 for all observations with
an income of e 10,000 or below (that is, between e 0 and e 10,000), e 20,000 for all
observations between e 10,001 and e 20,000, and e 50,000 for all observations between
e 20,001 and e 50,000. All nonmissing observations with an income above e 50,000
become e 100,000 on income groups.

Once you understand recode(), irecode() is easy. It does almost the same as
recode() but with two differences: First, irecode() returns values 1, 2, . . . , k instead
of the limits of the various groups themselves. Second, while recode() returns the last
argument specified by the user for all values greater than the last argument, irecode()
creates another category for those values. You will see the difference by comparing the
last category in the output of
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. tabulate income_groups

income_grou
ps Freq. Percent Cum.

10000 2,219 46.43 46.43
20000 666 13.94 60.37
50000 1,489 31.16 91.53
100000 405 8.47 100.00

Total 4,779 100.00

with the last two categories of

. generate income_groups2 = irecode(income,10000,20000,50000,100000)
(632 missing values generated)

. tabulate income_groups2

income_grou
ps2 Freq. Percent Cum.

0 2,219 46.43 46.43
1 666 13.94 60.37
2 1,489 31.16 91.53
3 357 7.47 99.00
4 48 1.00 100.00

Total 4,779 100.00

You can solve most problems using the simple commands described here and in the
previous sections. Many data manipulation problems can also be solved using shortcuts.
For example, you can easily create the quality3 variable by using the recode command
shown in section 5.2.1. You could have created the additive index quality using egen

(see section 5.2.2). But being fluent in the use of generate and replace will help you
find a solution even when there are no such shortcuts. This is especially true if you
know the concepts we explain in the following section. They are a bit more difficult,
but it is worthwhile to know them.

5.1.4 Changing codes with by, n, and N

Let us intrigue you with a small example. Suppose that you want to generate a variable
that represents the number of persons interviewed by each interviewer. At the moment,
your data look as follows:4

4. The order in which respondents were interviewed by each interviewer may differ in your dataset.
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. sort intnr

. list persnr intnr in 1/8, sepby(intnr)

persnr intnr

1. 4035001 10
2. 4035002 10
3. 3934401 10
4. 3934402 10
5. 10144301 10
6. 4035003 10

7. 8501 18
8. 8502 18

For each respondent in the dataset (indicated through persnr), you can get the
identification number of the interviewer (intnr) conducting the interview. Thus you
can easily see that the interviewer with the identification number 10 has conducted six
interviews and that interviewer 18 has done only two. You can write these results into
your data, and then your data will look like this:

persnr intnr newvar

1. 4035001 10 6
2. 10144301 10 6
3. 3934402 10 6
4. 4035003 10 6
5. 3934401 10 6
6. 4035002 10 6

7. 8501 18 2
8. 8502 18 2

But how would you do this automatically? That is, how would you generate this variable
within Stata? Think about it before reading on.

If you have an idea, most likely you have already worked with statistical software
packages before. You probably thought of somehow combining the observations for each
interviewer into what many software programs call an aggregate. If you want to do it
that way with Stata, you can use collapse. But Stata provides a smarter solution:

. by intnr, sort: generate intcount = _N

This solution has many advantages. It is short and fast, keeps the original data file,
and requires you to understand only basic concepts, most of which you already know.
You know generate, and you know the by prefix. What you do not know is N. So, let
us explain.
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To understand N, you need to understand the system variable n, which contains the
position of the current observation in the data. You can use n to generate a running
counter of the observations:

. generate index = _n

. list persnr intnr index in 1/8, sepby(intnr)

persnr intnr index

1. 4035001 10 1
2. 4035002 10 2
3. 3934401 10 3
4. 3934402 10 4
5. 10144301 10 5
6. 4035003 10 6

7. 8501 18 7
8. 8502 18 8

For the first observation, the new variable index contains the number 1; for the
second, the number 2; for the eighth, the number 8; and so on. Used with by, the
system variable n is the position within each by-group. This way you can generate a
running counter for the number of interviews by each interviewer:

. by intnr: generate intIndex = _n

. list persnr intnr index intIndex in 1/8, sepby(intnr)

persnr intnr index intIndex

1. 4035001 10 1 1
2. 4035002 10 2 2
3. 3934401 10 3 3
4. 3934402 10 4 4
5. 10144301 10 5 5
6. 4035003 10 6 6

7. 8501 18 7 1
8. 8502 18 8 2

After learning n, N is easy: it indicates the highest value of n. Without the prefix
by, N has the same value as n for the last observation, which is just the number of
observations in the dataset:

. display _N
5411
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In combination with the by prefix, N contains the value of n for the last observation
within each by-group. The n for the last observation in the by-group of interviewer 10
in our example is 6. Therefore, N equals 6 in this by-group, and by intnr: generate

intcount = N is equivalent to generate intcount = 6. In the by-group of inter-
viewer 18, the value of n in the last observation is 2. by intnr: generate intcount

= N is now equivalent to generate intcount = 2, and so forth. This is what we want
to have:

. list persnr intnr index intIndex intcount in 1/8, sepby(intnr)

persnr intnr index intIndex intcount

1. 4035002 10 1 1 6
2. 4035001 10 2 2 6
3. 4035003 10 3 3 6
4. 3934401 10 4 4 6
5. 3934402 10 5 5 6
6. 10144301 10 6 6 6

7. 8502 18 7 1 2
8. 8501 18 8 2 2

Recoding with by, n, and N differs slightly from the process of recoding described
earlier. It takes some time to get used to it, but once you do, you will find it very useful.
Here is one more example.

Suppose that you need a variable that contains a unique value for each combination
of marital status and education. The variable should be 1 for married interviewees
(mar==1) with the lowest educational level (edu==1), 2 for married interviewees with
secondary education (edu==2), etc. The standard way to generate such a variable is

. generate maredu = 1 if mar == 1 & edu == 1

. replace maredu = 2 if mar == 1 & edu == 2

and so on. After typing 25 commands, you will get what you want. Using the concepts
explained above, however, you need only two lines:

. by mar edu, sort: generate maredu2 = 1 if _n == 1

. replace maredu2 = sum(maredu2)



5.1.5 Subscripts 89

Why? Consider the following fictitious data:

mar edu | step1 step2
1. 1 1 | 1 1
2. 1 1 | . 1
3. 1 1 | . 1
4. 1 1 | . 1
5. 1 1 | . 1
6. 1 2 | 1 2
7. 2 1 | 1 3
8. 2 1 | . 3
9. 2 1 | . 3
10. 2 2 | 1 4
11. 2 2 | . 4
12. 2 2 | . 4

The data file contains the variables representing marital status and education, each
of which has two categories. The data file is sorted by marital status and education.
If you type by mar edu: generate maredu2 = 1 if n == 1, you get the variable of
step 1. The command assigns 1 to the first observation (if n == 1) of each by-group
and assigns missing otherwise. Because there are two by variables in the command, a
new by-group begins when one or both of the variables change. The second command
calculates the running sum of the variable generated in the first step. Missing values
are treated as 0 in this calculation.

5.1.5 Subscripts

Subscripts are commonly used in statistical formulas to specify which observation of a
variable you refer to. For example, in the term x3 the number 3 is a subscript; used
in a statistical formula, the term would refer to the third observation of the variable
x. Likewise, we use subscripts in Stata to refer to a specific observation of a variable.
You specify a subscript by putting brackets after a variable name. Inside the brackets,
you use an expression to specify the observation in question. For example, ybirth[1]
would refer to the first observation of the variable ybirth; income[ N] would refer to
the last observation of the variable income.

Subscripts are helpful in datasets with hierarchical structures. Such hierarchical
structures are present in almost every dataset. The file data1.dta has a hierarchical
structure because we have observed persons within households. We have, for example,
information of the labor earnings (income), the social class (egp), and the relationship
to the head of the household (rel2head) of every person above the age of 15 in each
household.
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The hierarchical structure of data1.dta can bee seen very clearly in the following
subset of the data:

. sort hhnr2009

. list hhnr2009 income egp rel2head in 26/35, sepby(hhnr2009)

hhnr2009 income egp rel2head

26. 738 57064 2. Service class 2 2. Partner
27. 738 27601 9. Semi- and unskilled manual workers 3. Child
28. 738 . .b. Does not apply 3. Child
29. 738 47501 2. Service class 2 1. Head

30. 794 19638 9. Semi- and unskilled manual workers 3. Child
31. 794 943 15. unemployed 3. Child
32. 794 2112 .b. Does not apply 2. Partner
33. 794 26810 2. Service class 2 1. Head

34. 850 20206 15. unemployed 1. Head
35. 850 . 18. Retired 2. Partner

Suppose that you would like to have a variable equal to the total labor earnings
for each household. How can you get this? Try to find a solution yourself before you
continue reading.

Our solution is the following:

. by hhnr2009: generate hhearn=sum(income)

. by hhnr2009: replace hhearn = hhearn[_N]

You already know the command generate hhearn = sum(income), which calcu-
lates the running sum of income. Here you do not sum from the first observation to the
last but sum only from the first observation of each household to the last observation of
that household. You do this by typing by hhnr2009: before the command. Then you
can find the sum of personal incomes for all adults of the household in the last observa-
tion ( N) of each household. This number is copied to all other observations of the same
household by using the command by hhnr2009: replace hhearn = hhearn[ N].

Similarly, you can find the social class (egp) of the head of the household
(rel2head==1) and assign this value to all members of the same household with

. sort hhnr2009 rel2head

. by hhnr2009: generate egph = egp[1] if rel2head[1] == 1



5.2.1 The recode command 91

You can even combine these two lines into one line by using the by construction shown
below, where the sorting takes place for all variables in the by statement. However,
when Stata forms the groups to which generate will apply, it will ignore the variables
in parentheses.

. bysort hhnr2009 (rel2head): generate egphV2 = egp[1] if rel2head[1] == 1

This approach does not copy the contents of the last observation of each household
to the other observations but copies the contents of the first observation. Using the if

qualifier ensures that the social class of the first observation is indeed the class of the
head of the household. This is important because some heads of household may not
have been interviewed.

Generating variables with subscripts is often useful when you are working with panel
or time-series data. However, for many panel or time-series transformations, Stata offers
specific tools for managing your data (see help xtset and help tsset).

This section and the previous section were harder to understand than the other
sections in this chapter. You may ask yourself if there is an easier solution, and the
answer is often yes. Highly specialized commands for specific tasks exist. The following
section shows you some of them. Unfortunately, these commands often do not help
you to better understand the basic concepts of generating variables with Stata. If you
cannot find a special command for a specific task, do not give up; instead remember
that there might be a solution in Stata (also see Cox [2002b]).

5.2 Specialized recoding commands

5.2.1 The recode command

You will often need to combine several values of one variable into a single value. Earlier,
we created the dummy variable minor to indicate respondents who had not reached the
legal age of adulthood by the time the survey was conducted. Instead of using the
procedure described on page 80, you could also use the command recode. You would
type

. recode ybirth (min/1991 = 0) (1992/max = 1), generate(minor3)

With recode, you assign new values to certain observations of a new variable ac-
cording to a coding rule. Using the generate() option stores the results in a new
variable instead of overwriting ybirth. For example, above we assigned the value 0 to
respondents born before or in 1991, and we assigned the value 1 to those born in 1992
or after. The result is stored in the new variable minor3. Here min refers to the lowest
value of the variable ybirth, and max refers to the highest value.5 Missing values in
this case do not count as the highest value.

5. To categorize variables into quartiles or other percentiles, use xtile or pctile (see help pctile).
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If you wanted to create another variable with three categories, separating out re-
spondents between age 18 and age 20, the recode command would look like this:

. recode ybirth (min/1987 = 0) (1988/1991 = 1) (1992/max = 2), generate(minor4)

Values specified in recode do not have to be in consecutive order.

The recode command also allows you to specify a variable list to be recoded, so you
can recode several variables in one step. The following command generates copies of
the variables on the appliances in dwellings but with code 2 changed to 0:

. recode eqp* (2=0), generate(head terr basm gard alrm solr airc lift engy)

5.2.2 The egen command

egen provides a large and constantly growing number of extensions to the generate

command. These extensions are based on nothing more than one or more generate and
replace commands. egen can be seen as a feature designed to spare you from having
to think about more-complicated command sequences.

The structure of egen is similar to that of generate. The command is followed
by a variable name (which is the name of the variable that should be generated), an
equal-sign, and finally the egen function. Unlike the general Stata functions discussed
in section 3.1.6, the egen functions are available only within the egen command.

A useful egen function is anycount(varlist), which creates a variable containing the
count of variables whose values are equal to any of the integer values in the values()

option. Therefore, this egen function provides an easy way to form an index from
several other variables. Look at the following example, which contains information on
how concerned respondents are about several items:

. tab1 wor*

You may wish to form an index of respondents’ concern about the future. One way
to do this is to count the number of items that respondents said they were strongly
concerned about, where “strongly” is coded as 1. You can do this easily by using the
egen function anycount():
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. egen worried = anycount(wor*), values(1)

. tabulate worried

see notes Freq. Percent Cum.

0 1,016 18.78 18.78
1 453 8.37 27.15
2 521 9.63 36.78
3 692 12.79 49.57
4 641 11.85 61.41
5 524 9.68 71.10
6 408 7.54 78.64
7 367 6.78 85.42
8 266 4.92 90.33
9 190 3.51 93.85
10 148 2.74 96.58
11 89 1.64 98.23
12 71 1.31 99.54
13 25 0.46 100.00

Total 5,411 100.00

You can compute the number of missing values for each respondent with the egen

function rowmiss(varlist):

. egen worried_m = rowmiss(wor*)

You can use the new variable worried m in different ways, such as to display the table
above only for those observations who have no missing values for any of the variables
used in the egen command:

. tabulate worried if worried_m == 0

see notes Freq. Percent Cum.

0 567 18.62 18.62
1 260 8.54 27.16
2 315 10.34 37.50
3 411 13.50 51.00
4 380 12.48 63.48
5 307 10.08 73.56
6 208 6.83 80.39
7 200 6.57 86.96
8 139 4.56 91.53
9 95 3.12 94.65
10 65 2.13 96.78
11 48 1.58 98.36
12 25 0.82 99.18
13 25 0.82 100.00

Total 3,045 100.00
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There are many other egen functions, a growing number of which have been created
by users.6 If you have a specific problem, see the list of egen functions (help egen).
Keep in mind that several egen functions are simple applications of generate—simple
if you have learned how to look at problems from a Stata perspective.

5.3 Recoding string variables

The data manipulation tools you have learned so far can help you solve many problems.
However, sometimes you will be confronted with variables that contain strings (letters
or words), which require special attention.

Because our previous datasets did not contain strings, we will use a new dataset
to provide examples. mdb.dta contains information about all German politicians who
were members of the parliament (Bundestag) between 1949 and 1998 (des Deutschen
Bundestages 1998). For each politician, the dataset contains his or her name, party
affiliation, and the duration of his or her membership in parliament.

. use mdb, clear

String variables can be easily identified in the output of describe, where an entry
in the column “storage type” beginning with “str” refers to a string variable:

. describe

Contains data from dta/mdb.dta
obs: 7,918 MoP, Germany 1949-1998
vars: 14 16 Jul 2012 11:39
size: 934,324 (_dta has notes)

storage display value
variable name type format label variable label

index int %8.0g Index-Number for Parlamentarian
name str63 %63s Name of Parlamentarian
party str10 %10s Fraction-Membership
period str2 %9s Legislative Period
pstart int %d Start of Legislative Period
pend int %d End of Legislative Period
constituency str4 %9s Voted in Constituency/Country

Party Ticket
birthyear int %9.0g Year of Birth
birthmonth byte %9.0g Month of Birth
birthday byte %9.0g Day of Birth
deathdate int %d Date of Death
begindate str15 %15s Begin of Episode
enddate str11 %11s End of Episode
endtyp byte %25.0g endtyp Reason for Leaving the Parliament

Sorted by: pstart name

6. Chapter 13 explains where you can find those functions.
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Our dataset contains the following string variables: name, party, period, constitu-
ency, begindate, and enddate. String variables can be tabulated just like the already
familiar numeric variables but they cannot be summarized:

. summarize party

Variable Obs Mean Std. Dev. Min Max

party 0

Because you cannot do calculations with string variables, you may want to change
them to numeric variables. You can do this by using one of two methods. First, you can
use encode to generate a numeric variable with value labels according to the contents
of a string variable. After typing the command, type the name of the string variable to
be converted and then type the name of the numeric variable you want to create within
the parentheses of the generate() option:

. encode party, generate(party_n)

encode attaches the value 1 to the category that comes first alphabetically, which
is not always desirable. Specifically, you should not use encode for strings containing
numbers that merely happen to be stored as strings. This is the case for the variable
period, which contains numerals from 1 to 13; however, because they are stored in
a string variable, Stata does not know that these numerals represent numbers. String
variables like period should be converted to values with the command destring, which
mirrors the syntax of encode:

. destring period, generate(period_r)

You may not always want to convert strings to numeric variables, because many
data-management tasks are easier done with string variables. You can use many of the
tools you have learned about with string variables. For example, to construct a variable
that is 1 for all politicians who are members of the Christian Democratic Union and 0
for all others, type

. generate cdu = party == "CDU" if !missing(party)

That is, you can use strings in expressions if you enclose them in double quotes.
However, be careful. Unlike numbers, strings can be lowercase and uppercase. And
although we humans tend to be sloppy about whether we use uppercase or lowercase
letters, Stata is not. If your strings contain the same information but mix lowercase
and uppercase, you should harmonize them by using either the lower() function or
the upper() function. The following example uses upper() to convert the contents
of party on the fly, when constructing a variable that is 1 for all politicians who are
members of the Social Democratic Party (SPD):

. generate spd = upper(party) == "SPD" if !missing(party)
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An important string function is strpos(s1,s2), which checks whether one string, s2,
is part of another string, s1, and returns the position where s2 is first found in s1. For
example, using strpos() you can find out that the string “Stata” contains the string
“a” for the first time at the third position:

. display strpos("Stata","a")
3

Now take a look at the variable name:

. list name in 1/5

name

1. Adenauer, Dr. Konrad
2. Agatz, Willi
3. Ahrens, Adolf
4. Albers, Johannes
5. Albertz, Luise

As expected, the variable contains the names of all the politicians. If you go through
the list of names, you will notice that some politicians have a doctoral degree. You can
easily extract this small piece of information about the politicians’ education by using
the strpos() function: just check whether the name of a politician contains the string
“Dr.”:

. generate dr = strpos(name,"Dr.") > 0

. tabulate dr

dr Freq. Percent Cum.

0 5,598 70.70 70.70
1 2,320 29.30 100.00

Total 7,918 100.00

The strpos() function is also an important tool if you need to extract a specific part
of a string. Suppose that you want to construct a variable that contains only the last
names of the parliamentarians. In the variable name, first and last names are separated
by a comma. The last name of each parliamentarian begins with the first letter and
ends one character before the comma. Therefore, the first step in extracting the last
name is to know the position of the comma. By typing

. generate comma = strpos(name,",")

you store this information in the variable comma.

Now you need to extract the substring of the variable name from the first position
up to the position in the variable comma. You can do this using the substr() function.
Inside the parentheses of this function are three arguments, separated by commas: the
string from which the substring should be extracted, the position where the substring
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begins, and the length of the substring. For example, to extract a string of length 4
beginning at the fifth position from the string “Hello world”, type

. display substr("Hello world",5,4)
o wo

To extract the last two characters of a string, you can count backward by using a
negative second argument:

. display substr("Hello world",-2,.)
ld

That is, negative values for the second argument are used to indicate that the beginning
position is counted from the end of the string. A dot in the third argument is used to
extract everything from the beginning position to the end of the string.

To extract the last names, you need to extract a substring of the string in the variable
name from the first position to the position of the comma, which is stored in the variable
comma. The length of that substring must therefore be the position of the comma minus
1. Hence,

. generate str famname = substr(name,1,comma-1)

. list famname in 1/5

famname

1. Adenauer
2. Agatz
3. Ahrens
4. Albers
5. Albertz

returns the required result.

Clearly, you can use the same approach to extract the part of the name after the
comma:

. generate str firstname = substr(name,comma+1,.)

. list firstname in 1/5

However, to extract just the first names of the politicians requires more work. In
addition to the first names, you will find doctoral degrees and titles of nobility after the
comma. To get rid of these suffixes, you can use the subinstr() function to replace
a substring of an arbitrary string with another string. In the following example, we
use this function to replace the string “Dr.” in the string variable firstname with an
empty string—that is, we delete the string “Dr.” from the strings in firstname.

. replace firstname = subinstr(firstname,"Dr.","",.)

The first argument within the parentheses is the string or variable that contains the
substring to be replaced, the second argument is the substring to be replaced, and the



98 Chapter 5 Creating and changing variables

third argument is the replacement string. The fourth argument indicates the number
of occurrences to replace; missing means all occurrences.

5.4 Recoding date and time

Besides string variables, variables holding information about date and time of day are
a second group of variables that requires special attention. We talk about dates when
there is information on the day, month, and year of the respective event. Similarly, we
talk about time when there is, at minimum, information on the hour and the minute of
an event.

Dealing with dates and times requires some steps that are quite different from what
we discussed so far. We will explain both, starting with dates.

5.4.1 Dates

The file mdb.dta on parliamentarians uses information on dates heavily. Along with
each person’s name, our dataset contains information on each person’s date of birth
(and death), the date he or she became a member of the parliament, and the date
he or she left the parliament. Here the various dates happen to be stored in different
ways. The birth date is stored in three variables: birthyear holds the year in which
the parliamentarian was born. Likewise, birthmonth holds the month of birth, and
birthday holds the day of birth.

. list name birth* in 1/4

name birthy~r birthm~h birthday

1. Adenauer, Dr. Konrad 1876 1 5
2. Agatz, Willi 1904 6 10
3. Ahrens, Adolf 1879 9 17
4. Albers, Johannes 1890 3 8

The dates each member entered and left parliament are stored as single string variables
(begindate and enddate):

. list name begindate enddate in 1/4

name begindate enddate

1. Adenauer, Dr. Konrad 07 September 49 Sep 07 1953
2. Agatz, Willi 07 September 49 Sep 07 1953
3. Ahrens, Adolf 07 September 49 Sep 07 1953
4. Albers, Johannes 07 September 49 Sep 07 1953

Suppose that you want to know the age at which politicians entered parliament.
Generally, you would want to subtract the beginning date from the birth date. However,
this is not as easy as it would seem, because you cannot subtract anything from a string
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variable such as begindate. You might, therefore, decide to store only the year of the
exit date and to subtract the beginning year from that variable. But this would not be
very accurate, because it makes a difference whether the date is at the beginning or at
the end of the beginning year.

When dealing with dates, you need to use elapsed dates, which are integer numbers
counting the days from a standard date. If, for example, January 1, 1960, is used as
day 0, then January 2, 1960, is day 1, and November 9, 1989, is day 10,905.

Elapsed dates are clearly preferable to the other ways of storing dates, so Stata has
special functions to convert dates from other formats into elapsed dates. To convert
dates stored in separate variables into elapsed dates, the function mdy() is used. Inside
the parentheses, you list the names of the variables containing the month, the day, and
the year. List the names in the order month, day, year, and separate the names with
commas. This function returns the elapsed dates for the birth dates as follows:

. generate birthdate = mdy(birthmonth,birthday,birthyear)

. list name birth* in 1/4

name birthy~r birthm~h birthday birthd~e

1. Adenauer, Dr. Konrad 1876 1 5 -30676
2. Agatz, Willi 1904 6 10 -20293
3. Ahrens, Adolf 1879 9 17 -29325
4. Albers, Johannes 1890 3 8 -25500

In Stata, elapsed dates are counted from January 1, 1960, so all dates before then
are negative numbers.

You may well be convinced that in Stata it is good to have elapsed dates. How-
ever, you may find elapsed dates to be cryptic. You might know something about, say,
November 9, 1989—the date when the Berlin Wall fell—but the number 10,905 is in-
scrutable. Therefore, it would be helpful for Stata to store dates as elapsed dates but
to show them in a way that humans can understand. You can do this by setting the
display format of a variable containing elapsed dates to the Stata standard date format:

. format birthdate %td

You could even build fancier display formats by using the user-specified elapsed date
formats described in help dates and times:

. format birthdate %tdM_d._CY
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After you have set the display format, commands that respect display formats will
show elapsed dates in a way that users can understand. Among the commands that
respect display formats is list:

. list name birthdate in 1/4

name birthdate

1. Adenauer, Dr. Konrad January 5. 1876
2. Agatz, Willi June 10. 1904
3. Ahrens, Adolf September 17. 1879
4. Albers, Johannes March 8. 1890

To convert dates stored in string variables, you can use the date(a,b) function.
Inside the parentheses, you first state a string or the name of the string variable con-
taining the dates, and then, separated by a comma, you specify a pattern string, which
describes the format of the dates in the string variable. If the string variable contains
dates like “1989 November 9th”, the pattern string will be YMD because the order of the
date is year (Y), month (M), day (D).

To understand the date() function, you should try it with display. We use display
in connection with the format statement %td so that the returned elapsed date is shown
in an easily readable format:

. display %td date("11/9/1989","MDY")
09nov1989

. display %td date("9/11/1989","DMY")
09nov1989

. display %td date("1989/11/9","YMD")
09nov1989

date() is tolerant about how the dates are stored in your string variable. The
date() function understands the proper English words and usual abbreviations for the
months, and does not care about the characters between the different parts of the dates.
Here are some further examples, and you might try even more:

. display %td date("November 9 1989","MDY")
09nov1989

. display %td date("Nov9/1989","MDY")
09nov1989

. display %td date("11. 9/1989","MDY")
09nov1989

date() is also smart about two-digit years. If the years of the dates have only two
digits and you know that those years are all from the same century, then you can put
that information into the pattern string as follows:

. display %td date("November 9 ´89","MD19Y")
09nov1989
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The situation is more complicated for two-digit years referring to more than one
century. In the special situation of values from two centuries, there is a solution if the
century is then often clear from context. Think of the birth dates of the respondents
of a survey from 2009 on a population aged 16 and older. The birth year ’94 cannot
be 1994 then, because the respondent would be only 15 years old. Hence, ’94 must be
1894, or more generally, all birth years before and including ’94 should be interpreted
as belonging to the nineteenth century. It is therefore possible to add a third argument
to date(a,b,z) to specify the maximum year that should be returned. Try this:

. display %td date("November 9 ´92","MDY",1993)
09nov1992

. display %td date("November 9 ´93","MDY",1993)
09nov1993

. display %td date("November 9 ´94","MDY",1993)
09nov1894

. display %td date("November 9 ´95","MDY",1993)
09nov1895

With all this in mind, we can now use date() to transform begindate and enddate

into an elapsed date format. The entries in begindate are in the order day, month,
year, where year is two digits long. From the data source, we know that there should
be no year greater than 1999, so we use

. generate begin = date(begindate,"DMY",1999)

The variable enddate has the order month, day, year, where year is four digits long.
Hence,

. generate end = date(enddate,"MDY")

which leads to

. format begin end %tdM_d._CY

. list name begin end in 1/4

name begin end

1. Adenauer, Dr. Konrad September 7. 1949 September 7. 1953
2. Agatz, Willi September 7. 1949 September 7. 1953
3. Ahrens, Adolf September 7. 1949 September 7. 1953
4. Albers, Johannes September 7. 1949 September 7. 1953

After you convert the beginning and ending dates of each politician into elapsed
dates, calculating the time span between the two dates is easy. You can calculate the
age (in days) at which each politician became a member of parliament:

. generate entryage = begin - birthdate
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These ages in days can be rescaled to ages in years through division by 365.25. In the
following command, we additionally round downward to the closest integer by using the
floor() function.

. replace entryage = floor(entryage/365.25)

In our dataset, there is one complication: politicians are listed more than once if
they served in more than one legislative period. Regarding age of entry into parliament,
it is therefore sensible to keep only the observations for the first entry. This is yet
another job for recoding with by, n, and N (see sections 3.2.1 and 5.1.4).

. bysort name (period_r), sort: keep if _n==1

These are the names and ages of those politicians who were youngest when they
were first elected into the German Bundestag:

. sort entryage

. list name entryage begin party in 1/5

name entryage begin party

1. Berninger, Matthias 23 November 10. 1994 B90/GRU
2. Nolte, Claudia 24 October 3. 1990 CDU
3. Schoeler, Andreas von 24 December 13. 1972 FDP
4. Bury, Hans Martin 24 December 20. 1990 SPD
5. Homburger, Birgit 25 December 20. 1990 FDP

5.4.2 Time

In Stata, times are handled similarly to dates. To create elapsed times, milliseconds
are counted since January 1, 1960 (this is Stata’s standard; see page 99). A value of 1
on an elapsed time variable means 1 millisecond into January 1, 1960. November 9,
1980, at 6:53 PM—which is the time Günter Schabowski declared the opening of the
border between East and West Germany—happened 942,432,780,000 milliseconds after
January 1, 1960, at 12:00 AM.

Time diaries are a common example of datasets that include times. In time diaries,
respondents are asked to note the start and end time of each activity within a day. For
illustrative purposes, we use the time diary available in the file diary.dta. This dataset
contains a (fictitious) schedule for one day in the life of a child.7

7. The fictitious day followed the questionnaire for children used in the Panel Study of Income Dy-
namics.
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. use diary, clear

. list in 1/10

activity bhour bmin estring location

1. Sleeping 0 0 7:30 at home
2. Getting up 7 30 7:40 at home
3. Using the bathroom 7 40 7:45 at home
4. Eating 7 45 8:15 at home
5. On the way 8 45 9:05 in car

6. In school 9 5 15:15 school
7. Playing basketball 15 15 17:00 YMCA
8. On the way 17 0 17:30 in car
9. Watching TV 17 30 18:00 at home

10. Eating 18 0 18:25 at home

The dataset contains two variables for the beginning of each activity: one variable
captures the hour (bhour) and the other captures the minute (bmin). The end of an
activity is stored in another variable as a string. We will show how to convert both
start and end data into an elapsed time format.

Knowing that our fictitious child got up at 7:30 AM is not enough. To calculate the
elapsed time (the number of milliseconds that have passed since midnight on January 1,
1960), we need one more piece of information: the date for which we recorded the
activities of this child. Let us assume our data recorded activities on November 9,
1989.8 We can add a variable containing that information to the dataset by using one
of the date functions we discussed in the previous section:

. generate date = date("9.11.1989","DMY")

Once the date is known, it is fairly easy to create elapsed times. A couple of functions
allow you to do this (see help dates). For our example, we will use dhms(d,h,m,s).
Here you specify the day as an elapsed date (d ), then the hour of the event (h), the
minute (m), and finally the seconds (s) if you know them. The elapsed time variable
begin for the start of each activity will be created as follows:

. generate double begin = dhms(date,bhour,bmin,0)

Let us explain because this command might not be intuitive. First, the keyword
“double” ensures that enough storage space is reserved for the elapsed time variable.
Remember that times are stored in milliseconds; thus they often contain large numbers.
To avoid rounding errors, you must save those time variables with a special storage type
(double). You can find more on storage types in section 5.7.

8. This is an arbitrary date that we picked only for this example.
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Second, you might notice that we added 0 at the very end of the command. Our
data did not contain a variable with information on the second the activity started;
thus we chose to enter 0 instead. Finally, we were fortunate to have the date already
stored as an elapsed date variable. However, in the absence of an elapsed date you could
use the function mdyhms(). Within the parentheses, you would enter month, day, year,
hour, minute, seconds.

To convert the end time of the activities into an elapsed time variable, we need to
use a different function. As mentioned above, in our example dataset the end time is
stored as a string variable. To convert string variables into elapsed time, you would use
the function clock(). Its functionality is similar to date(). Within the parentheses,
you first list the string variable, which contains the entire time point (that is, date and
time). Then you give information on the structure of this string variable.

The string variable in our example dataset does not yet contain a variable with all
information for the time point. Before we can use clock(), we need to add a date to
our time information.

. generate efull = "9.11.1989 " + estring

. generate double end = clock(efull,"DMYhm")

The key DMYhm indicates that the newly created string variable contains day, month,
year, hour, and minutes, respectively. Other options can be found in help dates.

It is reasonable to define a display format for your time variable, just like you did
earlier for dates. The standard format for times is tc,

. format begin end %tc

Once elapsed times are created, we can find out which activity in the life of our
fictitious child took the most time. We calculate the difference between the start and
end times. The function minutes() allows users to express the difference between the
start and end times in minutes.

. generate time = minutes(end-begin)
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Afterward, you proceed as usual:

. by activity, sort: replace time = sum(time)
(5 real changes made)

. by activity: keep if _n == _N
(5 observations deleted)

. sort time

. list activity time

activity time

1. Getting up 10
2. Listening to bedtime story 20
3. Playing computer games 30
4. Reading book from library 35
5. On the way 50

6. Eating 55
7. Watching TV 60
8. Using the bathroom 65
9. Playing basketball 105

10. In school 370

11. Sleeping 450

Now we know that the life of our child is dominated by sleeping and school.

5.5 Setting missing values

Before reading on, please load data1.dta:

. use data1, clear

Variables in Stata may contain missing values, which can arise for a number of
reasons. For example, in earlier examples in this book, we created variables where we
intentionally left certain observations out, or we changed existing variables to exclude
certain values. With generate and replace, this is done by specifying a dot behind
the equal sign. For example, by typing

. replace income = . if income == 0

you change all occurrences of 0 in the income variable to a missing value.

In addition to the dot, there are 26 other codes for missing values, namely, .a,
.b, . . . , .z. Observations with these codes are also excluded from statistical analyses.
These codes are used to distinguish between different reasons for values being missing.
For example, many surveys distinguish between the answer “do not know” and an
explicit refusal to answer. In this case, it makes sense to code “do not know” as .a and
explicit refusal to answer as .b. This way, both types of missing data are excluded from
statistical analyses, but the information on the different causes is kept in the dataset.
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You can assign the special codes for missing values the same way you assign the
single dot. For example, we could assign incredibly low individual labor earnings to yet
another missing value code, say, .c for “inconsistent”:

. replace income = .c if income <= 120

Often you may want to change multiple instances of the same value to missing in a
dataset. For example, in the original GSOEP data, refusals to answer are coded as -1.
In data analysis, refusals are usually treated as missing values. Therefore, it makes
sense to change -1 in all variables to missing simultaneously. To do so, you can set up
a foreach loop (see section 3.2.2) or use the mvdecode command:

. mvdecode _all, mv(-1=.a)

mvdecode replaces the values of a varlist according to the rule specified in the mv()

option. The rule can be read as, “Make the value before the equal-sign equal to the
missing-value code after the equal-sign”. If you do not specify a missing-value code, the
simple dot is used. In our example, we used all instead of a variable list; all executes
the command on all variables in the data file. However, our example does not change
the data, because we have already set -1 to missing. Before you use all, you should
verify that there are no variables in your dataset for which -1 is a valid value. In our
case, we know no variables include -1 as a value to be used in statistical computations.

Of course, you can change more values to missing. In the GSOEP, the response “does
not apply” is always coded as -2, which means, “This question has not been asked of
this respondent”. Usually, you would want to change this value to missing, as well:

. mvdecode _all, mv(-2=.b)

Missing values can also arise unintentionally. This happens when you create values
with a function that is not defined for some values. For example, the command

. generate dvisits_log = log(dvisits)
(1595 missing values generated)

creates 1,595 missing values. Of these missing values, 98 were already present in dvisit,
but all the other missing values originated because the logarithm of 0 is not defined.

Another frequent source of unintended missing values is ill-specified if qualifiers.
The commands

. generate minor = 0 if (2009-ybirth) > 18

. replace minor = 1 if (2009-ybirth) < 18

are an attempt to create a dummy variable to distinguish between respondents above
and below the age of 18, but unintentionally set respondents of age 18 to the missing
value. Moreover, if there were already any missing values in ybirth, those values would
have been assigned to 0 because for them the expression 2009-ybirth evaluates to
missing, which is a value greater than 18 (see section 3.1.5). The commands
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. drop minor

. generate minor = (2009-ybirth) < 18 if !missing(ybirth)

are a better way to create the dummy variable minor.

Sometimes you might want to restore a missing definition. You can do this using
replace or mvencode. mvencode has the same syntax as mvdecode but performs the
opposite function. For example, by typing

. replace income = 0 if income == .

you change the missing value of income to the numeric value 0. By typing

. mvencode _all, mv(.a=-1)

you translate the missing value .a of all variables to -1.

These examples also show how problematic assigning missing-value codes can be. In
the beginning, we have assigned all incomes of 0 to the missing value. This assignment
is irreversible in that there is no way to distinguish the missing values that were already
present from those newly assigned. Such problems arise often in assigning missing values
to the data, although they also can occur in recoding variables.

To avoid this problem, we recommend that you duplicate the variables and apply
the missing-value statements only to the copies. And remember, you are always in luck
if you work with do-files in the way we suggested in chapter 2.

5.6 Labels

You have not finished generating a variable until you label it. Labels identify the
contents of a variable. There are three main ways to label a variable: the variable
name, the variable label, and the value labels.9

The variable name is not a label in the strictest sense. It is the name you give the
new variable in generate. You can use variable names up to 32 characters long, but
you typically will not use variable names of that length. Often you will need to type
the names repeatedly, which will be tedious if the names are long.

9. There is one more concept in Stata that is less widely used—that of notes. We have used notes in
data1.dta to store the variable name and the record type of the variable in the GSOEP database.
You can look at our notes by typing notes. See help notes for more information.
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There are two approaches used for choosing variable names. Often you will find
datasets with logical variable names, where a logical key is used to name the variables.
You will quite often find variable names composed of the letter v and the number of a
question in a survey. Take the variable v1 for example. This variable has the answers
to the first question in our survey. The variable v2 would contain the answers to the
second question, and so on. In the GSOEP, logical variable names are used to express
the year of the survey, the survey type, and the question number (see section 11.4.1).
However, in a day-to-day data analysis, descriptive variable names can be quite helpful.
Descriptive names directly indicate the contents of the variable, for example, state in
our example dataset.

We recommend that you use logical variable names when entering data from a ques-
tionnaire (see chapter 11) but that you use descriptive variable names when preparing
variables for a specific analysis.

Short variable names may not describe the contents of a variable clearly. To provide
more information, you can use the variable label. For examples of variable labels, look
at the right column of the output of describe. You also can find variable labels in the
output of some statistical procedures.

Variable labels serve no purpose in Stata other than for users to understand the
contents of a variable. That said, leaving out variable labels can be very annoying to
users, especially in a dataset with logical variable names.

To label a variable, value, or an entire dataset, you use the label command.10 If
you want to use label to label a variable, you need to specify a keyword. Type label

variable, then type the name of the variable you want to label, and follow this by the
label itself. You can use up to 80 characters for the label.11

To label the variable dvisits log that we created above, you would use the following
command:

. label variable dvisits_log "Log of number of doctoral visits"

You do not need the quotation marks for labels that do not have special characters—
dashes, blanks, commas, etc. Some characters, such as letters with accents, are displayed
properly only if you use a font that can display those characters. If you are concerned
about portability, you may not want to use such characters.

10. For information about labeling datasets, see section 11.5.
11. See help notes if you wish to store in the dataset information about the variable beyond the limit

of 80 characters; for example, you may want to store the wording of the survey question.
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As stated, variable labels are intended to help the Stata user. The same is true of
value labels, which indicate the meanings of the values of a variable. This is important
for variables with nominal scaling. The numbers 1 and 2 in the variable for gender (sex)
are meaningless until we know that 1 stands for “male” and 2 stands for “female”. To
store such meanings in the dataset, we define value labels.

We again use the command label, but this time with two steps:

1. Define a label that contains the values and their meanings.

2. Attach the label to the variable.

Consider the variable minor generated on page 80. To label the values of minor,
we first define the contents of the label by typing label define, followed by the name
of the label we want to define (at most 32 characters) and then the definitions of the
values. We do this last step by specifying a value and stating its meaning:

. label define minor_lb 0 "Adult" 1 "Minor"

Again quotation marks are needed only if the value labels contain special characters,
but we recommend that you always use them. Also avoid using letters with accents and
the like. You can use labels up to 32,000 characters long to specify the meaning of a
value, but we doubt that labels that long are useful.12

Defining a value label has no effect until we attach the contents of the label to a
variable. This is done with label values varname labelname:

. label values minor minor_lb

Now the values of the variable are connected to the definitions specified in the label.
The output of statistical commands, such as tabulate, then presents the meaning of
the numbers instead of the numbers themselves:

. tabulate minor

minor Freq. Percent Cum.

Adult 5,345 98.78 98.78
Minor 66 1.22 100.00

Total 5,411 100.00

This two-step process may seem unnecessarily complicated, but it has its advantages.
The main advantage is that you can use the same value label to label the values of more
than one variable. In our dataset, we have connected all variables indicating features
of dwellings with the label scale2. This label defines 1 as meaning “yes” and 2 as
meaning “no”. Whenever variables share the same values, we can use the value label
scale2 again.

12. For compatibility with older versions of Stata and other programs, you might want to restrict
yourself to 80 characters. Always put the most significant part of a label into the first few characters.
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There is an even easier way to link value labels and variables. Define the value label
yesno:

. label define yesno 0 "no" 1 "yes"

As already described, you can link yesno with label value to any variable. How-
ever, for new variables you can use generate. To do so, add a colon and then the name
of the value label after the name of the new variable. This way you can generate and
label a variable in one command:

. generate married:yesno = mar==1 if !missing(mar)

. tabulate married

married Freq. Percent Cum.

no 2,331 43.08 43.08
yes 3,080 56.92 100.00

Total 5,411 100.00

Finally, you can use the command label list to get information about the contents
of a value label. To look at the contents of the value label yesno, you would type

. label list yesno
yesno:

0 no
1 yes

If you do not specify a label name, label list returns a list of the contents of all
the labels we have.

A helpful alternative to label list is numlabel, which allows you to include the
value in a value label. For example, the value label can be “1 yes” instead of “yes”.
This way, commands such as tabulate show both the label and its numeric value. The
following commands make this change for any value labels in the dataset and show the
effect for married.

. numlabel _all, add

. tabulate married

married Freq. Percent Cum.

0. no 2,331 43.08 43.08
1. yes 3,080 56.92 100.00

Total 5,411 100.00
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These “numlabels” are particularly useful during the data-management tasks de-
scribed in this chapter. However, for statistical analysis and presentation of results,
numlabels are less useful and sometimes even disturbing. It is therefore also possible to
remove them:

. numlabel _all, remove

Type help numlabel for more information.

5.7 Storage types, or the ghost in the machine

There is a frustrating problem that you will encounter sooner or later. Before we can
explain this problem, we must make a short technical introduction. Stata distinguishes
alphanumeric variables (strings) from numerical variables (reals). Strings contain letters
and other characters (including numerals that are not used as numbers). Reals are
numbers. For both types of variables, Stata distinguishes between different storage
types:

. help datatypes

The storage types differ in the amount of memory they use. To store an observation
in a variable of storage type byte, Stata uses exactly 1 byte of memory. For the storage
type double, Stata uses 8 bytes. To save memory, you should use the most parsimonious
storage type. You can provide a keyword with generate to specify the storage type of
the new variable.13 If you do not specify a keyword, Stata defaults to using floats for
numbers or a string of sufficient length to store the string you specify, so you will usually
not need to care about storage types. However, there is one exception. To illustrate,
try typing the following:

. generate x = .1

. list if x == .1

You would expect a list of all observations now, because the variable x is 0.1 for all
observations. But what you got is nothing.

Here is what has happened: Stata stores numbers in binary form. Unfortunately,
there is no exact binary representation of many floating-point numbers. Stored as
floating-point variables, such numbers are precise up to about seven digits. The num-
ber 0.1 is stored as 0.10000000149011612 as a floating-point variable, for example. Like-
wise the number 1.2 is stored as 1.200000047683716. The problem therefore is that the
variable x does not really contain 0.1. The variable contains instead 0.10000000149.
On the other hand, when Stata calculates, it is always as precise as it can be. That
is, Stata does calculations with a precision of about 16 digits. For this reason, Stata
handles the number 0.1 in a calculation as 0.100000000000000014 . . . . If you compare
this 0.1 with the 0.1 stored as a float, as in the above if qualifier, the two numbers

13. The keywords byte, int, long, float, and double cannot be used as variable names for this reason
(see section 5.1.1).
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are not equal. To avoid this problem, you can store numeric variables as double. You
can get around the problem we described by rounding the decimal in the if qualifier to
float precision:

. list if x == float(.1)

Type help data types for more information.

5.8 Exercises

1. Load a subset of the National Health and Nutrition Examination Study (NHANES)
into Stata memory by typing

. webuse nhanes2, clear

2. Create the variable men with value 0 for female observations and 1 for male ob-
servations. Label your variable with “Men y/n” and the values of your variables
with “no” for 0 and “yes” for 1.

3. Correspondingly, create fully labeled dummy variables (indicator variables coded
with 0 and 1) for “being in excellent health” and “being 70 years of age or more”.

4. Assuming that the formula to calculate the body mass index (BMI) is

BMI =
Weight in kg

Height in m2 (5.1)

create a fully labeled BMI variable for the NHANES data.

5. Create a fully labeled version of BMI, where the values have been classified accord-
ing to the following table:

Category BMI

Underweight < 18.5
Normal weight 18.5–24.9
Overweight 25.0–29.9
Obese 30.0–39.9
Severely obese > 40

6. Create a fully labeled version of BMI, where the values of BMI have been classified
into four groups with approximately the same number of observations.

7. Create a fully labeled version of BMI, where the values of BMI have been classi-
fied into three groups defined as follows: Group 1 contains observations with a
BMI lower or equal to one standard deviation below the gender-specific average.
Group 2 contains observations with values higher than group 1 but lower than one
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standard deviation above the gender-specific average. Finally, group 3 contains
observations with values above group 2. Please create this variable with the help
of egen.

8. Create the variable of the last problem without using egen.

9. With the help of the command egen, create a variable that enumerates all possible
covariate combinations formed by the variables region and smsa.

10. Create the variable of the last problem without using egen.

11. Create a variable that indicates for each respondent how many people were inter-
viewed in the same strata where the respondent lives.
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In modern data analysis, graphs play an increasingly important role. Unfortunately,
some authors regard data analysis using graphs as disjoint from traditional confirma-
tory data analysis. In contrast to confirmatory data analysis, which presents and tests
hypotheses, graph-based data analysis is often perceived as a technique solely for gener-
ating hypotheses and models. However, as Schnell (1994, 327–342) convincingly spells
out, this division between exploratory and confirmatory data analysis is misleading.
It seems more sensible for us to regard graphs as tools for data analysis in general,
and maybe even primarily for hypothesis-driven data analysis. We therefore use many
graphical features in the chapters on distributions (chapter 7) and regression and logistic
regression (chapters 9 and 10). There we discuss how to use and interpret the different
graphs.

To take full advantage of the applications shown in these later chapters and create
your own graphs, you need to understand Stata’s basic graphics capabilities, which we
explain in this chapter. Naturally, we will not cover every possibility, but after reading
this chapter, you should be able to understand the logic behind Stata’s graphics features.
We strongly recommend that you read [G-1] graph intro, the online help, and last but
not least, the excellent book on Stata graphs by Mitchell (2012).

The examples in this chapter use single-person households with moderate rents from
data1.dta. Therefore, please enter1

. use data1 if hhsize == 1 & rent < 2000, clear

6.1 A primer on graph syntax

The syntax of the graph commands is different from that of most other Stata commands.
We will explain this briefly here, and we will go into more detail as we progress:

• A Stata command for creating graphs comprises two elements: the graph com-
mand and a graph type. Here, for example, box is the graph type:

. graph box rent

1. Make sure that your working directory is c:\data\kk3; see page 3.

115
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• For the twoway graph type, a plottype must also be specified. Here is an example
with the plottype scatter:

. graph twoway scatter rent size

For the twoway graph type, you can leave out graph to save typing. For the plot-
types scatter and line, you can even leave out twoway. The following commands
are therefore identical to the one given above:

. twoway scatter rent size

. scatter rent size

• The plottypes of the twoway graph type can be overlaid. Here is an example with
scatter and lfit:

. graph twoway (scatter rent size) (lfit rent size)

Here both types are set in parentheses. However, you can also separate the plot-
types with || as in the following example, where we also leave out graph and
twoway:

. scatter rent size || lfit rent size

• Occasionally, you will find options such as xlabel(#20, angle(90)) or
xscale(range(0 300) reverse alt) in your graph commands. That is, options
of the graph command can contain suboptions or a list of options.

• The overall look of a Stata graph is specified by a graph scheme, so changing the
graph scheme can change the look of the graph considerably:

. set scheme economist

. scatter rent size

To obtain the same graphs as shown in the book, you must switch to the s2mono

scheme:

. set scheme s2mono

6.2 Graph types

For the most part, the graph command is composed of the same building blocks used in
other Stata commands. However, you must include a subcommand for the graph type.
When creating statistical graphs, you must first decide on the graph type, after which
you can use the options to design the graph.
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6.2.1 Examples

Among others, the following graph types are available in Stata:

• Bar charts

. graph bar size, over(area1, label(angle(45))) title(bar chart)

• Pie charts

. graph pie, over(area1) title(pie chart)

• Dot charts

. graph dot (mean) size, over(area1) title(dot chart)

• Box-and-whisker plots (box plots)

. graph box size, over(area1, label(angle(45))) title(box-and-whisker plot)

• Twoway (graphs in a coordinate system). This graph type allows for various
plottypes, such as scatterplots, function plots, and histograms.

. graph twoway scatter rent size, title(scatterplot)

. graph twoway function y = sin(x), range(1 20) title(function plot)

. graph twoway histogram rent, title(histogram)

• Scatterplot matrices

. graph matrix dsat rent size, title(scatterplot matrix)
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You will find examples for each of these graph types in figure 6.1.
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Figure 6.1. Types of graphs
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6.2.2 Specialized graphs

In addition to the basic graphs shown in figure 6.1, there are roughly 50 statistical
graph commands, such as distributional diagnostic plots, plots designed for regression
diagnostics, time-series graphs, and graphs for survival analysis. All of these graphs use
the basic graph commands and require specific statistical interpretations or special data
preparation. Some are only available immediately after statistical procedures, whereas
others are designed to help you prepare a statistical analysis, such as

. gladder income

which displays how the variable income would be distributed after nine different power
transformations (see section 9.4.3). For a list of all statistical graph commands, type
help graph other; you will see several applications of different graph types in the rest
of this book.

Some software packages include 3-D graphs, meaning illustrations that appear to be
three-dimensional. In 3-D graphs, rectangles of a bar chart may be depicted as blocks,
lines in line graphs as tapes or snakes, and the circular segments from pie charts as
slices of pie or cake. Graphs such as these might be helpful in business presentations,
but most of them are not suitable for presenting statistical data. Therefore, there are
no such illustrations in Stata.

6.3 Graph elements

The appearance of graphs is defined by a series of elements, shown in figure 6.2 (see
Cleveland [1994, 22–25]). In the rest of this chapter, we discuss these elements, which
can be roughly subdivided as follows.

• Elements that control the display of data, including the shape, color, and size of
the “marker symbols”, as well as lines, bars, and other ways to display data.

• Elements that control the size and shape of the graph, including the “graph region”
and “plot region”. The graph region is the size of the entire graph, including titles,
legends, and surrounding text. The plot region is the space that can hold data
points. Just inside the plot region is the data region. The plot region’s size
is determined by the axes, whereas the data region’s size is determined by the
minimums and maximums of the variables being plotted.

• Elements that convey additional information within the graph region, including,
for instance, reference lines for crucial values, marker symbol labels, or any other
text in the plot region.

• Information outside the plot region, which affects the appearance of the axes that
border the graph region on the left (y axis), bottom (x axis), top (upper axis),
and right (right axis). The appearance of information outside the plot region is
controlled by various elements, for example, tick lines, axis labels, and axis titles.
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Often displayed here are a legend, which explains the symbols in the graph, and
the title and description of the graph.
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Figure 6.2. Elements of graphs

You can change all of these graph components in various ways with two different
tools:

• The options available for the graph command and the options available for each
of the specialized graph or plottypes. This would be in line with the usual way of
operating Stata through its command language.

• The Graph Editor. The Graph Editor allows you to change the graph using the
mouse. You start the Graph Editor by selecting File > Start Graph Editor
within an open Graph window. Likewise, you end the Graph Editor by selecting
File > Stop Graph Editor. You cannot enter commands in the Command
window while the Graph Editor is open.
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Which of the two tools is the better one? It is difficult to give an answer that applies
to all cases, but we generally prefer the first option, largely because of its possibility for
replication. While the Graph Editor does have a feature known as the Graph Recorder
to keep track of your edits, we prefer to store graph commands in a do-file. This makes
re-creating graphs, perhaps with revised data, trivially easy.

On the other hand, we do acknowledge that there are layout choices that are difficult
to achieve (if not impossible) using the command line. This is especially true for adding
text within a graph. The seemingly easy task of adding an arrow with a label to a
graph, for example, as seen in figure 6.2, requires considerable programming that only
command line junkies will find reasonable.2 For tasks of this kind, the Graph Editor is
of tremendous help. We would recommend the following: See if you can create and edit
your graph to your liking with the command line options. Use the Graph Editor only
if you get stuck or the effort far exceeds the output.

Sticking to this principle, we will put heavy emphasis on command line options for
the rest of the chapter. We will introduce the Graph Editor only in places where it
seems particularly useful, such as in section 6.3.3, where we explain how to add text
within the plot region.

One last note: Stata offers many design possibilities, but you should follow some
basic rules and accepted standards in designing statistical graphs. An excellent summary
of the design of statistical graphs in general can be found in Cleveland (1994, 23–118).

6.3.1 Appearance of data

When first constructing your graph, you specify how your data appear in the graph
by indicating the basic graph and plottype. For instance, the twoway line plottype
generates a line, the twoway scatter plottype generates round symbols, and the bar

graph type generates vertical bars.

The twoway graph type has far more design possibilities, first of all because you
specify a variable list. For twoway graphs, the last variable in a variable list always
forms the x axis. All other variables form the y axis. For example, the following
scatterplot uses a variable list with two variable names, rent and size. Therefore,
rent (the variable named first) forms the y axis, and size (the variable named last)
forms the x axis.

2. Should you count yourself in this group, take a look at the do-file grcleveland.do, which is part
of our data package.
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. scatter rent size
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If you specify more than one y variable, the data points for the different y variables
are marked with various symbols so that all data ranges are visible. For example, we
can plot the rental rates of West and East Germany separately:

. generate rent_w = rent if state<= 9

. generate rent_e = rent if state>= 10 & !missing(state)

. scatter rent_w rent_e size
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You can change the shape, size, and color of marker symbols, including the borders
of the markers. All options affecting the markers begin with the letter m and contain
a code word for the part of the marker to be changed. For example, the msymbol()

option changes the marker symbol’s shape, the msize() option changes its size, and
the mlabel() option changes its label. The next section describes the most important
marker options in more detail; for more information, see [G-3] marker options or type
help marker options.

Choice of marker

The msymbol option specifies the symbol used to mark observations. You specify a
shape inside the parentheses, which in many cases can be abbreviated to a single letter.
Below are the basic shapes for the plot symbols and their one-letter abbreviations.

circle O

triangle T

diamond D

plus +

x X

point p

none i

With the exception of point and none, these basic shapes can be further modified:
for example, the letters sm before a basic shape transform a large symbol into a small
one. The code word smcircle therefore indicates a small circle. Alternatively, you can
specify a small circle using the lowercase letter o. Similarly, t and d, respectively, stand
for smtriangle and smdiamond. Also you can add hollow to the name to use hollow
marker symbols. If you used code letters instead of the symbol names, an h is added
to the other code letters; thus, circle hollow or Oh indicates a hollow circle. The
following command results in a graph that uses a hollow diamond as a marker symbol
instead of a circle:
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. scatter rent size, msymbol(diamond_hollow)
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Depending on the Stata version you have, more marker symbols may be available.
For a list of available marker symbols, type

. graph query symbolstyle

If you have designated many y variables in your graph command, the first y variable
stands for the first series, the second y variable stands for the second series, and so
on. In this case, Stata automatically uses different marker symbols for each series. To
change the marker symbols for individual series, specify one letter for each series in the
parentheses of msymbol(), separated by a space. The first code letter stands for the
first y variable, the second letter for the second y variable, and so on. Typing

. scatter rent_w rent_e size, msymbol(+ dh)
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assigns a large plus sign to the values for rent w and a small hollow diamond for the
values for rent o:
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Marker colors

You can change the color of the markers with the mcolor() option. The command for
changing the color of the marker symbols is nearly the same as that for changing marker
symbols. You simply enter the desired color for each data area in the parentheses. In
the following example, we use a large lavender-colored triangle for the rent in the West
and a large lime-colored plus sign for the rent in the East.

. scatter rent_w rent_e size, msymbol(T +) mcolor(lavender lime)

You can obtain a list of predefined colors and gray tones with help colorstyle

or you can define your own colors. You can change a color’s intensity by multiplying
the color by a factor (for example, mcolor(green*.8)); you can also mix colors by
specifying either RGB or CMYK values. To specify the RGB values, you type three
numbers, standing for red, green, and blue, respectively, between 0 and 255.

. scatter rent_w rent_e size, msymbol(T +) mcolor(lavender "255 0 0")

To specify the CMYK values, you specify four numbers between 0 and 255, representing
cyan, magenta, yellow, and black, respectively.3

You can set a plot symbol’s outline and fill colors separately. You can also set
the color of the marker symbol fill using mfcolor() and outline using mlcolor().
You can change the outline’s line thickness and line style; see the descriptions of the
mlstyle(), mlpattern(), and mlwidth() options under help marker options or in
[G-3] marker options.

3. According to Wikipedia, the K in CMYK stands for “key” because in four-color printing, cyan,
magenta, and yellow printing plates are carefully aligned (or keyed) with the black “key plate”.
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Marker size

In addition to using the sm preset marker sizes, you can more finely adjust the size of the
marker symbol by using the msize() option. You can enter either absolute or relative
sizes. An absolute size is one of 12 predefined sizes that range from vtiny (very tiny)
to ehuge (extremely huge); see help markersizestyle. Relative sizes allow you to
multiply existing symbol sizes by any number, for example, msize(*1.5) for a 1.5-fold
increase in symbol size. You can also make the diameter of the symbol relative to the
size of the graph. In the example below, we specify msize(*.5 2). The triangle for
rent in the West is thus half as large is it was displayed previously, and the circle for
rent in the East has a diameter that is 2% of the height of the graph.

. scatter rent_w rent_e size, msymbol(th oh) msize(*.5 2)
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Lines

With line graphs, instead of having one marker symbol for each data point of the
graph, the data points are connected with a line. Line graphs are often used in time
series, so our example will use the ka temp.dta file, which contains the average yearly
temperatures in the German city of Karlsruhe for the period 1779–2004. However,
before loading this dataset, please issue the command

. preserve

which stores the dataset as it is, in a temporary file. After preserving the dataset,
you can safely try out whatever you want and then simply type restore to get your
preserved data back.

Having preserved the dataset as it is right now, we can safely load our time-series
dataset.

. use ka_temp, clear
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For this line graph, we could use the connect() option with the scatter plottype.
To do this, you must enter a line type in the parentheses of connect(). In the following
example, we use the direct line type, which connects the points of a graph with a
straight line. We will also specify the invisible marker symbol (i) and use the sort

option—more on that later (page 128).

. scatter mean year, msymbol(i) connect(direct) sort
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You can generate the same graph in a much easier way. The line plottype is a
synonym for the scatterplot with the invisible marker symbol and the connect(direct)
option; thus, you can use the line command:

. line mean year, sort

Accordingly, the plottype connected is a synonym for the scatterplot with the
connect(direct) option and visible plot symbols. The following commands therefore
generate the same graph:

. scatter mean year, connect(direct) sort

. twoway connected mean year, sort

Regardless of how you generate your line graph, you can always specify many y
variables. Using the connect() option, you can designate the line type for each y
variable. You can also specify a line type that is analogous to the msymbol() option,
which again can also be abbreviated. Here we provide an overview of the available line
types; for a complete list, type graph query connectstyle.

direct or l connects successive data points with a straight line.

ascending or L connects successive data points with straight lines if the x variable
shows increasing values.

stairstep or J connects successive data points with a steplike line, which is first hori-
zontal and then vertical.
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stepstair connects successive data points with a steplike line, which is first vertical
and then horizontal.

none or i means that no line should be drawn (invisible).

The following graph shows examples of these two line types and the invisible line.
We will generate a graph where the average temperatures for July are connected with a
steplike line and the average temperatures in January use a straight line. The average
yearly temperatures will remain unconnected:

. scatter jan mean jul year, connect(l i J) msymbol(i oh i) sort
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In addition to changing the line type, you can also modify the lines’ color, thickness,
and pattern; for details, type help connect options. Mostly, these options work the
same way as the equivalent options for marker symbols. We strongly recommend that
you read [G-2] graph twoway line to better understand these options.

Why sort?

We have used the sort option in all the line graphs. It is not necessary, but we have
good reason for doing so. All line types connect successive data points in the dataset,
not successive along the x axis. This feature occasionally leads to complications. To
demonstrate this, try sorting the observations in the dataset by the average yearly
temperature:

. sort mean
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You should then generate the following graph:

. line jan year
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This is not the type of graph that you would associate with a time series. Yet in
principle, this is the same process we used in generating the graphs earlier. After all, the
data points are being connected with straight lines! However, the points are connected
in the order in which they appear in the dataset; that is, the line goes from the first
data point in the dataset to the second data point in the dataset. However, given the
way that the data are sorted, the first point in the dataset is the one with the lowest
average yearly temperature and not the one with the smallest value on the x variable.

In time-series plots, and indeed in most other graphs where the points should be
connected with lines, the points should be connected in the order of the values of the x
axis. You can do this by doing a preliminary sorting of the data or by using the sort

option. We use the sort option, but this is a matter of taste. However, regardless of
your method, when you generate a line graph, make sure you have adequately sorted the
data. Also make sure that you can reproduce the graph regardless of any inadvertent
resorting of the original data.

Before you continue reading, you should reload your original dataset using the com-
mand

. restore

6.3.2 Graph and plot regions

The conclusions drawn from the content of a graph are often affected by the design
of the data region. For example, the smaller the data region is in proportion to the
graph region, the larger any correlations in a scatterplot will appear. The smaller the
relationship between the height and width of a graph region, the weaker any changes
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over time will appear, and so on. Therefore, you should design the data region carefully.
Pay specific attention to these three elements: the aspect-ratio of the graph region (that
is, the relationship between the height and width of the graph), the margin around the
plot region, and the scale of the two axes.

Graph size

You control the overall size of the graph by using the options xsize() and ysize(), with
the height and width of the graph (including all labels and the title) in inches specified
in the parentheses. You normally will not change the graph size, because it is better
to do this when printing it or importing it into a presentation or desktop publishing
program. However, the options are of interest because they allow for changes in the
ratio between height and width (the aspect ratio) and therefore in the overall design of
the graph and plot regions.

The default size of a graph in scheme s2color is 4 × 5.5, that is, 4 inches high
and 5.5 inches wide (1 inch ∼ 2.5 cm). If you change only the width or the height, the
design of the graph region and the plot region will also change. Here are two sufficiently
extreme examples:

. scatter rent size, xsize(1)

. scatter rent size, ysize(1)

Plot region

In the scheme currently available for the graphs, the data region is slightly smaller than
the plot region; that is, there is a small margin between the smallest and largest data
points and their allocated axes. This is advantageous in that no data points are drawn
exactly on the axis. You change the default setting using plotregion(), which you
can use to change various plot region characteristics (such as color and shading; see
[G-3] region options). For example, to change the margin around the plot region, you
would use the margin() suboption. You enter the margin size in the parentheses with
a codeword, such as tiny, small, or medium. Here is an example that does not use a
margin:
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. scatter rent size, plotregion(margin(zero))
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The larger the margin, the smaller is the plot region (relative to the graph region)
and vice versa. For information about specifying the plot region margin, type help

marginstyle.

Scaling the axes

Axis scaling affects the size and shape of the data region, so it may heavily influence the
conclusions drawn from a graph. Within the options yscale() and xscale(), you can
determine how axes are scaled (arithmetic, log, reversed), the range of the axes, and
the look of the axis lines. To change the upper and lower boundaries of an axis, you use
the range() suboption, specifying in the parentheses a number for the lower boundary
followed by a second number for the upper boundary of the range of that axis.

. scatter rent size, xscale(range(0 5000)) yscale(range(0 5000))
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The lower the value of the lower boundary and the higher the value of the upper
boundary, the smaller the data region will be in relation to the plot region. Cleveland
(1994, 92–95) suggests that the data region take up as much of the plot region as
possible, although many authors recommend always starting the axis at 0 (Huff 1954).
Cleveland reasons that you can assess the extent of any differences between the values
of the y variables more easily. When analyzing data, it is often helpful to have a graph
that provides as much space as possible for the data region and therefore allows for an
accurate reading of the individual values.

Stata’s default setting takes Cleveland’s suggestions into account. The lower bound-
ary of each axis is the minimum of the respective variable that forms the axis. Cor-
respondingly, the upper boundary of each axis is defined by the highest value of the
variable it is based on. When changing the range of the axis, you can make the data
region smaller than the default setting, but you cannot make it bigger. This means that
you can have more white space between the data region and the axis, but you cannot
cut out data points. If you specify a smaller axis upper boundary than the maximum
of the variable this axis is based on, Stata will ignore the request and the graph will be
generated with the default setting with no error messages. This feature ensures that all
data points can always be drawn.

However, sometimes you may want to enlarge the data region beyond the default
size. For example, when a certain area of a scatterplot is densely occupied, you may
need to enlarge that area so that you can explore the relationships between observations
in that part of the graph. Here you can reduce the data to be displayed by adding an
if qualifier to the graph command.

. scatter rent size if size <= 1000 & rent <= 1000
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You can also change the appearance of the plot region by transforming the variables
to be plotted. After all, a transformation simply converts the unit of measure into
a different unit. For example, temperatures in degrees Celsius are transformed into
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degrees Fahrenheit by F = C × 1.8 + 32. Therefore, you can always change the axis
unit of your graphs by using a variable regenerated by the respective transformation
(see chapter 5). You can also perform two standard unit transformations, taking the
log and mirroring, by using the following suboptions in xscale() and yscale():

• xscale(log) and yscale(log) for logarithmic scales.

• xscale(reverse) and yscale(reverse) to draw axes from the data maximum
to the data minimum.

Also among the suboptions of yscale() and xscale() are some that do not af-
fect the appearance of the displayed data. These include omitting the axes altogether
and the placement of the axes; a complete list of these options can be found in help

axis scale options. We will explain this in more detail in section 6.4.3.

6.3.3 Information inside the plot region

A glance at the graphs in any publication shows that the plot region is often used for
information that goes well beyond the actual data. Quite often, this is merely “chart
junk” (Tufte 2001, 107), that is, visual elements that often hinder the actual aim of
the graph, namely, the depiction of data. Usually, it is sensible to limit the use of the
graph region to displaying data. Nevertheless, you may find it useful to draw lines at
important points and use individual labels, as long as you do this sparingly.

Reference lines

You can add reference lines to the plot by using the xline() and yline() options,
typing in the parentheses a list of numbers (section 3.1.7) where the lines will be drawn.

The following command draws vertical and horizontal lines at the position 1000.
Note the difference between the reference lines and the grid lines drawn along the y axis
in the graph scheme s2mono. Grid lines are drawn at points where the axes are labeled.
These grid lines are linked to the options for labeling axes and are discussed in further
detail in section 6.3.4.
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. scatter rent size, xline(1000) yline(1000)
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You can use reference lines to visualize internally saved results, such as the mean or
median (see chapter 4). Here is an example of a horizontal line on the mean value of
the monthly rents:

. summarize rent if !missing(rent)

. local rentmean = r(mean)

. scatter rent size, yline(`rentmean´)

Labeling inside the plot region

Use labels inside the plot region sparingly because they can easily be mistaken for data
points, making it harder to interpret the data; they may also hide the actual data points.
Information about the meaning of plotted data should usually be provided outside the
plot region, for example, with a legend. Sometimes it can be useful to mark data inside
the plot region, for example, when you want to label marker symbols with the content of
a variable or place text at a given x–y coordinate. Let us begin by labeling the marker
symbols.

To label the markers, we use the mlabel() option with a variable inside the paren-
theses, which will display the content of the variable next to the marker symbol for
each observation. In the following example, the markers are labeled with the individual
person’s ID.
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. scatter rent size, mlabel(persnr)
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Even with moderate sample sizes, labeling markers usually means that labels are
placed on top of each other and on top of the data points, making the graph illegible.
In data analysis, it is often sufficient to be able to read the labels for observations that
lie far apart. For presentations, however, you should use marker labels only with small
sample sizes, such as with aggregate data. The following example illustrates this. In this
scatterplot, the average values for “life satisfaction” (lsat) are plotted against average
values for “annual income” (inc) for 26 survey years from the German Socio-Economic
Panel. Here we use the survey year as the marker label:

. preserve

. use data2agg, clear

. scatter lsat hhinc, mlabel(wave) mlabposition(12) mlabsize(small)
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Note especially the two options mlabposition() and mlabsize(). The mlabsize()
option allows us to adjust the size of the marker label. You can enter the same argu-
ments in the parentheses that you would for the msize() option described above (see
section 6.3.1). The mlabposition() option allows us to change the position of the
marker label. The number entered in the parentheses is called the “clock position”. If
you think of the space surrounding a marker as the face of a clock, the number entered
reflects the given position on the face of the clock. The number 12 is equivalent to the
position directly above the marker symbol; the number 6 is directly below the marker
symbol; and so on.

Unfortunately, some of the values are so close together that the annual figures are
slightly in each other’s way (here 1999 collides with 1998). In such graphs, changing
the position of the marker label for various symbols is often unavoidable. Here we use
the generate command and two replace statements to build the variable pos that
indicates the position of the individual labels. Again we use clock position. The newly
created variable is then specified in the mlabvposition() option.

. generate pos = 12

. replace pos = 3 if inlist(wave,1989,1998,2007)

. replace pos = 7 if inlist(wave,1991)

. replace pos = 9 if inlist(wave,1990,1993,1994,1995,1997,2006)

. scatter lsat hhinc, mlabel(wave) mlabvposition(pos)

You can also place labels inside the plot region by using the text() option. The
text() option allows you to enter text at any x–y coordinate in the plot region. This
is useful if, for instance, you wish to label a line graph directly inside the plot region.

. sort wave

. local coor = lsat[1]

. line lsat wave, text(`coor´ 1984 "Happiness", placement(e))
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This adds the label at x = 1984 and y = the value of lsat for the first observation. The
placement() option tells Stata how to orient the text relative to the point you specify;
see [G-3] added text options or help added text options.

Using the Graph Editor

It is much easier to place text within the plot region with the help of the Graph
Editor instead of command options. To start the Graph Editor, select File > Start
Graph Editor from the menu bar within the Graph window. On the right side, you
will see the Object Browser, which allows you to select single elements in the graph.
On the left side of the graph, you see a vertical menu bar containing tools that you can
use to change the graph. The first tool with the little arrow pointer is automatically
activated when you launch the Graph Editor. It is used to mark and move objects.

To get a sense of the different tools, click on each of them one by one. You will see
that the gray area above the graph changes each time you select a new tool. Each tool
is connected to the Contextual Toolbar where you can further specify the functionality
of the tools.

To add text, use the Add Text tool, which is marked with a capital T. After selecting
the tool (with a mouse click), you can click on any position within the graph. This brings
up a new window in which you can enter the text that should be added to the graph.
Clicking on Apply allows you to examine the change that will be applied to the graph
without closing the dialog.

Drawing lines and arrows with the Graph Editor is just as easy. You can use the
third tool in the vertical menu bar, indicated by a diagonal line. After selecting this tool,
you can use the context menu to decide on the characteristic of the line you are about
to draw. You can, for example, decide on the width of the line or choose whether to
have an arrowhead on one or both ends of the line. Once you specify the characteristics,
you can click on the graph at the position where you want to start the line and drag
your cursor to its endpoint. When you let go of the mouse, the line will be part of the
graph.
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Figure 6.3 shows the graph window of the Graph Editor after we used the tools
described.

Figure 6.3. The Graph Editor in Stata for Windows

Before you continue reading, please close the Graph Editor without saving the graph.
The changes you made are now lost. That is fine for our purpose. If you do want to
keep the changes, you should save the graph using File > Save As.... When you save
the graph, keep in mind that you only save the final product, not the path that lead
you there.4

6.3.4 Information outside the plot region

In addition to using labels inside the plot region, you also have many possibilities for
graph design outside the plot region. Changes you make there may not affect the data
presentation; nevertheless, some changes outside the plot region can affect the plot
region and therefore the data region. This is primarily because the information outside
the plot region takes available space from the plot region. In extreme cases, this can
affect the shape and size of the plot region, making it harder to interpret its content.
Also some of the following options may affect the axis scaling.

4. The item Recorder in the Tool menu allows you to store the changes that you have made to your
graph. Storing changes allows you to redo the same changes to another version of the same graph.
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Labeling the axes

Axis labels are the values that are placed next to the tick lines along the axes (see
figure 6.2 on page 120). Although the default setting labels the axes reasonably well,
you can change the settings by using the options xlabel() and ylabel() for the x
and y axes, respectively. Within the parentheses, you can indicate one of three ways to
specify the values to be labeled:

• Specify a list of numbers (see section 3.1.7):

. restore

. scatter rent size, ylabel(0(400)2800)
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A list of numbers whose value area goes beyond that of the minimum or maximum
values of the data will change the scaling of the axes.
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• Specify an approximate number of values to be labeled. This number is placed
after the pound sign:

. scatter rent size, xlabel(#15)
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By using this method, you are specifying only an approximate number of values
to be labeled. Stata still tries to find reasonable values. So do not be surprised
that in our example, we end up having 14 value labels instead of 15.

• Specify no labels with the keyword none or specify to label the minimum and
maximum with minmax.

. scatter rent size, xlabel(none) ylabel(minmax)
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The axes are normally directly labeled with the numbers in xlabel() or ylabel().
However, you can also enter text after one or more values of the number list. The
number will then be displayed as text in the graph. The text must be set in quotation
marks. Here is an example:

. summarize size if !missing(rent)

. local sizemean = r(mean)

. scatter rent size, xline(`sizemean´)
> xlabel(0 500 `sizemean´ "Mean" 1000(500)2500)
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The xlabel() and ylabel() options also have a series of suboptions that may be
entered into the parentheses and separated by a comma. For example, depending on
the chosen graph scheme, grid lines are often drawn onto the labels. You can suppress
grid lines by using the nogrid suboption.

The suboption valuelabel is part of the xlabel() and ylabel() options and en-
ables you to replace the number with the value label assigned to the variable forming
the axis. In the following example, we will simultaneously use the angle(45) suboption
for the x axis. This places the axis label at a 45o angle to the axis. For the y axis, we
specify nogrid. nogrid is a suboption and is therefore entered after a comma within
ylabel().
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. scatter size area1, xlabel(1(1)8, valuelabel angle(45)) ylabel(,nogrid)
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For a complete list of available suboptions, type help axis label options or see
[G-3] axis label options.

Tick lines

Tick lines are the little lines between the axis and the axis labels; they are usually drawn
by Stata near the labels. You can modify tick lines with the following options:

• xtick() for tick lines along the x axis and ytick() for the y axis.

• xmtick() for small tick lines along the x axis and ymtick() for the y axis.

To specify the number of tick lines, you can use the three possibilities we introduced
within the previous section: a list of numbers, an approximate number of tick lines, or
keywords. For small tick lines, you need two pound signs to specify the number of small
tick lines, and the number you specify refers to the number of small tick lines between
each of the larger tick lines.
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. scatter rent size, ytick(minmax) xmtick(##10)
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Axis titles

You can provide every axis in a graph with a title, one or more lines long, by using the
xtitle() and ytitle() options. You type the title, set in quotation marks, within the
parentheses.

. scatter rent size, ytitle("Rent (Monthly) in USD")
> xtitle("Home Size in Square Feet")
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When specifying an axis title with more than one line, set each line in quotation
marks separately. The first piece of quoted text will appear on the first line, the second
on the second line, and so on.
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. scatter rent size, ytitle("Rent (Monthly)" "in USD")
> xtitle("Home size" "in sqft.")
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You can easily modify the shape, appearance, and placement of the title by using
textbox options in the parentheses of the ytitle() and xtitle() options. For detailed
information, type help textbox options or see [G-3] textbox options. The example
below is primarily a teaser:

. scatter rent size, xtitle("Home size" "in sqft.", placement(east)
> box justification(right))
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The legend

If a graph contains more than one y variable with visible markers, Stata automatically
creates a legend that displays the variable names or labels used in a given data area.
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You can edit the legend by using the legend() option, in which you specify the content
and position of the legend. Here we will limit ourselves to specifying the position.
However, there are many other things you can add to a legend and many other options
for controlling how legends look; see help legend option for the details.

First, take a look at the graph resulting from the following command before we
consider the individual options more closely (see page 122 for the creation of variables
rent w and rent e):

. scatter rent_w rent_e size, legend(cols(1) ring(0) position(1)
> order(2 "East" 1 "West"))
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In this example, we made four changes to the legend. First, we specified that all
entries in the legend will be displayed in one column by using the cols(1) option, where
the number of columns that the legend should have is put in the parentheses. You can
specify the number of rows by using the rows() option.

Then we changed the position of the legend by using the ring() option. The legend
is now located inside rather than outside the plot region. The ring position 0 assigns
a position inside the plot region; a ring position more than 0 means a position outside
the plot region.

Next we have set the position of the legend inside the plot region. The number
specified in the position() option refers to the position of numbers on a clock face, as
we discussed earlier (see section 6.3.3).

Finally, we changed the order of the entries in the legend. By default, the first data
region is listed first in the legend, but this could be changed with the option order().
In our example, we stated order(2 1) so that the legend starts with the second data
region before the first. We also placed text behind the number for each data region,
which is used as text inside the legend. This way to specify labels for the data region is
somewhat discouraged in [G-3] legend options although it is very convenient.
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Graph titles

The following options allow you to control the title and other label elements:

• title() for the graph title;

• subtitle() for a subtitle for the graph;

• note() for some explanatory text in a small font, which is frequently used for
references or bibliographies; and

• caption() for text beneath the graph, which can make the graph easier to inter-
pret.

In each case, you enter text in the parentheses. If the text consists of more than
one line, each line must be entered in a separate set of quotation marks, as described in
section 6.3.4. Here is an example:

. scatter rent size, title("Rent by Home Size") subtitle("Scatterplot")
> note("Data: GSOEP" "Randomized Public Use File")
> caption("This graph is used to demonstrate graph titles."
> "Please note how text is divided into several lines.")
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This graph is used to demonstrate graph titles.
Please note how text is divided into several lines.

Scatterplot

Rent by Home Size

You can use several suboptions to change the appearance of the title; for more
information, see [G-3] title options and [G-3] textbox options.
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6.4 Multiple graphs

In Stata, you can create multiple graphs in several different ways. By “multiple graphs”,
we mean graphs that consist of different graph parts, in particular,

• twoway graphs that are plotted on top of each other,

• graphs that are broken out with the by() option and are then displayed together,
and

• varying graphs that are combined using the graph combine command.

We will now quickly introduce these three types of graphs.

6.4.1 Overlaying many twoway graphs

You can overlay as many types of twoway graphs as you want in the same coordinate
system. In the following example, three graphs are placed on top of each other: a
scatterplot; a linear fit (or regression line; see chapter 9) for the same data, but restricted
to the old federal states in West Germany (rent w); and finally, a linear fit that is
restricted to the new federal states in East Germany (rent e).

. twoway || scatter rent size || lfit rent_w size || lfit rent_e size
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To overlay twoway graphs, you consolidate the graphs in a single twoway command,
separated by parentheses or two vertical lines. In this book and our own work, we use
two vertical lines because there are already so many parentheses in the graph syntax.
The two vertical lines are particularly readable in do-files containing the individual
graphs one after another with line breaks commented out (see section 2.2.2).
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If you are combining several twoway graphs, you can specify options that correspond
to the respective graph types, as well as twoway options that apply to all the graphs to
be combined. Generally, the syntax for overlaid twoway graphs is as follows:

twoway

|| scatter varlist, scatter options

|| lfit varlist, lfit options

|| plottype varlist, plottype options,

|| twoway options

The first and the last two vertical bars are superfluous. However, we tend to use them for
long graph commands to enhance readability. This syntax structure can be illustrated
with an example (but note that commands of that length are often better typed into
the Do-file Editor than into the command line):

. twoway || scatter rent size, msymbol(oh)
> || lfit rent_w size, clpattern(dot)
> || lfit rent_e size, clpattern(dash)
> || , title("Scatterplot with Regression-Lines") legend(order(2 "West" 3 "East"))
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6.4.2 Option by()

The by() option displays separate graphs for each group defined by the variable in the
parentheses. If more than one variable is entered in the parentheses, graphs are provided
for every combination of the chosen variables. If you also specify the total suboption,
another graph is displayed without separating it by group. Other suboptions control the
positioning (for example, rows() and cols()), the display or omission of individual axes
(for example,

[
no
]
ixaxes), or the appearance of the margins between the individual

graphs. For the list of suboptions, see help by option or [G-3] by option. One example
should be enough at this point:

. scatter rent size, by(state, total)
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6.4.3 Combining graphs

Stata allows you to combine as many graphs as you want into a joint graph. To do this,
you first save the individual graphs and then combine them using graph combine. We
will demonstrate this using a display of rent by size, separated by respondents from
East and West Germany:

. scatter rent_w size, name(west, replace)

. scatter rent_e size, name(east, replace)

. graph combine west east
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To save both graphs, we use the name() option, which specifies the name under
which the graph will be saved in the computer’s memory. The replace suboption tells
Stata to delete any graphs already saved under this name. We then combine the two
graphs using graph combine.

The graph combine command has a series of options for controlling how the com-
bined graph is to be displayed. To begin with, it is important to set the number of rows
and columns in the combined graph. The individual graphs are placed in the combined
graph in rows and columns in a matrix-like fashion. The positioning of the individual
graphs depends on how many rows and columns the matrix has. In the matrix above,
one row and two columns were used. Here you will see what happens if we instead use
two rows and one column:
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. graph combine west east, rows(2)
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The number of individual graphs you can put in a multiple graph is limited only
by printer and screen resolutions. If the main issue is the readability of the labels, you
can increase their size with the iscale() option. The default font size decreases with
every additional graph. With iscale(1), you can restore the text to its original size;
iscale(*.8) restores the text to 80% of its original size.

If you want the individual graph parts of the combined graph to have different sizes,
you will have to save the graphs with different sizes before combining them. However,
you cannot use the xsize() and ysize() options discussed in section 6.3.2, because
these sizes are not taken into account by graph combine. Instead, you will have to use
the forced-size options fysize() and fxsize(), which tell Stata to use only a certain
percentage of the available space. For example, the fxsize(25) option creates a graph
that uses only 25% of the width of the available space; correspondingly, a graph created
using the fysize(25) option uses only 25% of the available height.
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Here is a slightly more advanced example of graph combine using the forced-size
options.

. twoway scatter rent size, name(xy, replace)
> xlabel(, grid) ylabel(, grid gmax)
. twoway histogram size, name(hx, replace) fraction
> xscale(alt) xlabel(, grid gmax) fysize(25)
. twoway histogram rent, fraction name(hy, replace) horizontal
> yscale(alt) ylabel(0(500)2500, grid gmax) fxsize(25)
. graph combine hx xy hy, imargin(0 0 0 0) hole(2)
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For more details on creating such graphs, see [G-2] graph combine. The Graph
Editor has further capabilities regarding the positioning of graph elements. The repo-
sitioning is best done with the Grid Edit Tool. A description of its functionality can be
found in [G-1] graph editor.

6.5 Saving and printing graphs

To print a Stata graph, you type

. graph print

The graph displayed in Stata’s Graph window is then printed directly. If you create
many graphs in a do-file, you can also print them with that do-file by typing the graph

print command after every graph command. The graph print command also has
many options that can be used to change the printout of a graph (see help pr options).

You can also print graphs that are not (or are no longer) in the Graph window,
but you must first save the graph to memory or to a file on the hard drive. You
already learned how to save graphs to memory in the previous section. There you
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saved numerous graphs with the name() option, which we then combined with the
graph combine command. To print out these graphs, you first display them with graph

display and then print them using graph print. Let us try this with the graph saved
as east above (see page 150):

. graph display east

. graph print

Saving graphs to memory is often useful, but they are lost when you close Stata. To
print graphs that you created a few days ago, you must have saved them as a file by
using the saving() option. It works the same way as the name() option except that
it saves the file to the hard drive. You type the filename under which the file is to be
saved in the parentheses. By default, Stata uses the .gph file extension. To overwrite
an existing file of the same name, include the replace option in the parentheses. The
option replace is commonly used when creating graphs with do-files.

Be careful when you use the Graph Editor. When you exit the Graph Editor, you
will be asked if you want to save the changes you made to the graph. In most cases,
you would want to answer yes. If you do so, you should make sure that you use a new
filename. If you save the graph with its old name, you might be in trouble next time you
run the do-file that created the graph originally. Running the do-file will re-create the
original graph and therefore overwrite the changes you made with the Graph Editor.
You would need to start over.

All saved files can be, at a later point in time, printed or edited with the Graph
Editor. To do so, you simply call the saved graph on the screen with the command
graph use and start printing or editing. The command

. graph combine hx xy hy, hole(2) imargin(0 0 0 0) saving(combined, replace)

saves the graph under the name combined.gph in the current working directory. If a file
with the same name already exists in the working directory, it is overwritten because
you specified replace. You can now close Stata, shut down the computer, or display
another graph . . .

. graph display east

. . . and regardless of what you do, you can print the graph saved in a file by typing

. graph use combined

. graph print

Finally, you will usually be exporting a Stata graph to a word processing program
or presentation program rather than printing it. For this, you can use the much-loved
copy-and-paste procedure, where you first copy the graph displayed in a Graph window
and then paste it into the respective document. If you are dealing with several graphs,
it is better to save the graph in a suitable file format on the hard drive and then import
to the desired program when needed.5

5. When doing this and working with do-files, it is a good idea to document your work (see chapter 2).
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To save a graph in a different file format, use the graph export command. You
type the filename with the appropriate file extension after the command. Table 6.1 lists
the formats that are available to you.

Table 6.1. Available file formats for graphs

Extension File format Restriction

.ps PostScript

.eps Encapsulated PostScript

.wmf Windows Metafile Windows

.emf Windows Enhanced Metafile Windows

.pict Mac Picture Format Mac

.pdf Portable Document Format Windows/Mac

.png Portable Network Graphics

.tif Tagged-Image File Format

Microsoft applications normally handle files saved in WMF or EMF formats well.
The same applies to most other software that runs under Windows operating systems.
PostScript and Encapsulated PostScript work well on Unix systems, and you should use
them if you write reports using LATEX. Mac users will usually prefer PDF or PICT files.
In any case, if you want to save the graph in the Graph window as a WMF file called
mygraph1.wmf, use

. graph export mygraph1.wmf

Use the other file formats as you wish.

6.6 Exercises

1. Get data from the National Health and Nutrition Examination Study (NHANES)
by using the following command:

. webuse nhanes2.dta, clear

2. Using the NHANES data, produce a scatterplot of weight in kg by height in cm.
Use hollow circles as the marker symbol.

3. Change the title of the vertical axis to “Weight (in kg)”, and add a note for the
data source of your graph.

4. Add reference lines to indicate the arithmetic means of weight and heights.

5. Add an axis label to explain the meaning of the reference lines.

6. Use blue marker symbols for male observations and pink marker symbols for female
observations, and construct a self-explanatory legend. Remove the reference lines.
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7. Plot the data for men and women separately, and produce a common figure of
both plots placed on top of each other. Take care that the note on the data source
does not appear twice in the figure.

8. Construct a graph similar to the previous one but this time with reference lines
for the gender-specific averages of weight and height.

9. Create a variable holding the body mass index [BMI; see (5.1) on page 112], and
classify the observations according to the table on page 112. Change the previous
graph so that the colors of the marker symbols represent the categorized BMI.

10. Add the unique person identifier (sampl) to the symbols for the male and the
female observations with the highest BMI.

11. Export your graphs so that they can be imported into your favorite word process-
ing program.





7 Describing and comparing
distributions

So far, we have dealt with the basic functionality of Stata. We have used data mainly
to show you how Stata works. From now on, we will do it the other way around: we
will show you how to use Stata as a tool to analyze data and understand the analysis.

We begin with the process of describing distributions. An example for such a de-
scription is the presentation of political election returns on television. Consider the
announcement that a candidate for the presidency is elected by, say, 80% of American
voters. You will definitely regard this description as interesting. But why? It is inter-
esting because you know that this candidate has won the election and that he will be
the next president of the United States. Moreover, you know that 80% of the votes is
quite a success because you know that previous elections have never seen such a result.

Now consider the following description of a distribution: In Baden-Württemberg, a
state in the southwest of Germany, 28% of the inhabitants live in single-family houses.
What do you think about this information? You might wonder what the proportion
would be in the area where you live—which means you need some knowledge about the
distribution to figure out if 28% is high or low.

Generally speaking, a description of a single distribution is satisfying as long as we
know something a priori about the distribution. Here we can compare the actual dis-
tribution with our knowledge. If we do not have such knowledge, we need to collect
information about the distribution from somewhere else and compare it with the distri-
bution. A full description of a distribution therefore often involves comparing it with a
comparable distribution.

There are many ways to describe distributions. One criterion—not exactly a statis-
tical criterion, but in practical applications quite an important one—for choosing the
description is the number of categories. Distributions with just a few categories can
often be fully described with tables, but there are also some graphical tools for them.
Describing distributions with many categories is more difficult. You will often evaluate
statistical measures, but in most cases, graphical tools are better.

In what follows, we will first distinguish between distributions with few categories
and those with many categories. Then we will treat those two cases separately.

157
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To follow this chapter, load our example dataset:1

. use data1, clear

7.1 Categories: Few or many?

Let us begin with some vocabulary. In what follows, we use the letter n for the number
of observations; the uppercase letter Y for a variable; and yi, i = 1, . . . , n, to denote the
values of the variable. The value of the variable Y for the first observation is y1, for the
second observation is y2, etc. Take our dataset data1.dta as an example. data1.dta

has n = 5,411. One of the variables in it (pib) contains the party affiliation of each
respondent. If we choose this variable as Y , we can look at the values y1, . . . , y5411 with

. list pib

Obviously, this list generally is not the information we were looking for; we are
simply overwhelmed by the amount of information scrolling by. You should break the
list as described on page 8.

To get a better understanding, you can begin by finding out how many different
numbers occur in Y . We will call these numbers categories and denote them with aj .
Thus j is an index that runs from the lowest to the highest category (j = 1, . . . , k). The
number of different categories of a variable usually is much smaller than the number of
observations. In Stata, we can find out the number of categories with inspect. For
example, we get the number of categories for party affiliation as follows:

. inspect pib

pib: Political party supported Number of Observations

Total Integers Nonintegers
# Negative - - -
# Zero - - -
# Positive 2101 2101 -
#
# Total 2101 2101 -
# . # . . Missing 3310

1 8 5411
(8 unique values)

pib is labeled and all values are documented in the label.

Party identification in our dataset has k = 8 categories (8 unique values). All
categories are positive integers (Integers) between 1 and 8. There are only 2,101
respondents with one of those eight categories. The rest have another category: the
missing value.2

We will distinguish between variables with few categories and variables with many
categories by setting the threshold at approximately 6–10 categories. But do not take

1. Please make sure your working directory is c:\data\kk3; see page 3.
2. Read more on missings in section 5.5, as well as on pages 11 and 413.
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this threshold too literally. With graphical tools, you can take “few” much more broadly
than you can with tables. Often you will get a good description of a variable with few
categories by using a technique designed for variables with many categories and vice
versa. The most important criterion for describing a variable is that the main properties
of the distribution stand out. You should try out different approaches.

7.2 Variables with few categories

7.2.1 Tables

Frequency tables

The most important way to describe a distribution with few categories is with a one-way
frequency table, which lists the absolute and relative frequencies of all categories aj of
a variable. The absolute frequency nj is the number of observations in the category
aj . The relative frequencies fj are the ratios of the absolute frequencies to the entire
number of observations:

fj =
nj

n

In what follows, we will often use the word “proportion” for relative frequency.

In Stata, one-way frequency tables are produced with the command tabulate, which
can be abbreviated to tab or even ta. You specify the variable for which the table is
displayed by typing the variable name after the command. The following command
shows the one-way frequency table for partisanship:

. tabulate pib

Political party
supported Freq. Percent Cum.

SPD 733 34.89 34.89
CDU/CSU 795 37.84 72.73

FDP 144 6.85 79.58
Greens/B90 211 10.04 89.62

Linke 145 6.90 96.53
DVU, Rep., NPD 32 1.52 98.05
Other parties 29 1.38 99.43

Several parties 12 0.57 100.00

Total 2,101 100.00

The first column of this frequency table shows the different categories aj of party
identification (Germany has a multiparty system). The second column shows the abso-
lute frequencies nj , and the third column shows the proportion as a percentage (fj×100).
The final column is for the cumulated relative frequencies, which we will not discuss
here.
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To illustrate how to interpret all those figures, suppose that the answers to the
question about partisanship are votes in an election for a “parliament of respondents”.
The Social Democratic Party (SPD) has won n1 = 733 votes, or f1 = 733/2101 =
34.89%. Five parties have been chosen by more than 5% of the respondents. No single
party has won more than 50% of the votes. But together with the Christian Democats
(CDU/CSU), the Social Democrats have won 733 + 795 = 1528 votes (about 73%) and
might therefore form a coalition cabinet.

The frequency table has been calculated for 2,101 observations, but the entire dataset
has 5,411 observations. The difference stems from observations with missing values. In
our dataset, people who have not answered a question are set to the missing value
for that variable. By default, the tabulate command excludes missing values, so the
above table is produced only for respondents who have answered the question on party
identification. To include the missing values, use the option missing:

. tabulate pib, missing

In the following tables and graphs, we will usually not explicitly include missing
values. Some of the commands we will describe allow the inclusion of missing values
with the option missing, just like the example above. If not, you can always replace
missing values with numeric values (see section 5.5).

More than one frequency table

Using tabulate with two variables will give you a two-way frequency table. To generate
more than one one-way frequency table with a single command, you need tab1, which
generates a frequency table for each variable of a varlist. Here are some examples:

. tab1 pib

. tab1 pib sex

. tab1 pi*, missing

. tab1 sex - emp

Comparing distributions

Examining a single distribution is rarely useful. Often you need to compare a given
distribution with the same distribution from some other time, population, or group.

If you have sampled your distribution in different groups, you can do this by simply
producing a one-way table for each of the groups by using the by prefix. For example,
the following command produces a one-way table for men and women separately:

. by sex, sort: tabulate pib

We have compared one distribution (the distribution of party identification) based on
different levels of another distribution (gender). A more technical way to say this is
that we have shown the distribution of party identification conditioned on gender.
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A more illustrative way to show a distribution conditioned on another distribution is
with a two-way table, also known as a cross table or contingency table. A two-way table
displays the distribution of one variable, say, Y , for the categories of another variable,
say, X, side by side.

To produce such a two-way table with Stata, you simply include a second variable
name in the varlist after tabulate. Here is an example—the two-way frequency table
of party identification by gender:

. tabulate pib sex

Political party Gender
supported Male Female Total

SPD 381 352 733
CDU/CSU 415 380 795

FDP 85 59 144
Greens/B90 86 125 211

Linke 88 57 145
DVU, Rep., NPD 25 7 32
Other parties 19 10 29

Several parties 5 7 12

Total 1,104 997 2,101

The first variable forms the rows of the table, and the second variable forms the
columns. The body of the table shows the distribution of party identification for each
level of the gender variable.3 For example, in the “male” column, there are 381 SPD

supporters and 415 CDU/CSU supporters. In the “female” column, there are 352 SPD

supporters and 380 CDU/CSU supporters. You have already seen these numbers in
response to the previously entered command by sex, sort: tabulate pib.

In addition to the number of observations with specific variable combinations, you
also find the row and column sums of those numbers. The rightmost column shows the
overall distribution of party identification, which you have already seen as a result of the
command tabulate pib (page 159). The bottom row displays the same for gender.

Although it is easy to understand the meaning of the numbers in the two-way fre-
quency table above, you should not use such tables to compare distributions between
different groups. Instead, you should use the proportions within each group, sometimes
called the conditional relative frequencies, for the comparison. Under the condition that
X = aj , the conditional relative frequency of the variable Y is calculated by dividing
each absolute frequency by the number of observations within the group X = aj . Thus,
for our example, when sex==men, the conditional relative frequency distribution of party
identification is given by dividing the number of male supporters of each party by the
total number of men.

3. Or the other way around, the distribution of gender for each level of party identification.
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Stata calculates the conditional proportions in two-way tables with the options row
and column. The proportions of party identification conditioned on gender are calcu-
lated with the option column, giving us the proportions for the row variable conditioned
on the column variable. Here is an example where we also use the option nofreq to
suppress the output of the absolute frequencies:

. tabulate pib sex, column nofreq

Political party Gender
supported Male Female Total

SPD 34.51 35.31 34.89
CDU/CSU 37.59 38.11 37.84

FDP 7.70 5.92 6.85
Greens/B90 7.79 12.54 10.04

Linke 7.97 5.72 6.90
DVU, Rep., NPD 2.26 0.70 1.52
Other parties 1.72 1.00 1.38

Several parties 0.45 0.70 0.57

Total 100.00 100.00 100.00

The numbers shown in this table are the same as those calculated with the com-
mand by sex, sort: tabulate pib on page 160. As you can see, 8% of German
men support the Greens, while 13% of German women do. That is, German women
lean somewhat more to the Greens than do German men. You can see that men lean
somewhat more toward the FDP and the far right parties like the DVU than do women.

In addition to the proportions conditioned on the column variable, you can also
calculate the proportions of the column variable conditioned on the row variable by
using the row option. You can use that option in addition to, or instead of, the column

option. You could use any of the following commands:

. tabulate pib sex, row

. tabulate pib sex, row column

. tabulate pib sex, row nofreq

. tabulate pib sex, row column nofreq

Summary statistics

The tabulate command has options for calculating overall statistics for the differences
in the distributions between groups. We will not explain these calculations here, but we
will simply list the options and the names of the statistics as an overview. For a com-
plete description, see the cited references. The formulas can be found in [R] tabulate
twoway:

• chi2: Pearson’s chi-squared (Pearson 1900)

• gamma: Goodman and Kruskal’s gamma (Agresti 1984, 159–161)

• exact: Fisher’s exact test (Fisher 1935)
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• lrchi2: likelihood-ratio chi-squared test (Fienberg 1980, 40)

• taub: Kendall’s tau-b (Agresti 1984, 161–163)

• V: Cramér’s V (Agresti 1984, 23–24)

More than one contingency table

tabulate allows up to two variable names. If you list three variable names, you will
get an error message. There are two reasons why you might want to try tabulate with
more than two variable names: to produce a three-way table or to produce more than
one two-way table with a single command. You can produce three-way frequency tables
using the by prefix (section 3.2.1) or the table command (section 7.3.2).

To produce more than one two-way table with a single command, use tab2, which
produces two-way tables for all possible combinations of the variable list. Therefore,
the command

. tab2 pia pib pic sex

is equivalent to typing

. tabulate pia pib

. tabulate pia pic

. tabulate pia sex

. tabulate pib pic

. tabulate pib sex

. tabulate pic sex

However, in many cases, you will want to display only some of the tables. For
example, you might want to tabulate each of the three party-identification variables
conditioned on gender. In this case, using a foreach loop (section 3.2.2) would be more
appropriate.

7.2.2 Graphs

During data analysis, graphs are seldom used for displaying variables with just a few
categories because tables are usually sufficient. However, in presentations, you will
often see graphs, even for variables with few categories. Most often these are special
types of histograms or atypical uses of bar charts or pie charts. Stata can be used for
all of these presentation techniques. Stata also produces dot charts (Cleveland 1994,
150–153), which are seldom used but powerful.

Before we explain the different chart types, we emphasize that we will use only very
simple forms of the charts. To learn how to dress them up more, refer to chapter 6.
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Histograms

In their basic form, histograms are graphical displays of continuous variables with many
outcomes (see section 7.3.3). In this form, histograms plot the frequencies of groups or
intervals of the continuous variable. Grouping the continuous variable generally requires
that you choose an origin and the width of the intervals.

When dealing with variables with just a few categories, you do not need to make
this choice. Instead, you can plot the frequency of each category with the histogram

command and the discrete option.4 First, we draw a histogram of the variable for
party identification (pib):

. histogram pib, discrete
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What do we see here? Essentially, we see some rectangles, or bars, each of which
represents one category of the variable for party identification. Namely, the first bar
represents the first category of party identification (the SPD), the second bar represents
the second category (the Christian Democratic Union or CDU), and so on. Because
party identification has eight categories, there are eight bars in the graph.

The height of the bars varies. According to the label on the y axis, the height of the
bars represents the density. In the special case of the histograms discussed here, this
density equals the proportions. You can use the option fraction to see proportions
instead of densities,

. histogram pib, discrete fraction

but this changes only the label on the y axis, not the numbers or the relative height
of the bars. In the more general case, the density is not equal to the proportion (see
section 7.3.3).

4. The name discrete arises from the fact that variables with few categories are usually discrete.
Especially in small samples, continuous variables can also have few categories. Here it makes sense
to specify discrete even for continuous variables.
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The height of the bar represents the proportion of the category. The higher the
bar, the higher the proportion of supporters for the party represented by the bar. You
can see that the CDU/CSU supporters are most frequent in the data, followed by the
SPD supporters, and so on. In fact, you see the same results as those in the table in
section 7.2.1, but this time graphically.

The graph is a bit hard to read because we do not know from the display which
bar represents which party. Therefore, you should use the option xlabel, which we
described in section 6.3.4. Moreover, there are two options specific to histograms, which
we introduce here: gap() and addlabels. With nominal scaled variables, you might
prefer a display with gaps between the bars. This can be achieved with the option gap(),
where a number inside the parentheses specifies the percentage to reduce the width of
the bar. For example, gap(10) reduces the width of the bar by 10%, creating a gap
between the bars. Strictly speaking, with gap(), your graph can no longer be called a
histogram. Finally, some people like to have numbers with the exact proportions above
the bars. The addlabels option is their friend. Let us use these options now:

. histogram pib, discrete fraction gap(10) addlabels
> xlabel(1(1)8, valuelabel angle(45))
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Conditional distributions can be shown using the by() option, which we have already
described in section 6.4.2. The argument is the name of the variable on which you want
to condition your distribution. For example,

. histogram pib, discrete fraction by(sex) gap(10)
> xlabel(1(1)8, valuelabel angle(45))

displays the distribution of party identification for men and women separately:
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Graphs by Gender

Again we see that among the GSOEP respondents, women lean more toward the Greens
than do men. Beyond this difference, the overall answer pattern is quite similar for men
and women.

Bar charts

Bar charts and histograms are frequently confused because both are often used to show
proportions of discrete variables, although they are not intended for that task. His-
tograms are intended to show proportions of continuous variables, and bar charts are
intended to display summary statistics of one or more variables.
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Using techniques in an unintended manner can lead to surprises, and that often
happens with bar charts. Look what happens if you näıvely try to use a bar chart to
display the proportion of party affiliation:

. graph bar pib
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As we mentioned, bar charts are intended to display summary statistics of one or
more variables. This is done by plotting a bar with a height proportional to the size
of the summary statistic for each variable to be plotted. Stata allows you to plot a
variety of summary statistics with a bar chart, for example, the mean, the number of
nonmissing observations, and the sum. The default is the mean, so the bar in our bar
chart represents the mean of party affiliation, which in this case is useless or, at any
rate, a waste of space.

To get what we want, we need to generate what we will call a set of dummy variables.
Generally, dummy variables are variables with values of 0 and 1. For example, we could
create a dummy variable that is 1 for all respondents who favor the SPD and 0 for
all others (see page 80 for details on generating dummy variables). The mean of this
dummy variable would be equal to the proportion of SPD partisans. Therefore, if we
used this dummy variable in our bar chart, we would get a bar with height equal to
the proportion of SPD partisans, which would not be useless but would still be a waste
of space. We also need bars for all the other parties, so we need to define a dummy
variable for each category of party affiliation and use all of these dummies in our bar
chart.
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The easiest way to generate such a set of dummy variables is to use the generate()

option of the tabulate command. Typing

. tabulate pib, generate(pid)

produces the dummy variable pid1 for the first category of party identification, pid2
for the second, pid3 for the third, and so on. This set of dummy variables can be used
for the bar chart:

. graph bar pid*

0
.1

.2
.3

.4

mean of pid1 mean of pid2

mean of pid3 mean of pid4

mean of pid5 mean of pid6

mean of pid7 mean of pid8

This bar chart displays the proportions of each category of party identification—
much like the histogram in the previous section. Now you know why bar charts and
histograms are so frequently confused. But be aware that we have used both techniques
in a somewhat nonstandard way, by graphing a variable that is not continuous.

To show conditional distributions, you can choose the option over() or by(). Put
the name of the variable on which you want to condition your distribution inside the
parentheses. The option over() displays the proportion of party identification condi-
tioned on its argument in one graph. The by() option gives you one graph for each
distribution, arranged side by side in one display.

Pie charts

In the mass media and certain business presentations, you often see pie charts used
to present distributions of variables with few categories. In the literature on graphical
perception, pie charts are often criticized because the reader needs to decode sizes and
angles to interpret a pie chart, which is not easy for humans to do (Cleveland 1994,
262–264). We share this critical view of pie charts, so we will keep our description of
them short.
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In Stata, pie charts are implemented much like bar charts. Stata pie charts show
slices of a pie with a size proportional to a summary statistic. Consequently, we again
need to produce dummy variables to show the proportion of the categories. To compare
distributions, you must use the option by():

. graph pie pid*, by(sex)

Dot charts

Dot charts were introduced by Cleveland (1984) as a graphical method to display
data with labels. Dot charts have shown their strength in experiments on graphical
perception—not only for variables with few categories but also for variables with many
categories. However, dot charts are seldom used either in scientific literature or in the
mass media. One reason for this is that dot charts are rarely implemented in statistical
packages or spreadsheet programs.

In principle, dot charts are similar to bar charts except that dot charts use a dot to
display the value of a statistic instead of a bar. Thus dot charts are implemented like
bar charts in Stata. You can replace the graph subcommand bar with dot to produce a
dot chart. As in bar charts, however, you need to use dummy variables to show relative
frequencies. Here is a first attempt:

. graph dot pid*
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This is not a good-looking display. But before refining the graph, you should un-
derstand what you see. The graph shows a marker symbol, on one dotted line, for each
summary statistic. The rightmost marker symbol (the filled diamond) shows the mean
of the variable pid2, which happens to be the proportion of respondents leaning toward
the CDU/CSU. The other marker symbols can be interpreted similarly.
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You might get a nicer graph if you put each symbol on a different line. We will do
so presently, but first note from the previous graph that you can put more than one
symbol on one line and that this is possible only because we have used symbols instead
of bars. Later on, when describing the distributions of continuous variables, we will use
this feature—let us call it superposition—to compare distributions between groups. But
for now, we need to find a way to put the markers on different lines. This is most easily
done using the option ascategory, which specifies that the variables listed in varlist be
treated as a grouping variable. See how it works:

. graph dot pid*, ascategory
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Using this as a starting point, we can immediately use the option over() or by()

to compare the distribution between groups:

. graph dot pid*, ascategory over(sex)

. graph dot pid*, ascategory by(sex)

7.3 Variables with many categories

You can describe distributions of variables with many categories by using tables, sum-
mary statistics, or graphs. To display such variables with tables, you need to group the
variables first. Therefore, we begin by showing you the nuts and bolts of grouping vari-
ables in section 7.3.1. In section 7.3.2, we explain the most common summary statistics
and show you how to use them to describe and compare distributions, both with tables
and graphically. Finally, we show you some graphical methods intended especially for
the description of distributions with many categories in section 7.3.3.
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7.3.1 Frequencies of grouped data

Variables with many categories usually cannot be described in tables. If you type

. tabulate income

you will immediately understand why: such tables can become huge, and the frequencies
for each category are likely to be too small to provide any useful information. One solu-
tion is to group such variables, that is, recode the variable by assigning the information
on some similar categories to one category. Taking income as an example, this could
mean using the frequencies of the intervals [ 0, 1000), [ 1000, 2000), etc., instead of the
frequencies for every category of income. This would lead to a frequency distribution
of grouped data.

You can arrive at a description of grouped data in two steps:

1. Generate a new variable that is a grouped version of the original variable.

2. Display the new variable with techniques for the description of variables with few
categories.

You can generate the grouped version of the variable with the methods described in
chapter 5, as well as some specific tools for this task. But first we would like to make
some general remarks on grouping variables.

Some remarks on grouping data

Grouping variables leads to a loss of information, which may emphasize or hide certain
properties of distributions. Grouping variables therefore is an important step of data
analysis. You should carefully decide how to group your variables and inspect the conse-
quences of your decision. There are suggested rules for grouping variables, for example,
“Always use intervals of equal width” or “Do not group nominal scaled variables”.

However, in practice such rules are not helpful. The research goal always determines
whether the loss of information due to a specific grouping is problematic. If the goal is
to detect data errors, group the moderate values into one category and leave the extreme
values as they are. If the goal is to compare the distribution of income of unemployed
people between Germany and France, you might want to group all incomes above a
specific level into one category and form finer intervals for lower incomes.

The same is true for nominal scaled variables. In a very large population sample
of German inhabitants, the variable for nationality can easily include 20–30 categories.
For most data analysis, you will want to group that variable, for example, by differen-
tiating only between Germans and foreigners. However, whether that or any grouping
procedure will be useful depends on the research topic.
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Special techniques for grouping data

In grouping variables, we need to differentiate between nominal scaled variables and
other variables. For nominal scaled variables—such as nation—the order of the cat-
egories has no special meaning. To group such variables, you need to decide if any
category can be grouped with another. Therefore, in performing the grouping, you are
confined to the techniques described in chapter 5. For variables with categories that
have a quantitative meaning, where observations with low values are also low in a real
sense, you can always say that neighboring values are similar to some extent. There-
fore, you can often refer to entire ranges of categories, and Stata has a set of special
techniques for that task.

Grouping by quantiles

Sometimes, you will want to group a distribution into intervals that contain nearly
the same numbers of observations. We call this grouping by quantiles (see also sec-
tion 7.3.2). In Stata, you can group by quantiles with the command xtile. To generate
a new variable with, say, four groups with almost the same number of respondents, you
simply type

. xtile inc_4 = income, nquantiles(4)

If you had used the option nquantiles(10), the variable inc 4 would have contained 10
intervals with nearly the same number of respondents, and so on.

Because the new variable has only four categories, you can simply use the techniques
described in the last section, for example,

. tabulate inc_4

Grouping into intervals with same width

Grouping variables by quantiles leads to variables having almost the same number
of observations in each category, whereas the widths of the intervals of each category
differ. That is, the difference between the upper bound of a category, cj , and the upper
bound of the category below, cj−1, is not constant for all categories.

Instead of grouping by quantiles, you can also try to get intervals with the same
width for each class. For example, you could group income so that all respondents with
income between $0 and $5,000 form the first interval, respondents with income between
$5,001 and $10,000 form the second interval, and so on, until the maximum income is
reached.

More generally, you group the values of a variable into k categories with dj =
cj − cj−1 equal for all categories using either the recode() function (see page 84) or
the autocode() function.
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Let us begin with an example of the recode() function. With that function, the
grouping of income into intervals with equal width can be done like this:

. generate inc_g1 = recode(income,5000,10000,15000,20000,25000,30000,60000)

This generates the new variable inc g1, which becomes 5,000 for all observations with an
income of e 5,000 or below (that is, between e 0 and e 5,000), 10,000 for all observations
above e 5,000 up to (and including) e 10,000, and so on. All nonmissing observations
with an income above e 30,000 become e 60,000 on inc g1.

The one-way frequency table of the grouped income variable inc g1 can be displayed
as usual with

. tabulate inc_g1

The autocode() function is a sort of shorthand for the recode() function if you
want to have intervals with equal widths. The syntax of the autocode() function is

autocode(exp,k,min,max)

The autocode() function internally splits the interval from min to max into k in-
tervals with equal widths and returns the upper limit of the interval that contains the
value of the expression exp. To group the variable income into 13 intervals, you can use
the autocode() function as follows:

. generate inc_g2 = autocode(income,13,0,12500)

Grouping into intervals with arbitrary widths

You can group a variable into intervals with arbitrary widths by simply imposing the
upper limits of the arbitrary intervals on the list of numbers in the recode() function:

. generate inc_g3 = recode(income,2000,10000,20000,40000,80000,200000)

. tabulate inc_g3

7.3.2 Describing data using statistics

Summary statistics are often used to describe data with many categories. With summary
statistics, you can describe distributions parsimoniously. Generally, you will distinguish
between summary statistics for the position and for the dispersion of distributions.
Summary statistics for the position describe which values the observations typically
have, and summary statistics for the dispersion describe how different the values for the
observations are. Generally, you should use at least one summary statistic of each type
to describe a distribution.

We will begin by briefly describing the most important summary statistics for distri-
butions. Then we will present two commands for calculating these statistics: summarize
and tabstat.
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Important summary statistics

The arithmetic mean

The most common summary statistic for determining the central position of a dis-
tribution is the arithmetic mean, often simply called the average. The arithmetic mean
is a summary statistic for determining the position of variables with interval-level scales
or higher, that is, for variables like income, household size, or age. You can also use the
arithmetic mean for dichotomous variables that are coded 0 and 1 (dummy variables)
because the arithmetic mean of such variables gives the proportion of observations that
are coded 1. Sometimes, you might also use the arithmetic mean for ordinal variables,
such as life satisfaction or the intensity of party identification. But strictly speaking,
this approach is wrong, and you should not take the resulting numbers too seriously.
You definitely should not use the arithmetic mean for categorical variables that take
on more than two values, such as marital status or type of neighborhood, because the
result makes no sense.

The standard deviation

The most common summary statistic for determining the dispersion of a distribution
is the standard deviation. The standard deviation can be thought of as the average
distance of the observations from the arithmetic mean. This interpretation is not entirely
correct but may give you an idea of the notion. To calculate the standard deviation,
you first need to calculate the arithmetic mean. This means that you can calculate the
standard deviation only for variables for which you can calculate the arithmetic mean.

In some ways, the arithmetic mean and the standard deviation can be seen as sibling
measures for describing a distribution. Usually, when you describe the position of the
distribution with the arithmetic mean, you will use the standard deviation to describe
the dispersion of the distribution. But the description of a distribution in terms of its
mean and standard deviation can be problematic.

To understand why, take a look at the data in figure 7.1. Each line in this graph
gives you the values of one of four artificial distributions. As you see, the distributions
of all four variables are different. The first variable has what statisticians call a normal
distribution, the second variable has a uniform distribution, and the third and fourth
variables are skewed to the right and to the left, respectively. Nevertheless, all four
variables share the same summary statistics: they have a mean of 5.5 and a standard
deviation of 3.05. Given only the description with summary statistics, you might have
concluded that all four distributions are identical.
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Figure 7.1. Distributions with equal averages and standard deviations

To guard against such misinterpretations, you should consider other summary statis-
tics (or describe your data graphically).

Quantiles

Quantiles are the most important companions to the arithmetic mean and the stan-
dard deviation. The p-quantile (x[p]) splits a distribution into two parts such that the
first part contains p×100 percent of the data and the second part contains (1−p)×100
percent. In particular, the 0.5-quantile—the median—separates the data so that each
part contains 50% of the observations.

To calculate the quantiles, you use the position i of each observation in the sorted
list of a distribution. The p-quantile is the value of the first observation with position
i > np. If there is an observation with i = np, you use the midpoint between the value
of that observation and the value of the following observation. To find the 0.5-quantile
of a distribution with 121 valid observations, you need to search for the 61st (121 ×
0.5 = 60.5) observation in the sorted list and use the value of the distribution for this
observation. For 120 observations, you would choose a value between the values of the
60th and 61st observations.

To find the quantiles, you use the position of the observations in the sorted data.
The values of the categories are of interest only insofar as they determine the order of
the sorted list. It does not matter if the highest value is much higher than all others or
just a bit higher. In this sense, quantiles are robust against outliers.
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In practice, the most important quantiles are the quartiles: the quantiles with p =
0.25 (first quartile), p = 0.5 (median or second quartile), and p = 0.75 (third quartile).
From the quartiles, you can also learn something about the skewness and the dispersion
of a distribution.

• If the distances of the first and third quartiles from the median are equal or almost
equal, the distribution is symmetric. If the first quartile is closer to the median
than the third quartile is, we say the distribution is skewed to the right. If it is
the other way around, we say the distribution is skewed to the left.

• The difference between the third quartile and the first quartile is called the in-
terquartile range. This value tells us the range of values that are the middle 50%
of the observations.

By the way, the quartiles for the distributions from figure 7.1 are shown in table 7.1.
The results clearly show the different shapes of the distributions.

Table 7.1. Quartiles for the distributions

Variable 1st Quartile Median 3rd Quartile

1 4.00 5.50 7.00
2 2.98 5.50 8.02
3 3.07 4.33 7.35
4 3.65 6.67 7.93

The summarize command

You already know the most important command for calculating summary statistics:
summarize. In its basic form, summarize calculates the mean and the standard devia-
tion:

. summarize income

Variable Obs Mean Std. Dev. Min Max

income 4779 20540.6 37422.49 0 897756

From this output, you can see that the mean monthly income of the German population
in 2009 was e 20,540.60 and that (roughly speaking) the difference between the observed
income and the mean income was about e 37,422.49 on average.

In addition to the mean and the standard deviation, summarize also reports the
minimum (lowest value) and the maximum (highest value) of the distribution. In our
example, the lowest income of all respondents is e 0 and the highest income is e 897,756.
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summarize also calculates a set of quantiles if you specify the detail option. Note
that quantiles are called percentiles in the output because the value of p is expressed
in percent. In the output below, you can now see that while the mean is e 20,540,
the median of the income distribution is e 12,424, much lower than the mean. This
indicates a right-skewed distribution, also indicated by a positive value for skewness.

. summarize income, detail

Individual Labor Earnings

Percentiles Smallest
1% 0 0
5% 0 0

10% 0 0 Obs 4779
25% 0 0 Sum of Wgt. 4779

50% 12424 Mean 20540.6
Largest Std. Dev. 37422.49

75% 30998 710920
90% 46972 749421 Variance 1.40e+09
95% 62400 869446 Skewness 11.53857
99% 100341 897756 Kurtosis 213.8692

The tabstat command

The tabstat command also displays and calculates summary statistics. It is a general-
ization of summarize, because it allows you to specify a list of statistics to be displayed
using the option statistics(). Inside the parentheses you specify the names of the
statistics to be displayed. The default is statistics(mean), which displays the arith-
metic mean, but you can also use other statistics and even multiple statistics. For
example, typing

. tabstat income, statistics(count mean sd min max)

displays the number of nonmissing observations (count), the mean (mean), the standard
deviation (sd), the minimum (min), and the maximum (max)—replicating the output
of summarize.

The following command shows the minimum, the three quartiles (p25 p50 p75),
and the maximum—what is sometimes referred to as the “five-number summary” of a
distribution:

. tabstat income, statistics(min p25 p50 p75 max)

variable min p25 p50 p75 max

income 0 0 12424 30998 897756

For a list of names for statistics you can calculate with tabstat, see help tabstat.
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Comparing distributions using statistics

Stata provides several tools for comparing different distributions through summary
statistics:

• a combination of summarize with the prefix by,

• the summarize() option of tabulate,

• the by() option of tabstat,

• the table command, and

• graphs of summary statistics.

We will not go into the combination of summarize and the by prefix because we
have already described this tool in section 3.2.1. Most likely, you have already used
summarize with by several times by now. If not, you should read section 3.2.1 now.
This combination is easy to use and quite powerful: you can use it to obtain most of
the results of the other tools we have described. The main advantage of the other tools
is the attractive arrangement of the results.

For those already familiar with inferential statistics, we should point out that Stata
has a variety of built-in commands. Among the frequently used built-in commands
are ttest to test the equality of means, prtest to test the equality of proportions,
and ranksum to test the hypothesis that two independent samples are from populations
with the same distribution. A general introduction to inference statistics is given in
chapter 8.

The summarize() option of tabulate

The summarize() option of tabulate is used to display the arithmetic means and
standard deviations of a distribution, conditioned on the values of one or two other vari-
ables. For example, to show the average and standard deviation of income conditioned
on gender, you can use

. tabulate sex, summarize(income)

Summary of Individual Labor
Earnings

Gender Mean Std. Dev. Freq.

Male 28190.753 47868.242 2320
Female 13322.888 21286.438 2459

Total 20540.6 37422.487 4779

The summarize() option includes the means and standard deviations of the variable
to be summarized. This tells you that the mean income for men is about e 28,190.75
and the mean income for women is about e 13,322.89.
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You can also use the summarize() option in two-way tables. The advantages of
comparing distributions this way may be even more convincing. Suppose that you
want to know the income inequality between men and women in each German state
separately—you want to know the mean income conditioned on gender and state. In
this case, you might produce a two-way table containing the mean of income in each of
its cells:

. tabulate state sex, summarize(income) nostandard nofreq

Means of Individual Labor Earnings

State of Gender
Residence Male Female Total

Berlin 18410.298 22315.633 20403.646
Schleswig 31986.029 19552 25905.153
Hamburg/B 24720.95 15341.66 19375.763
Lower Sax 26120.599 11564.005 18404.809
N-Rhein-W 29157.271 13037.589 21129.477

Hessen 40825.28 14387.923 27648.834
R-Pfalz,S 28233.652 11271.49 19462.123
Baden-Wue 36559.568 13231.973 24312.58

Bavaria 33366.952 14349.809 23314.215
Mecklenbu 19170.673 13481.516 16076.57
Brandenbu 19242.543 12862.092 15852.929
Saxony-An 19745.641 10923.757 15250.681
Thueringe 22546.186 9984.5391 15732.085

Saxony 16729.839 11092.707 14010.919

Total 28190.753 13322.888 20540.6

We used the options nostandard and nofreq to suppress the output of standard devi-
ations and frequencies.

The statistics and by() option of tabstat

The summarize() option of tabulate allows you to compare only means and stan-
dard deviations of a distribution between different groups. tabstat is statistically more
flexible. You can use the by() option of tabstat to specify that the statistics be
displayed separately for each unique value of a variable given within the parentheses.
Therefore, to produce the five-number summary of income conditioned on gender, you
could type

. tabstat income, statistics(count q max) by(sex)

Summary for variables: income
by categories of: sex (Gender)

sex N p25 p50 p75 max

Male 2320 270.5 22142.5 39884 897756
Female 2459 0 6761 21787 612757

Total 4779 0 12424 30998 897756
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You can use only one variable name in the parentheses of the by() option. The
table command is one way to overcome this restriction.

The table command

The table command is a generalization of the techniques we have described so
far. With table, you can display many types of statistics, including means, standard
deviations, and arbitrary quantiles, in tables having up to seven dimensions. In this
respect, the advantages of table are obvious, but it is not as fast and its syntax is
slightly more complicated.

The syntax of table has two parts: one to format the table and one to specify the
contents of the cells. As with tabulate, the table can be laid out simply in rows,

. table wor01

Worried about
economic development Freq.

Very concerned 2,404
Somewhat concerned 2,623

Not concerned at all 298
Refusal 20

or in rows and columns,

. table wor01 sex

Worried about Gender
economic development Male Female

Very concerned 1,154 1,250
Somewhat concerned 1,238 1,385

Not concerned at all 153 145
Refusal 8 12

However, in table you can also specify a third variable, which defines a supercolumn.
The supercolumn works as if you had specified tabulate with a by prefix except that
the different tables are displayed side by side. This way, you get a three-way table:

. table wor01 sex emp

Status of Employment and Gender
Worried about full time part time irregular not emplo
economic development Male Female Male Female Male Female Male Female

Very concerned 636 322 18 258 27 98 442 563
Somewhat concerned 654 338 36 258 32 104 468 649

Not concerned at all 52 31 5 23 5 7 78 74
Refusal 4 4 1 2 4 5
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Finally, you can specify up to four superrows, which work like supercolumns except
that the different parts of the table are displayed one below each other—but still in one
table. Superrows are specified as a variable list with the option by():

. table wor01 sex emp, by(mar)

Marital Status of
Individual and Status of Employment and Gender
Worried about full time part time irregular not emplo
economic development Male Female Male Female Male Female Male Female

Married
Very concerned 423 144 10 195 15 74 307 313

Somewhat concerned 408 145 19 195 11 63 272 361
Not concerned at all 26 12 2 16 1 2 30 26

Refusal 3 3

Single
Very concerned 136 110 4 18 12 10 62 66

Somewhat concerned 185 135 15 30 20 30 120 113
Not concerned at all 21 16 3 6 3 5 31 24

Refusal 1 4 1 1 4 1

Widowed
Very concerned 2 8 8 3 39 125

Somewhat concerned 5 5 6 1 4 44 125
Not concerned at all 1 8 15

Refusal 1

Divorced
Very concerned 62 52 3 31 10 26 53

Somewhat concerned 44 41 2 24 5 28 46
Not concerned at all 4 2 1 6 6

Refusal 1

Separated
Very concerned 13 7 1 6 1 8 6

Somewhat concerned 12 12 3 2 4 4
Not concerned at all 1 1 3 3

Refusal

Refusal
Very concerned 1

Somewhat concerned
Not concerned at all

Refusal

The table forms the groups on which we want to condition our variable of interest.
But to describe the variable, we still need two pieces of information:

• the variable to be described and

• the summary statistics by which we provide the description.
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Both pieces of information are specified with the option contents(). Within the
parentheses of contents(), you first specify the name of the summary statistic and
then the name of the variable. Specifying contents(mean income), for example, would
fill the cells of the table with the arithmetic mean of income for each of the groups of
the table.

As an example, we will reproduce some of the tables we produced earlier. With
table, the comparison of income conditioned on gender from page 178 would look like
this:

. table sex, contents(count income mean income sd income)

Accordingly, you would get the mean income conditioned on gender and state (page 179)
by typing

. table state sex, contents(mean income)

What if you distrust the mean and want to use quartiles instead?

. table sex, contents(p25 income p50 income p75 income)

Suppose that you want to compare the monthly rent among apartments having
different features. How much do the monthly rents of apartments having central floor
heat, a balcony or a terrace, and a basement differ from those without those amenities?

. table eqphea eqpter eqpbas, contents(mean rent)

Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor Yes
head Yes No Refusal

Yes 656.083252 499.0514221 705.333313
No 494.868866 469.5681763

Refusal

Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor No
head Yes No Refusal

Yes 626.4736938 366.8153992
No 434 278.375 375

Refusal
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Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor Refusal
head Yes No Refusal

Yes 320 401
No

Refusal 638

In this table, you can see that an apartment with the listed amenities rents for e 656
on average, whereas the apartment without the amenities rents for e 278. However,
when interpreting results from multidimensional tables like the above, you should also
look at the number of observations on which the averages within each cell are based:

. table eqphea eqpter eqpbas, contents(mean rent n rent)

Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor Yes
head Yes No Refusal

Yes 656.083252 499.0514221 705.333313
1,574 525 3

No 494.868866 469.5681763
61 44

Refusal
0

Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor No
head Yes No Refusal

Yes 626.4736938 366.8153992
76 65

No 434 278.375 375
2 8 1

Refusal
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Dwelling
has Dwelling has basement and Dwelling has
central balcony/terrace
floor Refusal
head Yes No Refusal

Yes 320 401
1 1

No

Refusal 638
1

The more cells a table has, the more important it is to check that the number of
observations is large enough to get reliable estimates of the summary statistic. With a
small number of observations, results are sensitive to outliers. As we can see now, the
rent of e 278 in the table above is based on just eight observations.

Our examples do not fully explore the range of possibilities from using tables. There
are further available summary statistics, and there are many tools for improving the
appearance of the table; see [R] table and help table for further insights.

Graphical displays of summary statistics

Stata has three special tools for displaying summary statistics graphically: bar
charts, dot charts, and pie charts. Technically, all three work similarly in Stata, but
dot charts have been shown to be the most powerful way to graphically display sta-
tistical information (Cleveland 1994, 221–269). So we concentrate on the presentation
of dot charts. For basic bar or pie charts, it is usually enough to replace the graph

subcommand dot with bar or pie, respectively.

In our first example, we compare the arithmetic mean of income among the German
states:

. graph dot (mean) income, over(state)

The command begins with graph dot, which is the command for making a dot chart.
Then we indicate our choice of summary statistic inside the parentheses. Because the
arithmetic mean is the default, we could have left (mean) out. For a complete list of
available summary statistics, refer to help graph dot. After indicating the summary
statistic, we entered the name of the variable we want to describe. Finally, inside the
parentheses of the option over(), we put the name of the variable on which we want
to condition the summary statistic. Here is the result:
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The graph shows a dot for the mean income of each German state. It can be seen
rather quickly that Schleswig-Holstein and Hessen have the highest mean incomes of all
German states and that Saxony has the lowest. After some inspection, German readers
will see that the average income in the five East German states (the former Communist
ones) is lower than in West Germany.

However, the graph is hardly optimal—even if it is not meant for publication. In
our graph, we have followed the rule “Alabama first”, which is a well-known rule for
displaying data badly (Wainer 1984). “Alabama first” means that you display your
data in alphabetical or some other order that is unrelated to the content. If you do not
want to display data badly, you should give your data a meaningful order. You can do
this most easily by specifying the sort() suboption within the over() option. Inside
the parentheses of sort(), you specify a sort order, either by the contents of a variable
or by a function of these contents. We choose to have our data sorted by the average
income: sort((mean) income). sort() is a suboption under over(), not an option
under graph dot, so you place it within the over() option.

. graph dot (mean) income, over(state, sort((mean) income))

To condition the summary statistic on more than one variable, we can use the by()

option. Another method specific to dot charts is superposition, which we use in our
next example to show the mean income in the different states conditioned on gender.

With dot charts, you can plot more than one summary statistic on one line. If
you enter a second variable, a second marker symbol appears on each line, representing
the second variable. To show conditional means for men and women separately, you
therefore need two income variables: one for men and one for women. You can generate
these variables easily with

. generate inc1 = income if sex == 1

. generate inc2 = income if sex == 2
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or in one command with

. separate income, by(sex)

Now you can use the new separated variables for the dot chart instead of the original
one. We include the sort() option on the graph command to sort the states by the
mean income of males, but you could also use the mean income of females, the overall
mean income, or any other useful order. Your research goals, however, determine what
is useful.

. graph dot (mean) income1 income2, over(state, sort((mean) income1))
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7.3.3 Graphs

Summary statistics describe variables by highlighting a certain property of the distri-
bution and excluding most information about it according to certain assumptions. For
example, the description of a distribution with the mean and the standard deviation
excludes, among many other things, all information about the skewness of the distri-
bution. If all the distributions are symmetric (or at least equally skewed), the means
and the standard deviations provide useful descriptions for comparing them. But if the
assumptions underlying a summary statistic are not true, the summary statistic does
not provide an informative description.

This section provides an overview of techniques for describing data that require
fewer assumptions than those we have previously mentioned. Fewer assumptions mean
that more information must be communicated, and for this we use graphs. But these
graphs differ from those discussed earlier, which we used to display summary statistics
that were calculated under certain assumptions. Here we use graphs to describe the
distribution with as few assumptions as possible.
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Box plots

In section 7.3.2, we introduced the five-number summary of distributions, which uses
the minimum, maximum, and quartiles to describe the data. Box plots can be seen as
graphical representations of the five-point description with some enhancements.

Box plots in general are composed of a box, two whiskers, two fences, and some
marker symbols. The lower border of the box is the first quartile; the upper border
is the third quartile. The line in the middle of the box is the median. The height of
the box therefore shows the interquartile range. An upper whisker extends from the
third quartile to the value corresponding to the third quartile percentile plus 1.5 times
the interquartile range. Likewise, a lower whisker extends from the first quartile to the
value corresponding to the first quartile minus 1.5 times the interquartile range.

Creating a box plot with the income variable, you can hardly see the box:

. graph box income
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The resulting graph is dominated by a series of marker symbols that line up from the
top to almost the bottom of display. These marker symbols show the highest values of
income, and they dominate the display because they are so much higher than most other
values. To us, this characteristic of the income-distribution is important information,
and it is good that the figure makes it stand out. However, the extreme values of income
also suppress the other features of box plots and make it harder to explain the remaining
graphs in this chapter. We therefore use a modified income variable that contains only
income values below 200,000. Nevertheless, we encourage you to try the commands with
both variables to see how outliers change the graphical features.
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. generate income_notop = income if income < 200000

. graph box income_notop
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Box plots provide much information about a distribution. You can directly infer the
position of the distribution from the position of the box along the y axis. Fifty percent
of the observations have values between the lower and upper bounds of the box. You
can infer the dispersion of the distribution by the size of the box, by the length of the
whiskers, and by the positions of the outliers. Moreover, you can see the symmetry
or skewness of the distribution: in symmetric distributions, the distances between the
median and the lower and upper bounds of the box are equal. Also the whiskers should
be of equal length, and the outliers above and below should be equally spaced. If the
outliers, the whiskers, or the box are squeezed at the bottom, the distribution is skewed
to the right. If they are squeezed at the top, it is skewed to the left. Here the distribution
of income is skewed to the right.

Box plots can be used effectively to compare distributions across different groups
using the option over() or by(). You simply put the names of the variables on which
you want to condition your distribution inside the option’s parentheses. Here is the
distribution of income conditioned on state. Because the value labels for state are
rather long, we use label(angle(45)) within over() to avoid overlapping.
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. graph box income_notop, over(state, label(angle(45)))
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Histograms

The most common graphical display for distributions with many categories is the his-
togram, which is a graphical display of grouped frequency tables. In histograms, a
rectangle of height

f̂j =
nj

dj
(7.1)

and of width dj is drawn for each interval j of the grouped distribution, where nj is the

absolute frequency and dj = cj − cj−1 is the width of the interval. The quantity f̂ is

called the density. The density f̂j is not the relative frequency fj . Relative frequencies
are always between 0 and 1, whereas densities can be any positive real number. In
histograms, the areas of the rectangles are proportional to the relative frequencies of
the intervals, whereas their height is proportional to the data density within those
intervals.

The implementation of histograms in Stata is confined to a special case: Stata draws
histograms where the widths of all rectangles are equal. In other words, Stata draws
histograms of distributions that are grouped with autocode() (see page 173). For this
reason, the heights of the rectangles can also be interpreted as proportions within the
intervals. The taller the rectangle, the larger the proportion within the corresponding
interval.5

5. The ado-package eqprhistogram, described by Cox (2004), implements histograms that may have
rectangles of different widths. For more on installing external ado-packages, see section 13.3.
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You obtain a histogram by using the histogram command. The command is easy
to use: you just specify the command and the name of the variable you want to display.
The graph again shows the skewed income distribution. We also see that there are some
very low values that are quite frequent.

. histogram income_notop
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Often the histograms you get from this simple command will suffice. But be careful,
as the appearance of histograms depends on your choice of the origin and the width
of the displayed intervals. If you do not specify them, Stata chooses for you. Stata
always chooses the minimum value of the distribution as the origin and infers the width
of the intervals from a formula for the optimal number of bars to be displayed. For our
distribution, Stata decided to use 37 bars. Then Stata internally grouped the income
variable into 37 intervals with equal widths and drew bars with heights proportional
to the proportion within these intervals. You can do this on your own by using the
autocode() function and histogram with the discrete option:

. generate inc37 = autocode(income_notop,37,0,200000)

. histogram inc37, discrete

The optimal number of groups for histograms is debatable (Emerson and Hoaglin
1983). The goal is to generate a histogram that shows all the important features of
the distribution but ignores the unimportant ones. As rules of thumb for the optimal
number of groups, 10 log10 n, 2

√
n, and 1 + log2 n have been proposed. For the 4,757

valid observations on income notop, these rules propose histograms with 37, 138, and
13 groups, respectively. Stata uses

min(
√

n, 10 log10 n)

which generates 37 bars.
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As we have said, the appearance of histograms depends on the width of the intervals,
which is a function of the number of bars. With the bin() option, you can choose
the number of bars yourself by indicating the number of bars you want inside the
parentheses.

It is always a good idea to try out some other numbers. Here are the commands to
generate histograms with 13 and 138 bars:

. histogram income_notop, bin(13)

. histogram income_notop, bin(138)

You can compare different distributions with histograms by using the by() option.
The following example shows the income distribution conditioned on gender:

. histogram income_notop, by(sex)

0
5
.0

e
−

0
5

1
.0

e
−

0
4

0 50000 100000 150000 200000 0 50000 100000 150000 200000

Male Female

D
e
n
s
it
y

income_notop
Graphs by Gender

We do not want to interpret these graphs here. Instead, we remind you that the
appearance of histograms depends on the origin and width of the bars. Moreover,
the necessary grouping of data often leads to surprising results—take a look at the
histograms of income by state, for example. A graphical technique to circumvent some
of these problems uses kernel density estimators, which we describe below.

Kernel density estimation

When displaying a distribution with a histogram, we are interested in the density at
arbitrary points of the distribution. That is, we are interested in the density of persons
with a value of about x. Histograms approximate the density by choosing an interval
that contains x and then calculating the proportion of persons within this interval. You
can see a disadvantage of this procedure in figure 7.2.6

6. We took the figure with permission from Fahrmeir et al. (1997, 99).
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x1 x x2

Figure 7.2. Part of a histogram
grfahrmeir.do

The figure displays a part of a histogram. There are three values of interest in the
figure, x1, x2, and x. Suppose that you are interested in the density of the distribution
at point x. The height of the bar at point x is based on the proportion of observations
within the interval around x. Clearly, observations with a value of x1 are not counted in
calculating the height of the bar at point x. But the observations at point x2, which are
farther away from x than x1 is, are counted. To calculate the proportion of observations
with a value of about x, it would be better to use an interval that has x as its midpoint.
That is, we should use an interval that ranges from x − h to x + h. The density at x
would be the proportion within that interval divided by its width (2h).

We can do the same for any arbitrary value of a distribution. If we graph each
of these densities along the y axis, we get what is called a sliding histogram. Sliding
histograms are special cases of kernel density estimators, which generally estimate the
density at x with

f̂(x) =
1

nh

n∑

i=1

K

(
x − xi

h

)
(7.2)

In the case of a sliding histogram, we define

K(z) =

{
1
2 if |z| < 1

0 otherwise

This looks rather complicated but it is not. To fully understand this formula, con-
sider circumstances where z = |(x− xi)/h| is smaller than 1. Assume that you want to
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calculate the density at, say, 6. Further assume that a value is approximately 6 when it
is not more than 2 above or below 6; that is, the quantity h is 2. Finally, assume that
your distribution has values from 0 to 10.

Substitute xi = 9 into (x − xi)/h:

z =
6 − 9

2
= −1.5

For xi = 9, the absolute value of z is greater than 1. Therefore, K becomes 0. If you
try other values for xi, you will see that |(x− xi)/h| becomes lower than 1 whenever xi

is inside the interval from 6−h to 6+h. As a result, K takes the value 1/2 for all values
within that interval and takes the value 0 elsewhere. The sum in (7.2) is therefore

Number of observations within [x − h, x + h)

2

If you denote the numerator—the absolute frequency within the interval j—with nj ,
you can write (7.2) as

f̂(x) =
1

nh
× nj

2

=
fj

2h
=

fj

dj

Equation (7.2) therefore is just a slightly more complicated way to express (7.1).

Equation (7.2) is nice because of K(z), which is the kernel from which the name
“kernel density estimate” stems. Kernel density estimates are a group of estimates
for the density at point x, which are all calculated with (7.2). They differ only in
the definition of K(z). The rectangular kernel used for sliding histograms is only one
case. Its main feature is that all observations within the observed interval are equally
important for estimating the density. More common are kernels that treat observations
closer to x as more important. However, with many observations, the different kernel
density estimates do not differ very much from each other.
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In Stata, kernel density estimates are implemented in the command kdensity. For
the easiest case, simply enter the name of the variable for which you want to estimate
the densities. Here we generate a graph displaying densities that were calculated with
an Epanechnikov kernel:

. kdensity income_notop
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Kernel density estimate

There are eight different kernels available. They are listed in the online help and are
more fully described in [R] kdensity. The kernel(rectangle) option, for example,
calculates the densities with the rectangular kernel:

. kdensity income_notop, kernel(rectangle)

As stated, the choice of kernel typically does not affect the estimation of the density
curve much. Both commands display the skewed income distribution.

Often the width of the interval (2h) used for the density estimation is more critical
than the choice of kernel. If you do not provide a value, Stata calculates some optimal
value, which some consider to be slightly too high for skewed or multimodal distribu-
tions. The bwidth() option can be used to change the interval half-width (h). If you
scale down the optimal value to, say, h = 1, 000, you will get a less smooth display:7

. kdensity income_notop, bwidth(1000)

To compare distributions with kernel density estimators, you can draw the curves
for different distributions on one graph. You can do this by applying the graph twoway

plottype kdensity.

Let us demonstrate this by comparing the logarithmic income of men and women.
First, we create the logarithmic income:

. generate linc = log(income)

7. See Marron (1988) for a discussion of different algorithms for selecting the interval width.
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We then plot the log-income densities for men and women by applying an if qualifier
to the kdensity plot of graph twoway. See chapter 6 for a detailed explanation of the
other options used here:

. graph twoway || kdensity linc if sex == 1
> || kdensity linc if sex == 2
> || , title(Income by Sex) ytitle(Density) xtitle(Log (Income))
> legend(order(1 "Men" 2 "Women"))
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Overlaying density curves allows you to compare different distributions more easily
than is possible with histograms: the density curve for men is steeper and higher than
the one for women. Moreover, the level of log income with the highest density is farther
to the right for men than for women. Thus the incomes of women are somewhat more
uniformly distributed at the lower end of the income scale, whereas the incomes of men
are more concentrated around the average.8

Unlike histograms, kernel density estimates are not affected by the selection of the
origin. And they do look much nicer than histograms. However, kernel density estimates
share one disadvantage with histograms: they are affected by the selection of the interval
width. A graphical technique that attempts to circumvent those problems is the quantile
plot, which is discussed below.

Quantile plot

Quantile plots display marker symbols for each observation in the dataset, using the
value of the observation as the y coordinate and the cumulative proportion of observa-
tions in the sorted list of values at that point as the x coordinate. The symbols form a
curve from which we can infer the shape of the distribution, relative densities, repeated
values, and outliers.

8. Be careful in interpreting the graph. It is useful for comparing the forms of the curves, but do
not attach significance to the difference between them, because that can lead to an erroneous
interpretation (Cleveland 1994, 227–230).
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An example will help make things clearer. Take a look at the following data on the
birth years of 10 people:

. preserve

. use qplot, clear

. list

We have sorted the data by birth year, making it easier to explain. The proportion
of any observation is 1/10.

To begin, look at the lowest value of birth year. This observation has the value
x1 = 1901, which is going to be the y coordinate of the first plot symbol. The x
coordinate is the cumulative proportion up to this first observation, which is 0.1. The
first marker symbol therefore is plotted at the position (0.1, 1901).

Now look at the second observation. This observation has the value x2 = 1902,
which again will be the y coordinate. The x coordinate is the cumulative proportion
up to the second observation, which is 0.1 + 0.1 = 0.2. Hence, the coordinate for the
second marker symbol is (0.2, 1902).

We could proceed like this for any other value of the birth year, but we should let
Stata do the work for us. For that, we need a formula to calculate the x coordinates. We
use (i−0.5)/n, with i being the position of the observation in the sorted list of values and
n being the number of observations. Subtracting 0.5 in the formula is not necessary—
and we did not do it above—but is a convention among statisticians (Cleveland 1994,
137).

Here is the Stata command that calculates the formula and stores the results in a
variable. If you have read chapter 5, you should be able to use it with no problem:

. generate q = (_n - .5)/_N

. list
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To generate a quantile plot, you graph both quantities in a two-way graph:

. scatter ybirth q, mlabel(ybirth) mlabposition(12)
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There are four observations for 1906. The marker symbols for these observations
form a horizontal line. That may not appear very impressive, but you should remember
that equal values always form horizontal lines in quantile plots. Marker symbols that
display low slope correspond to data regions with high density. That is, the steeper
the curve formed by the marker symbols, the lower is the density of values in the
corresponding data.

The power of quantile plots can be demonstrated more compellingly with a larger
number of observations. Take the quantile plot of income in our main data as an
example. To produce this plot, you can use the command quantile, which calculates
the x coordinates and displays the graph in one step. Moreover, you can use most of the
general options for two-way graphs, including by(), to compare distributions between
groups.
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. restore

. quantile income_notop, xline(.25 .5 .75)
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This quantile plot has four regions. The first region is a flat line at 0 showing that
income has many observations with a value of 0. The second region is a region with
relatively high density that starts with incomes just above e 0 up to about e 50,000.
Above there is a region with low and declining density until around e 120,000. Finally,
there are four extreme values with even higher incomes. Because the density is high for
low values and low for high values, the distribution is skewed to the right. You can see
this also from the fact that all symbols are below—to the right of—the main diagonal.
The distribution would be skewed to the left if they had been above the main diagonal.

A main advantage of quantile plots is that they provide a marker symbol for every
observation. It is therefore possible to identify repeated values (all flat regions) and
single outliers. Another feature of the plot is that you can read off arbitrary quantiles
from the quantile plot. The x coordinate is the p-value of the quantile, so the 0.25
quantile—the first quartile—of income is the y-value that corresponds to 0.25 on the x
axis. It is 0 here. The 0.5 quantile or median is around e 12,000.

Finally, here are two further examples for quantile plots. First, a quantile plot for a
uniformly distributed random variable:

. set seed 42

. generate r1 = runiform()

. quantile r1

Second, a quantile plot for a normally distributed random variable:

. generate r2 = rnormal()

. quantile r2
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Comparing distributions with Q–Q plots

A Q–Q plot, or quantile–quantile plot, is a graphical method for comparing two dis-
tributions. Q–Q plots are very simple when both distributions have the same number
of observations. In that case, you sort the values of both distributions and then plot
the lowest value of the first distribution against the lowest value of the second, and so
on. Usually, there are unequal numbers of observations, which is slightly more compli-
cated, but the general idea stays the same. In the first step, you calculate the quantity
(i − 0.5)/n for each observation of the distribution with fewer observations and then
calculate the same quantiles for the other distribution. Finally, you plot the lowest value
of the smaller dataset against the quantile of the larger dataset that corresponds to the
lowest value of the smaller dataset, and so forth. Thus in the case of unequal numbers
of observations, there are as many marker symbols as there are values in the smaller of
the two datasets.

To compare the income of men and women with a Q–Q plot, you need to generate
separate income variables for men and women. You can do this by using the separate

command shown in section 7.3.2.

. separate income_notop, by(sex)

To generate the Q–Q plot comparing these two distributions, simply enter

. qqplot income_notop1 income_notop2
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We can see that most data points are to the left of the main diagonal. This means
that the values of the variable on the y axis usually are higher than those of the variable
on the x axis. Here this means that men earn more than women. We also see that
income inequality becomes particularly strong for incomes above e 100,000.
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7.4 Exercises

1. Get data from the National Health and Nutrition Examination Study (NHANES)
by using the following command:

. webuse nhanes2, clear

2. Produce a frequency table of health status (hlthstat).

3. Produce one-way frequency tables of the following variables with just one com-
mand: psu, region, smsa, sex, and race.

4. Investigate whether men or women in this subsample are of better health by using
a cross-tabulation of gender and health status.

5. Investigate how health differs between races by using cross-tabulation and the
chi-squared statistic.

6. Produce a table holding the mean weights of observations by race and gender. Do
not show any value other than the mean weights.

7. Produce a dot plot for the figures of the previous problem.

8. Produce a histogram of weight with a normal overlay.

9. Produce a kernel density plot of weight with a normal curve overlay.

10. Compare the distribution of the weights between whites and blacks by using a
Q–Q plot. Do this for men and women separately and show both plots in one
figure.

11. Use a box-and-whisker plot to compare the distribution of the systolic (bpsystol)
and diastolic (bpdiast) blood pressure across race and gender.
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So far we have explored distributions, examined data through tables and graphs, and
compared subgroups in the datasets we provided. Any statement we made about differ-
ences between subgroups or the distribution of certain variables was with respect to the
data we observed. The term “statistical inference” is used for the process of drawing
conclusions from an observed dataset to something that is more than just the observed
data. There are two aspects of inference we discuss here: descriptive inference and
causal inference.

Descriptive inference takes place when you calculate a statistic using data from a
sample and then use this information to make estimates about the same statistic in
the population from which the (random) sample was drawn. Take as an example the
income inequality between men and women. We have shown before that in our data,
male earnings are on average much higher than female earnings. We arrived at this
conclusion using a statistic—namely, the difference in average earnings of men and
women—calculated from a sample. What does this value indicates about the difference
in earnings between all German men and women? An answer to this question can be
given using the techniques discussed in section 8.2.

In other settings, a different logic is needed when we think about inference. For
example, during the sinking of the Titanic, women and children queued up for places
in lifeboats. It later turns out that 97% of the first-class women and children survived,
while this was the case for only 42% of the third-class women and children. You might
infer from this result that the order in the queue was created by some causal process
related to the social status of the passengers (that is, the crew locked the doors between
the lower cabins and the upper deck). However, before you make this inference, you
should check whether the observed difference in the survival rate could also arise by
chance. That is, you should wonder, What are the odds of this result if the order of the
queue would have been randomly assigned? Section 8.3 discusses such causal inference
in more detail.

Both types of statistical inference deal with random processes. Random sampling is
a prerequisite for descriptive inference, and causal inference builds on the assumption
that the data are created by a mixture of both a systematic and a random process. To
understand these random processes, it is very helpful to be able to re-create them. We
therefore show in section 8.1 how to generate random numbers and random variables in
Stata, how to draw samples, and how to build sampling distributions. Readers familiar
with these steps can jump ahead to section 8.2 to learn how to estimate standard errors
in Stata for various types of samples with complete and missing data.

201
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8.1 Random samples and sampling distributions

To fully understand the following sections about sampling distributions and inference,
it is good to have some hands-on experience in drawing random samples. Generating
and applying random numbers is key in the process of random sampling; thus we will
start out with a little detour on how to do just that in Stata. It might take you a bit
to see why you need to know about random numbers; if that is the case, just bear with
us and it will become clear.

8.1.1 Random numbers

Stata has a built-in random-number generator. The random-number generator can be
accessed by various commands and functions. By far, the most important function for
creating random numbers is runiform(), which returns random numbers in [0, 1) (that
is, between 0 and almost 1) from a uniform distribution. We can use this function to
display just one randomly selected number:

. display runiform()

.76668427

In our case, the number is around 0.767. Most likely, you will see a different number
on your screen; after all, this is a random number. However, we both could get the same
value because Stata’s random-number generator is not entirely random. In fact, the
random numbers created are completely determined by an initial value, the random-
number seed. If Stata uses the same seed on two different computers, it will always
produce the same random numbers afterward. You can set the initial value of the
random-number seed by using the command set seed together with a positive integer
number. Let us use 42 and prove that we all get 0.14358038:

. set seed 42

. display runiform()

.14358038

Setting the random number seed to 42 does not mean that runiform() produces the
value 0.144 all the time. It only means that the first number created by runiform()

after having set the seed to 42 is always 0.144. If we issue the display command again,
we will get a different number than we got the first time, but now we all will get the
same different number, 0.99569016:

. display runiform()

.99569016

The function runiform() can be used to create random numbers for arbitrary in-
tervals. For example, multiplying the random number by 6 leads to a random number
between 0 and almost 6:

. display 6*runiform()
2.7913871
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If you want integer numbers from 1 to 6, you can type

. display 1 + int(6*runiform())
6

which uses the function int() that returns the integer part of the number inside the
parentheses. More generally, you can create random numbers from the interval [a, b)
(that is, ≥ a and < b) with a+(b−a)r, where r is the result of the runiform() function,
and you can create integer numbers from the interval [a, b] with a+int{(b − a + 1)r}.
Here are two examples that show a random number and a random integer between 6
and 23:

. display 6 + (23-6) * runiform()
11.956807

. display 6 + int((23-6+1) * runiform())
15

8.1.2 Creating fictitious datasets

Stata not only allows you to draw single numbers at random but also allows you to
create datasets with random variables. To do so, we start by creating a dataset with
1,000 empty observations:

. set obs 1000
obs was 0, now 1000

The command set obs creates observations. The number behind the command
defines the numbers of observations to be created, here 1,000. We can add variables to
those empty observations. For example, we can generate a random variable with integer
numbers between 1 and 6 by using the expression from above together with generate:

. generate x1 = 1 + int(6*runiform())

The new variable can be examined with

. tabulate x1

x1 Freq. Percent Cum.

1 154 15.40 15.40
2 175 17.50 32.90
3 183 18.30 51.20
4 179 17.90 69.10
5 141 14.10 83.20
6 168 16.80 100.00

Total 1,000 100.00

or any of the other tools we described previously in this book. From the result above,
we see that the new variable holds all possible integers between 1 and 6, and that all
of these values appear approximately with a similar, yet not identical, frequency. The
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frequencies are similar because the random-number generator produces values from
a uniform distribution. The frequencies are not identical because they are created
randomly. To the extent that Stata’s random-number generator works well (it does!),
the differences of the frequencies are due to chance.

It is possible to generate random variables with other distributions, too. A very
powerful tool for this is the random-number function rbeta(a,b), which creates random
numbers from a Beta distribution. The function lets you specify two parameters, α
and β. Depending on the value chosen, you can generate variables with the following
distributions (among others):
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Figure 8.1. Beta density functions for different settings of α and β

α β Shape Example

1 1 uniform rbeta(1,1)

< 1 < 1 U-shaped rbeta(.5,.5)

1 > 1 decreasing rbeta(1,3)

> 1 1 increasing rbeta(5,1)

> 1 > α skewed right rbeta(2,5)

> β > 1 skewed left rbeta(5,2)

Figure 8.1 shows the density function of the Beta distributions for various settings
of α and β. If you create random variables with the indicated settings, the distribution
of the created variables will be similar to that shown in the figure.1

1. Examples mirror the examples on Wikipedia; see the permanent link
http://en.wikipedia.org/w/index.php?title=Beta distribution&oldid=448380008.
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Many other distributions can be created by applying specific transformations on
random numbers between 0 and almost 1 in one way or another. One of the more
complicated transformations uses the results of the function for the inverse cumulative
standard normal distribution, invnormal(). If you apply this transformation on a
variable with uniformly distributed values between 0 and almost 1,

. generate x2 = invnormal(runiform())

you end up with a variable that has a mean of approximately 0, a standard deviation
of 1, and a bell-shaped distribution:

. kdensity x2, xline(0)
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The bell-shaped distribution of our newly generated variable x2 is what statisticians
would describe as a “normal distribution”. Because it has 0 mean and standard devia-
tion of 1, they would even talk of a “standard” normal distribution. Note that the curve
is a little jerky because we only used 1,000 observations. Had we used many more, the
graph would look much smoother.

Because variables with normal distributions are very important in statistics, Stata
has the function rnormal() that allows you to directly create random numbers from a
normal distribution. Without further arguments, the function creates random numbers
from a standard normal distribution. If you put a number inside the parentheses, this
number will become the mean of the random values to be created. Likewise, if you
place two numbers inside the parentheses, the first number will become the mean, and
the second number becomes the standard deviation of the numbers created. Here is an
illustration for each of these uses:
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. generate x3 = rnormal()

. generate x4 = rnormal(2)

. generate x5 = rnormal(0,2)

. twoway kdensity x3 || kdensity x4 || kdensity x5
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So far, all of our examples have created values randomly while controlling certain
aspects of the distributions. As a result, we got variables that have the intended distri-
bution but are fairly unrelated among each other. However, it is also possible to create
variables that are interrelated in some respect. You can, for example, create a fictitious
variable income with a mean of $10,000 and a standard deviation of $15,000 if another
fictitious variable, men, is 0; income can have a mean of $20,000 and standard deviation
of $40,000 if men is 1. A simple way to achieve this is

. generate men = int(runiform()*2)

. generate income = rnormal(10000,15000) if !men
(497 missing values generated)

. replace income = rnormal(20000,40000) if men
(497 real changes made)

. tabulate men, sum(income)

Summary of income
men Mean Std. Dev. Freq.

0 9631.7472 15630.947 503
1 22055.794 38172.359 497

Total 15806.499 29746.606 1000

That is to say, we have implemented a data-generating process in which the average
income is about $10,000 higher for men than for women, while individual incomes vary
randomly around the means.
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8.1.3 Drawing random samples

To understand how random numbers can be used to draw samples from a dataset, load
berlin.dta into memory:2

. use berlin, clear

This file has 2,932,818 observations, one for each registered resident in Berlin in
2010 between the ages 18 and 89. The file contains one variable, the year in which
the resident was born. Before we proceed, note that the average year of birth of the
observations in berlin.dta is 1962, or to be precise, 1962.252:

. summarize ybirth

Variable Obs Mean Std. Dev. Min Max

ybirth 2932818 1962.252 17.8411 1921 1992

Now assume you want to randomly select 0.1% of the observations from that dataset.
This can be done with the Stata command sample or with the already familiar function
runiform(). While the command sample is not as flexible as the function runiform(),
it is very easy to use. The command

. sample 0.1
(2929885 observations deleted)

deletes 2,929,885 randomly selected observations from the dataset so that 2,933 obser-
vations (approximately 0.1% of 2,932,818 observations) remain. Summarizing ybirth

again, we realize that the average year of birth of the random sample is only slightly
different from what it was before:

. summarize ybirth

Variable Obs Mean Std. Dev. Min Max

ybirth 2933 1962.371 17.73615 1921 1992

The same result can be achieved with the function runiform(). We start by loading
the dataset again so that we have full access to our population:

. use berlin, clear

We then create the new variable r using the runiform() function. Because the values
in the new variable are uniformly distributed, approximately 0.1% of the values created
are below 0.001.

. generate r = runiform()

. count if r<=.001
2881

2. Make sure that your current working directory is c:\data\kk3; see page 3.
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To draw a random sample, we can therefore drop all observations with values of the
new variable r above 0.001. Or we just look at the mean of ybirth for the sample by
using the if qualifier without deleting any observations from the dataset:

. summarize ybirth if r<=0.001

Variable Obs Mean Std. Dev. Min Max

ybirth 2841 1961.928 17.92092 1921 1992

Instead of drawing a sample based on a set percentage, we could also draw a sample
of exactly, say, 2,930 observations from the file berlin.dta. With the three commands
below, we create a uniformly distributed random variable, sort the cases by that variable
so that they are now in random order, and mark the first 2,930 cases with the variable
srs:

. replace r = runiform()

. sort r

. generate srs = _n<=2930

From

. summarize ybirth if srs

Variable Obs Mean Std. Dev. Min Max

ybirth 2930 1962.414 17.92464 1921 1992

we see that we have in fact selected 2,930 observations.

Either way, these sampling methods are called simple random sampling (SRS). Simple
random samples are conceptually the most simple ones. With SRS, each observation has
a known and equal probability for being selected into the sample of n/N , with n being
the sample size and N being the size of the population. In our last example, this
sampling probability is 2930/2932818 ≈ 0.1% for each observation of berlin.dta.

Another feature of SRS is that estimates of the population mean derived from simple
random samples mean have a known sampling distribution. We will explain this some-
what technical feature in the next section. Before we start, we would like to mention
that simple random samples are rare in practice because other sampling designs are
more practical or more cost efficient (see section 8.2.2).

8.1.4 The sampling distribution

In section 8.1.3, if you look at the outputs of the summarize commands for the three
different 0.1% simple random samples, you see that the means of ybirth differ slightly
between the samples. Imagine now that you draw 500 simple random samples. What
values would you get for the means of ybirth in all those samples, then?

Actually, you do not have to imagine that. You already learned in this book all the
tools needed to simulate that process. See our example below. We create a loop of 500
iterations (see section 3.2). Inside the loop, we draw simple random samples from the
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berlin.dta population as before, although this time we only select approximately 100
observations. We then summarize ybirth for the sample and collect the mean of each
repetition in the new variable smplmeans alongside the existing data. Before you start
typing the commands, note that they will take a while and that issuing the command
set more off before starting the loop is convenient:

. generate smplmeans = .

. forvalues i = 1/500 {

. summarize ybirth if runiform() < (100/_N), meanonly

. replace smplmeans = r(mean) in `i´

. }

When the loop finishes, we end up with 500 observations stored in the variable
smplmeans. Each of these 500 observations holds the arithmetic mean of one sample.
Or to say it somewhat differently: smplmeans holds the distribution of the sample means
(also known as the sampling distribution of the mean).

In sampling theory, the term “sampling distribution” is used to describe the dis-
tribution of a statistic (such as the arithmetic mean) in an infinite number of random
samples. We would be sitting here a long time if we were to create an infinite number of
random samples, but for the purpose of explaining the features and the use of sampling
distributions, 500 repetitions is close enough to infinity. Thus let us take a look at the
distribution of the 500 means stored in smplmeans by summarizing both the original
variable ybirth and the means of the samples in smplmeans.

. summarize ybirth smplmeans

Variable Obs Mean Std. Dev. Min Max

ybirth 2932818 1962.252 17.8411 1921 1992
smplmeans 500 1962.236 1.785025 1957.325 1967.325

The mean of ybirth, 1962.252, is the average of the year of birth in the berlin.dta
population (that is, the true value). Normally, we would not know this value but would
like to estimate it using just one of our 500 samples. If we look at the average of the
means of all of our 500 samples, we see that this average is very close to the population
mean: 1962.236. This is not a coincidence. Probability theory shows that the mean
of the sample means for an infinite number of simple random samples is equal to the
population mean. The sample mean of a simple random sample is therefore said to be
an unbiased estimate of the (normally unknown) population mean. If the mean of the
sample means would differ from the population mean, the estimate would be biased.

However, being unbiased is not the only characteristic a method should have. This
becomes clear by looking at the minimum and maximum values of the simulated sam-
pling distribution. According to these values, at least one of the samples produced a
mean of ybirth, 1957.325, that was more than five years below the true value, and yet
another one produced a mean that was almost five years above the true value.

In practice, where we have just one sample, we are therefore faced with the question
of how good our point estimate really is. Have we ascertained a sample that produced a
point estimate that is close to the true value or one that is far off? In this situation, it
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would be good if we knew how much, on average, the point estimate varies around the
true mean. One can say that the more it varies, the less we should trust in our present
point estimate. The sampling distribution provides us with a good measure for the level
of trust that we can have in our observed point estimate: its standard deviation. For
our simulated sampling distribution, the standard deviation is 1.785025, which means
that the average year of birth estimated in simple random samples of approximately
100 observations from a population of 2,932,818 Berlin residents deviates, on average,
1.785025 years from the true value.

The standard deviation of the sampling distribution is commonly termed the stan-
dard error, distinguishing it from the standard deviation of a variable in a dataset.
Generally, we wish to apply methods that have small standard errors because those
methods make it more likely that the result ascertained in our present sample is close to
the true value in the population. In statistics, the amount of trust that we can have in
our point estimate is termed “efficiency.” A method that leads to point estimates with
small standard errors is termed an efficient method, while those with large standard
errors are inefficient. If it can be shown that no other method leads to a point estimate
with smaller standard errors, the method is sometimes called the best method.

The standard error is the most fundamental concept of statistical inference. It is
the basis for all other procedures of statistical inference, such as creating confidence
intervals and significance tests. Estimating the standard error correctly is therefore the
core problem of statistical inference. We will deal with this problem in the next section.

However, before we do this, we would like to take a more thorough look at the
distribution of smplmeans by using a kernel density plot (see section 7.3.3), where we
mark the true mean and the standard deviation with vertical lines (see section 4.1 for
the meanings of r(mean) and r(sd)):
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. summarize ybirth

. local truemean = r(mean)

. summarize smplmeans

. local XplusSE = r(mean) + r(sd)

. local XminusSE = r(mean) - r(sd)

. kdensity smplmeans, xline(`truemean´) xline(`XplusSE´ `XminusSE´, lpattern(dash))
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The figure shows that the means of the 500 samples vary symmetrically around the
true mean of ybirth, whereby means close to the true value are more frequent than
those far out. A large proportion of the sample means are within the boundaries of
one standard error above and below the mean, marked here with dashed lines. More
specifically, from

. generate limit1 = inrange(smplmeans,`XminusSE´,`XplusSE´) if !missing(smplmeans)
(2932318 missing values generated)

. tabulate limit1

limit1 Freq. Percent Cum.

0 155 31.00 31.00
1 345 69.00 100.00

Total 500 100.00

we see that actually about 69% of all sample means are within one standard deviation
above and below the mean; if we draw a larger number of random samples, that figure
would be around 68%. Likewise, one can expect that about 95% of all sample means are
within two standard deviations above and below the mean, and about 99% are within
three standard deviations above and below the mean. If you look at the respective
proportions among our 500 sample means, you will see that their distribution is very
close to these numbers:
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. summarize smplmeans

. forvalues i = 2/3 {

. local Xplus`i´SE = r(mean) + `i´*r(sd)

. local Xminus`i´SE = r(mean) - `i´*r(sd)

. generate limit`i´ = inrange(smplmeans,`Xminus`i´SE´,`Xplus`i´SE´)
> if !missing(smplmeans)
. tabbulate limit`i´
. }

Overall, the sampling distribution of the sample means looks very much like a nor-
mal distribution. The central limit theorem shows us that for an infinite number of
replications, the sampling distribution of sample means from simple random samples
has a normal distribution. Or to say it in more technical terms, when we draw a large
simple random sample of size n from a population, and we observe a characteristic that
has a mean of µ and a standard deviation of σ in the population, then the sampling
distribution has a normal distribution with a mean of µ and a standard deviation (that
is, the standard error) of σ/

√
n:

N

(
µ,

σ√
n

)

This is the case no matter what distribution the characteristic in the population has,
though the further it is away from normal, the larger the sample size should be. If you
would like to see what effect a different sample size has on the sampling distribution of
ybirth, you can rerun the commands we used above (page 209) with a different sample
size, and you can graph the new sampling distribution on top of the distribution of
smplmeans. If we do this for sample sizes of approximately 1,000 observations, we see
that the sampling distribution becomes much narrower:

. generate smplmeans2 = .

. forvalues i = 1/500 {

. summarize ybirth if runiform() < (1000/_N), meanonly

. replace smplmeans2 = r(mean) in `i´

. }

. twoway || kdensity smplmeans || kdensity smplmeans2
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The central limit theorem simplifies the estimation of the standard error for sampling
means from simple random samples. However, it should be noted that this is not
necessarily true for all kinds of point estimates, all kinds of samples, and all kinds of
variables. Real statistical problems start here.

8.2 Descriptive inference

Knowing about sampling, sampling distributions, and standard errors is key to descrip-
tive inference. As explained in the last section, the standard error is the standard
deviation of the sampling distribution. As also explained in the last section, the sam-
pling distribution is a theoretical concept that cannot be observed directly. What we
observe in practice is one single sample. We therefore cannot measure the standard er-
ror using the standard deviation of means calculated in a huge number of independent
samples; we need to estimate it from the single sample that we have. The only pieces
of information that we have to do this are the values of the variables in our dataset and
the information about how the sample was drawn.

The following sections explain how to use this information for the estimation of
standard errors, and then go on to explain the inferences that can be made from the
estimated standard errors.

To continue, please load data1.dta into memory:3

. use data1, clear
(SOEP 2009 (Kohler/Kreuter))

8.2.1 Standard errors for simple random samples

The dataset data1.dta contains information from a survey of 5,411 of the roughly 82
million German inhabitants. The respondents for the survey were selected by a sample
that was not a simple random sample; however, for the sake of simplicity, we start as
if it were a simple random sample. How could we use the information in data1.dta to
estimate the standard error?

Following our earlier discussion of the central limit theorem, the standard error of
the mean of some variable X is equal to the standard deviation of that variable in the
population divided by the square root of the number of observations of the sample.
Hence, we need the standard deviation of X in the population, which we do not know.
However, if we take as our best guess the standard deviation of X in the sample, we
can estimate the standard error in direct analogy to the central limit theorem with

ŜE
(
X
)

=
SD(X)√

n
(8.1)

where SD(X) is the standard deviation of X in the sample (that is, our estimate for σ,
the standard deviation of X in the population).

3. Make sure that your current working directory is c:\data\kk3; see page 3.



214 Chapter 8 Statistical inference

You can use this formula to obtain the standard error from the output of summarize:

. summarize ybirth

Variable Obs Mean Std. Dev. Min Max

ybirth 5411 1959.493 18.12642 1909 1992

. display r(sd)/sqrt(r(N))

.24641851

According to this output, the standard error of the average year of birth in simple
random samples of size 5,411 from the entire German population is estimated to be
0.246; in other words, if we drew a large number of simple random samples on the
German population of 2009, the mean year of birth in the sample would differ on
average about 0.25 years from the mean year of birth in the population.

The estimate of the standard error for the sample mean is even more accessible in
the output of the command mean. The command calculates the estimated standard
errors of the sample mean for a list of variables. If specified without further options,
the command displays the standard error assuming a simple random sample. Hence, in
this simple case, the command reproduces the result of our manual calculation above:

. mean ybirth

Mean estimation Number of obs = 5411

Mean Std. Err. [95% Conf. Interval]

ybirth 1959.493 .2464185 1959.01 1959.976

The command mean is an example of an estimation command. Stata has many such
estimation commands, and what they have in common is that they all estimate standard
errors of specific statistics (also known as point estimates). They also have in common
that they default to estimating these standard errors under the assumption of simple
random samples. This assumption is not always reasonable. In practice, most samples
are not simple random samples because

• the sample was drawn with a different sampling method than SRS, or

• some sampling units dropped out of the sample either because they could not be
contacted at home or declined to participate (unit nonresponse), or because they
declined to answer a specific survey question (item nonresponse).

For the dataset in the file data1.dta, both mechanisms are present. In the following,
we therefore discuss techniques to estimate a more realistic standard error.
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8.2.2 Standard errors for complex samples

Earlier, we mentioned that practical reasons and cost considerations lead to sample de-
signs that are not simple random samples. Samples that are not simple random samples
we call complex samples. In the context of inference, three features about samples are
particularly important because they affect the point estimates or their standard errors
or both. These three features are clustering, stratification, and disproportional sampling
probabilities. Each of these features can arise as a consequence of the sample design. It
is therefore necessary to have at least some knowledge about various sampling methods,
their sampling distribution, and how those affect the estimation of standard errors.

Typical forms of complex samples

Cluster sampling

Cluster samples are samples where we do not sample the individual units directly.
Instead, we sample clusters of units, and within each selected cluster all units are
observed. A typical example for cluster sampling is a sample of classrooms in schools,
where we take observations on every student within the selected classroom. Another
example is a sample of addresses where we observe all persons living at the selected
address. Cluster samples are often used as alternatives to simple random sampling
when no list of individual sampling units is available but a list of clusters is.

Because the observations within a cluster tend to be somewhat more similar than
observations in different clusters, cluster samples tend to show what we call clustering.

Two-stage and multistage sampling

Two-stage sampling is very similar to cluster sampling. For cluster sampling, we
observed each unit in a cluster. For two-stage sampling, we draw a second sample
inside each selected cluster. The clusters of observations selected in the first step are
commonly termed the primary sampling units (PSUs), while the units selected within
these PSUs are the secondary sampling units. The PSUs can be large units like election
districts or city blocks, but they can also be small units such as households. A secondary
sampling unit for a sample of households could be an individual person who is selected
within a household.

Because the observations within a PSU cluster tend to be somewhat more similar
than observations in different PSUs, two-stage samples tend to show clustering.

However, two-stage samples also often show disproportional sampling probabilities;
that is, the probability of being selected is not the same for everybody. This is because
members of one-person households are sampled with certainty once the household was
selected, while members of larger households might or might not be selected for the
sample. More generally, the probability that a person from a selected household of
size k is selected into the sample is 1/k; hence members of large households have a
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smaller probability of being included in the sample. To draw valid inferences about the
population, it is therefore necessary to weight the data by the reciprocal value of the
selection probability.

Likewise, multistage sampling is a generalization of two-stage sampling. Consider
the following three-stage sample as an example: 1) select communities from a list of com-
munities, 2) within the selected communities, select addresses from a list of addresses,
and 3) within the selected addresses, select one person from each of the addresses. It
is often the case that multistage sampling is combined with a cluster sample. In our
example, this would be the case if we sample one person of all those living at a selected
address.

Probability proportional to size

Often researchers are interested to have certain units in their sample because those
units are important. For example, in establishment surveys, large establishments with
lots of revenue are often selected with a certainty. Likewise, in multistage samples,
certain cities might be selected with certainty because they are so large and researchers
want at least some people from those cities in their samples. A frequently used tech-
nique to reflect the “importance” of certain large units is sampling with probability
proportional to size (PPS). This technique requires information about the number of
units inside each PSU.

Assume you have a list of all German communities with their number of inhabitants.
Some of these communities are pretty big—Berlin, for example, had 3,442,675 inhab-
itants in 2009. Other communities are rather tiny—the smallest German community,
Dierfeld in Rhineland-Palatine, had just eight inhabitants in 2009.4 Germany as a whole
had 81,802,257 inhabitants in 2009. Hence, when selecting communities proportional to
size, the selection probabilities of Berlin and Dierfeld should be 4.2% and 9.7×10−6%,
respectively:

. display 3442675/81802257

.04208533

. display 8/81802257
9.780e-08

Now imagine that you select communities with probability proportional to size, and
afterward you select, say, six inhabitants in each community. The overall selection
probability for people from Berlin and Dierfeld would then be the product of the prob-
ability of selecting the respective community and the probability of selecting a person
from the respective community. Hence,

. display 3442675/81802257 * 6/3442675
7.335e-08

. display 8/81802257 * 6/8
7.335e-08

4. The list of German communities can be downloaded from http://www.destatis.de.
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This overall probability is the same for both people from Berlin and people from Dier-
feld. It is possible—and even quite common in practice—that multistage samples use
sampling with probability proportional to size for one of the stages.

As it should be clear from the discussion, PPS samples do not contain disproportional
sampling probabilities, but they still show clustering.

Stratified sampling

Stratified sampling takes place if you first divide your population into specific sub-
groups (called strata) and then draw random samples for each of these subgroups. This
sounds very similar to two-stage sampling but is fundamentally different. In stratified
sampling, a sample is drawn for each stratum, while in two-stage sampling some but not
all PSUs are selected. Stratified sampling is typical for samples on the population of the
European Union, where random sampling is done in each country separately. However,
it also happens frequently in samples for just one country, when the researchers wish to
be sure that the sample contains enough observations from each stratum.

The German Socio-Economic Panel (GSOEP) data that we used for data1.dta is an
example. The sample of the GSOEP was done in two strata separately: East Germany
and West Germany. Then within West Germany, two more strata were used and samples
were drawn separately for native and immigrant citizens.

Stratified sampling is not an alternative sampling method to the methods discussed
so far. Instead, one may apply one of the methods discussed previously for each strata
or even use different methods for each strata.

Sampling distributions for complex samples

We wrote above that clustering, stratification, and disproportionality may affect point
estimates and their standard errors, and this is illustrated in figure 8.2. For the figure,
we have drawn small subsamples of approximately 100 observations from the 5,411
observations of data1.dta—just like we did in section 8.1.3. However, this time, we
did not draw simple random samples but a cluster sample, a two-stage sample, a PPS

sample, and a stratified sample. For each of these sampling methods, we draw 1,000
samples, and then calculate the average year of birth in each of the samples. The
figure displays the distribution of the averages (that is, the sampling distribution) for
each sampling method by using a kernel density curve in comparison with the sampling
distribution of a simple random sample of (approximately) the same size.

If a sampling method leads to an unbiased estimation, the peak of the curve will
be approximately on the vertical line, which shows the average year of birth for the
population of the 5,411 observations in data1.dta. The stronger the offset, the stronger
the bias is. Similarly, the broader the curve (or the lower the peak), the lower the
efficiency of the sampling method.
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Figure 8.2. Sampling distribution of the mean year of birth for various sampling methods
(black line) in comparison with the sampling distribution under SRS (gray line)

A few things are worth noting:

• The sampling distributions differ between the sampling methods. It is therefore
not possible to estimate the standard error for all sampling methods with the same
formulas.

• Two sampling methods lead to biased estimation of the population mean: two-
stage samples (large bias) and stratified sampling (small bias).

• After applying weights, the bias disappears but at the cost of inefficiency (larger
standard errors).

• Clustered samples often have larger standard errors, because people within the
same cluster are more similar to each other. Thus with the same sample size, less
information is obtained from a clustered sample compared with a simple random
sample.

• Stratified samples have smaller standard errors than simple random samples when
the variables of interest vary by strata. Here this was not the case. In practice,
stratified samples are often also samples with unequal selection probabilities; thus
through weighting, the gained efficiency is likely lost (which you see here in the
graphs as well).
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Using Stata’s svy commands

For a general discussion of techniques to estimate standard errors for complex samples,
we refer the interested reader to Valliant, Dever, and Kreuter (2012). But here we
do want to show you how to obtain the correct standard errors for complex samples
using Stata. Stata’s default for estimating standard errors in complex surveys is Taylor
linearization. There are other methods available—such as bootstrap, balanced repeated
replication, or jackknife—but with most survey datasets and problems, you should be
fine with the default; see Kreuter and Vailliant (2007) for other methods.

Stata has a suite of commands for dealing with complex samples. These commands
work in two steps. The first step is to declare the dataset a complex sample. The second
step is to prefix the relevant estimation commands with svy.

The command to declare the dataset a complex sample is svyset. The command is
also used to designate variables that contain information about the survey design and
to specify the default method for the estimation of the standard error. A simplified
version of the syntax diagram of svyset is

svyset
[
psu

] [
weight

] [
, strata(varname) vce(vcetype)

]

In this syntax diagram,

•
[
psu

]
refers to the name of the variable that holds the identifier for the primary

sampling unit,

•
[
weight

]
is used to specify the name of the variable that contains the reciprocal

value of the selection probability,

• strata(varname) is used to specify the name of the variable holding the identifier
for the strata used in the sampling design, and

• vce(vcetype) selects one of several possible methods to estimate the standard
error. Taylor linearization is the default, so we will just use that.

Let us demonstrate the specification of a complex sample with our data1.dta. To do
this, you need some background on the GSOEP sampling design. The observations used
in our dataset stem from five independently drawn samples for the following populations
at various time points:5

5. Keep in mind that data1.dta is a subset of the original GSOEP and has been slightly altered to
meet data privacy restrictions. In the original GSOEP, there are even more samples. The estimates
also do not necessarily add up to the German population.
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A West Germans (1984)

B Foreigners living in West Germany who immigrated from Turkey, Italy, Spain, former
Yugoslavia, and Greece (1984)

C East Germans (1990)

D Immigrants from Eastern Europe (1994–1995)

F People living in Germany (2000)

The sample from which each observation originated is stored in the variable sample,
and we use this variable to define the strata in svyset. All but one of the samples
applied a two-stage sampling design with selection proportional to size. In a first stage,
geographical clusters (election districts and communities depending on the sample) were
selected; those form the PSUs. In our dataset, an identifier for the PSU is stored in the
variable psu. In a second stage, households were selected from within those PSUs.

Now we are good to go with the setting except that the GSOEP sample D, immigrants,
poses a problem: unlike all other samples, sample D did not apply any kind of multistage
sampling. If there is a stratum with no or only one PSU in the dataset, Stata will not
report standard errors. One option then is to combine the single-state stratum with
another stratum in which multistage sampling was applied. We do this by combining
sample D with sample B:

. generate sampleR = sample

. replace sampleR = 2 if sample==4

We then svyset our dataset as follows:

. svyset psu, strata(sampleR)

Once we have declared the sampling design of our sample, we can use mean with
the svy prefix. In the output, you see the estimated mean and standard error and
the sample design information. We now have four strata with a total of 515 PSUs that
together hold our 5,411 cases.

. svy: mean ybirth
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 4 Number of obs = 5411
Number of PSUs = 515 Population size = 5411

Design df = 511

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1959.493 .3750048 1958.756 1960.23
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As is often the case, stratified sampling involves unequal selection probabilities.
The GSOEP is therefore delivered with the variable design, which holds the reciprocal
value of the selection probabilities of each respondent. In data1.dta, that variable was
renamed dweight. We can overwrite the old svyset specifications by issuing a new
svyset command that takes those weights into account:

. svyset psu [pweight=dweight], strata(sample)

pweight: dweight
VCE: linearized

Single unit: missing
Strata 1: sample

SU 1: psu
FPC 1: <zero>

. svy: mean ybirth
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 4 Number of obs = 5411
Number of PSUs = 515 Population size = 60039280

Design df = 511

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1958.894 .4092376 1958.09 1959.698

In the results, you see a slight change in the point estimates, an increase in the
estimated standard errors, and in the upper right corner we see the estimated population
size from which this sample was drawn.

To see the effect of the survey settings, compare the results above with the results
that ignored the sample design (page 214). The standard error for ybirth, taking the
design information into account, is 0.409, while ignoring the sample design led to an
estimate of 0.246. Hence, the standard error of the stratified two-stage cluster sample
is 0.409/0.246 = 1.663 times larger than the standard error of ignoring the clustering
design.

Generally, the result of dividing the standard error of a complex sample by the
standard error of an equally sized simple random sample is called the design effect
(DEFT). After having used an estimation command with the svy prefix, you can always
issue the command

. estat effects

Linearized
Mean Std. Err. DEFF DEFT

ybirth 1958.894 .4092376 2.71392 1.6474

to obtain this design effect. The command also shows a second design effect, DEFF,
which is the square of DEFT. The number obtained here, 2.714, means that the sample
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size of the cluster sample should be almost three times larger than the sample size
of a simple random sample to get the same efficiency for the sample mean of year of
birth. Note that design effects of 1 would mean that the complex sample yields the
same standard error as the simple random sample. Note also that these are huge design
effects, meaning that all statements about the precision of the estimates, confidence
intervals, or significance tests (see section 8.2.4) are pointless if they do not take into
account the complex nature of the sample.

8.2.3 Standard errors with nonresponse

So far we have only dealt with situations where the sample was drawn as intended.
A sample was designed, the sampling units were drawn, and observations were taken
from the selected units. However, in real world situations, you cannot always take
observations from sampled units, especially if you take your observations using a survey.
Quite often, the target respondents decline to participate in a survey. Others are simply
not available at the address you have selected. Last but not least, many selected units
participate in the survey, but decline to answer specific questions.

If selected units drop out of the sample for some reason, we call that unit nonre-
sponse. If we miss information on a particular variable, it is called item nonresponse.
Let us start by discussing unit nonresponse.

Unit nonresponse and poststratification weights

Unit nonresponse decreases the number of observations that can be used to estimate
a particular statistic. The denominator in the right-hand side of (8.1) on page 213
therefore becomes smaller so that the standard error increases. Even more problematic
is unit nonresponse that is correlated with the statistic we want to ascertain. It is
quite common, for example, that persons above a specific age participate less frequently
in a survey than those below that age, for a variety of reasons. As a consequence, the
proportion of people above the specific age is lower in the sample than in the population.
If this is the case, the average year of birth calculated in the sample would be too low.

The most common way to deal with such problems of unit nonresponse is with
poststratification weights. In section 8.2.2, we showed that the selection probabilities of
two-stage samples are often not equal for all units of the population. To deal with that
problem, we created a variable to hold the reciprocal value of the selection probability
and we calculated our statistic using these design weights. Very much the same could
be done for unit nonresponse. For example, if we knew from somewhere persons aged 70
and above participate with a probability of, say, 50% in a survey, while those below 70
participate with a probability of 75%, we could create a poststratification weight that
holds the reciprocal values of these participation probabilities:

. generate postweights = 1/0.5 if (2009-ybirth) >= 70 & !missing(ybirth)

. replace postweights = 1/0.75 if (2009-ybirth) < 70
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The multiplication of the variable postweight with the design weight (the variable
holding the selection probabilities due to the sampling method) is then the reciprocal
value of the probability of being observed. Using the result of this multiplication as
the sampling weight corrects for the differences in the selection probability and the
differences in the participation probabilities:

. generate bothweights = dweight * postweights

. mean ybirth [pweight = bothweights]

An obvious problem with poststratification weights is that the participation prob-
ability is not observable. Unlike the selection probability, which follows directly from
the sampling method, the participation probability hinges in an unknown way on char-
acteristics of the target person and of the specific situation in which the target person
is contacted.

In this situation, we need to estimate the participation probability with the limited
information that we have about all this. There is a large body of research on how
exactly this can be done, but this is beyond the scope of this book. The good news is
that many dataset providers use the methods proposed by this research field and add
weighting variables into the dataset. This is also true for the GSOEP, which contains the
variable w1110109 that holds the reciprocal value of the overall observation probability
for the survey year 2009. For the sake of simplicity, we have renamed that variable to
xweights. Here is how you can use this to set the survey:

. svyset psu [pweight=xweights], strata(sample)

pweight: xweights
VCE: linearized

Single unit: missing
Strata 1: sample

SU 1: psu
FPC 1: <zero>

. svy: mean ybirth, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1959.616 .5040505 1958.626 1960.606

Item nonresponse and multiple imputation

The consequences of item nonresponse are essentially the same as for unit nonresponse:
standard errors are increased because of the loss of observations and the statistics from
the variables we analyze are biased if the probability of nonresponse is correlated with
the variable that we want to analyze. The technique to solve the problem is different,
however. This is because for those respondents who have declined to answer a survey
question, we have information from their answers to other questions. This information
can be used to impute the missing values.
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To start with, let us create some fictitious reality. We generate a new variable that
is equal to ybirth except that it has some missing values (that is, item nonresponse).
The missing values are created such that the likelihood of item nonresponse is higher
the older the respondent is. Item nonresponse is also higher for women than for men.
We do this by generating a copy of ybirth and then replacing some values in this copy
to missing. Specifically, ybirth becomes missing if year of birth is smaller than a right-
skewed random variable between 1910 and 1991, whereby the amount of skewness is
different for men and women:

. generate ybirthmis = ybirth

. replace ybirthmis = . if sex == 1 & (ybirth < (1910 + 81 * rbeta(1,3)))

. replace ybirthmis = . if sex == 2 & (ybirth < (1910 + 81 * rbeta(1,6)))

Take a look at the averages of ybirth for men and women, and for those missing
versus not missing:

. generate missing = missing(ybirthmis)

. tabulate sex missing, sum(ybirth) nost

Means and Frequencies of Year of birth

missing
Gender 0 1 Total

Male 1962.5009 1940.4492 1959.899
2280 305 2585

Female 1960.4128 1930 1959.1214
2706 120 2826

Total 1961.3676 1937.4988 1959.4929
4986 425 5411

The above output reveals that we set 425 values to missing. Those with missing are
older than those with not missing, and this effect is stronger among women than among
men. If we use ybirthmis instead of ybirth to estimate the average year of birth of
the German population, we obtain a result that is more than two years too high:

. svy: mean ybirthmis, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirthmis 1961.601 .4897198 1960.638 1962.563

How can we correct the result? One idea is to replace the missing values in ybirthmis

with some plausible year of birth. The first plausible value one might think of is the
average year of birth taken from those observations that we actually have observed.
Because we have estimated this value in our last command, we can use its saved result to
create a new version of year of birth. This new version contains the values of ybirthmis
if this variable is not missing and is equal to the estimated year of birth otherwise. Note
as an aside that the stored result of mean can be accessed with b[ybirthmis]:



8.2.3 Standard errors with nonresponse 225

. generate imputed1 = cond(!missing(ybirthmis),ybirthmis,_b[ybirthmis])

Conforming to the terminology used in [MI] intro substantive, we will call the data
in which the missing values have been replaced with a plausible value an imputation.
If we use our imputation (the variable imputed1) to reestimate the population mean of
year of birth for Germany in 2009, it turns out that the estimate does not change and
the standard error decreases substantially:

. svy: mean ybirth imputed1, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1959.616 .5040505 1958.626 1960.606
imputed1 1961.601 .451904 1960.713 1962.488

Therefore, while this single imputation does not help in fixing the bias of the estima-
tion, it underestimates the standard errors and overstates the precision of our analysis.
This is so because we treated the imputed values just like the observed values even
though they are really just wild guesses. What happens if we choose not just one plau-
sible value for the missings in ybirthmis but different ones for various groups? For
example, our dataset contains the variable heval, the current self-rated health status:

. tabulate heval

Current
Self-Rated

Health Status Freq. Percent Cum.

Very good 422 7.91 7.91
Good 2,034 38.14 46.05

Satisfactory 1,889 35.42 81.47
Poor 780 14.63 96.10
Bad 208 3.90 100.00

Total 5,333 100.00
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You might have the idea that those who rate their health as being bad tend to be older
than those who consider their health to be very good. In fact, if you look at

. tabulate heval, summarize(ybirthmis) missing

Current
Self-Rated

Health Summary of ybirthmis
Status Mean Std. Dev. Freq.

Very good 1972.7119 13.805401 413
Good 1966.6378 15.082601 1952

Satisfact 1956.8227 16.132137 1703
Poor 1951.7997 15.783975 679
Bad 1944.3313 14.617787 163

Refusal 1963.3 19.385275 10
Does not 1992 0 66

Total 1961.3676 17.266425 4986

you see that the former are born in 1944 on average, while the latter are born on average
almost 30 years later. It seems plausible, therefore, to impute the value 1945 for all those
who rate their health as being bad, and impute the value 1972 for all those who regard
their health as being very good. This can be done by

. egen mean = mean(ybirthmis), by(heval)

. generate imputed2 = cond(!missing(ybirthmis),ybirthmis,mean)

Reestimating the average year of birth with this second imputation reveals that the
estimated mean slightly moves in the right direction while the standard error remains
too low:

. svy: mean ybirth imputed1 imputed2, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1959.616 .5040505 1958.626 1960.606
imputed1 1961.601 .451904 1960.713 1962.488
imputed2 1961.186 .458776 1960.284 1962.087

Generally, the bias in the estimation of the mean will disappear to the extent that the
imputed plausible values are correct on average. Hence, if you impute group averages of
observed variables that are highly correlated with year of birth, your plausible values get
better and better. You might even use more than just one variable for the imputation
step, either by calculating averages of combinations of groups or by applying a variant
of the models that we describe in chapters 9 and 10.
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The problem of deflated standard errors is slightly more difficult to deal with. The
standard error decreases because our statistical analysis gives the imputed values the
same level of confidence as the observed values. To solve the problem, we must tell our
analysis that imputed values should not be taken as seriously as the observed values.
This is done with multiple imputation.

Multiple imputation is an advanced topic that is way beyond the scope of this book.
In what follows, we provide just a broad overview on the general idea of it. This is
primarily to tease your interest. We recommend reading [MI] intro substantive and
some of the literature cited therein before actually using multiple imputation for real
research. The general idea of multiple imputation is, however, easy to understand.

As said above, our singular imputed values were treated with the same confidence as
the observed values. A first step to decrease the level of confidence could be to add some
random noise to the group average that we impute. Building on the group averages in
the variable mean, we can add a normally distributed random value to each imputed
value:

. generate imputed3 = cond(!missing(ybirthmis),ybirthmis,mean+rnormal())

Before we proceed, we confirm that adding randomness does not really change much
the estimates of both the mean and the standard errors:

. svy: mean ybirth imputed1 imputed2 imputed3, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

ybirth 1959.616 .5040505 1958.626 1960.606
imputed1 1961.601 .451904 1960.713 1962.488
imputed2 1961.186 .458776 1960.284 1962.087
imputed3 1961.185 .4591513 1960.283 1962.087

The reason for the small change is that we have on average imputed the same
values as before, and our analysis still treats the imputed values like the observed ones.
However, now that we have added random noise to the imputation, we can replicate the
imputation step several times. In each replication, the results will differ slightly. Let us
try that out with five replicates:
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. forvalue i = 1/5 {
2. generate mi`i´ = cond(!missing(ybirthmis),ybirthmis,mean+rnormal())
3. }

. svy: mean mi1-mi5, noheader
(running mean on estimation sample)

Linearized
Mean Std. Err. [95% Conf. Interval]

mi1 1961.19 .4586463 1960.289 1962.091
mi2 1961.18 .4595625 1960.277 1962.082
mi3 1961.191 .4586397 1960.29 1962.092
mi4 1961.178 .4591674 1960.276 1962.08
mi5 1961.186 .4587945 1960.284 1962.087

We now discover that the estimation of average year of birth is uncertain not only
because we ascertained it in a random sample—this uncertainty is expressed in the
standard errors shown in each line of the output—but also because of the uncertainty
in the imputed values, shown by the slight differences in the means themselves. The
more the various means differ, the higher is the uncertainty due to the imputation.
To estimate the entire uncertainty in the estimation of the mean year of birth, we
should consider both sources of uncertainty. How this could be done is answered in the
statistical literature on multiple imputation (Rubin 1987; Schafer 1997), and we will
not deal with that here. However, what we will do is show a very simple example for
how Stata does all the nuts and bolts for you.

Multiple imputation has two parts. First, you instruct Stata to create multiple sets
of imputed variables (“imputation”). Second, you perform a statistical analysis on each
of the imputations, and let Stata come up with point estimates and standard errors
(“analysis”).

The imputation is further divided into three steps. First, you must instruct Stata
how the multiple imputations should be organized. You have two choices: wide or
long. Style long has various variants. In our case, the choice is not important, so we
use mlong, which seems to be preferable in situations where all styles are possible (see
[MI] styles for details).

. mi set mlong

The second step of the imputation is to instruct Stata which variables should be
imputed. In our example, this is just ybirthmis. To register this variable as imputed,
we type

. mi register imputed ybirthmis
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During the registration step, it is also advisable to register “regular” variables. These
are variables that are not imputed and whose values do not depend in any way on the
variables to be imputed. In our example, all variables of the dataset except ybirthmis
are regular. Hence,

. mi register regular persnr-xweights

If we had created an age variable from ybirthmis, the dataset would have contained
a nonregular variable. Because age is a function of the imputed variable, we would have
registered age as passive by using mi register passive age.

The creation of the multiple imputations is the third and final step of the imputation.
For this, you have to instruct Stata how to create the plausible values: Which variables
should be used, which technique should be applied, and how many imputations should
be performed? The command mi impute lets us specify all of this in one command.
Our example below uses the predicted values of a linear regression of ybirthmis on
sex and dummy variables of heval (see chapter 9) to create the plausible values for the
missings in ybirthmis. The option add(20) instructs Stata to create 20 imputations.
Note also that we changed the missings in heval to a valid value before we actually
used mi impute.6

. generate hevalR = heval
(78 missing values generated)

. replace hevalR = 6 if missing(heval)
(78 real changes made)

. mi impute regress ybirthmis = sex i.hevalR, add(20)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

ybirthmis 4986 425 425 5411

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)

Once mi impute is finished, the first part of multiple imputation is done. The output
informs us that mi impute has created 20 imputations of ybirthmis. It also shows that
in each imputation, 425 missing values were imputed. The imputed values have been
written below the original data into the variable ybirthmis so that the dataset now
contains 5411 + 20 × 425 = 13911 observations. mi impute has also created the new
variables mi m, mi id, and mi miss, which are necessary for performing an analysis with
the multiply imputed dataset.

6. We could have also used the option force of mi impute to deal with the missings in heval. In
this case, the information that these persons were not willing to answer the question about health
would have been discarded from the imputation.
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A multiple imputation analysis is as simple as using one of the commands mentioned
in [MI] estimation behind the prefix [MI] mi estimate. Let us do that with our
standard example:

. mi estimate: svy: mean ybirthmis, noheader

Multiple-imputation estimates Imputations = 20
Survey: Mean estimation Number of obs = 5411

Number of strata = 4 Population size = 80858869
Number of PSUs = 515

Average RVI = 0.0303
Largest FMI = 0.0296
Complete DF = 511

DF adjustment: Small sample DF: min = 483.17
avg = 483.17

Within VCE type: Linearized max = 483.17

Mean Std. Err. [95% Conf. Interval]

ybirthmis 1961.194 .4713432 1960.268 1962.12

Realize that the results of the point estimate (the mean of ybirthmis) is not any
better than the results that we gained with the single imputation methods before. Note,
however, that the standard error is now substantially closer to the value we gained for
the original variable without missings (ybirth).

As with single imputation, the quality of the point estimate depends on the quality
of the imputed plausible values, and this largely depends on the information used for
finding these values. It is therefore quite helpful to have good knowledge about why
missing values on your variables arise. In our example, the missingness was caused by an
interaction term, which should be modeled here; how interaction terms are modeled will
be explained in section 9.4.2. More importantly though is that the missing values are a
function of the variable of interest. Thus unless the variables we use in the imputation
models are perfect proxy variables for ybirth, it is likely that the values are not missing
at random, even after conditioning on the covariates in the model.

8.2.4 Uses of standard errors

In the previous section, you learned how to estimate the standard errors for a given
sampling method. In this section, we assume that you obtained the correct standard
error, and so we introduce confidence intervals and significance tests as further uses of
standard errors.
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Confidence intervals

Like the standard error, a confidence interval is a way to express the precision or reli-
ability of an estimated statistic. To understand confidence intervals, remember that, if
we estimate the mean of some variable for an infinite number of random samples, these
means have a normal distribution. You have seen an approximation of that normal
distribution in section 8.2.

The density of values of a normal distribution is given by the probability density
function of the normal distribution, which is

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

where µ is the unknown mean of all the sample means, and σ is the unknown standard
deviation of all the sample means (π ≈ 3.142 . . .).

We discussed before that the best guess for the unknown parameters µ and σ that we
have from our one-shot sample are the sample means and its standard error. Inserting
these values in the formula above, we can plot the above function using the two-way
plottype function. Let us use the values 1959.6 and 0.504 from page 223 to produce
an imagination of the sampling distribution of sample means for the GSOEP.

. twoway function
> fx = 1/sqrt(2*_pi*.504^2) * exp((-(x-1959.6)^2)/(2*.504^2)),
> range(1957.6 1961.6) xline(1959.6)

0
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.6

.8
fx

1958 1959 1960 1961 1962
x

Based on our guesses for µ and σ, the sampling distribution suggests that the average
year of birth in the population is somewhere between 1958 and 1961. It must be clear,
however, that this statement is only correct to the extent that our guess for µ is correct
in the sense that the mean and standard deviation of guesses for an infinite number
of samples is equal to µ and σ, respectively. In this case, it is also true that 95% of
the intervals from µ̂ − 1.96 × σ̂ to µ̂ + 1.96 × σ̂, with µ̂ and σ̂ being the guesses for
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the respective population parameters in each replication, include the true population
parameter. In our example, we can be therefore 95% confident that Germany’s average
year of birth is between

. display 1959.6 - 1.96*0.504
1958.6122

and

. display 1959.6 + 1.96*0.504
1960.5878

The interval between these two numbers is called the 95% confidence interval. Note
as an aside that the statement that 95% of the intervals formed this way include the
population mean is not the same as saying that there is a 95% probability of the popu-
lation mean falling inside this interval. Only the former statement is correct. Figure 8.3
demonstrates the difference between these two statements. For the figure, we have drawn
100 simple random samples with 100 observations from the population of data1.dta.
In each of the samples, we have estimated the 95% confidence interval. The figure shows
each confidence interval as a horizontal bar. The seven highlighted confidence intervals
did not include the true value. Also these are 7% of the confidence intervals; in the long
run only 95% of the intervals will include the true value, while 5% will not.

Population average

1952 1954 1956 1958 1960 1962 1964 1966 1968

Source: grci.do

Figure 8.3. One hundred 95% confidence intervals
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Significance tests

When doing data analysis with sample data, you are often faced with the question of
whether an observed difference between two groups happened by chance due to sampling
variability or if you can be pretty sure there is a difference in the population as well. A
similar question might arise when you estimate a regression coefficient, and you wonder
if the effect you observe for a covariate is different from 0 in the population. Or very
simply, you estimate a mean for a variable in your sample and you wonder what inference
to make out of that mean. In each of these settings and many more, you are applying a
significance test. In the context of descriptive inference, a significance test proposes that
some parameter is 0 in the population, and calculates how probable it is that we get a
value as large or larger in our sample if that were indeed the case. If this probability
is below some threshold (we will come to that), it is claimed that the parameter is
significantly different from 0, or just significant.

Before we introduce significance tests, we must wave a warning flag: In applied
research, the results of significance tests are often interpreted with statements claiming
that this or that is significant, which sounds as if we found something important. There
is a sizable body of literature that criticizes the misuse of significance tests among
scientists from various disciplines (among others Selvin [1970]; Läärä [2009]). However,
not all significant results are important and vice versa. We therefore urge you not to
base any substantive statement on significance tests alone. Some of our examples below
will show this very clearly.

To illustrate a common significance test, we will compute a value that represents
the difference in the age of the head of the household and the age of the partner of the
head of the household (where such a partner exists). The partner of the head of the
household is identified by the variable rel2head and coded with a value of 2 to specify
that the person is the partner of the head of the household. We can create a variable
that is the difference in the age of the head of the household and the age of his or her
partner by using the generate command below.7

. use data1, clear
(SOEP 2009 (Kohler/Kreuter))

. by hhnr2009 (rel2head), sort: generate agediff=ybirth-ybirth[_n-1] if
> rel2head==2
(3739 missing values generated)

. summarize agediff

Variable Obs Mean Std. Dev. Min Max

agediff 1672 1.358852 5.168304 -27 33

According to our data, there is on average more than one year difference between
the heads of households and their partners. But we see quite a bit of variation around
that average and a range of partners from 27 years younger to 33 years older.

7. For the use of subscripts, see section 5.1.5.
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Now we formulate the null hypothesis: “The average age difference between heads
of households and their partners in 2009 is 0.” We assume that this hypothesis is true!
Which values for the average age difference would then be observed in our GSOEP data?

We have learned that the sample means of an infinitive number of samples have
a normal distribution around the true mean. Hence, if our null hypothesis were true,
the sample means should vary normally around 0. How much do they vary? The best
answer to this question is the standard error for the sample that we have. For the
moment, we (incorrectly) assume our sample was drawn as a simple random sample
and estimate the standard errors with

. mean agediff

Mean estimation Number of obs = 1672

Mean Std. Err. [95% Conf. Interval]

agediff 1.358852 .126395 1.110942 1.606761

Using this answer, we can draw the expected distribution of sample means for an infinite
number of samples in direct analogy to the last section. The hypothesized population
value is again indicated with a solid line, and our observed sample value is indicated
with a dashed line.

. twoway function
> fx = 1/sqrt(2*_pi*.126^2) * exp((-(x-0)^2)/(2*.126^2)),
> range(-2 2) xline(0) xline(1.359, lpattern(dash))

0
1

2
3

fx

−2 −1 0 1 2
x

You can see from this graph that if the average age difference of heads of households
and their partners in Germany in 2009 were 0, most of the samples (of the same size we
have here) would have a mean difference very close to 0, almost all of them between −1
and 1. The average we observed here—indicated by the dashed line—is already very
unlikely. And we can be pretty sure that we should have observed a much lower mean if
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the true mean were indeed 0. How sure is pretty sure? The fact that this is a probability
density function allows us to give a numerical answer to this question. The probability
to observe (as we do) a value of agediff of 1.359 or higher is equal to the area to the
right of the dashed line underneath the probability density function of the observed
value.

Stata has a built-in function that does such calculations for you: normal(z). The
function displays the probability to observe a value below z for the case of a standard
normal distribution (that is, a normal distribution with a standard deviation of 1). It
is helpful to try out the function for various values of z. Starting with z = 0,

. display normal(0)

.5

we see that 50% of the values of a standard normal distribution are lower than 0,
or stated differently, the probability of getting values below 0 is 50%. Likewise, the
probabilities of values below −1 and −2 are 15.9% and 2.3%, respectively:

. display normal(-1)

.15865525

. display normal(-2)

.02275013

We can also use the function to find out the probability of values above the chosen
value. Because all values that are not below the chosen value must be greater than it,
we get this probability by subtracting the result of normal() from 1:

. display 1 - normal(-2)

.97724987

. display 1 - normal(2)

.02275013

In a standard normal distribution, the probability of values above −2 is approximately
97.7%, and the probability of values above 2 is only 2.3%.

How can we use the function normal() to get the probability of a value below z in
a sampling distribution that does not have a standard deviation of 1? For this, you
must know that it is possible to rescale a distribution to a distribution with a standard
deviation of 1 by dividing each value of the distribution by its standard deviation. In our
case, we have observed only one value of our sampling distribution, 1.359, and we have
estimated the standard deviation of the sampling distribution (that is, the standard
error) to be 0.126. If we divide 1.359 by 0.126, we obtain approximately 10.786:

. display 1.359/0.126
10.785714

This is the value of the mean transformed to a distribution with a standard deviation
of 1; note that the result of the division of a point estimate by its standard error
is commonly termed the test statistic. The test statistic can be used instead of the
observed statistic. In our example, this means that instead of checking the probability
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of values below 1.359 in a normal distribution with a standard deviation of 0.126, we
can now obtain the probability of values below 10.786 in a standard normal distribution
by using normal():

. display normal(1.359/0.126)
1

This means that the probability of observing a value below 10.786 in a standard normal
distribution is very close to 1; and therefore, the probability of observing a value be-
low 1.359 in a normal distribution with a standard deviation of 0.126 is also very close
to 1. Likewise, the probability of observing a value above 1.359 is

. display 1 - normal(1.359/0.126)
0

meaning that it is extremely unlikely to observe a value as big as the one we have
observed when the true value is 0. Hence, we ought to reject the null hypothesis that
heads of households and their partners in the German population of 2009 have on
average the same age.

By the way, it is common practice to reject the null hypothesis if the probability of
observing a test statistic as high as the one observed is below 5%. In this case, authors
often write that the observed value is “significant at the 5% level”.

Notice though the role of the sample size for that conclusion. If you had observed
the same mean and standard deviation as you did here for a simple random sample of
size 30, your estimated standard error would be 5.168/

√
30 = 0.944. Hence, the test

statistic would become 1.359/0.944 = 1.44, and the probability to observe such a value
given the null hypothesis would be 0.075:

. display 1 - normal(1.359/.944)

.07498766

Although this probability is still pretty low, it is much higher than for a larger sample
and no longer significant at the 5% level. You learn from this that the same values for
the mean and the standard deviation can be significant in one sample and not significant
in another.

What we have just performed was a one-sided test that calculates the probability
of a value above z. More common, however, is a two-sided test that calculates the
probability of a value below −z or above +z. You would do a two-sided test if you had
no prior hypothesis about the direction this age difference would go.



8.2.4 Uses of standard errors 237

Using the example above with a sample size of 30, the probability of observing a
value between −1.359 and 1.359 is equal to the area underneath the probability density
function in the range between −1.359 and 1.359.

. twoway function
> fx = 1/sqrt(2*_pi*.944^2) * exp((-(x-0)^2)/(2*.944^2)),
> range(-2 2) xline(0) xline(-1.359 +1.359, lpattern(dash))

0
.1

.2
.3

.4
fx

−2 −1 0 1 2
x

Notice how much wider the function is now that we have a sample size of 30. To get
a numerical estimate for the area in between the two dashed lines, we need to subtract
the area below −1.359 from the area below 1.359. In Stata terms:

. display normal(1.359/0.944) - normal(-1.359/0.944)

.85002468

If the average age difference between the heads of household and their partners
were 0, the probability of observing a value between −1.359 and 1.359 in a sample of
size 30 would be 0.85. To get the probability of observing values outside the range of
[−1.359, 1.359], you would take 1 minus the probability of values inside [−1.359, 1.359],

. display 1 - (normal(1.359/0.944) - normal(-1.359/0.944))

.14997532

which is the same as two times the probability of values below −1.359:

. display 2 * normal(-1.359/0.944)

.14997532

For those smaller samples, the probability would be about 0.15; to say it differently,
in 15% of the sample means, the absolute age difference would be as large or larger
than what we observed here, even if the true age difference is 0. In this situation, we
would fail to reject the null hypothesis at the conventional 5% level. Notice as an aside
that if you follow the conventional 5% level, significance of a two-sided test is reached
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whenever the absolute value of the test statistic is above 1.96 or when the observed
point estimate is near doubly as high as its standard error.

Before turning to the more frequently used two-group mean comparison test, we
want to show how to perform the test for complex samples. For this, we estimate the
standard error as shown in section 8.2.2

. generate sampleR = sample

. replace sampleR = 2 if sample==4
(150 real changes made)

We then go on as shown:

. svyset psu [pweight = xweight], strata(sampleR)

(output omitted )

. svy: mean agediff

(output omitted )

To avoid rounding errors, we use saved results for calculating the test statistic (see
chapter 4):

. display 2*normal(-_b[agediff]/_se[agediff])
5.865e-13

Two-group mean comparison test

Having been through the steps of testing the sample mean against the null hypothesis,
testing the difference between two sample means is straightforward. The key difference
between the two settings is that now both sample means have a distribution that needs
to be taken into account when testing. In a two-group mean comparison test, the null
hypothesis is that “the difference of the means between group A and group B is 0.”
We could, for example, be interested in any age difference in the population of East
and West Germans. After all, there were many years when these two parts of Germany
were separate countries with different health care systems, different family policies, and
other factors related to the demographic development of a country. On the other hand,
there has been some geographic mobility since the reunification, and the countries have
been subject to the same political system for more than 20 years.

So let us first see if there is an age difference between East and West Germans in
our sample:

. generate east = state >= 11 if !missing(state)

. tabulate east, sum(ybirth)

Summary of Year of birth
east Mean Std. Dev. Freq.

0 1959.8282 18.140227 4068
1 1958.4773 18.053304 1343

Total 1959.4929 18.126422 5411
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Here we see that people living in the former Western part of Germany are on average
1.351 years older than those living in the East. How likely is it that we observe such a
difference if East and West Germans had the same age in the population? To answer
this question, we have to estimate the standard error for both the East Germans’ and
the West Germans’ average year of birth. For simplicity, let us ignore the complex
nature of our sample for a moment and estimate the standard error for both groups
with the mean command:

. mean ybirth, over(east)

Mean estimation Number of obs = 5411

0: east = 0
1: east = 1

Over Mean Std. Err. [95% Conf. Interval]

ybirth
0 1959.828 .2844148 1959.271 1960.386
1 1958.477 .4926276 1957.512 1959.443

The mean comparison test starts by stating the null hypothesis: “The difference
between East and West Germans’ years of birth was 0 in Germany in 2009.” We then
ask what values we would observe in a sample such as ours if this were indeed the case.
To answer this, we need the standard error for the difference between the two means. If
we assume that both groups, East and West Germans, are independently sampled, the
standard error of the difference between the two groups can be estimated with

ŜE (xA − xB) =

√
SE (xA)

2
+ SE(xB)2 (8.2)

Using the numbers above, we can apply this formula in Stata:

. display sqrt(.284^2 + .493^2)

.56895079

After having obtained the standard error we can calculate how probable it is to
observe a value as big as our observed difference of 1.351 if the true difference in the
population were 0. With a small risk of rejecting the null hypothesis too early, we can
apply a simplified command for a two-sided significance:

. display 2 * normal(-1.351/.493)

.0061371

If East and West Germans are of equal age in the population, the probability of
observing an absolute difference in year of birth of 1.351 or higher would be 0.6%. This
probability is very low, and it would be common practice to reject the null hypothesis.

We said above that we are risking rejecting the null hypothesis too early. The
reason for this is that sampling distributions of differences between sample means are
not normally distributed but are Student’s t distributed. The Student’s t distribution
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is very similar to the normal distribution, but it is a little wider when the sample size
is below 30 observations. In our case, this does not make a difference; in the more
general case, you might want to test the difference of sample means using a Student’s
t distribution. The easiest way to do this is with the command ttest. Above we did
not assume that the sampling distributions were the same in East and West Germany.
Therefore, we perform ttest with the option unequal.

. ttest ybirth, by(east) unequal

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

0 4068 1959.828 .2844148 18.14023 1959.271 1960.386
1 1343 1958.477 .4926276 18.0533 1957.511 1959.444

combined 5411 1959.493 .2464185 18.12642 1959.01 1959.976

diff 1.350881 .5688354 .2353979 2.466365

diff = mean(0) - mean(1) t = 2.3748
Ho: diff = 0 Satterthwaite´s degrees of freedom = 2301.37

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9912 Pr(|T| > |t|) = 0.0176 Pr(T > t) = 0.0088

The upper part of the output displays means and standard errors for both subgroups,
here East and West Germany, as well as the “combined” mean and standard error.
The row starting with diff shows the difference between the East and West German
averages and the standard error of that difference. Underneath the table, results from
three significance tests can be found. The two-sided test that we performed earlier is
the one in the middle. As you can see, the result of ttest is identical to our result
above—which is always the case if the sample sizes of both groups are much higher
than 30.



8.2.4 Uses of standard errors 241

So far, our example has assumed that the sample for both East and West Germany
was a simple random sample. To account for the complex sample structure, we can use
the command test after applying mean with the svy prefix. Here is an example:

. svy: mean ybirth, over(east)
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 4 Number of obs = 5411
Number of PSUs = 515 Population size = 80858869

Design df = 511

0: east = 0
1: east = 1

Linearized
Over Mean Std. Err. [95% Conf. Interval]

ybirth
0 1959.832 .5656418 1958.721 1960.943
1 1958.493 1.085174 1956.361 1960.625

. test [ybirth]0 - [ybirth]1=0

Adjusted Wald test

( 1) [ybirth]0 - [ybirth]1 = 0

F( 1, 511) = 1.18
Prob > F = 0.2771

The command test performs a adjusted Wald test of a specified expression. In the
command above, our expression used the saved results of mean, where [ybirth]0 refers
to the mean of ybirth for West Germany, and [ybirth]1 refers to the mean of ybirth
for East Germany. Hence, we ask the command to test whether the difference between
those two saved results could be 0 in the population. The results show that now we can
no longer reject the null hypothesis. The correct standard errors are much larger than
the näıve estimates, and consequently, the difference is no longer significantly different
from 0.

The test command is not restricted to just testing the null hypothesis of the popu-
lation difference being 0. We can insert other values as well. Were your null hypothesis,
for example, that West Germans are on average two years younger than East Germans,
you would specify the test as follows:

. test [ybirth]0 - [ybirth]1=-2

Adjusted Wald test

( 1) [ybirth]0 - [ybirth]1 = -2

F( 1, 511) = 7.36
Prob > F = 0.0069
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8.3 Causal inference

When we, the authors, designed the contents of this chapter, we had a hard time
deciding whether it should include a section on causal inference. The reason is that
causal inference, really, is beyond the scope of this book. There is so much to be said
on causality—what it is and how it can be observed—that a short introduction might
perhaps do more harm than good.

On the other hand, some highly practical consequences hinge on the distinction be-
tween descriptive and causal inference, even for a person new to data analysis. For
example, do we need significance tests when we observe an entire population? Do
we need weights when we estimate statistical models? These questions cannot be an-
swered without reference to the difference between descriptive and causal inference.
Without making clear what causal inference really means, we risk that readers think
“causality” when they really have just description. So in the end, we decided to go
with this section. Before we start, we wish to recommend some helpful literature
on causal inference: King, Keohane, and Verba (1994); Winship and Morgan (1999);
Imai, King, and Stuart (2008); Stuart (2010); and last but not least, Berk (2004).

8.3.1 Basic concepts

Could this have happened by chance? This is a key question in inference problems.
In descriptive inference problems we often ask whether “chance” could have produced
a sample that shows this value even if the value is 0 in the population. In causal
inference problems, we ask an even more fundamental question: Could chance have
produced this relationship between what I think is the cause and what I see as the
outcome? Or to phrase it somewhat differently: Is there a mechanism that created the
data I observed that is not random? Thus to understand causal inference, you need
a basic understanding of the data-generating process. You also need to know about
counterfactuals, and what it means when we colloquially say “everything else being
equal”.

Data-generating processes

Please load titanic.dta from our data package:8

. use titanic, clear
(Death Rates for an Unusual Episode (Dawson 1995))

The dataset contains information on age, gender, class, and survival of all 2,001
persons on board the Titanic.9 Note that the observations in this dataset are not a
random sample of a larger population. Neither the crew nor the passengers are selected

8. Make sure that your working directory is c:\data\kk3; see page 3.
9. The dataset was collected by the British Board of Trade in their investigation of the sinking and

made publicly available by Dawson (1995). The creation of our Stata dataset is documented in
crtitanic.do in our data package.
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by any known sampling method. Also there is no larger population of Titanic crews
and Titanic passengers, thus all we observe are the persons on board. Hence, there is no
need for descriptive inference here. Descriptive statements about the dataset are just
statements about the people on the Titanic.

Nevertheless, if you are interested in causes or significant correlates of survival in
the sinking of the Titanic, there is still a need for causal inference. To see why, let
us create some fictitious reality using Stata’s random-number generator. The following
commands create the variable fsurvived by randomly assigning the values 0 (died)
and 1 (survived) to observations. Because we want to end up with approximately 30%
of observations survived, we draw the random numbers from a Beta distribution with
rbeta(2,3) (see section 8.1.2):

. set seed 731

. generate fsurvived = int(rbeta(2,3)*2)

Suppose that the variable fsurvived comprised real data about whether persons sur-
vived the sinking of the Titanic. It would then be interesting to see whether there are
differences in the survival rates between the various passenger classes. In fact, from the
output of

. tabulate class fsurvived, row nofreq

Class of fsurvived
passenger 0 1 Total

Crew 69.38 30.62 100.00
First 66.77 33.23 100.00
Second 70.88 29.12 100.00
Third 70.40 29.60 100.00

Total 69.51 30.49 100.00

we see that first-class passengers survived more frequently than the third-class passen-
gers.

Does this mean that the ticket a passenger purchased influenced his or her survival?
Well, not in the data we just created. Our survival indicator was created through a
random process. There is no link at all between passenger class and the process that
generated the data in the variable fsurvived. The random process that generated the
data happened to create an association between fsurvived and class.

Now in the real world, we do not know what generated the data. Thus the question
is whether an association we see could have happened (with a decent likelihood) because
of a random data-generating process or whether it is systematically linked to some key
variable of interest (class, in our case). Distinguishing these two possible elements of
the data-generating process is the task of causal inference.

Now let us define a bit more systematically what we mean by causality.
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Counterfactual concept of causality

In statistics, causality is commonly defined using the counterfactual concept of causality.
The initial development of this framework is usually credited to Neyman, Iwaszkiewicz,
and Kolodziejczyk (1935) and Rubin (1974, 1979, 1980). Sometimes the framework is
referred to as the Rubin causal model (Holland 1986). According to this concept, a
causal effect of some treatment T is the difference between an outcome Y T of a specific
research unit i if that unit experiences the treatment and the outcome Y C of the same
unit if that unit experiences the control condition. Formally,

δi = Y T
i − Y C

i

where δi is the causal effect. Both of these outcomes are potential outcomes, of which
only one can be observed.

Consider Jack Dawson, a fictional third-class passenger of the Titanic who died
during the sinking in the Hollywood movie “Titanic”. The movie made us believe that
third-class passengers were kept from entering the lifeboats in favor of first- and second-
class passengers. Therefore, the question arises whether Jack died because he had a
third-class ticket. From the standpoint of Holland’s (1986) counterfactual conception of
causality, this would be the case if there were a difference between Jack as a third-class
passenger and the same Jack as a first- or second-class passenger. Because Jack cannot
be at the same time both a third-class and a first- or second-class passenger, we can
only observe one of the potential outcomes.

However, even though we cannot observe what would have happened to Jack had he
purchased a different ticket, we can observe what did happen to others who did have a
first- or second-class ticket. We can observe, for example, that the first-class passenger
Rose DeWitt Bukater survived the sinking of the Titanic. But Rose is not just a first-
class passenger, she is also a beautiful young lady. According to the rule “women and
children first”, she should have survived even if she were a third-class passenger.

So what we really need is to find some first-class passenger who is more similar to
Jack, ideally identical in anything that could affect the chance of survival except for
having a different ticket class. At the very least, the person should be a man. The
person should also be of similar age because children take precedence on the lifeboats
and very old persons might have died during the travel anyway. Assume that we found
Cal Hockley, a male first-class passenger of similar age to Jack. We can then compare
Jack’s outcome—whether he died during the sinking or not—with Cal’s outcome by
using a little variation of the formula above:

δCal,Jack = YJack − YCal (8.3)
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Using the values 0 and 1 for the outcomes of survived and died, respectively, we can
get three different values for δCal,Jack:

• 0 if Cal and Jack either both died or both survived.

• 1 if Jack died and Cal survived.

• −1 if Jack survived and Cal died.

We might want to use the value of δCal,Jack as an estimate for the causal effect δi.
In this case, we would interpret the value of 1 as evidence that traveling on the Titanic
as third-class passenger causally decreased the odds of surviving; −1 would mean the
opposite; and 0 would mean that classes do not matter.

Quite obviously, however, the value of δCal,Jack is not sufficient as an estimate for
δi. There are various reasons for this, but at this stage we consider only one of them:
δCal,Jack might have occurred more or less by chance. That is to say, if we had chosen
two other persons with the same characteristics to observe an equivalent of δCal,Jack, we
might have obtained a different value, leading us to different conclusions.

One way to protect ourselves against making too much out of accidental findings is
to find many observations of both types, the Jack type and the Cal type. Let us call
the observations of these types the treatment group and the control group. If we have
such data, we can obtain the average outcome for both groups and compare the two
results. This would lead us to the following estimate for the causal effect:

δ̂ = Y
T − Y

C

With this, we would estimate what has been called the average treatment effect
(ATE). However, the validity of the estimated ATE crucially hinges on the comparability
of the treatment and control groups. Having comparable groups is often a serious
challenge for social science researchers. Generally, the treatment and control groups
are comparable only if they differ in whether they got the treatment and in factors
that are, taken together, unrelated to the outcome. Such comparability can be achieved
quite well in randomized trials, where cases are randomly assigned to the treatment and
control groups.10

In the social sciences, however, it is often not possible for researchers to assign cases
to the treatment of interest. Instead, there is often no other possibility than to observe
cases that, for some reason, happen to belong to a treatment group and to compare
them with cases that do not belong to a treatment group. In such observational studies,
the comparability of the treatment and control groups must be assured by statistically
controlling for the reasons responsible for belonging to the treatment group or the
control group. This often requires the use of advanced statistical techniques, such
as fixed-effects models for panel data (Halaby 2004; Allison 2009), matching methods

10. See Stuart et al. (2011) for ways to assess the generalizability of the results of randomized trials.
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(Stuart 2010), instrumental-variables regression (Baum, Schaffer, and Stillman 2007),
or regression discontinuity models (Nichols 2007).

In the next subsection, we provide an empirical example that shows the logic of
causal inference using the Titanic dataset. The small number of variables in it, and
their categorical nature, allow us to demonstrate the overall reasoning for a subgroup
of interest without estimating the ATE.

8.3.2 The effect of third-class tickets

From

. tabstat survived men adult, by(class)

Summary statistics: mean
by categories of: class (Class of passenger)

class survived men adult

Crew .239548 .9740113 1
First .6246154 .5538462 .9815385

Second .4140351 .6280702 .9157895
Third .2521246 .7223796 .888102

Total .323035 .7864607 .9504771

we learn that 62% of the first-class passengers survived, but only 25% of the third-class
passengers did. The difference between both groups is 37%. However, we also see that
the treatment group (third-class passengers) and the control group (first-class passen-
gers) differ in other characteristics related to survival: Third-class passenger are more
frequently men and less frequently adults. Before performing causal inferences, you
should make sure that the treatment and control groups are equivalent in all character-
istics that are not an effect of the treatment itself. For our example, one way to proceed
would be to compare only male adults from both groups:

. tabstat survived if men & adult, by(class)

Summary for variables: survived
by categories of: class (Class of passenger)

class mean

Crew .2227378
First .3257143
Second .0833333
Third .1623377

Total .2027594

The survival rate for adult men is smaller than the total average, and more im-
portantly, the difference between first-class and third-class passengers reduced to 16%.
If we are willing to accept that there are no other differences between the treatment
and control groups, we might consider this value to be an acceptable approximation of
the ATE. Now consider the inferential research question from the introduction of this
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chapter: How likely is it that the difference of 16% in survival rates between first-class
and third-class passengers could arise if there were no systematic process at stake?

Well, if the data were really generated by a completely nonsystematic process, the
difference between arbitrary groupings should be inside the borders that pure random
fluctuation allows. This brings us back to the techniques and concepts discussed in
section 8.2. The only difference here is that we are dealing with a proportion instead of
an arithmetic mean. To estimate the standard error of a proportion, we use the e-class
command proportion. From

. proportion survived if men & adult, over(class)

Proportion estimation Number of obs = 1667

No: survived = No
Yes: survived = Yes

Crew: class = Crew
First: class = First
Second: class = Second
Third: class = Third

Over Proportion Std. Err. [95% Conf. Interval]

No
Crew .7772622 .0141801 .7494495 .8050749

First .6742857 .0355276 .6046023 .7439691
Second .9166667 .0213873 .8747178 .9586156
Third .8376623 .0171749 .8039757 .871349

Yes
Crew .2227378 .0141801 .1949251 .2505505

First .3257143 .0355276 .2560309 .3953977
Second .0833333 .0213873 .0413844 .1252822
Third .1623377 .0171749 .128651 .1960243

we see that random processes would let average survival rates of adult male first-class
passengers vary between 25.6% and 39.5%. Correspondingly, for adult male third-class
passengers, the survival rates vary between 12.9% and 19.6%:

Because the two intervals do not overlap, we can be pretty sure that the observed
difference cannot just be due to random fluctuations. To estimate how sure we can be,
we can feed the values from the last output into the test command:

. test [Yes]First==[Yes]Third

( 1) [Yes]First - [Yes]Third = 0

F( 1, 1666) = 17.14
Prob > F = 0.0000

The probability of observing a difference of 16% in the survival rates of adult male first-
and third-class passengers when there are only random processes going on is 0. Hence,
we can be pretty sure that something “nonrandom” is going on.
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So far, we have only tested the difference of the survival rates between first- and
third-class passengers for adult males. We might want to continue testing the same
difference for the other groups—female adults, male children, and female children—as
well. If each of these groups shows similar results, we would be even more convinced
that the difference of the survival rates of first- and third-class passengers is not due to
chance.

With just a couple of (categorical) covariates, it is easy to fully adjust for differences
in their distributions across treatment and control groups, as we did here for gender
and adult. When there are more covariates, or some that are continuous, this sort of
direct adjustment becomes more difficult. In this case, regression models or propensity
score matching methods can be useful.11 We recommend reading Stuart (2010), Nichols
(2007), and Abadie et al. (2004) before applying these methods.

8.3.3 Some problems of causal inference

The example of the last section was performed on a dataset of the entire population
about which we made our inferential statement. Hence, there is no inference involved
from a sample to a population. The inference we used is instead about a specific data-
generating process. Specifically, we tested whether the data-generating process was a
random process. The results showed that something else must have generated the data.

From the results of our example, we are inclined to say that third-class passengers
were hindered somehow from getting a place in a lifeboat. However, before you make
such a strong causal statement, you should remember that causal inference rests on
the crucial assumption that the treatment and the control groups are equivalent. This
requirement can be well secured in experiments where the researcher decides who is
getting the treatment and who is not. In observational data, however, this is much
more difficult to accomplish.

Take the Titanic’s first- and third-class passengers as an example. It was clearly not
the principal investigator of the dataset (the British Board of Trade) that decided who
got a first- and a third-class ticket. Contrarily, it was a complicated social process. First-
class tickets were predominantly bought by rich persons for obvious reasons. It is known
that a much higher proportion of third-class passengers were foreigners without mastery
of English; therefore, it is also plausible that many third-class passengers wanted to
emigrate from their home countries to overcome serious economic hardship.

Quite obviously, first- and third-class passengers not only differed in their gender
and age proportions but also on various other dimensions. And at least some of these
other dimensions are also related to survival: poor people tend to be less healthy, which
might have decreased the odds of surviving in the cold water in comparison with rich
people; the foreigners in the third-class might have not understood the announcements

11. Currently, there is no built-in Stata routine for matching; however, several user-written commands
do exist. See chapter 13 for details about how to find and install user-written commands. For a
general collection of matching software, see
http://www.biostat.jhsph.edu/∼estuart/propensityscoresoftware.html.
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made by crew; and what about the ability to swim? Do we know something about how
the ability to swim was distributed among social strata in the early twentieth century?

All of these mechanisms for surviving are related to the causal process that forced
passengers to buy first- or third-class tickets but are not related to the class of the
ticket itself. Restricting the analysis to adult males would be therefore not enough, and
we must make the treatment and control groups much more equivalent before we are
allowed to talk about causality.

The statistical models discussed in the next chapters are one way to match treatment
and control groups. When it comes to causal inference, the general idea of these models
is to—theoretically—assume a model for the data-generating process and to estimate
parameters of this model under the assumption that the theoretical model is correct.
The advantage of this modeling approach is that if the theoretical model really is correct,
you do not have to care about sampling and all the materials discussed in section 8.2.

A frequent critique to this approach is, however, that the assumed models are overly
simplistic. The modern reaction to this critique is to assume more-complicated models
for the data-generating process, although Berk (2004) showed that many of these models
also come with assumptions that cannot be easily justified. We cannot decide the issue
here, but we strongly recommend that you read the literature cited at the beginning of
this section before dealing with the concepts of causality.

Before moving on to statistical models themselves, we would like to stress that the
statistical models discussed in the next chapters are not only used for causal analysis
but also can be used as devices for parsimonious descriptions of a complicated empirical
reality. If used that way, there are far fewer concerns about correctness of the models. It
then becomes more of a question about whether the description is interesting or useful.
However, if you want to describe an empirical reality using empirical data, there must
be a known relationship between the observed data and the empirical reality. If the
data are from a sample, we must take into account how the sample was drawn. In this
case, we are back at the methods shown in section 8.2.

In practice, researchers are often faced with a situation that comprises both types
of statistical inference. This happens when researchers try to make causal inferences
from samples. There is an ongoing debate on how many techniques used for descriptive
inference are also necessary for causal inference. The general background of this debate
is that valid causal inference always hinges on a correctly specified model of the data-
generating process. If that model really is correct, the techniques used for descriptive
inference are superfluous. Others argue that there is never just one data-generating
process for all members of a population. They argue that one can at best describe a
population average of many different data-generating processes; hence they need the
tools for statistical inference. Obviously, this is not the place to continue the debate
among describers and modelers (Groves 1989).
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8.4 Exercises

1. Create a dataset with 1,000 observations and the following variables:

• x1, a variable that holds uniformly distributed random integer numbers be-
tween 1 and 10.

• x2, a dichotomous variable with values 0 and 1, where the frequencies of both
values are approximately equal.

• x3, a dichotomous variable with values 0 and 1, where the proportion of
values of 1 are approximately 70%.

• y, a continuous variable that is the sum of x1, x2, x3, and a value drawn
randomly from a standard normal distribution.

2. Compare the distribution of y between values of x1, x2, and x3, respectively.

3. Load data1.dta into memory. Create a simple random sample of 1,000 observa-
tions from the dataset without destroying the dataset. Calculate the mean of the
income variable in your sample.

4. Repeat the last task 100 times in a row. Display the distribution of the means of
income in the 100 samples by using kdensity.

5. Estimate the standard error of the mean of income with the 100 sample means of
income.

6. Estimate the standard error of the mean of income with only one of the 100
random samples.

7. Estimate the standard error of income with the entire dataset. Thereby assume
that the observations of data1.dta were selected by simple random sampling.

8. Reestimate the standard error of the mean of income assuming the following
sampling designs:

• Stratified sampling with strata being the states.

• Two-stage stratified sampling, with strata being the states and PSU being
the households.

• Two-stage stratified sampling, with strata being the states and PSU as iden-
tified by variable psu.

• Two-stage stratified sampling that has unequal sampling probabilities, with
strata being the states, PSU as identified by variable psu, and the reciprocal
value of the sampling probability stored on xweights.

• Sampling of the GSOEP as described on page 220.

9. Reestimate the standard error of the mean of income using 30 multiple imputa-
tions for the missing values of income. Thereby use the variables sex, ybirth,
yedu, egp, and rooms to find plausible values of income.
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10. Reload the original data1.dta. Then analyze how far the difference of income
between men and women might be due to sampling fluctuation. Thereby apply
each of the following settings:

• Simple random sampling

• Sampling of the GSOEP as described on page 220.

11. Perform the tests of the previous exercise by restricting the analysis on the sin-
gle (variable mar) full-time employed respondents (variable emp) with maturity
qualification (variable edu).





9 Introduction to linear regression

In the last chapter, we described the distributions of a few different variables for various
subgroups. For example, we compared the distributions of income and political party
affiliation for men and women using several techniques. One of those techniques was
cross-tabulation, which we used to examine the relative frequencies of votes cast for dif-
ferent groups formed by the values of a second variable—gender, in this case (page 162).
Applying a different technique to the income variable, we compared the distribution of
income for men and women using statistics such as means, quantiles, and standard
deviations (page 178). In other words, we looked at how income depends on gender.
Therefore, income was our dependent variable, and sex was our independent variable.

The techniques described in chapter 7 provide a reasonably good representation of
your data if you want to compare the distribution of one variable for a few different
subgroups formed by a second variable. However, if you are interested in the relationship
between two variables with many categories, a scatterplot may be more useful. A
scatterplot is a graphical representation of the joint distribution of two variables. When
you draw the scatterplot, each observation is plotted in two-dimensional space (along two
axes). The coordinates of each point are the values of the variables for that particular
observation. The values of the independent variable are graphed on the x axis, whereas
the values of the dependent variable are graphed on the y axis.

Three examples of scatterplots can be seen in figure 9.1.1 The first scatterplot shows
data from 193 nations on the life expectancy at birth for females plotted against the life
expectancy at birth for males. The dots are distributed from the lower-left corner to
the upper-right corner. This distribution suggests that high life expectancies for males
go along with high life expectancies for females. Cases such as these are called positive
relationships.

1. The data for these examples are taken from the Global Health Observatory Data Repository of
the World Health Organization (http://apps.who.int/ghodata/#). The dataset with the variables
used for the figure is included in the data package of this book (who2009.dta).
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Figure 9.1. Scatterplots with positive, negative, and weak correlation

The second scatterplot depicts the relationship between infant mortality and the
adult literacy rate. There we find the data points for 110 nations spreading out from
the upper-left corner to the lower-right corner. This means that when the literacy rate
in a country is higher, the observed infant mortality rate is lower. This is called a
negative relationship.

The third scatterplot shows the relationship between the adult mortality rate and
the total health expenditures as a percentage of the gross domestic product. Here the
observations from 191 different countries are distributed fairly evenly over the entire di-
agram. The relationship between health expenditures and lost healthy years is therefore
not obvious. We can, at best, find a weak (negative) relationship.

All three graphs contain a solid line that summarizes the relationship between the
two variables and is called a regression line. In the first scatterplot example, the dots
are close to the regression line; there we have a strong correlation. In contrast, widely
scattered clouds of dots, as in the third example, indicate a weak correlation. One
way to measure the strength of the correlation is with Pearson’s correlation coefficient
r. A Pearson’s correlation coefficient of 0 means that no relationship can be observed
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between the two variables. Both −1 and +1 represent the strongest possible observed
relationships, with −1 indicating a negative relationship and +1 indicating a positive
relationship.

Creating scatterplots for different values of r is useful for getting an idea of the
relationship. You can practice doing so by using a small demonstration we wrote for
Stata.2 Type

. do cplot 0.5

and you will see a scatterplot of two variables whose correlation coefficient is 0.5. You
can vary the strength of the relationship by changing the number you enter for r after
the do cplot command.

Regardless of the strengths of correlation, there is not necessarily a causal rela-
tionship between the variables. In figure 9.1, the life expectancy of women is not
caused by the life expectancy of men. You can instead think of a common cause for
both of them. You could hypothesize on the causal link between literacy and infant
mortality, but neither scatterplots nor regression lines can test such an assumption
(King, Keohane, and Verba 1994; Berk 2004).

A simple linear regression analysis aims to characterize the relationship between one
dependent variable and one independent variable with a line. A straightforward general-
ization of this is multiple linear regression analysis, which characterizes the relationship
between one dependent and more than one independent variables. The term multivari-
ate regression is reserved for a technique for more than one dependent variables.

We begin by outlining the basic principle behind simple linear regression in sec-
tion 9.1. We then extend the model to deal with multiple independent variables in
section 9.2. Linear regression analysis requires us to make several assumptions, and
section 9.3 introduces techniques to check those assumptions. Refinements of the basic
model are the subject of section 9.4. In section 9.5, we show different ways to display
regression results and discuss alternative methods of computing standard errors and
other extensions of the linear regression model in section 9.6.

Although we will explain some of the statistical background, our main purpose is
to show you how to perform regression analysis with Stata. You will need to do more
reading to gain a full understanding of regression analysis. Books that work well with
our approach are Hamilton (1992) and Fox (1997). You should also read Berk (2004)
for a critical discussion of common mistakes.

2. Make sure that your current working directory is c:\data\kk3; see page 3.
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9.1 Simple linear regression

9.1.1 The basic principle

Here we will introduce terms such as ordinary least squares, residual sum of squares,
predicted values, and regression. If you are already familiar with these terms, you may
skip this section.

The basic principle of all regression models is straightforward. To describe the
relationship between your variables, you are looking for an equation that allows you to
predict the values of a dependent variable as well as possible with the help of one or
more independent variables. Consider the following example.

You have a hunch that the size of someone’s home is determined by his or her net
income. You believe that the higher someone’s income is, the larger the home will be.
At the same time, you know that homes are not of zero size if someone’s income is zero.
Hence, homes should have a certain minimum size. You could formalize your suspicion
about the relationship between income and home size with the aid of a simple equation
(let us use the Lopez family for our example):

home sizeLopez = β0 + β1 × incomeLopez + ǫLopez

Or you could use symbols instead of text

yLopez = β0 + β1xLopez + ǫLopez (9.1)

where y and x could be symbols for any variable. In what follows, we will consistently
use y for home size and x for income.

Our equation calculates the home size of the Lopez family, where the Lopez family
is an arbitrary household in our dataset. The first term, β0, is the home size when the
household income is zero. To this term, we add the term β1xLopez. The crucial part
here is the parameter β1, which tells us how many square feet each additional Euro
of household income can buy. If you multiply β1 with the actual income of the Lopez
family, you will get an estimate of how much larger the Lopez family home is compared
to the home size for a family that has zero income.

Now you might argue that income is not the only variable that affects home size.
For example, family size or the ages of family members might play a role, as well. You
may, in fact, come up with several factors that could affect home size. If you do not
know all the factors, the home size y, your calculation using the above equation, will
always deviate from the observed values. This deviation is called the error term. In
(9.1), the error term is indicated by ǫLopez for the Lopez family.
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Equation (9.1) above is just another way to write down the hunch that an individual’s
home size depends on a minimum home size, some quantity that rises with income and
some other factors. In practice, we do not know the value of those parameters. We
can only speculate how many square feet the home size for a family with zero income
β0 is and how large the quantity β1 is that must be added to the home size with each
additional Euro of income. Estimating those regression parameters (as β0 and β1 are
often called) is the aim of regression analysis.

Let us assume you would, based on your past housing experience, make a rough
estimate for the minimum home size and the effect of income.3 Based on those estimates,
you could go ahead and predict the square footage of other people’s places knowing
nothing about those people except their income. To do so, you would replace x with
their respective income in the formula

ŷi = b0 + b1×xi (9.2)

where b0 and b1 symbolize your estimates for the parameters β0 and β1. (In statistics,
Greek symbols commonly refer to unknown parameters, and Roman letters indicate
their estimates that one has derived from empirical sources.) The subscript i indicates
that we are now dealing with values from several households, not just the Lopez family.
The estimated regression coefficients b0 and b1 do not have the subscript i. They are
constant across individuals. Also compared with (9.1), the error term ǫ is missing, which
means we ignore all factors besides income that could influence square footage. Instead,
the predicted home size ŷi in (9.2) has a hat over yi, symbolizing that it is an estimate.

Because you did not include any of the other factors beyond income that could
influence the households’ housing choices, the home sizes you predicted using the above
equation will deviate from the actual values of these people’s homes. If we know an
individual’s actual home size yi and the predicted size of his or her home ŷi, we can
compute the difference:

ei = yi − ŷi (9.3)

This deviation ei between the actual value and the predicted value is called the
residual. Looking at the equations, we can say that our prediction will get better the
smaller ei is. Likewise, we could say that—given that our model is correct—the closer
our estimated coefficients are to the true values of the parameters, the smaller ei tends to
get. Hence, it is reasonable to replace simple guessing based on day-to-day experience
with statistical techniques. You can use several techniques to get estimates for the
regression parameters. Here we will limit ourselves to the one that is the simplest and
in wide use: ordinary least squares (OLS).

3. Maybe you would say that houses are at least 600 square feet and people would spend roughly one-
third of their net income on housing. If one square foot costs e 5, people could afford an additional
square foot with every e 15 of additional income, or in other words, each additional Euro of income
would increase the home size by 1/15 ft2.
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OLS is based on a simple rule: make the difference between the predicted and ob-
served values as small as possible. To put it differently, we want to choose the parameters
that minimize the sum of the squared residuals. Thinking back on what we said earlier,
that the error term in (9.1) includes all other effects that influence home size, it might
seem funny to you that we try to find values for b0 and b1 that minimize the residuals.
After all, there could be other important variables, like household size, that we do not
include in our model. This is true! Trying to minimize the residuals implicitly makes
the assumption that the error term is 0 in expectation. We will come back to this
assumption in section 9.3.1.

To understand what minimizing the sum of the squared residuals means, look at the
scatterplot in figure 9.2. Try to find a line that depicts the relationship between the
two variables. You will find that not all points lie on one line. You might try to draw
a line among the points so that the vertical distances between the points and the line
are as small as possible. To find these distances, you might use a ruler.

The goal was to minimize the differences across all points, so looking at one of the
distances will not provide you with enough information to choose the best line. What
else can you do? You could try adding the distances for all the points. If you did this,
you would notice that negative and positive distances could cancel each other out. To
find a way around this problem, you might use the squared distances instead.

If you drew several lines and measured the distances between the points and every
new line, the line with the smallest sum of squared distances would be the one that
reflects the relationship the best. This search for the line with the best fit is the idea
behind the OLS estimation technique: it minimizes the sum of squared residuals (e2

i ).
The points on the line represent the predicted values of ŷi for all values of X. If your
model fits the data well, all points will be close to the straight line, and the sum of the
squared residuals will be small. If your model does not fit the data well, the points will
be spread out, and the sum of the squared residuals will be relatively large.
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Figure 9.2. Exercise for the OLS principle

We have prepared a small demonstration of the OLS solution to the regression prob-
lem in figure 9.2. Typing

. do grreg2.do

causes figure 9.2 to be displayed with the regression line.

We can also present the OLS principle a bit more formally. We are looking for those
parameters (b0 and b1) in (9.3) for which the sum of the squared residuals (the residual
sum of squares [RSS]) is at a minimum. Those parameters are the y-axis intercepts and
the slopes of the lines we drew. A search for the best fit using a trial-and-error technique
like the one described above would be time consuming. Using mathematical techniques
to minimize the RSS is an easier way to find our parameters that more reliably leads to
the correct solution. Mathematically, the RSS can be written as the difference between
the observed and predicted values:

RSS =

n∑

i=1

e2
i =

n∑

i=1

(yi − ŷi)
2 (9.4)

Substituting for ŷi, we can write the above equation as

RSS =
∑

e2
i =

∑
(yi − b0 − b1xi)

2 (9.5)
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Now that we have defined the RSS mathematically, we can use the OLS technique
to minimize it.4 This means that we must find values for b0 and b1 for which (9.5)
is as small as possible. To do this, we can take the first partial derivatives of (9.5)
with respect to b0 and b1, set them equal to 0, and solve for b0 and b1. At this point,
it is not particularly important that you be able to take the derivative yourself. The
entire technique is nothing more than a search for the minimum of a function with two
unknowns.

If on the other hand, you wish to review the high school and college math necessary
for taking partial derivatives, you can find a helpful review in Hagle (1996, 38–58).5

Before we continue with the mathematics, we will show you how to compute a
regression with Stata, and you will see how easy and helpful it is to use statistical
packages for these kinds of computations. But be careful: despite the simplicity of the
computational work, you must always think carefully about what exactly you are doing.
In this chapter, we will look at substantive problems caused by näıvely applying these
regression techniques.

9.1.2 Linear regression using Stata

Here we will explain how to fit a linear regression model with Stata. In the previous
subsection, we voiced a suspicion that home size is influenced by net household income.
You might now be interested in a specification of this relationship. A good place to
begin would be with a linear regression of home size (size) on net household income
(hhinc). The Stata command you will need to perform your regression is pretty simple:

4. The exact mathematical procedure for this technique has been presented in several different ways.
For fans of a graphic interpretation, we recommend starting with Cook and Weisberg (1999) or
Hamilton (1992).

5. To reconstruct the transformations used in finding values for b0 and b1 for which RSS is at a
minimum, you can do so as follows:

∂RSS

∂b0
= −2

X

yi + 2nb0 + 2nb1
X

xi

If you set this partial derivative equal to 0 and solve for b0, you will get

b0 = y − b1x

Following the same principle, you can find the first partial derivative with respect to b1:

∂RSS

∂b1
= −2

X

yixi + 2b0
X

xi + 2b1
X

x2
i = 0

Now you replace b0 with y − b1x. After a few transformations, you end up with

b1 =

P

(xi − x)(yi − y)
P

(xi − x)2

You can find a more detailed presentation of this derivation in Hamilton (1992, 33).
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. use data1, clear
(SOEP 2009 (Kohler/Kreuter))

. regress size hhinc

Source SS df MS Number of obs = 5407
F( 1, 5405) = 1613.34

Model 263141566 1 263141566 Prob > F = 0.0000
Residual 881575997 5405 163103.792 R-squared = 0.2299

Adj R-squared = 0.2297
Total 1.1447e+09 5406 211749.457 Root MSE = 403.86

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0082545 .0002055 40.17 0.000 .0078516 .0086574
_cons 800.9835 9.404917 85.17 0.000 782.5461 819.4209

Clearly, the command consists of the regress statement and a list of variables. The
first variable is the dependent variable, and the second is the independent variable. The
output contains three different sections: the table of ANOVA results in the upper left
corner, the model fit table in the upper right corner, and the table of coefficients in the
bottom half of the output.

The table of coefficients

The following description is confined to the coefficients in the first column of the table
of coefficients. For the meaning of the other columns, please refer to chapter 8. We
would like to stress that if you are interested in inference statistics for the commands
shown in this chapter, you need to svyset the dataset as shown on page 220 and to
prefix all regression commands with svy.

At the bottom of the table in the column labeled Coef., you will find the estimated
regression coefficients—that is, the values for b0 and b1—from (9.3).

To the right of the estimated regression coefficients are their standard errors, sig-
nificance tests, and 95% confidence intervals. These statistics are used to evaluate the
accuracy of the estimated coefficients (see chapter 8).

The value for b0 is written in the regression output row labeled cons. b0 is 800.984
in this example. According to this model, the predicted home size for a family with no
(zero) income is 801 square feet. The value for b1 is displayed in the row that begins
with hhinc and is about 0.008. According to the regression model, the home size will
increase by about 0.008 ft2 with every additional Euro in the annual household income.

Assuming that the Lopez family has a net annual income of e 36,749, you can use
(9.1) to estimate how big the family’s home might be:

ŷLopez = 800.984 + 0.008 × 36, 749
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You can calculate this amount directly within Stata using the display command, much
as you would use a pocket calculator. Type

. display 800.984 + .008 * 36749
1094.976

If you use the numbers displayed in the table of coefficients, you must deal with
two problems: 1) typing numbers by hand often leads to mistakes and 2) the figures in
the output have been rounded. For computations like the one above, we recommend
using the results saved internally by Stata (see chapter 4). Commands that fit regres-
sion models are considered to be e-class commands in Stata, so you can look at the
saved results with the command ereturn list. If you do this, you might find yourself
searching in vain for the estimated regression coefficients because they are all stored in
a matrix named e(b). The easiest way to access the values contained in this matrix is
to use the construction b[varname], where varname is replaced by the name of either
an independent variable or the constant ( cons).

The computation for the Lopez family would then look like this:

. display _b[_cons]+_b[hhinc]*36749
1104.3281

This number differs a bit from the number we computed above because the results
saved by Stata are accurate to about the 16th decimal place. You can see the effect
of raising income by e 1 on home size. If you enter e 36,750 instead of e 36,749 as
the value for income, you will see that the predicted value for home size increases by
b1 = bhhinc = 0.0082545 ft2.

You might not be interested in an estimated home size for a family with a certain
income but instead in the actual home sizes of all families in our data who have that
income. To see the sizes of the homes of all the families with a net household income
of e 36,749, you could use the following command:

. list size hhinc if hhinc==36749

size hhinc

1756. 1076 36749
1757. 1072 36749
1758. 1072 36749

As you can see here, the predicted home size of 1, 104 ft2 is not displayed, but values
between 1, 072 ft2 and 1, 076 ft2 appear instead. The observed values of yi differ from
the predicted values ŷi. These differences are the residuals.
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If you want to compute the predicted values for every household in your dataset, you
could use the saved estimates of the regression coefficients.6 To compute the predicted
values this way, you would type7

. generate sizehat=_b[_cons]+_b[hhinc]*hhinc

This is the same principle that was used in the previous display command, except
that the home size is predicted not only for the Lopez family but for all families. The
result of this computation is stored in the sizehat variable. We use the suffix hat to
indicate that this is a predicted variable.8

Predicted values are very helpful for interpreting the results of regression models.
For instance, you can draw a scatterplot with size against hhinc, overlaid by a line
plot of the predicted values (sizehat) against hhinc (that is, the regression line).

. scatter size hhinc, msymbol(oh) || line sizehat hhinc, sort
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Note as an aside that the twoway plottype lfit performs the regression analysis and
the creation of predicted values in the background. You can therefore also get the above
figure directly with

. scatter size hhinc, msymbol(oh) || lfit size hhinc

6. You can use the saved regression coefficients anywhere Stata expects an expression; see section 3.1.5.
7. After entering this command, you will get a warning that some missing values have been generated.

Those missing values are for all the families for whom the dataset contains no income information.
8. We placed a “hat” (circumflex) on y in the above equations to indicate a predicted value (by) as

opposed to a value actually measured for a certain family (y).
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Because predicted values are so important for interpreting regression models, Stata
has two convenience commands—predict and margins—that let you deal with pre-
dicted values. The command predict, to start with, is just an easier way to get a
variable with the predicted values. If you type predict followed by a variable name,
Stata will store the predicted values in a new variable with the specified name. Here we
use yhat as the variable name:

. predict yhat

The new variable yhat contains the same values as the sizehat variable. If you want
to convince yourself that this is the case, type list sizehat yhat. Because it is used
after estimation, the predict command is called a postestimation command.

margins is yet another postestimation command. In its simplest form, it shows the
averages of predicted values. If you type

. margins

Predictive margins Number of obs = 5407
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons 1107.638 5.492295 201.67 0.000 1096.873 1118.403

without any options, you get the average of the predicted values for home size along
with its inference statistic. Being the same as the average of the dependent variable
itself, this number is fairly uninteresting. However, margins also can show the averages
of the predicted values at specified levels of the independent variables. For example,
the command
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. margins, at(hhinc=(0(10000)100000)) vsquish

Adjusted predictions Number of obs = 5407
Model VCE : OLS

(output omitted )

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 800.9835 9.404917 85.17 0.000 782.5502 819.4168
2 883.5285 7.829203 112.85 0.000 868.1835 898.8734
3 966.0735 6.525876 148.04 0.000 953.283 978.8639
4 1048.618 5.685452 184.44 0.000 1037.475 1059.762
5 1131.163 5.523436 204.79 0.000 1120.338 1141.989
6 1213.708 6.094179 199.16 0.000 1201.764 1225.653
7 1296.253 7.226089 179.39 0.000 1282.091 1310.416
8 1378.798 8.702896 158.43 0.000 1361.741 1395.856
9 1461.343 10.3784 140.81 0.000 1441.002 1481.685
10 1543.888 12.1708 126.85 0.000 1520.034 1567.743
11 1626.433 14.0354 115.88 0.000 1598.924 1653.942

shows the averages of the predicted house sizes for household incomes in increments
of 10,000 between the values 0 and 100,000. To achieve this, we specified a numlist

(see section 3.1.7) for the values of hhinc inside the option at() (vsquish just saves
us space). The output shows that the average predicted house size is around 801 ft2

for households without income (the lowest at-level), while it is around 1,626 ft2 for
household incomes of e 100,000 (the highest at-level).

The command marginsplot displays the results of the margins command graph-
ically. When typing marginsplot immediately after margins, you will get the same
regression line as shown in the previous figure, however, this time the 95% confidence
intervals around the predictions are by default included:

. marginsplot
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The last figure was nice and simple to obtain. You will learn later on that margins
and marginsplot are also very helpful for more complicated regression models (see
section 9.5).

Despite its use for the interpretation of regression models, predicted values are also
used to calculate the values of the residuals. They can be obtained by generating the
differences between the observed and predicted values:

. generate resid1=size-sizehat

This difference is nothing more than the distance you measured between each point and
the line in the figure on page 259.

You can also compute the residuals by using the predict postestimation command
with the residuals option and specifying a variable name (here resid2):9

. predict resid2, resid

The table of ANOVA results

ANOVA is short for analysis of variance. We use the term “table of ANOVA results” to
describe the upper left section of the Stata regression output, where you will find the
variation in the dependent variable divided into an explained portion and an unexplained
portion. For handy reference, we reproduced the table of ANOVA results that you have
already seen on page 261:

Source SS df MS

Model 263141566 1 263141566
Residual 881575997 5405 163103.792

Total 1.1447e+09 5406 211749.457

We can learn a bit more about the table of ANOVA results by using a fictional
example. Say that you are asked to predict the size of an home belonging to a student
named Paul. If you do not know anything about Paul, you might answer that his home
is as big as the average student home. Here your guess would be reasonable because
the average home size is the value with which you get the smallest squared error.

Table 9.1 lists the home sizes and household sizes of three students in a hypothetical
city. The average student home size in that city is 590 ft2, which we calculated using
data for all the students in the city, not just the ones listed here.10

9. Please resist the temptation to set e as a name for the residuals. The name e may, in principle, be
a valid variable name, but using it might lead to confusion if scientific notation is used for numbers.
See section 5.1.1 for a list of variable names you should avoid.

10. We got the idea of using a table like this one from Hair et al. (1995).
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Table 9.1. Apartment and household size

Apt. size City Diff. HH size Estim. Residual

Paul 430 590 −160 1 480 −50
John 590 590 0 2 640 −50
Ringo 860 590 +270 3 800 +60

If you use 590 ft2 to estimate the size of Paul’s home, you end up with a number that
is 160 ft2 too high.11 If you use the mean to estimate the other students’ home sizes,
then in one case you make a correct prediction and in the other case you underestimate
the student’s home size by 270 ft2. If you take the squares of these differences and sum
them, the result is a total squared deviation of 98, 500 ft4. This number is usually called
the total sum of squares (TSS). In general,

TSS =
∑

(yi − y)
2

This corresponds to the expression you find in the numerator of the formula for the
variance (s2). The TSS is therefore sometimes also called the variation.

Maybe you should not make your prediction using only the mean. You might wish to
use other information you have about the students. After all, it is reasonable to assume
that the size of the home increases with the number of people living there. If all the
students you know have bedrooms that are about 160 ft2, you might think this number
holds true for most other students. So the home would have to have at least 160 ft2 for
each of the students living there, but it is likely to be even larger. An home usually has
at least one bathroom and a kitchen, and you might think that together they take up
about 320 ft2. You might describe this hypothesis using the equation below:

yi = 320 + 160xi

You could use that model to compute an home size for each household size. If you did
this, you would calculate the difference between the actual home size and the home size
you predicted with your model; this is the amount displayed in the last column of the
table. To compare these differences with the TSS we calculated above, you would have
to square these deviations and sum them. If you did this, you would have calculated
the RSS we introduced in section 9.1.1. For your hypothesis, the value of RSS is 8,600.

11. In table 9.1, the difference between the observed value and the predicted mean is calculated as
follows: 430 − 590 = −160.
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If you subtract the RSS from the TSS, you get the model sum of squares (MSS),
which indicates how much you have been able to improve your estimation by using your
hypothesis:

TSS = 98,500
−RSS = 8,600

= MSS = 89,900

The squared residuals that you get when you use household size to predict home size are
about 89,900 smaller than the ones you got without taking this knowledge into account.
That means that the actual home sizes are much closer to your predicted values when
you use household size in making your prediction.

Therefore, the MSS can be regarded as a baseline to measure the quality of our model.
The higher the MSS, the better are your predictions compared with the prediction based
solely on the mean. The mean can be regarded as the standard against which to judge
the quality of your prediction.

In the ANOVA part of the regression output, you will find information about the MSS,
RSS, and TSS in the column labeled SS. The first row of numbers (Model) describes the
MSS, the second (Residual) describes the RSS, and the third (Total) describes the TSS.
If you look at the output on page 266, you will see that our RSS is 881,575,997. The
sum of the squared residuals taking the mean as the estimate (TSS) is 1.145 × 109, and
the difference between these two quantities (MSS) is 263,141,566.

The column labeled df contains the number of degrees of freedom,12 which equals
the number of unknowns that can vary freely. For the MSS, the number of degrees of
freedom is just the number of independent variables included in the model, that is,
k−1, where k is the number of regression coefficients (the constant and all independent
variables). The number of degrees of freedom for the RSS is n−k, where n is the number
of observations. The number of degrees of freedom for the TSS is n−1. The last column
contains the average sum of squares (MS). You may want to compute these numbers
yourself by dividing the first column by the second column (the number of degrees of
freedom).

The model fit table

Here is the model fit table from page 261:

Number of obs = 5407
F( 1, 5405) = 1613.34
Prob > F = 0.0000
R-squared = 0.2299
Adj R-squared = 0.2297
Root MSE = 403.86

12. For a well-written explanation of the concept of degrees of freedom, see Howell (1997, 53).
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Earlier, we showed that the MSS tells you how much the sum of the squared residuals
decreases when you add independent variables to the model. If you were looking at
models with different independent variables, you might want to compare the explanatory
power of those models using the MSS. You could not, however, use the absolute value
of the MSS to do so. That value depends not only on the quality of the model but also
on how much variation there was in the first place as measured by TSS.

To compare models, you must look at how much the model reduces the squared
residuals relative to the total amount of squared residuals. You can do this using the
coefficient of determination, or R2:

R2 =
MSS

TSS
= 1 − RSS

TSS
= 1 −

∑
e2
i∑

(yi − y)
2

R2 represents the squared residuals that are explained by the model as a share of the
total squared residuals. When we say that the model explains a portion of the residuals,
we mean that portion of the residuals of the model without independent variables that
disappears when we use a model with independent variables. For this reason, R2 is
called the explained variation or the explained variance. You will find this statistic in
the model fit table of the Stata output, where it is called R-squared.

Here R2 = 0.23, meaning that household size (the independent variable in our model)
explains 23% of the variation in home size.

R2 is a useful indicator of a model’s explanatory power, but it should not be con-
sidered in isolation. Unfortunately, people often evaluate the quality of a regression
model only by looking at the size of R2, which is not only invalid but also dangerous.
In section 9.3, we will show you why.

One alternative to R2 is the root mean squared error (MSE), which is the square
root of the average residual of the model from the table of ANOVA results:

root MSE =

√
RSS

n − k

This statistic is easy to interpret, because it has the same units as the dependent
variable. In our example, a root MSE of 403.86 can be interpreted as showing that we
are, on average for our data, about 404 ft2 off the mark in predicting a respondent’s
home size with our model. (This interpretation is not completely correct because it is
not a literal average. After all,

√∑
e2
i 6= ∑

ei. But the above interpretation seems
justified to us.)
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There are two further rows of the model fit table that we should talk about here: the
rows labeled “F (1, 5405)” and “Prob > F” (for “Adj R-squared”, see page 274). The
values in these rows are included because we are using a sample to test our regression
model and therefore want some measure of its significance (see chapter 8). The F value
is calculated using the following equation:

F =
MSS/(k − 1)

RSS/(n − k)

This F statistic is the ratio of the two values in the third column of the ANOVA

table. It is F distributed and forms the basis of a significance test for R2. The value
of F is used to test the hypothesis that the R2 we estimated from our sample data is
significantly different from the population value of 0.13 That is, you want to estimate
the probability of observing the reduction in RSS in the model if, in fact, the independent
variables in the model have no explanatory power.14 The value listed for “Prob > F”
gives the probability that the R2 we estimated with our sample data will be observed
if the value of R2 in the population is actually equal to 0.

9.2 Multiple regression

Load data1.dta into working memory:

. use data1, clear

Earlier, we introduced linear regression with one independent variable. A multiple
regression is an extension of the simple linear regression presented in that section. Unlike
simple regression, you can use several independent variables in a multiple regression.
Analogous to (9.1), the model equation of the multiple linear regression is

yi = β0 + β1x1i + β2x2i + · · · + βK−1xK−1,i + ǫi (9.6)

The equation for the simple linear regression has been extended with more X vari-
ables and the attendant regression coefficients. You might want to use a model like this
for two reasons.

In section 9.1.2, you fit a simple linear regression model of the home size on household
income. You were able to explain 23% of the variation in home size with this regression,
and the average error in predicting home size was 404 ft2. If you want to maximize the
predictive power of our model, there is no reason to be satisfied with the performance
of this simple model. You could improve the predictive power of our model by including
other variables. This would be one reason for using a regression with more than one
independent variable.

13. A description of this relationship can be found in Gujarati (2003, 253–260).
14. This F test is often called a test of the null hypothesis—that all coefficients but the constant are 0

(Gujarati 2003, 257). Incidentally, the confidence intervals might not contain the value 0, but the
overall model may nevertheless not be significant.
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A second reason is a bit more complicated. In the previous section, we study how
house size co-varies with household income. You have, however, reason to assume that
household income is related to the size of the household, because more family members
might contribute to the overall household income. At the same time, it is reasonable
to assume that households with more members need more space than those with fewer
members. Thus the regression coefficient that we estimate for household income may
include the effect of household size. It is therefore sensible to ask what the effect of
household income net of the effect of household size would be. This question could be
answered by including another variable, household size, into the model.

We will show you how to fit a multiple linear regression model in Stata and then
interpret the estimated regression coefficients. Then we will present some computations
that are specific to this kind of regression. Finally, we will illustrate what is meant by
the formal phrase “controlling for” when it is used for the interpretation of coefficients
in multiple regression models (section 9.2.3).

9.2.1 Multiple regression using Stata

The Stata command for computing a multiple regression is the same as that for simple
linear regression. You just enter more independent variables at the end of the list of
variables; the order in which you enter them does not matter. You can apply the general
rules for lists of variables (page 43), but remember that the dependent variable is always
the first one in your list.

The output for a multiple linear regression resembles the one for a simple linear
regression except that for each additional independent variable, you get one more row
for the corresponding estimated coefficient. Finally, you obtain the predicted values
using predict and margins as you did earlier.

For example, say that you want to fit a regression model of home size that contains
not only household size and household income but also a location variable for the dif-
ference between East and West Germany and an ownership variable indicating owned
and rented living space. To do this, you will need to recode some of the variables:15

. generate owner = renttype == 1 if !missing(renttype)

. generate east = state>=11 if !missing(state)

15. See chapter 5 if you have any problems with these commands.
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Now you can fit the regression model:

. regress size hhinc hhsize east owner

Source SS df MS Number of obs = 5407
F( 4, 5402) = 1075.80

Model 507558816 4 126889704 Prob > F = 0.0000
Residual 637158747 5402 117948.676 R-squared = 0.4434

Adj R-squared = 0.4430
Total 1.1447e+09 5406 211749.457 Root MSE = 343.44

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0046358 .0001956 23.70 0.000 .0042523 .0050193
hhsize 83.56691 4.396585 19.01 0.000 74.94783 92.18599
east -106.6267 10.88597 -9.79 0.000 -127.9676 -85.28581
owner 366.1249 9.889078 37.02 0.000 346.7383 385.5115
_cons 550.58 12.39905 44.41 0.000 526.2729 574.8872

You interpret the estimated coefficients in a multiple regression model just as you do
in the simple linear regression. The only difference is that the b coefficients are now
estimated controlling for the effect of all the other independent variables. We will
discuss the meaning of that phrase in section 9.2.3. For now, we will confine ourselves
to once again illustrating the formal interpretation of the coefficients.

The regression coefficients reflect the average change in the size of the home as the
independent variable in question increases by one unit, holding all other independent
variables constant. The estimated coefficient might, for example, be interpreted as
saying that “with each additional Euro of household income, the predicted size of the
home increases by an average of about 0.005 ft2”. Similarly, the predicted home size
increases by an average of about 83.567 ft2 for each additional person in the household.

The variables east and owner are dummy variables, or variables that have only two
categories denoted by the values 0 and 1.16 In principle, you interpret these variables
just as you interpret all the other variables. For example, let us look at the owner

variable, which has a value of 0 for all renters and 1 for all owners. For each unit by
which the owner variable increases, the home increases by an average of about 366 ft2.
Because a dummy variable can be increased by one unit only once, we could also say,
“Owners live in homes that are, on average, about 366 ft2 larger than the ones in which
renters live.” Likewise, the homes in East Germany are, on average, around 107 ft2

smaller than the homes in West Germany.

The regression constant indicates how large a home is whose observation has a value
of 0 for all variables included in the model. In the example, this value would refer to
home size for West Germany households with no household income and no household
members. This is clearly useless information. A more sensible interpretation for the
constant can be reached by subtracting from all values of a continuous variable the
average value of that variable. In doing so, that new centered version of the variables will
have a mean of 0, and the constant term of the regression will then refer to observations

16. There are other possibilities for coding binary variables (Aiken and West 1991, 127–130).
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with the average value of the continuous variables. If we center the two continuous
variables of our last example by applying the methods described in chapter 4,

. summarize hhsize

. generate c_hhsize = hhsize - r(mean)

. summarize hhinc

. generate c_hhinc = hhinc - r(mean)

and rerun the regression model using these centered variables,

. regress size c_hhinc c_hhsize east owner, noheader

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

c_hhinc .0046358 .0001956 23.70 0.000 .0042523 .0050193
c_hhsize 83.56691 4.396585 19.01 0.000 74.94783 92.18598

east -106.6267 10.88597 -9.79 0.000 -127.9676 -85.28581
owner 366.1249 9.889078 37.02 0.000 346.7383 385.5115
_cons 940.9296 7.511176 125.27 0.000 926.2047 955.6546

we notice that all estimated coefficients remain the same except the constant. The
predicted house size of renters from West Germany with an average income and average
household size is 941 ft2.

Postestimation commands can also be used after multiple regression models. The
commands margins and marginsplot provide a neat way to illustrate the model results.
In particular, when interpreting complicated models, such illustrations can be quite
helpful. Here we use margins again to calculate the mean predicted values for various
values of hhinc in increments of 10,000 between 0 and 100,000, this time separately
for all combinations of east and owner. We then use marginsplot to show the results
graphically. Before we do all that, we refit the model with the original variables because
it is neither necessary nor advantageous to use centered variables for the graphical
display.
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. regress size hhinc hhsize east owner

. margins, at(hhinc=(0(10000)100000)) over(owner east)

. marginsplot, by(east) xlabel(,angle(forty_five))
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In this figure, the slope of each line represents the influence of the first variable
mentioned in the option at() of margins—household income—on household size.17

The steeper the slope, the stronger is the estimated effect of household income on house
size. Inside each plot, the difference between the two lines represents the estimated
influence of house ownership. The bigger the difference between the two lines, the
stronger is the effect of house ownership on house size. Finally, the difference between
the two corresponding lines of each panel represents the difference in the average house
sizes of West and East Germany.

Note that what you see in these graphs are the estimated effects according to the
specified model. For example, we did not allow for a difference in the effect of house
ownership on house size between East and West Germany. If you suspect that, for
example, in East Germany ownership has less effect on the house size or that effects of
income on house size are stronger in West Germany than in East Germany, you would
need to specify this explicitly in the model through interaction effects (see section 9.4.2).

9.2.2 More computations

Adjusted R2

In adding the two dummy variables and the household size variable to our regression
model, you have increased R2 from 23% to 44%. This is an obvious improvement in the
explanatory power of our model, but you need to put this improvement in perspective:

17. This figure is an example of a conditional-effects plot; read more about conditional-effects plots in
section 9.5.3.
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R2 almost always increases if you add variables to the model.18 The effect of these
additional variables on R2 is offset by the effect of additional observations. Having more
observations tends to result in a lower R2 than you would obtain by fitting the same
model with fewer observations. You can safeguard against misleading increases in R2

by making sure that you have enough observations to test your model. In the example
above, the ratio between observations and independent variables that was used in the
model is quite favorable. However, if you intend to work with only a small number
of observations (for example, if your dataset comprises country-level information for
European countries) and you use many independent variables, R2 will quickly become
an unreliable measure.19

Perhaps it will be easier to understand why a small number of observations leads
to a higher R2 if you imagine a scatterplot with two points. These two points can be
easily connected by a line, which is the regression line. Now you have explained all the
variance, because there are no distances left between either of the points and the line.
But does this mean that the two variables for which you made the scatterplot are really
related to each other? Not necessarily. Imagine that you plotted the gross national
products of Great Britain and Germany against the lengths of their coasts and drew a
regression line. You would be able to explain the difference between the gross national
products of Germany and Great Britain “perfectly”; at the same time, you would be
forced to leave the scientific community.

Given the effects of the number of observations and the number of independent
variables on R2, you may want a more meaningful measure of your model’s explanatory
power. The adjusted R2 (Adj R-squared) results from a correction that accounts for
the number of model parameters k (everything on the right side of your equation) and
the number of observations (Greene 2012, 35)

R2
a = 1 − n − 1

n − k

(
1 − R2

)

where k is the number of parameters and n is the number of observations. As long as
the number of observations is sufficiently large, the adjusted R2 will be close to R2.
Here they differ only in the fourth decimal place.

18. The only situation in which R2 does not increase when you add variables is when the coefficient of
the additional variables is exactly equal to 0. In practice, this case is almost never observed.

19. You will find a list of problems related to the use of R2 in Kennedy (2008, 26–28).
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Standardized regression coefficients

In our regression model, the estimated coefficient for household size is much larger than
the one for household income. If you look only at the absolute size of the estimated co-
efficients, you might be tempted to assume that the household size has a larger influence
on home size than does household income. But you will recognize that the estimated
coefficients reflect how much a dependent variable changes if the independent variable is
changed by one unit. Thus you are comparing the change in home size if household in-
come increases by e 1 with the change in home size if the size of the household increases
by one person!

To compare the effects of variables measured in different units, you will often use
the standardized form of the estimated regression coefficients (b∗k), which are calculated
as follows

b∗k = bk
sXk

sY
(9.7)

where bk is the estimated coefficient of the kth variable, sY is the standard deviation
of the dependent variable, and sXk

is the standard deviation of the kth independent
variable.

The standardized estimated regression coefficients are often called beta coefficients,
which is why you use the beta option with the regress command to display them.
If you want to reexamine the estimated coefficients of your last model in standardized
form, you can redisplay the results (with no recalculation) by typing regress, beta.
If you type this command, Stata displays the standardized (beta) coefficients in the
rightmost column of the table of coefficients:20

. regress, beta noheader

size Coef. Std. Err. t P>|t| Beta

hhinc .0046358 .0001956 23.70 0.000 .2692651
hhsize 83.56691 4.396585 19.01 0.000 .2115789
east -106.6267 10.88597 -9.79 0.000 -.1001275
owner 366.1249 9.889078 37.02 0.000 .3972494
_cons 550.58 12.39905 44.41 0.000 .

The beta coefficients are interpreted in terms of the effect of standardized units.
For example, as household income increases by one standard deviation, the size of the
home increases by about 0.27 standard deviation. In contrast, a one-standard-deviation
increase in household size leads to an increase in home size of about 0.21 standard
deviation. If you look at the beta coefficients, household income has a stronger effect
on home size than does the size of the household.

20. The noheader option suppresses the output of the ANOVA table and the model fit table.
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Understandably, using the standardized estimated regression coefficients to compare
the effect sizes of the different variables in a regression model is quite popular. But
people often overlook some important points in doing so:

• You cannot use standardized regression coefficients for binary variables (for ex-
ample, dummy variables like east and owner). Because the standard deviation of
a dichotomous variable is a function of its skewness, the standardized regression
coefficient gets smaller as the skewness of the variable gets larger.21

• If interaction terms are used (see section 9.4.2), calculating b∗k using (9.7) is invalid;
if interactions are included in your model, you cannot interpret the beta coefficients
provided by Stata. If you want to study effect sizes with beta coefficients that are
appropriate for interactions, you must transform all the variables that are part of
the interaction term in advance, using a z standardization (Aiken and West 1991,
28–48).

• You should not compare standardized regression coefficients estimated with differ-
ent datasets, because the variances of the variables will likely differ among those
datasets (Berk 2004, 28–31).

9.2.3 What does “under control” mean?

The b coefficients from any regression model show how much the predicted value of the
dependent variable changes with a one-unit increase in the independent variable. In a
multiple regression model, this increase is calculated controlling for the effects of all the
other variables. We see the effect of changing one variable by one unit while holding all
other variables constant. Here we will explain this concept in greater detail by using a
simpler version of the regression model used above. Here only the estimated regression
coefficients are of interest to us:

. regress size hhinc hhsize, noheader

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0064471 .0002138 30.16 0.000 .006028 .0068662
hhsize 106.8913 4.904582 21.79 0.000 97.2763 116.5062
_cons 589.1072 13.26019 44.43 0.000 563.1119 615.1025

Look for a moment at the estimated coefficient for household income, which differs
from the coefficients we estimated both for the simple model (page 261) and for the
multiple model (page 272). What is the reason for this change? To find an answer,

21. To make this point clear, we wrote a small do-file demonstration: anbeta.do. This program fits
1,000 regressions with a dichotomous independent variable that takes on the values 0 and 1. In the
first regression, no observation has a value of 1 for the independent variable. In each additional
regression, the number of observations where X = 1 increases by 1 until the last regression, where
all cases have the value 1 for the independent variable. A figure is drawn with the beta coefficients
from each of those 1,000 regressions.
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you need to estimate the coefficient for household income in a slightly different way. To
begin, compute the residuals of the regression of home size on household size:

. regress size hhsize, noheader

(output omitted )

. predict e_fs, resid

When you do this, you create a new variable that stores the residuals: e fs. Before
continuing, you should give some serious thought to the meaning of those residuals.

We suggest that the residuals reflect the size of the home adjusted for household size.
The residuals reflect that part of the home size that has nothing to do with household
size. You could also say that the residuals are that part of the information about home
size that cannot already be found in the information about the household size.

Now compute the residuals for a regression of household income on household size:

. regress hhinc hhsize, noheader

(output omitted )

. predict e_hh, resid
(4 missing values generated)

These residuals also have a substantive interpretation. If we apply the above logic, they
reflect that part of household income that has nothing to do with household size. They
therefore represent household income adjusted for household size.

Now fit a linear regression of e fs on e hh.

. regress e_fs e_hh, noheader

e_fs Coef. Std. Err. t P>|t| [95% Conf. Interval]

e_hh .0064471 .0002138 30.16 0.000 .006028 .0068662
_cons .2920091 5.265751 0.06 0.956 -10.03098 10.615

Take a close look at the b coefficient for e hh, which corresponds to the coefficient in the
multiple regression model you estimated above.22 If you interpreted this estimated coef-
ficient in the same way as one from a simple linear regression, you might say that home
size, adjusted for household size, increases about 0.006 ft2 with each additional Euro of
yearly household income, adjusted for household size. The same interpretation holds
true for the coefficients in the multiple regression model. The regression coefficients
in the multiple regression model therefore reflect the effect of the independent variable
in question on the dependent variable, adjusted for the effect of all other independent
variables. This is what “controlling for” means.

22. Differences are due to rounding errors.
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9.3 Regression diagnostics

It is so easy to fit a multiple regression model using modern statistical software pack-
ages that people tend to forget that there are several assumptions behind a multiple
regression; if they do not hold true, these assumptions can lead to questionable results.
These assumptions are called Gauss–Markov assumptions.23

We will describe each of the Gauss–Markov assumptions in detail in sections 9.3.1,
9.3.2, and 9.3.3, respectively. To illustrate the importance of the underlying assump-
tions, open the data file anscombe.dta and fit the following regression models:24

. use anscombe, clear

. regress y1 x1

. regress y2 x2

. regress y3 x3

. regress y4 x4

The estimated results for each regression model are the estimated coefficients, the
variance of the residuals (RSS), and the explained variance R2. The results of these
four models are nearly identical. For each of them, the R2 rounds to 0.67. Further, the
constant (or intercept) is 3, and the slope of the regression line is 0.5. If you did not
know about the regression assumptions or regression diagnostics, you would probably
stop your analysis at this point, supposing that you had a good fit for all models.

Now draw a scatterplot for each of these variable combinations, and then consider
which model convinces you and which one does not; you can do this by typing the
commands scatter y1 x1, scatter y2 x2, etc., one after the other. We actually used
granscomb1.do to produce the graphs.

23. If you are already familiar with the Gauss–Markov assumptions and how to check them, you
might want to get a quick overview of regression diagnostics within Stata by typing help regress

postestimation.
24. The data file was created by Anscombe (1973).
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The scatterplots in figure 9.3 show, without a doubt, that there is good reason to
be cautious in interpreting regression results. Looking at just the R2 or the estimated
coefficients can be misleading!
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Figure 9.3. The Anscombe quartet

Now we want to show you how to check the Gauss–Markov conditions and correct
any violations of them. Most of the diagnostic techniques we present are graphical, so
you will need to understand the basics of the Stata graph command (see chapter 6). For
an overview of various graphical diagnostic techniques, see Cook and Weisberg (1994).
See Berk (2004, chap. 9) for a discussion on the limitations and potential hazards of
using regression diagnostics.

9.3.1 Violation of E(ǫi) = 0

The OLS estimation of the parameters of a regression model is based on the assumption
that the expected value of the error terms in (9.1) and (9.6) is equal to 0, or formally:
E(ǫi) = 0.

To understand this assumption, you must first understand the meaning of an ex-
pected value. Consider a situation in which you measure the size of the Lopez’s home
from (9.1) over and over again. Sure your measures will be fairly similar in each repli-
cation, but not quite identical. At the end of the day, it might be sensible for you to
calculate the average across all repeated measures. This average value over an infinite
number of hypothetical replications of an experiment is called the expected value; in
our example, it would be the expected value of home size.
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In E(ǫi) = 0, we deal with the expected value of the error term of our regression
model. As we said before, the error term comprises all factors that influence the values
of the dependent variable beyond the influence of the independent variables on our
regression model. Hence, E(ǫi) = 0 means that the average influence of all of these
factors is 0 when we apply the model over and over again. Or, all influences that are
not part of the model cancel out each other out in the long run.

If you estimate the parameters of a model by making such a simplifying assump-
tion, you might ask yourself what happens when the assumption fails. The plain and
simple answer is that your estimates of the regression coefficients will be biased. It
is therefore important to verify that the expected value of the error term is indeed 0.
All the problems that showed up in the Anscombe quartet are due to violations of this
assumption.

To avoid biased estimates of the regression coefficients, you should always check
the underlying assumptions. Checking E(ǫi) = 0 is particularly important because its
violation leads to biased estimators. The assumption will be violated if

• the relationship between the dependent and independent variables is nonlinear,

• some outliers have a strong effect on the estimated regression coefficients, or

• some influential factors have been omitted that are in fact correlated with the
included independent variables.

There are special techniques for testing each of the problems named above. You can
see all three possible causes using a residual-versus-fitted plot, which is a scatterplot of
the residuals of a linear regression against the predicted values. For the regression fit
last, you could build the plot by typing

. regress y4 x4

. predict yhat

. predict resid, resid

. scatter resid yhat

or more simply by using the rvfplot command, which generates one of the specialized
statistical graphs mentioned in section 6.2.

. rvfplot
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With rvfplot, you can use all the graphic options that are available for scatterplots.
Figure 9.4 shows the residual-versus-fitted plots for all regressions in the Anscombe
example.
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Figure 9.4. Residual-versus-fitted plots of the Anscombe quartet

In these graphs, the mean of the residuals is by definition always equal to 0. In a
regression model, the regression coefficients are estimated so that the mean of the sample
residuals is equal to 0. To fulfill the assumption that E(ǫi) = 0, not only must the overall
mean of the residuals be 0 but also the mean of the residuals must be 0 locally, meaning
the mean of the residuals is 0 for any slice of the x axis. This is true only for the first
and the last regression model.

In a regression with only one independent variable, violations of the regression as-
sumptions can be seen with a simple scatterplot of the dependent variable against the
independent variable. The advantage of the residual-versus-fitted plot is that it also
applies to regression models with more than just one independent variable.

In practice, a violation of E(ǫi) = 0 is usually not as obvious as it is in the Anscombe
data. Therefore, we will now introduce some special diagnostic tools for determining
which of the three possibilities might be causing the violation of this assumption.
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Linearity

To understand the following examples, you might want to start with a regression of
home size on household income and household size using the German Socio-Economic
Panel (GSOEP) data:

. use data1, clear

. regress size hhinc hhsize

One of the most important requirements for a linear regression is that the depen-
dent variable can indeed be described as a linear function of the independent variables.
To examine the functional form of the relationship, you should use nonparametric tech-
niques, where you try to have as few prior assumptions as possible. A good example is a
scatterplot reflecting only some general underlying assumptions derived from perception
theory.

You can use a scatterplot matrix to look at the relationships between all variables
of a regression model. Scatterplot matrices draw scatterplots between all variables of a
specified variable list. Here is an example:

. graph matrix size hhinc hhsize

Size of
housing
unit in
ft.^2

HH
Post−Government

Income

Number
of

Persons
in HH

0

5000

0 5000

0

200000

400000

600000

0 200000 400000 600000

0

5

0 5

In each plot, the variable to the side of the graph is used as the Y variable, and
the variable above or below the graph is used as the X variable. In the first line of the
figure are scatterplots of home size against all the independent variables of the regression
model.

However, scatterplots often show the functional form of a relationship only for small
sample sizes. If you deal with larger sample sizes, you will need more information to
improve the scatterplot. For this purpose, Stata allows you to overlay scatterplots with
a scatterplot smoother (Fox 2000).
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One example of a scatterplot smoother is the median trace. To construct a median
trace, you divide the variable plotted on the x axis of a two-way plot into strips and
calculate the median for each strip. Then the medians are connected with straight lines.
In Stata, you get the median trace as plottype mband of two-way graphs. The bands(k)
option of this plottype is used to decide the number of strips into which the x axis
should be divided. The smaller the number of bands, the smoother the line.

. scatter size hhinc, ms(oh) || mband size hhinc, bands(20) clp(solid)
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At first glance, the figure shows that there are many outliers on both variables,
household income and home size. These observations might heavily influence the re-
gression result, but we will deal with that in the next section. Concentrating on the
area of household incomes below e 100,000, we find a slight indication of curvilinearity.
This is a first clue to a violation of the linearity assumption. However, you must be
aware that the functional form of a relationship between two variables may change once
we control for the influence of other variables in a multiple regression model.

One clue about the relationship between one independent variable (for example,
household income) and the dependent variable (home size) if you control for other
independent variables (such as household size) is given by plotting the residuals against
the independent variables.25 But plotting the residuals against one of the independent
variables does not indicate the exact shape of any curvilinearity. For example, a U-
shaped relationship and a logarithmic relationship might produce the same plot under
certain circumstances (Berk and Both 1995).26

25. When the sample size becomes large, it is reasonable to use a scatterplot smoother.
26. You must distinguish between these two kinds of relationships: if there is a U-shaped relationship,

you must insert a quadratic term, whereas it might be sufficient to transform the dependent variable
if there is a logarithmic relationship (see section 9.4.3).
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The component-plus-residual plots—also known as partial residual plots—are a mod-
ification of the plot just described: they allow the determination of the functional form
of the relationship. Within the component-plus-residual plots, instead of using the
residual, the product of the residual and the linear part of the independent variable
are plotted against the other independent variables. What this means is shown in the
following example.

To examine the potential nonlinearity between home size and household income in
the multiple regression model of home size on household income and household size,
first save the residuals as e1:

. predict e1, resid

Then you can add the linear part of household income to the saved residuals and
plot the resulting number against household income. Because we do not want to deal
with the extreme values of household income here, we just use the observations below
household incomes of e 100,000:

. generate e1plus = e1 + _b[hhinc]*hhinc

. scatter e1plus hhinc || mband e1plus hhinc, bands(30) || if hhinc < 100000
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We infer from the graph that home size increases linearly with household income.

You would end up with the same result if you used the command cprplot after you
fit your model using regress; this postestimation command will run the same procedure
for any independent variable of your choice.27After cprplot, you enter the name of the
independent variable for which you want to create the variable.

. regress size hhinc hhsize

. cprplot hhinc, msopts(bands(20))

27. You will also find the augmented component-plus-residual plot from Mallows (1986): acprplot.
Also, instead of the median trace used here, you could use the locally weighted scatterplot smoother
(LOWESS) (Cleveland 1994, 168). Then you would use the option lowess.
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The command cprplot is very convenient. However, it does not allow an if qualifier.
It is therefore good to know how to create the plot “by hand”.

Potential solutions

In our example, the relationships seem to be linear. In the presence of nonlinear
relationships, you need to transform the independent variables involved or include more
quadratic terms in the equation; see section 9.4.3.

Influential cases

Influential cases are observations that heavily influence the results of a regression model.
Mostly, these are observations that have unusual combinations of the regression variables
included in the model (multivariate outliers). As an example, think of a person with a
huge income living in a very small home.

It may not be possible to detect multivariate outliers in a bivariate scatterplot.
Observations that show up as outliers in one scatterplot might in fact turn out to be
normal if you controlled for other variables.

If, for example, the person mentioned had been interviewed in a secondary residence,
the small home size is less surprising. Thus it is often possible to explain multivariate
outliers. Then the solution for this problem is to include a variable in the regression
model that captures the explanation. Here you would have to include in the regression
model a variable that indicates whether this is the primary or secondary residence.

You can find signs of influential cases by using a scatterplot matrix that is built
from the variables included in the regression model. Because each data point of one
of these scatterplots lies on the same row or column as that of the other scatterplot,
you can locate conspicuous observations over the entire set of scatterplots (Cleveland
1993, 275). Our example illustrates this with the help of one observation, which we
have highlighted.
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. generate str label = string(hhnr2009) if hhinc == 507369

. graph matrix size hhsize hhinc, mlab(label)
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A more formal way to discover influential cases is to use DFBETAs. The computation
of DFBETAs has a simple logic: First, you fit a regression model, and then fit it again
with one observation deleted. Then you compare the two results. If there is a big
difference in the estimated coefficients, the observation that was excluded in the second
computation has a big influence on the coefficient estimates. You then repeat this
technique for each observation to determine its influence on the estimated regression
coefficients. You compute this for each of the k regression coefficients separately. More
formally, the equation for computing the influence of the ith case on the estimation of
the kth regression coefficient is

DFBETAik =
bk − bk(i)

se(i)/
√

RSSk

where bk is the estimated coefficient of variable k, bk(i) is the corresponding coefficient
without observation i, and se(i) is the standard deviation of the residuals without obser-
vation i. The ratio in the denominator standardizes the difference so that the influences
on the estimated coefficients are comparable (Hamilton 1992, 125).

In Stata, you compute values for DFBETAik with the dfbeta command. You enter
this command after the regression command, with a variable list in which you specify
the coefficients for which you want to view the change. If you do not specify a variable
list, all coefficients are used. The results of the command dfbeta are stored in variables
whose names begin with dfbeta.

Typing

. regress size hhinc hhsize

. dfbeta
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generates two variables: dfbeta 1 and dfbeta 2. Both variables contain, for each
observation, its influence on the estimated regression coefficient. If there are indeed
influential cases in your dataset, you can detect them by using box plots with marker
labels for the outliers:

. graph box _dfbeta*, marker(1, mlab(hhnr2009) ms(i))
> marker(2, mlab(hhnr2009) ms(i))
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There are two data points that decrease the estimated coefficients for household income
very much. We note that are no data points acting in the opposite direction. Moreover,
there are also two data points that increase the estimated coefficients of household size,
without having other data points balancing them out. Looking at the marker labels, we
realize that the data points that decrease the coefficient of household income stem from
the same households as those increasing the coefficient of household size. We consider
observations from those households to be conspicuous.

More formally, values of |DFBETA| > 2/
√

n are considered large (Belsley, Kuh, and
Welsch 1980, 28).28 In our model, several observations exceed this boundary value.
With

. foreach var of varlist _dfbeta* {

. list persnr `var´ if (abs(`var´) > 2/sqrt(e(N))) & !missing(`var´)

. }

you obtain a list of these observations.29

28. Other authors use 1 as the boundary value for DFBETA (Bollen and Jackman 1990, 267).
29. The command foreach is explained in section 3.2.2. The expression abs() is a general Stata func-

tion that returns the absolute value of the argument included in the parentheses (see section 3.1.6).
Finally, e(N) is the number of observations included in the last regression model fit (see chapter 4).
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Another way to detect outliers is to use the added-variable plot (partial regression
plot). To create the added-variable plot of the variable X1, you first run a regression
of Y on all independent variables except X1. Then you run a regression of X1 on all
remaining independent variables. You then save the residuals of both regressions and
plot them against each other.30

In Stata, you can also create added-variable plots by using the postestimation com-
mand avplot or avplots. avplot creates the added-variable plot for one explicitly
named independent variable, whereas avplots shows all possible plots in one graph. In
our example, we also highlight observations from the household that we considered to
be suspicious above:

. generate suspicious = string(hhnr2009) if inlist(hhnr2009,82507,140421)

. avplots, mlab(suspicious) mlabpos(6)
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In these plots, points that are far from the regression line are multivariate outliers. These
kinds of observations have more potential to influence the regression results. Here some
observations are conspicuous in that household income is higher than you would assume
by looking at the values of the remaining variables. In the plots shown here, we see that
the observations from the conspicuous households cause concern yet again.

Hamilton (1992, 128–129, 141) recommends using an added-variable plot where the
size of the plot symbol is proportional to DFBETA. To do this, you must create the plot
yourself. In the multiple linear regression we used above, you would create such a plot
for household income as follows:31

30. The logic behind added-variable plots corresponds to the way the b coefficients are interpreted in a
multiple regression model (see section 9.2.3). A scatterplot of the residuals that were created there
would be an added-variable plot.

31. For this example, we use the variable dfbeta 1, which we created on page 288. The x axis of this
graph stems from the variable label created automatically by the command predict. If you want
to change these labels, see section 6.3.4.
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. regress size hhsize

. predict esize, resid

. regress hhinc hhsize

. predict ehhinc, resid

. generate absDF = abs(_dfbeta_1)

. graph twoway || scatter esize ehhinc [weight = absDF], msymbol(oh)
> || lfit esize ehhinc, clp(solid)
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In Stata graphs, you can control the size of the plot symbol by using weights. Here
it is not important what kind of weights (fweights or aweights, for example) you use.
In this example, you must pay attention to possible negative values of DFBETA, so you
can compute the absolute values of DFBETA first and use these values for weighting.32

The previous figure shows that the multivariate outliers identified before have an
appreciable influence on the regression line. More generally, we seem to find the in-
fluential cases mainly in the upper region of income, regardless of the other variables.
Those few observations with high income have a disproportionately strong influence on
the regression result.

So far, the impact of single observations has been examined separately for the dif-
ferent coefficients. If you have many independent variables, you will find it more com-
plicated to interpret the many DFBETA values. With Cook’s D, you have a statistic
available that estimates the effect of one observation on all regression coefficients si-
multaneously (Fox 1991, 84) and hence the influence of one observation on the entire
regression model.

32. You will find some general remarks about weights in section 3.3.
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The idea behind Cook’s D is that the influence of one observation on the regression
model is composed of two aspects: the value of the dependent variable and the com-
bination of independent variables. An influential case has an unusual value on Y and
an unusual combination of values on the Xs. Only if both aspects are present will the
estimated coefficients be strongly affected by this observation. The graphs in figure 9.5
clarify this. The graphs present scatterplots of home size against the income of five
Englishmen in 1965, 1967, and 1971.
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Figure 9.5. Scatterplots to picture leverage and discrepancy

In the first scatterplot, which shows the year 1965, Sgt. Pepper has an extraordi-
narily large home given his income. Sgt. Pepper’s income is, however, anything but
extraordinary: it is equal to the mean net income of the five Englishmen. We draw
two regression lines in this picture. The dotted line is the regression line that results
from a regression without Sgt. Pepper. When Sgt. Pepper is included in the regression,
the regression line is shifted upward. There is no change in the slope of the line (the b
coefficient of income).

In the scatterplot for 1967, Sgt. Pepper has an extraordinarily high income. The size
of his home corresponds exactly, however, to the square footage we would expect from
our model. Sgt. Pepper therefore has an extraordinarily large value of X but, given
this value for X, a quite common Y value. The regression lines that result from the
regressions with and without Sgt. Pepper are identical in this case.
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In the scatterplot for 1971, Sgt. Pepper has an extraordinarily high income and, for
this income, an extraordinarily small home. Here both aspects mentioned above are
present. Accordingly, the regression line changes.33

The idea that the effect of a certain point is determined by the extreme values of X
and Y can be described mathematically as

influence = leverage × discrepancy (9.8)

where the leverage signifies how extraordinary the combination of the X values is (as
in the second scatterplot) and the discrepancy signifies how extraordinary the Y value
is (as in the first scatterplot). Because leverage and discrepancy are multiplied, the
influence of any given observation is equal to 0 if one or both aspects are 0.

To compute the influence as shown in (9.8), you need some measures of the leverage
and the discrepancy. First, look at a regression model with only one independent
variable. Here the leverage of a specific observation increases with its distance from the
mean of the independent variable. Therefore, a measure of the leverage would be the
ratio of that distance to the sum of the distances of all observations.34

When there are several independent variables, the distance between any given ob-
servation and the centroid of the independent variables is used, controlling for the
correlation and variance structure of the independent variables (see also Fox [1997, 97]).
In Stata, you obtain the leverage value for every observation by using the predict lev,

leverage command after the corresponding regression. When you type that command,
Stata saves the leverage value of every observation in a variable called lev.

To measure the discrepancy, it seems at first obvious that you should use the residuals
of the regression model. But this is not in fact reasonable. Points with a high leverage
pull the regression line in their direction, and therefore they may have small residuals. If
you used residuals as a measure of discrepancy in (9.8), you might compute small values
for the influence of an observation, although the observation changed the regression
results markedly.35

Hence, to determine the discrepancy, you need a statistic that is adjusted for the
leverage. The standardized residual e′i is such a statistic. You can obtain the values
of the standardized residuals by using the predict varname, rstandard command,
which you can enter after a regression.36

33. Think of the regression line as a seesaw, with the support at the mean of the independent variable.
Points that are far away from the support and the regression line are the most influential.

34. Specifically,

hi =
1

n
+

(xi − x)2
Pn

j=1
(xj − x)2

35. This can be demonstrated with the fourth graph in the Anscombe quartet (page 280). If you
computed the influence of this outlier with (9.8) and thereby used the residuals as a statistic for
discrepancy, the influence of this outlier would be equal to 0.

36. You can choose any variable name for varname.
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After finding a statistic for both discrepancy and leverage, you can multiply the two
statistics together in accordance with (9.8). But you should provide an appropriate
weight for which to multiply each value. We leave that task to the statisticians. Cook
(1977) suggested the following computation:

Di =
hi

1 − hi︸ ︷︷ ︸
leverage

× e
′2
i

k + 1︸ ︷︷ ︸
discrepancy

Here e′i is the standardized residual and hi is the leverage of the ith observation.37

Values of Cook’s D that are higher than 1 or 4/n are considered large. Schnell (1994,
225) recommends using a graph to determine influential cases. In this graph, the value
of Cook’s D for each observation is plotted against its serial number within the dataset,
and the threshold is marked by a horizontal line.

To construct this graph, you must first compute the values for Cook’s D after the
corresponding regression. You do this with the option cooksd of the postestimation
command predict:

. regress size hhsize hhinc

. predict cooksd, cooksd

Then you save the threshold in a local macro (max) using the number of observations
in the last regression model, which is stored by Stata as an internal result in e(N) (see
chapter 4 and section 12.2.1):

. local max = 4/e(N)

37. There is a useful teaching tool you can see by typing the command regpt, which is taken from
an ado-file programmed by the Academic Technology Services of the University of California–Los
Angeles. To learn more about ado-files, see chapter 12; to learn more about ado-files provided over
the Internet, see chapter 13.
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Now you build a variable index, which contains the serial observation number, and
use this variable as the x axis on our graph. Next construct the graph with a logarithmic
y axis:

. generate index = _n

. scatter cooksd index, yline(`max´) msymbol(p) yscale(log)
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The figure shows many observations that are above the critical value, especially those
with a comparatively high income:

. generate bigcook = cooksd > `max´

. tabulate bigcook, summarize(hhinc)

Summary of HH Post-Government
Income

bigcook Mean Std. Dev. Freq.

0 35570.493 20567.621 5195
1 75854.632 79519.082 212

Total 37149.971 26727.972 5407

In summary, the analyses you ran in this section show a clear finding: using these
diagnostic techniques, you found observations from two households with high incomes
to be conspicuous. The results of the model are much more strongly affected by these
observations than by all the other observations with low, medium, or high (but not very
high) income. Read on to learn what you might do with those high influential data
points.
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Potential solutions

You may wonder what to do when influential observations are present. If an influ-
ential case can be attributed unquestionably to a measurement error, you should either
correct the error or delete the observation from the file. If influential observations result
from extreme values of the dependent variable, it is reasonable to use median regression
(section 9.6.1).

Almost always, however, influential observations result from an incompletely spec-
ified model. Exceptional cases are in this case exceptional only because our theory
explains them insufficiently. As in our example, where observations with a high income
influence the regression extraordinarily, you should ask if another factor that is typically
related to high (or to low) income influences home size. With right-skewed distribu-
tions, such as that of income, you may want to change the model to use the logarithm
of household income instead of household income itself. In the current context, this
means that household income is supposed to be in a logarithmic relationship to home
size: the higher the household income gets, the smaller the change in home size with
each additional Euro of household income.

If none of those solutions fits your needs, you may want to drop the highly influential
observations from your dataset and run the regression again. If you do so, however, you
have to report both results, the one with and the one without the highly influential
cases. We would not trust any substantial statement that is visible in just one of these
results.

Omitted variables

Variables are called omitted variables or omitted factors if they influence the dependent
variable and are at the same time correlated with one or more of the independent vari-
ables of the regression model. Strictly speaking, nonlinear relationships and influential
cases are omitted factors, too. In the first case, you may have overlooked the fact that
an independent variable does not have the same influence on the dependent variable
throughout the range of the dependent variable. In the second case, you may have ne-
glected to model your theory adequately or overlooked a mechanism that would explain
the outliers.

To figure out which variables have been omitted, you can begin by graphing the
residuals against all variables that are not included in the model. But this is obviously
possible only for those variables that are included in the data file. Even if these graphs
show no distinctive features, there still may be a problem. This diagnostic tool is
therefore necessary but not sufficient.

Identifying omitted factors is, first of all, a theoretical problem. Thus we warn
against blindly using tools to identify omitted variables.
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Multicollinearity

In trying to include all important influential factors in the model, there is another
risk called multicollinearity. We will introduce an extreme case of multicollinearity
in section 9.4.1 when we discuss how to include categorical independent variables in
regression models. If there is a perfect linear relationship between two variables of the
regression model,38 Stata will exclude one of them when calculating the model.

But even if the two variables are not a perfect linear combination of each other, some
problems can arise: the standard errors of the estimated coefficients might increase,
and there might be an unexpected change in the size of the estimated coefficients or
their signs. You should therefore avoid including variables in the regression model
haphazardly. If your model fits the data well based on R2 but nevertheless has a few
significant estimated coefficients, then multicollinearity may be a problem.

Finally, you can use the estat vif command to detect multicollinearity after re-
gression. This command gives you what is called a variance inflation factor for each
independent variable. See Fox (1997, 338) for an interpretation and explanation of this
tool.

9.3.2 Violation of Var(ǫi) = σ2

The assumption that Var(ǫi) = σ2 requires that the variance of the errors be the same
for all values of the independent variables. This assumption is called homoskedastic-
ity, and its violation is called heteroskedasticity. Unlike the violation of E(ǫi) = 0,
heteroskedasticity does not lead to biased estimates. But when the homoskedasticity
assumption is violated, the estimated coefficients of a regression model are not effi-
cient. With inefficient estimation, there is an increasing probability that a particular
estimated regression coefficient deviates from the true value for the population. That
is, heteroskedasticity causes the standard errors of the coefficients to be incorrect, and
that obviously has an impact on any statistical inference that you perform.

There are many possible reasons for heteroskedasticity. Frequently, you find het-
eroskedasticity if the dependent variable of your regression model is not symmetric.
To test the symmetry of variables, you will find the graphical techniques described in
section 7.3.3 to be very useful.

Stata has a special technique for checking the symmetry of a distribution, called
a symmetry plot (Chambers et al. 1983, 29). To construct a symmetry plot, you first
determine the median. Then you compute the distances between the observations next
in size and the median. In a symmetry plot, you plot these two quantities against each
other. You do the same with the next observation, and so on. If all distances are the
same, the plot symbols will lie on the diagonal. If the distances of the observations
above the median are larger than those below, the distribution is right-skewed. If the
reverse is true, the distribution is left-skewed.

38. For example, x1 = 2 + x2.
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In Stata, the symplot command graphs a symmetry plot of a given variable. Here
we graph the symmetry plot for home size:

. symplot size
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The figure shows an obviously right-skewed distribution of the home size variable. With
this kind of distribution, there is risk of violating the homoskedasticity assumption.

The residual-versus-fitted plot (Cleveland 1994, 126) is the standard technique for
examining the homoskedasticity assumption. We want to introduce one variation of
this plot that emphasizes the variance of the residuals. You therefore divide the x axis
into k groups with the same number of observations and then draw a box plot of the
Studentized residuals for each group.

To do this, you again run the regression model to get the predicted values and the
Studentized residuals:

. regress size hhinc hhsize

. predict yhat

. predict rstud, rstud
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For this example, we chose the number of groups used for the x axis so that each
box plot contains roughly 200 observations. In the graph, you can see that there is a
slight increase in the variance of residuals.

. local groups = round(e(N)/200,1)

. xtile groups = yhat, nq(`groups´)

. graph box rstud, over(groups)
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Potential solutions

Often you can transform the dependent variable to remove heteroskedasticity. The
transformation should end in a symmetric variable. For right-skewed variables, a log-
arithmic transformation is often sufficient. Also the boxcox command allows you to
transform a variable so that it is as symmetric as possible. You will find more discus-
sion of the Box–Cox transformation in section 9.4.3.

If transforming the dependent variable does not remove heteroskedasticity in the re-
gression model, you cannot use the standard errors of the estimated coefficients (because
they are given in the regression output) for a significance test. If you are nevertheless
interested in a significance test, you might want to try the vce(robust) option in the
regression command. When you use this option, the standard errors are computed so
that homoskedasticity of the error terms need not be assumed. When you use the svy

prefix to analyze data from a complex sample (as discussed in section 8.2.2), this implies
robust estimates of the standard errors that do not assume homoskedasticity; so this
assumption is not required in such situations.



9.3.3 Violation of Cov(ǫi, ǫj) = 0, i 6= j 299

9.3.3 Violation of Cov(ǫi, ǫj) = 0, i 6= j

What Cov(ǫi, ǫj) = 0, i 6= j, means is that the errors are not correlated. The violation
of this assumption is often called autocorrelation or correlated response variance.

Typical violations of no correlation happen in the context of the complex samples
discussed in section 8.2.2, when respondents from one primary sampling unit differ
systematically from respondents in another. This can be further accentuated when
there is just one interviewer per primary sampling unit. Consider, for example, that
you have surveyed home size by letting the interviewers estimate the size instead of
asking the respondent. Here it is reasonable to assume that some of the interviewers
tend to overestimate the sizes of the homes, whereas others tend to underestimate them.
All the observations from one interviewer should be similar in over- or underestimating
home size. A similar situation occurs if all people in a household are interviewed. Here,
as well as in the above, there may be factors within the unobserved influences (ǫi) that
are the same for all members of a household.

Autocorrelation leads to inefficient estimation of the coefficients. This means that
the standard errors shown in the output of regress are too small, that the confidence
intervals are too narrow, and that conclusions of statistical significance may be declared
inappropriately.

In most instances, the wrong standard errors can be corrected by using the svy

prefix, as explained in section 8.2.2. Here are the results of the regression after applying
the settings from page 220:

. generate sampleR = sample

. replace sampleR = 2 if sample==4
(150 real changes made)

. svyset psu [pweight=xweights], strata(sampleR)

pweight: xweights
VCE: linearized

Single unit: missing
Strata 1: sampleR

SU 1: psu
FPC 1: <zero>
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. svy: regress size hhinc hhsize
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 4 Number of obs = 5407
Number of PSUs = 515 Population size = 80645043

Design df = 511
F( 2, 510) = 163.75
Prob > F = 0.0000
R-squared = 0.2761

Linearized
size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0062389 .0013269 4.70 0.000 .0036321 .0088457
hhsize 99.84128 14.02799 7.12 0.000 72.28165 127.4009
_cons 586.8209 27.86148 21.06 0.000 532.0838 641.558

If you compare these results with those computed without the svy prefix (page 277),
you will find that the confidence intervals of all coefficients have become much larger
now. This is often the case in complex surveys. You should therefore normally not trust
the inference statistics without respecting the complex nature of the sample.

Autocorrelation is also a key concept in time-series analysis, because successive ob-
servations tend to be more similar than observations separated by a large time span
(serial autocorrelation). The Durbin–Watson test statistic has been developed for time-
series analysis; in Stata, it is available using the estat dwatson command after regres-
sion. However, you must define the data as a time series beforehand.39

9.4 Model extensions

Here we will introduce three extensions to the linear model you have seen so far. These
extensions are used for categorical independent variables, interaction terms, and mod-
eling curvilinear relationships.

39. Because we do not discuss time-series analysis in this book, we refer you here to the online help

tsset and to the manual entry [U] 26.14 Models with time-series data.
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9.4.1 Categorical independent variables

Be careful when including a categorical variable with more than two categories in the re-
gression model. Take, for example, marital status. The variable mar has five categories,
namely, married, single, widowed, divorced, and separated:

. use data1, clear
(SOEP 2009 (Kohler/Kreuter))

. tabulate mar

Marital Status
of Individual Freq. Percent Cum.

Married 3,080 56.93 56.93
Single 1,394 25.77 82.70
Widowed 400 7.39 90.09

Divorced 449 8.30 98.39
Separated 87 1.61 100.00

Total 5,410 100.00

It would not make sense to include marital status in the same way as all other
independent variables; that would be like assuming that going from being married to
single has the same effect on home size as going from widowed to divorced. However,
you would assume this implicitly when a categorical variable with several categories
is included in a regression model without any changes. What you need instead are
contrasts between the individual categories.

Let us say that you want to include a variable that differentiates between married
and unmarried respondents. To do so, you can create a dichotomous variable with the
response categories 0 for not married and 1 for married.

. generate married = mar == 1 if !missing(mar)

You can interpret the resulting b coefficient for this variable just as for other dummy
variables; accordingly, you could say that married respondents live on average in a
space that is b square feet bigger than the space where unmarried people live. All other
contrasts can be built in the same way:

. generate single = mar == 2 if !missing(mar)

. generate widowed = mar == 3 if !missing(mar)

. generate divorced = mar == 4 if !missing(mar)

. generate separated = mar == 5 if !missing(mar)
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Each contrast displays the difference between respondents with one particular marital
status and all other respondents. In the following regression, we use the contrasts as
independent varibales; however, we leave out one of them—widowed:

. regress size hhinc hhsize married single divorced separated, noheader

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0063692 .000213 29.90 0.000 .0059515 .0067868
hhsize 107.6239 5.178204 20.78 0.000 97.47256 117.7753

married -61.45118 21.82667 -2.82 0.005 -104.2403 -18.6621
single -166.3739 22.7343 -7.32 0.000 -210.9423 -121.8055

divorced -159.533 26.5044 -6.02 0.000 -211.4923 -107.5737
separated -153.5253 45.66446 -3.36 0.001 -243.0461 -64.00455

_cons 683.6544 20.35964 33.58 0.000 643.7413 723.5675

The reason for dropping one of the contrasts is that of the five new dummy variables,
only four are needed to know the marital status of each person. If four dummies indicate
a person is neither married, nor single, nor widowed, nor divorced, then the person
must be separated from his or her spouse. The fifth dummy variable tells you nothing
that cannot be gleaned from the other four because there are only five possibilities.
Computationally, it is not even possible to estimate coefficients on all five dummies
in addition to the constant term because those five dummies sum to 1 and hence are
perfectly correlated with the constant term.

The category whose dummy variable is not included in the model is commonly
termed the reference category or base category. For the interpretation of the model, it
is very important to know which is the base category. To understand this, remember
that the constant represents the predicted value for respondents with 0 on all covariates.
In our case, these are respondents who are widowed (and have no household income and
zero household size), because the widowed dummy was not included in the model. The
predicted home size of persons with a different family status differs by the amount of the
corresponding b coefficient. Therefore, married respondents have, on average, a home
size that is 61.451 ft2 smaller than those of respondents who are widowed. Even smaller
are the homes of single respondents—about 166.374 ft2 smaller than those of widowed
respondents. All other estimated coefficients are interpreted accordingly.

The coefficients you estimated may be somewhat surprising. It would be more
reasonable if married respondents have on average larger home sizes than those who are
widowed, other things constant; however, according to the model, the opposite is true.
Upon closer inspection, though, the results are more reasonable. Widowed respondents
typically live alone, which means their household size is 1. Whereas married couples
have an average home size 61.451 ft2 less than widowed people, holding all other factors
constant, the hhsize variable’s estimated coefficient of 107.624 implies that a married
couple with no children has, in fact, a home that is an average of 46.173 ft2 larger than
a widowed person living alone.

Categorical variables such as mar are frequently used in regression models. Stata
therefore provides two easy ways to deal with them, namely, the option gen(newvar) of
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tabulate and the factor-variables notation ([U] 11.4.3 Factor variables). The former
instructs Stata to automatically construct dummy variables for the categories shown in
the table. Here we use this technique to create the variables mar 1 to mar 5:

. tabulate mar, generate(mar_)

You can include those in your regression model. It is usually a good idea to decide
on a contrast that will be left out and used as a comparison category, but which one
you use does not affect the results substantively.

Factor-variable notation provides an extended way to specify variable lists and is
allowed for most estimation and postestimation commands. Factor-variable notation
can also be used to add categorical variables to regression models. The basic idea here
is that you mark a variable as categorical by putting the operator i. in front of it.
If you do this with an independent variable in a regression model, Stata includes this
variable as a set of dummy variables in the model. It therefore creates virtual variables
in the background, chooses the base category, and estimates the model using the set of
virtual dummy variables. Here is an example with marital status (mar) and the social
class according to (Erikson and Goldthorpe 1992) (egp).40

. regress size hhinc hhsize i.mar i.egp, noheader

size Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc .0061854 .0002441 25.34 0.000 .0057068 .006664
hhsize 113.7141 5.988777 18.99 0.000 101.9733 125.4548

mar
2 -103.2019 14.60338 -7.07 0.000 -131.8312 -74.57252
3 58.4887 22.35011 2.62 0.009 14.67218 102.3052
4 -82.69869 20.54655 -4.02 0.000 -122.9794 -42.41798
5 -95.12313 42.51988 -2.24 0.025 -178.4817 -11.76454

egp
2 -57.52079 24.52347 -2.35 0.019 -105.5981 -9.443481
3 -67.02651 29.92765 -2.24 0.025 -125.6985 -8.354513
4 -25.83427 28.39558 -0.91 0.363 -81.5027 29.83415
5 31.1338 32.66333 0.95 0.341 -32.9014 95.169
8 -81.56398 26.90431 -3.03 0.002 -134.3088 -28.81912
9 -105.6007 25.78623 -4.10 0.000 -156.1536 -55.04781
15 -171.8781 30.35601 -5.66 0.000 -231.3899 -112.3663
18 -43.00595 24.4626 -1.76 0.079 -90.96394 4.95203

_cons 668.938 28.76018 23.26 0.000 612.5547 725.3212

40. The categories of egp are not numbered consecutively because some of them had to be combined
for reasons of data confidentiality.
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A number of possibilities exist that let you fine-tune the way factor variables are
handled in regression models. To start with, the operator ib. lets you control the base
category. If you type

. regress size hhinc hhsize ib4.mar ib(#3).egp

Stata will choose the category with the value 4 as base category for mar and the category
with the third highest value for egp. Other possibilities are ib(first) for the smallest
value, ib(last) for the largest value, and ib(freq) for the most frequent value.

It is also possible to select a subset of categories for the inclusion into the model.
This is done by directly placing a number or a numlist behind the i. operator. With

. regress size hhinc hhsize i2.mar i(1/5).egp

there will be a virtual dummy variable for single versus anything else in the regression
model, and there will be four virtual dummies for the categories 2, 3, 4, and 5 of egp

versus anything else.

Finally, you can apply factor-variable operators to groups of variables by putting
variable names in parentheses. This is useful if you have several categorical variables in
your regression model. We provide an example for mar and egp:

. regress size hhinc hhsize i.(mar egp)

9.4.2 Interaction terms

Interaction terms are used to investigate whether the influence of one independent vari-
able differs systematically with the value of another independent variable. To discuss
interaction terms, we return to our analysis of the gender–wage gap from chapter 1.
There we tried to explain personal income by gender and employment status for all
respondents who are not unemployed. Specifically, we fit the following model:

. use data1, clear

. generate men = sex==1

. replace emp = . if emp==5

. replace income = . if income == 0

. regress income men i.emp

The analysis showed that women earn less on average than men and that this differ-
ence can be only partly explained by the differences in full-time, part-time, or irregular
occupation between men and women.

Assume that you hypothesize that income depends not only on the respondents’
gender and occupational status but also on their age. Here you should include age in
your regression model. Say that you also assume that the gender–wage gap is stronger
the older people are. There are at least two good reasons for this assumption:
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• Women interrupt their occupational careers for child care more frequently than
men. Those interruptions are accompanied with difficulties returning to the labor
market at an adequate level. As a result of the corresponding mismatch between
women’s qualifications and the demands of their jobs, women gradually fall behind
during a lifetime. The gender–wage gap should be therefore particularly strong at
the end of careers.

• In the past, Germany’s families were dominated by the male breadwinner model,
which led women to invest less in education and occupational careers. However,
this role model has changed. Modern women have the same or even better educa-
tion than men, and they are far less ready to give up their careers for child care.
It is therefore sensible that the gender–wage gap is particularly strong among the
older women who grow up during the domination of the male breadwinner model.

Both arguments could lead us to hypothesize that the effect of gender on income
increases with age. Such effects that vary with values of a third variable are called
interaction effects, which you can include in a regression model by multiplying the
relevant variables or by using factor-variable notation. We start by illustrating the hard
way of creating interactions (that is, multiplying the relevant variables).

In our example, gender and age are the relevant variables for the interaction effect.
To extend the regression model, you first need to create a variable for age using year of
birth (ybirth) and the date of the interview:

. generate age = 1997 - ybirth

It is advantageous to center continuous variables, such as length of education or age,
before they are included in a regression model, for several reasons. This is especially
true in the presence of interaction terms (Aiken and West 1991).

To center a variable, subtract the mean from each value. However, you need to
compute the mean only for those respondents who will later be included in the regression
model. To do this, we use the function missing() with more than one argument. The
function then returns 1 if at least one of the arguments inside the parentheses is missing
and returns 0 otherwise:

. summarize age if !missing(income,emp,men,age)

. generate age_c = age - r(mean)

To build the interaction term, multiply both variables that are part of the interaction:

. generate menage = men * age_c
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You can now extend the linear regression model to include men and age c as well as
the interaction term, menage, that you just created:

. regress income i.emp men age_c menage

Source SS df MS Number of obs = 2886
F( 5, 2880) = 78.38

Model 5.9995e+11 5 1.1999e+11 Prob > F = 0.0000
Residual 4.4090e+12 2880 1.5309e+09 R-squared = 0.1198

Adj R-squared = 0.1182
Total 5.0089e+12 2885 1.7362e+09 Root MSE = 39127

income Coef. Std. Err. t P>|t| [95% Conf. Interval]

emp
2 -16120.07 2076.971 -7.76 0.000 -20192.57 -12047.57
4 -29188.95 2669.66 -10.93 0.000 -34423.58 -23954.31

men 12151.78 1668.855 7.28 0.000 8879.512 15424.06
age_c 190.1975 94.01761 2.02 0.043 5.848915 374.5461
menage 412.3474 130.3497 3.16 0.002 156.7592 667.9356
_cons 31363.58 1408.624 22.27 0.000 28601.57 34125.6

Let us interpret each of the fitted coefficients of this model. We start with the
simple ones. The constant, as always, shows the predicted value for those observations
that have 0 values on all independent variables in the model: the estimated average
income of full-time employed women of average age is e 31,364. The interpretation of
the coefficients for categories 2 and 4 of employment status is also straightforward: part-
time employed respondents have, on average, e 16,120 less income than the full-time
employed respondents, and those who are irregularly employed earn e 29,189 less than
the full-time employed.

Now on the interaction terms. For ease of interpretation, we focus on full-time
employed persons. That is, we set all empty dummy variables to 0 and get the following
formula for calculating the predicted values from the above regression model:

ŷi = 31364 + 12152 × men + 190 × age c + 412 × men× age c

where the numbers correspond to the respective estimated regression coefficients. Let
us use this formula to calculate the predicted values for women with an average age.
Bypassing rounding of estimated coefficients, we can do this with Stata:

. display _b[_cons] + _b[men]*0 + _b[age_c]*0 + _b[menage]*0*0
31363.583

Because the values for both variables, men and age, are 0 for women with average age,
all coefficients except the constant drop out of the equation. Hence, the predicted value
is the constant, that is, e 31,364.

Now let’s choose male respondents of average age:

. display _b[_cons] + _b[men]*1 + _b[age_c]*0 + _b[menage]*1*0
43515.367
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Note that neither the coefficient for centered age nor the coefficient for the interaction
term contributes to the result. Compared with the last result, the predicted value is
only increased by the coefficient for men, which is one of the two constituent effects of
the interaction. The interpretation of this constituent effect is this: At average age,
the average earnings of men are around e 12,152 higher than the average earnings of
women.

We now turn to the second constituent effect of the interaction. Calculate the
predicted values for female respondents who are one year older than the average age:

. display _b[_cons] + _b[men]*0 + _b[age_c]*1 + _b[menage]*0*1
31553.781

Here the coefficient for men and for the interaction term is dropped from the equation.
Compared with females at average age, the predicted value of females that are one year
older is increased by the coefficient of the constituent effect of age. Hence, for females,
an increase in age of one year corresponds to an increase in average income of around
e 190.

Finally, let us consider male respondents who are one year older than the average:

. display _b[_cons] + _b[men]*1 + _b[age_c]*1 + _b[menage]*1*1
44117.912

This time, all coefficients are being used. If we compare the predicted values of
male respondents of average age with those one year older, we see that they differ by
the amount of the constituent effect of age and by the amount of the interaction term.
Therefore, the effect of age on income is on average e 412 stronger for men than for
women, or stated differently, male income increases faster with age than does female
income.

There is also a second interpretation of the interaction term. To see this, compare
the predicted values of female respondents who are one year older than the average
with male respondents of the same age. The two values differ by the amount of the
constituent effect for men and by the interaction term. Therefore, the effect of gender
is on average e 412 stronger when we compare men and women one year above the
average age than when we compare men and women of average age. The same happens
with each increase of age by one unit. Hence, the gender–wage gap gets stronger the
older the respondents are.

We wrote above that interaction terms could be specified by generating variables
that are the product of existing variables or by using factor-variable notation. For the
remainder of this section, we show some examples of factor-variable notation.

With factor-variable notation, if you place # between two variable names, it means
that the two variables are interacted, whereby both variables are considered to be cat-
egorical. That is to say, the command

. regress income i.sex i.emp sex#emp
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specifies a regression model that includes one virtual dummy variable for the two cat-
egories of sex, two virtual dummy variables for the three categories of emp, and two
virtual product variables of each product of the gender category with the two employ-
ment categories.

You can further simplify the command by using ## instead of #. With two # opera-
tors, we specify the interaction effects and the virtual dummy variable for the constituent
variables. Therefore, the command above can be rewritten as

. regress income sex##emp

By default, variables connected with ## or # are treated as categorical. Stata there-
fore always creates virtual dummy variables for each category of the variable and pro-
duces all pairwise products of these virtual dummies for the interaction. If an interaction
involves a continuous variable, we must make this explicit by using the c. operator.
Here we use that operator to specify the model that we set up the hard way above:

. regress income i.emp c.men##c.age_c

Note here that we have also prefixed the variable men with the c. operator. This is pos-
sible because men is a dummy variable with values 0 and 1. It does not matter whether
you treat such variables as categorical or continuous; we prefer the latter because it
makes a cleaner output.

Factor-variable notation makes it very easy to specify much more complicated mod-
els. To give you an impression, here is a model that includes the constituent effects
and all two- and three-way interactions of the variables for gender, age, and years of
education:

. regress income i.emp c.men##c.age##c.yedu

Here is a model with all two-way interactions between gender and each of the variables
emp, yedu, and age:

. regress income c.men##(c.age c.yedu i.emp)

While factor-variable notation makes specification of complicated models real easy,
interpretation of such models remains cumbersome. Conditional-effects plots are very
helpful for such models. Section 9.5.3 shows examples of a conditional-effects plot for
some of the models specified here.

9.4.3 Regression models using transformed variables

There are two main reasons to use transformed variables in a regression model:

• The presence of a nonlinear relationship

• A violation of the homoskedasticity assumption
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Depending on the reason you want to transform the variables, there are different
ways to proceed. In the presence of a nonlinear relationship, you would (normally)
transform the independent variable, but in the presence of heteroskedasticity, you would
transform the dependent variable. We will begin by explaining how to model nonlinear
relationships and then how to deal with heteroskedasticity (see also Mosteller and Tukey
[1977]).

Nonlinear relationships

We introduced regression diagnostic techniques for detecting nonlinear relationships in
section 9.3.1. Often, however, theoretical considerations already provide enough reason
to model a nonlinear relationship: think about the correlation between female literacy
rate and birth rate. You would expect a negative correlation for these two variables,
and you would also expect the birth rate not to drop linearly toward 0. Rather, you
would expect birth rate to decrease with an increase in literacy rate to levels of around
one or two births per woman.

Nonlinear relationships occur quite often when income is used as an independent
variable. For many relationships, income changes in the lower range of income have
more impact on the dependent variable than income changes in the upper part of the
income distribution. Income triples with a change from $500 to $1,500, whereas the
increase is only 10% for a change from $10,000 to $11,000, although the dollar increase
is in both cases $1,000.

When modeling nonlinear relationships, you first need to know or at least hypoth-
esize a functional form of the relationship. Here you need to distinguish among three
basic types of nonlinear relationships: logarithmic, hyperbolic, and U-shaped. Stylized
versions of these relationships can be produced with the two-way plottype function (see
[G-2] graph twoway function). We thereby take advantage of locals (see sections 4.1
and 12.2.1) to make the idea of the command stand out more:
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. local opt1 yaxis(1) yscale(off axis(1))

. local opt2 yaxis(2) yscale(off axis(2))

. local opt3 yaxis(3) yscale(off axis(3))

. graph twoway || function y = x^3, `opt1´
> || function y = ln(x), `opt2´ || function y = (-1) * x + x^2, `opt3´
> || , legend(order(1 "Hyperbolic" 2 "Logarithmic" 3 "U-Shaped") rows(1))

0 .2 .4 .6 .8 1
x

Hyperbolic Logarithmic U−Shaped

In logarithmic relationships, the dependent variable increases with increasing val-
ues of the independent variable. However, with increasing values of the independent
variable, the increase in the dependent variable levels off. In hyperbolic relationships,
the relationship is reversed, because the dependent variable increases only moderately
at the beginning and increases with increasing values of the independent variable. In
U-shaped relationships, the sign of the effect of the independent variable changes.

All three basic types can occur in opposite directions. For logarithmic relationships,
this would mean that the values decrease rapidly at the beginning and more slowly later
on. For hyperbolic relationships, the values drop slowly at the beginning and rapidly
later on. For U-shaped relationships, the values first decrease and increase later on, or
vice versa. In practice, logarithmic relationships occur often.

To model logarithmic relationships, you first form the log of the independent variable
and replace the original variable in the regression model with this new variable. A strong
logarithmic relationship can be found between each country’s gross domestic product
and infant mortality rate. The file who2009.dta contains these data.41

. use who2009.dta, clear

. scatter mort_child gdp

41. The example was taken from Fox (2000) using updated data from the Global Health Observatory
Data Repository of the World Health Organization (http://apps.who.int/ghodata/#).
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You can model this logarithmic relationship by first creating the log of the X variable,

. generate loggdp = log(gdp)

and then using this variable instead of the original X variable:

. regress mort_child loggdp

. predict yhat

You can see the logarithmic relationship between the predicted value of the regression
model yhat and the untransformed independent variable:

. scatter mort_child gdp || line yhat gdp, sort
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You use a similar procedure to model hyperbolic relationships except that now you
square the original variable instead of taking its logarithm. Here the original variable
is also replaced by the newly transformed variable.42

The situation is different when you are modeling a U-shaped relationship. Although
you still square the independent variable, the newly generated variable does not replace
the original variable. Instead, both variables will be used in the regression model. A U-
shaped relationship is one of the examples in Anscombe’s quartet on page 280. Including
the quadratic term will allow you to model this correlation perfectly:

42. Examples for hyperbolic relationships are rare in the social sciences. The salary of a Formula
1TMdriver could possibly show a hyperbolic relationship to the number of Grand Prix victories.
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. use anscombe, clear

. regress y2 c.x2##c.x2

. margins, at(x2=(4(1)14))

. marginsplot
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Further discussion of quadratic terms can be found in section 9.5.3 If you are thinking
of using transformations of the independent variables, see Cook and Weisberg (1999,
chap. 16) for some precautions.

Eliminating heteroskedasticity

In section 9.3.2, we discussed skewed dependent variables as one of the possible causes
of heteroskedasticity. Here you would need to transform the dependent variable to
remove heteroskedasticity. The interpretation of the regression model changes when
you include a transformed variable. Transforming the dependent variable leads to a
nonlinear relationship between the dependent and all independent variables (Hair et al.
1995, 75).

The aim in transforming a variable is to obtain a fairly symmetric or normal depen-
dent variable. Remember the following rule of thumb: If the distribution is wide, the
inverse of the variable is a useful transformation (1/Y ). If the distribution is skewed to
the right (such as home size in our example), then taking the log is reasonable; you can
take the square root if the distribution is skewed to the left (Fox 1997, 59–82).

Aside from following these rules, you can use the Stata command bcskew0, which
uses a Box–Cox transformation that will lead to a (nearly) unskewed distribution.43

. use data1, clear

. bcskew0 bcsize = size

43. Make sure that the variable used in bcskew0 does not include negative values or the value 0.
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The residual-versus-fitted plot (page 281) tells you something about the type of
transformation necessary. If the spread of the residuals increases with increasing values
in the predicted variable, the inverse of Y is a better dependent variable. If there is
a decreasing spread of the residuals with increasing values in the predicted variable,
you will want to replace the original dependent variable Y with the square root of Y
(Hair et al. 1995, 70).

9.5 Reporting regression results

Sometimes, you need to report the results of your data analysis to a larger audience—
in the form of an article in a journal, as a chapter in a book, on a webpage, or as a
presentation at a conference. In all of these instances, you are not well advised if you
show Stata output. Instead, you should find a device that makes your main results
stand out.

In this section, we introduce three ways to report results of regression analysis: tables
of similar regression models, plots of regression coefficients, and conditional-effects plots.

9.5.1 Tables of similar regression models

In scientific journals, regression models are almost always presented in tables that look
like table 9.2. Such tables concatenate several regression models in one table. The
various regression models are similar in that they all use the same dependent variable.
Moreover, they are similar in the respect of the independent variables. Either they all
apply the same set of independent variables but differ in the observations used or they
are nested like our example in table 9.2. In both instances, the cells of the tables contain
the estimated regression coefficient and some statistic to show the uncertainty of the
results—for example, the standard error. Moreover, it is very common to use asterisks
to express the level of significance of the estimated coefficients. The last few lines of the
table are usually reserved for some overall information about the regression model as a
whole. At the very minimum, this should be the number of observations. Very often,
you also see some measure for the goodness of fit.

To produce tables such as table 9.2, you need estimates store and estimates

table. The command estimates store saves the results of a regression model under
a specified name in the computer’s memory. The command estimates table displays
the results of one or more saved regression models in one table.
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Table 9.2. A table of nested regression models

(1) (2) (3)
Men 20905.7∗∗∗ 12735.6∗∗∗ 12859.2∗∗∗

(1532.0) (1657.0) (1657.0)

Age in years 321.0∗∗∗ 414.9∗∗∗ 270.9∗∗

(69.33) (65.76) (95.18)

Part-time -15113.1∗∗∗ -14788.3∗∗∗

(2049.5) (2054.1)

Irregular -25938.4∗∗∗ -25813.3∗∗∗

(2693.5) (2692.5)

Years of education 3732.6∗∗∗ 3693.3∗∗∗

(263.8) (264.3)

Men 275.0∗

(131.5)

Constant 21234.9∗∗∗ 30788.6∗∗∗ 30593.7∗∗∗

(1093.2) (1400.8) (1403.1)
R2 0.070 0.174 0.176
Observations 2814 2814 2814

Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Source: anincome.do

Here we show how to use the two commands to produce a table that is already quite
similar to table 9.2. We start estimating the first regression model and store it under
the name model1:

. use data1, clear

. generate men = sex==1

. generate age = 2009 - ybirth

. summarize age, meanonly

. replace age = age-r(mean)

. replace income = . if income == 0

. regress income men age

. estimates store model1

We then proceed by estimating the second and third models,

. replace emp = . if emp==5

. regress income men age i.emp yedu

. estimates store model2

. regress income men age i.emp yedu i.men#c.age

. estimates store model3
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and finally we use estimates table to show all three models.

. estimates table model1 model2 model3

Variable model1 model2 model3

men 17641.994 12812.363 14351.971
age 470.2667 408.99101 264.19825

emp
2 -14843.926 -14523.981
4 -25919.194 -25760.172

yedu 3748.8247 3708.9057

men#c.age
1 274.3864

_cons 22827.3 -13121.708 -13569.714

This shows only the fitted coefficients of the three models. Several options of estimates
table let us customize the table. The option se, to start with, adds standard errors
to the output. The option stats() lets you specify any scalar mentioned in ereturn

list to be printed below the table, and option label displays variable labels—if given—
instead of variable names:

. estimates table model1 model2 model3, se stats(r2 N) label

Variable model1 model2 model3

men 17641.994 12812.363 14351.971
1375.8066 1668.1342 1825.9869

age 470.2667 408.99101 264.19825
54.766644 66.414642 96.502912

emp
2 -14843.926 -14523.981

2071.4198 2075.9848
4 -25919.194 -25760.172

2732.7014 2732.1836
Number of Years of Edu~n 3748.8247 3708.9057

265.40999 265.95661

men#c.age
1 274.3864

132.74773
Constant 22827.3 -13121.708 -13569.714

1050.1051 3641.9074 3646.2212

r2 .06595712 .17230189 .17356788
N 3410 2796 2796

legend: b/se

You can also use the option star for expressing significance with stars; however, this is
not possible together with option se. If you want to produce a table that reports both
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standard errors and asterisks, you need one of the following user-written commands:
esttab (by Ben Jann), outreg (by John Luke Gallup), or outreg2 (by Roy Wada),44

which also provide the possibility to produce the table in LATEX, HTML, or Microsoft
Word format. Table 9.2 was created with esttab.

To concatenate models that apply the same set of independent variables but differ
in the observations used, the basic principles remain the same. Consider that you want
to compare the regression result of the last model between East and West Germany.
We start estimating and storing the models,

. generate east = state > 10 & !missing(state)

. regress income men age i.emp yedu i.men#c.age if east

. estimates store east

. regress income men age i.emp yedu i.men#c.age if !east

. estimates store west

and then we use estimates table to show the saved models:

. estimates table east west

Variable east west

men 4510.6336 16660.102
age 228.2834 313.68134

emp
2 -9496.7306 -16778.626
4 -19926.376 -27800.59

yedu 2553.4702 4292.6477

men#c.age
1 -53.957075 349.83153

_cons -6451.7335 -17663.455

9.5.2 Plots of coefficients

Plots of coefficients are used in two typical situations. The first situation arises if the
regression model contains a categorical variable with many categories. A plot of all the
coefficients for each of those categories usually makes the main results much clearer.
In the following, we propose a solution using marginsplot for this case. The second
situation arises when the model is fit for many different groups. In this case, one often
wants to show a specific estimated coefficient for each of the groups. Here marginsplot
does not help. Instead, we propose the resultsset approach (Newson 2003).

44. Read section 13.3 to learn how to install user-written commands.
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We start with the first situation. Consider the following regression of household
income on social class (egp), household size, and year of birth:

. regress hhinc i.egp hhsize ybirth

Source SS df MS Number of obs = 4788
F( 10, 4777) = 176.34

Model 8.7850e+11 10 8.7850e+10 Prob > F = 0.0000
Residual 2.3798e+12 4777 498175319 R-squared = 0.2696

Adj R-squared = 0.2681
Total 3.2583e+12 4787 680651461 Root MSE = 22320

hhinc Coef. Std. Err. t P>|t| [95% Conf. Interval]

egp
2 -11053.99 1445.191 -7.65 0.000 -13887.23 -8220.75
3 -16131.8 1758.446 -9.17 0.000 -19579.17 -12684.44
4 -20014.95 1658.193 -12.07 0.000 -23265.77 -16764.12
5 -5479.182 1936.01 -2.83 0.005 -9274.653 -1683.711
8 -21327.39 1565.434 -13.62 0.000 -24396.36 -18258.42
9 -24828.94 1485.18 -16.72 0.000 -27740.57 -21917.3
15 -32172.19 1734.536 -18.55 0.000 -35572.68 -28771.7
18 -29419.26 1548.131 -19.00 0.000 -32454.31 -26384.21

hhsize 8801.217 314.4606 27.99 0.000 8184.729 9417.705
ybirth -219.6513 29.37816 -7.48 0.000 -277.246 -162.0566
_cons 465140.1 57542.31 8.08 0.000 352330.7 577949.6

The output shows eight coefficients for the variable egp. Because there are many
coefficients, showing the results graphically—for example, as shown in figure 9.6—could
be helpful.
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Figure 9.6. Example of a plot of regression coefficients with 95% confidence intervals
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But how do we get there? To use marginsplot to show the results, we have to apply
margins first. So far, we have used margins to show averages of predicted values for
specified combinations of the independent variables. Here we want to show the estimated
coefficients themselves. It is therefore necessary to trick margins into showing the
coefficients instead of averages of predicted values. For linear regression models, this
is possible with the option dydx(varlist). The option, in general, shows the average
marginal effect of the varlist in the parentheses (that is, the average slopes of the
regression line). For linear models without interaction terms,45 this is equal to the
regression coefficient.

. margins, dydx(egp)

Average marginal effects Number of obs = 4788
Model VCE : OLS

Expression : Linear prediction, predict()
dy/dx w.r.t. : 2.egp 3.egp 4.egp 5.egp 8.egp 9.egp 15.egp 18.egp

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

egp
2 -11053.99 1445.191 -7.65 0.000 -13886.51 -8221.468
3 -16131.8 1758.446 -9.17 0.000 -19578.29 -12685.31
4 -20014.95 1658.193 -12.07 0.000 -23264.94 -16764.95
5 -5479.182 1936.01 -2.83 0.005 -9273.691 -1684.673
8 -21327.39 1565.434 -13.62 0.000 -24395.59 -18259.2
9 -24828.94 1485.18 -16.72 0.000 -27739.84 -21918.04
15 -32172.19 1734.536 -18.55 0.000 -35571.82 -28772.56
18 -29419.26 1548.131 -19.00 0.000 -32453.54 -26384.98

Note: dy/dx for factor levels is the discrete change from the base level.

Once you get margins to show the values needed, marginsplot will show the results
graphically. We use the command with the option horizontal to give the long labels
more space, the option recast(scatter) to use the plottype scatter instead of the
default connected to show the coefficients, and the option note() to explain that each
coefficient is compared with the reference group (here service class I). The command
below will return the graph shown in figure 9.6.

. marginsplot, recast(scatter) horizontal
> ylabel(2 "Service class II" 3 "Higher routine nonmanual"
> 4 "Lower routine nonmanual" 5 "Self employed" 6 "Skilled manual workers"
> 7 "Semi- and unskilled manual workers" 8 "Unemployed" 9 "Retired")
> note("Each coefficient compared with the reference group (service class I)")

We now turn to the second situation. Consider that you wish to compare the gender–
wage gap at mean age between the German states. Therefore, you have calculated
14 regression models—one for each category of the variable state—and you want to
graphically display the coefficients of gender of all those models.

45. With interaction terms, you need to fix one constituent variable to the base category by using at()

to get the coefficients of the other constituent variable.
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Creating a graph of the coefficients requires two steps. The first step is to construct
a resultsset (Newson 2003). In the second step, the data in the resultsset are then
plotted using standard Stata graph commands.

A resultsset is a Stata dataset that contains the results of one or more statistical
analyses. For our example, we wish to arrive at a dataset with the variables state for
the names of the German states, b for the estimated regression coefficients, and se for
the standard errors of the estimated coefficients. Each observation of our resultsset is
thus a German state.

Such a resultsset can be produced with the prefix command statsby. The statsby

prefix works similarly to the by prefix: It performs a command behind the colon for
each group of a by-list. However, unlike the by prefix, it does not show the results of
the command behind the colon but instead stores statistics produced by that command
in a dataset. In its most common use, the syntax of statsby requires the name of the
statistics that should be saved, the specification of the by-list, and the option clear

because statsby destroys the data in memory. The simplified syntax diagram of the
command is

statsby stat-list, by(varlist) clear: command

where stat-list contains names of saved results and command can be any Stata command
that produces saved results. Let us use the command to save the estimated coefficient
for variable men of the income regression in the last section. Note that we create a string
variable for state before we apply statsby; this is not necessary but turns out to be
helpful later on.

. decode state, generate(ststr)

. statsby _b[men] _se[men], by(ststr) clear:
> regress income men age i.emp yedu menage

From

. describe

Contains data
obs: 14 statsby: regress
vars: 3
size: 336

storage display value
variable name type format label variable label

ststr str16 %16s State of Residence
_stat_1 float %9.0g _b[men]
_stat_2 float %9.0g _se[men]

Sorted by:
Note: dataset has changed since last saved

we learn that the command has destroyed our dataset. Our new dataset has 14 obser-
vations and variables ststr, stat 1, and stat 2, whereby ststr is the string variable
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for state, and stat 1 and stat 2 hold the estimated coefficients of men and their stan-
dard errors, respectively. We can use the standard errors to create the 95% confidence
intervals as shown on page 231:

. generate lb = _stat_1 - 1.96 * _stat_2

. generate ub = _stat_1 + 1.96 * _stat_2

We now go on to plot the coefficients and their standard errors. In the graph, we
want to sort the states according to their observed gender–wage gap. Therefore, we sort
the dataset by stat 1 and create the new variable state according to the sort order.

. sort _stat_1

. generate state = _n

We assign a value label to the sorted state variable and define the new label state
by using a forvalues loop. The label holds the name of the state at each position.
Note that this is possible because we have used state as a string variable in statsby.46

. forvalues i = 1/14 {

. local state_name = ststr[`i´]

. label define state `i´ "`state_name´", modify

. }

. label value state state

Having done all this, let us try a first sketch for the figure:

. twoway rcap lb ub state, horizontal || scatter state _stat_1
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46. The last two steps can be automated using the user-written egen function axis() from the package
egenmore. The package is available in the Statistical Software Components (SSC) archive (see
chapter 13).
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This already looks pretty much as desired. However, using some standard graph and
plot options, the figure gets much nicer still (see 7.2.2):

. twoway || rcap lb ub state, horizontal lcolor(black)
> || scatter state _stat_1, ms(O) mcolor(black)
> || , yscale(reverse) ylab(1/14, valuelabel angle(0) gstyle(dot) notick)
> ytitle("") xline(0) xtitle(Coef. of Gender at Mean Age)
> legend(off) note("Capped spikes show 95% C.I.", span)
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9.5.3 Conditional-effects plots

Conditional-effects plots show various regression lines for specified combinations of the
independent variables of a multiple regression in one display. The effect of the inde-
pendent variables can be read from the distances between the various lines and their
respective slopes. These plots are especially useful when the effect of a variable can-
not be fully grasped from the regression coefficients alone, that is, in the presence of
interaction terms and transformed independent variables.

We have already shown an example of a conditional-effects plot in section 9.2.1.
From there, we also see the basic principle of their construction: We first estimate a
regression model, we then apply the postestimation command margins to calculate the
(average) predicted values for various combinations of the independent variables, and
we finally use marginsplot to produce the graph. In what follows, we apply this basic
principle for models with interaction terms and transformed variables.
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Let us start with the models for personal income described in section 9.4.2. The first
model fit used an interaction between gender and age. Using factor-variable notation,
the model can be reproduced as follows:

. use data1, clear

. generate age = 2009 - ybirth

. generate incomeR = income if income > 0

. generate empR = emp if emp!=5

. regress incomeR i.empR i.sex##c.age

(Note as an aside that there is no need to center variables if you do not report the
coefficients but show the results with conditional-effects plots only.)

To produce the conditional-effects plot, we first apply margins. We set up the option
at() such that the (average) predicted values are calculated for all combinations of em-
ployment status, gender, and various values for age. Subsequently, we use marginsplot
to show the results of the margins.

. margins, at(age=(25(5)65) sex=(1,2) empR=(1,2,4))

. marginsplot, bydim(empR) byopt(rows(1))
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Unless stated differently, the first variable in the option at() of margins becomes the
x variable in the conditional-effects plot. Predicted values are then displayed as lines
for each combination of the values of the other variables in that option. The option
bydim(varlist) is used to display one graph of each by-dimension in juxtaposition.

The figure shows that the effect of age (the slope of the line) is stronger for men than
for women. We also see that the gender–wage gap becomes larger with age. Finally,
we see that full-time employment leads to higher income than part-time and irregular
employment.
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We have seen all this already from the regression analysis in section 9.4.2, but the
results are much easier to depict from the figure than from the regression table. And
this advantage of the conditional-effects plot rises when the model becomes more com-
plicated. We illustrate this point by allowing the interaction term of gender and age to
vary with employment status, that is, by adding a three-way interaction:

. regress incomeR i.empR##i.sex##c.age

. margins, at(age=(25(5)65) sex=(1,2) empR=(1,2,4))

. marginsplot, bydim(empR) byopt(rows(1))
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The figure quite clearly shows that the gender–wage gap increases with age, although
this is not visible to the same extent among the full-time employed and the part-time
employed. Moreover, the effect is absent among those irregularly employed.

Let us finally extend our example by adding a quadratic age term to the model. Such
quadratic age terms can be seen as an interaction term of a variable with itself, meaning
that the effect of the variable varies with the value of the variable itself. Quadratic age
terms are commonly used to model U-formed relationships. To make the model even
more complicated, we allow for an interaction of the quadratic age term with the other
variables in the model.
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. regress incomeR i.empR##i.sex##c.age##c.age

. margins, at(age=(25(5)65) sex=(1,2) empR=(1,2,4))

. marginsplot, bydim(empR) byopt(rows(1))
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It is pretty much impossible to interpret a model such as the above based on the
coefficients alone. The conditional-effects plot provides helpful visualization.

9.6 Advanced techniques

In addition to multiple linear regression, there are several related models that can be
fit in Stata. We cannot explain all of them in detail. However, a few of these models
are so common that we want to describe the general ideas behind them. Each model
is explained in detail in the Stata Reference Manual, where you will also find selected
literature on the model.

9.6.1 Median regression

A median regression is quite similar to the OLS regression we talked about earlier.
Whereas the sum of the squared residuals

∑
(ŷi − yi)

2 is minimized in OLS regression,
the sum of the absolute residuals

∑ |ŷi − yi| is minimized when applying median regres-
sion. Squaring residuals in OLS means that large residuals are more heavily weighted
than small residuals. This property is lost in median regression, so it is less sensitive to
outliers than OLS regression.
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Median regression takes its name from its predicted values, which are estimates
of the median of the dependent variable conditional on the values of the independent
variables. In OLS, the predicted values are estimates of the conditional means of the de-
pendent variable. The predicted values of both regression techniques, therefore, describe
a measure of a certain property—the central tendency—of the dependent variable.

Stata treats median regression as a special case of a quantile regression. In quantile
regression, the coefficient is estimated so that the sum of the weighted (that is, multiplied
by the factor wi) absolute residuals is minimized.

min
∑

(|yi − ŷi| × wi)

Weights can be different for positive and negative residuals. If positive and negative
residuals are weighted the same way, you get a median regression. If positive residuals
are weighted by the factor 1.5 and negative residuals are weighted by the factor 0.5, you
get a third-quartile regression, etc.

In Stata, you estimate quantile regressions by using the qreg command. Just as
in any other Stata model command, the dependent variable follows the command, and
then you specify the list of independent variables; the default is a median regression.

For this, use the dataset data2agg.dta, which contains the mean life satisfaction
and the mean income data from the German population from 1984 to 2008.47

. use data2agg, clear

47. We used this small dataset to exemplify the effect of median regression. Be aware that working
with aggregate data is prone to ecological fallacy (Freedman 2004).
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First, take a look at a scatterplot with the regression line of the mean life satisfaction
on the mean income:

. twoway scatter lsat hhinc, mlab(wave) || lfit lsat hhinc
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In this graph, the data for 1984 might influence the regression results more than any
other data point. Now estimate a median regression,

. qreg lsat hhinc
Iteration 1: WLS sum of weighted deviations = 3.1802261

Iteration 1: sum of abs. weighted deviations = 3.1024316
Iteration 2: sum of abs. weighted deviations = 3.0970802

Median regression Number of obs = 25
Raw sum of deviations 4.590568 (about 6.9682765)
Min sum of deviations 3.09708 Pseudo R2 = 0.3253

lsat Coef. Std. Err. t P>|t| [95% Conf. Interval]

hhinc -8.87e-06 3.55e-06 -2.50 0.020 -.0000162 -1.53e-06
_cons 7.37277 .1859772 39.64 0.000 6.988047 7.757493
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and compare the predicted values of the median regression with the standard linear fit
of the OLS regression:

. predict medhat

. graph twoway || scatter lsat hhinc, mlab(wave)
> || lfit lsat hhinc, lpattern(solid)
> || line medhat hhinc, sort lpattern(dash)
> ||, legend(order(2 "OLS" 3 "Median"))
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The regression line of the median regression is not as steep as the standard regression
line because the median regression is more robust to extreme data points, such as those
from 1984.

9.6.2 Regression models for panel data

Panel data, or cross-sectional time-series data, contain repeated measures of the same
individuals over time. An example of panel data is the GSOEP. In the GSOEP, about
12,000 persons have been asked identical questions every year since 1984. That is, the
GSOEP measures the same variables for the same respondents at different points in
time. Panel data, however, do not arise only from such panel surveys. The same data
structure is also present if you have collected certain macroeconomic indices in many
different countries over time, or even data about certain features of political parties over
time. Really, what defines panel data is that the same entities are observed at different
times. In the remaining section, we will use the term “individuals” for these entities.
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In Stata, all the commands that deal with panel data begin with the letters xt, and
these commands are described in the Longitudinal-Data/Panel-Data Reference Manual.
A list of the xt commands can be found by typing help xt. Among the xt commands
are some of the more complex models in the statistical universe, which we will not
describe here. Instead, we will help you understand the thinking behind the major
approaches to analyzing panel data together with examples of how you can use these
approaches in Stata.48

Before we describe the statistical models, we need to say a word about data man-
agement. All Stata commands for panel analysis require a panel dataset that is in long
format, so the next section describes how to put your data in this format. Then we will
explain fixed-effects models and error-components models.

From wide to long format

Panel data can be stored in wide format or in long format. In wide format, the observa-
tions of the dataset are the individuals observed and the variables are their character-
istics at the respective time points. For example, if we ask four individuals, say, John,
Paul, George, and Ringo, about their life satisfaction in 1968, 1969, and 1970, we can
store their answers in wide format by making a dataset with four observations—namely,
John, Paul, George, and Ringo—and three variables reflecting life satisfaction in 1968,
1969, and 1970, respectively (see table 9.3). However, the same information can also be
stored in long format, where the observations are the individuals at a specific point in
time and the variables are the observed characteristics. Hence, in our example, there
would be three observations for John—one for 1968, one for 1969, and one for 1970—
three observations for Paul, etc. The information on life satisfaction would be in one
variable. To keep the information about the timing, we would need a new variable for
the year of observation.

48. For more information, see Baltagi (2008); Baum (2010); Hardin and Hilbe (2003); Diggle, Liang,
and Zeger (2002); Wooldridge (2010); and the literature cited in [XT] xtreg.
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Table 9.3. Ways to store panel data

Wide format Long format

i X1968 X1969 X1970 i year X

John 7 8 5 John 1968 7
Paul 5 2 2 John 1969 8

George 4 3 1 John 1970 5
Ringo 8 8 6 Paul 1968 5

Paul 1969 2
Paul 1970 2

George 1968 4
...

...
...

Ringo 1970 6

Stata’s xt commands generally expect panel data in long format. It is, however,
more common for dataset providers to distribute panel data in wide format.49 You will
often need to reshape your dataset from wide to long.

An example of panel data in wide format is data2w.dta. Please load this dataset
to follow our example of changing from wide format to long format:

. use data2w, clear

This file contains information on year of birth, gender, life satisfaction, marital
status, individual labor earnings, and annual work hours of 4,710 respondents (indi-
viduals) from the GSOEP. The individuals were observed every year between 1984 and
2009. Therefore, with the exception of the time-invariate variables gender and year of
birth, there are 26 variables for each observed characteristic. If you look at the file with

49. For very large panel studies, such as the GSOEP, the American Panel Study of Income Dynamics,
or the British Household Panel Study, the situation tends to be even more complicated. These
data are often distributed in more than one file. You would need to first combine these files into
one file. In section 11.4, we show you how to do this using an example from the GSOEP, resulting
in a dataset in wide format.
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. describe

Contains data from data2w.dta
obs: 4,710 SOEP 1984-2009 (Kohler/Kreuter)
vars: 113 13 Feb 2012 17:08
size: 1,102,140

storage display value
variable name type format label variable label

persnr long %12.0g Never changing person ID
hhnr long %12.0g Origial household number
sex byte %20.0g sex Gender
ybirth int %8.0g Year of birth
mar1984 byte %29.0g mar * Marital Status of Individual
mar1985 byte %29.0g mar * Marital Status of Individual
mar1986 byte %29.0g mar * Marital Status of Individual
mar1987 byte %29.0g mar * Marital Status of Individual
mar1988 byte %29.0g mar * Marital Status of Individual
mar1989 byte %29.0g mar * Marital Status of Individual
mar1990 byte %29.0g mar * Marital Status of Individual
mar1991 byte %29.0g mar * Marital Status of Individual
mar1992 byte %29.0g mar * Marital Status of Individual
mar1993 byte %29.0g mar * Marital Status of Individual
mar1994 byte %29.0g mar * Marital Status of Individual
mar1995 byte %29.0g mar * Marital Status of Individual
mar1996 byte %29.0g mar * Marital Status of Individual

(output omitted )

you will see that the variable names of the file have a specific structure. The first part
of the variable names, namely, lsat, mar, hour, and inc, refers to the content of the
variable, whereas the second part refers to the year in which the variable has been
observed. Using this type of naming convention makes it easy to reshape data from
wide to long.

Unfortunately, in practice, variable names rarely follow this naming scheme. Even
the variables in the GSOEP do not. For your convenience, we have renamed all the
variables in the dataset beforehand, but generally you will need to do this on your own
using the rename and renpfix commands. Renaming all the variables of panel data
in wide format can be quite cumbersome. If you need to rename many variables, you
should review the concepts discussed in sections 3.2.2 and 12.2.1.50

The command for changing data between wide and long is reshape. reshape long

changes a dataset from wide to long, and reshape wide does the same in the other
direction. Stata needs to know three pieces of information to reshape data:

• the variable that identifies the individuals in the data (that is, the respondents),

• the characteristics that are under observation, and

• the times when the characteristics were observed.

50. The user-written Stata command soepren makes it easier to rename GSOEP variables. The com-
mand is available on the SSC archive; for information about the SSC archive and installing user-
written commands, see chapter 13.
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The first piece of information is easy to obtain. In our example data, it is simply
the variable persnr, which uniquely identifies each individual of the GSOEP. If there is
no such variable, you can simply generate a variable containing the running number of
each observation (see section 5.1.4).

The last two pieces of information are coded in the variable names. As we have seen,
the first part of the variable names contains the characteristic under observation and
the second part contains the time of observation. We therefore need to tell Stata where
the first part of the variable names ends and the second part begins. This information is
passed to Stata by listing the variable name stubs that refer to the characteristic under
observation. Let us show you how this works for our example:

. reshape long hhinc lsat mar whours, i(persnr) j(wave)

First, option i() is required. It is used to specify the variable for the individuals
of the dataset. Second, look at what we have specified after reshape long. We have
listed neither variable names nor a varlist. Instead, we have specified the name stubs
that refer to the characteristic under observation. The remaining part of the variable
names is then interpreted by Stata as being information about the time point of the
observation. When running the command, Stata strips off the year from the variables
that begin with the specified name stub and stores this information in a new variable.
Here the new variable is named wave, because we specified this name in the option j().
If we had not specified that option, Stata would have used the variable name j.

Now let us take a look at the new dataset.

. describe

Contains data
obs: 122,460 SOEP 1984-2009 (Kohler/Kreuter)
vars: 14
size: 4,408,560

storage display value
variable name type format label variable label

persnr long %12.0g Never changing person ID
wave int %9.0g
hhnr long %12.0g Origial household number
sex byte %20.0g sex Gender
ybirth int %8.0g Year of birth
mar byte %29.0g mar *
hhinc long %10.0g *
whours int %12.0g *
lsat byte %32.0g scale11 *
sample byte %25.0g sample Subsample identifier
intnr long %12.0g Interviewer number
strata int %8.0g Strata
psu long %12.0g Primary sampling units
dweight float %12.0g Design weights

* indicated variables have notes

Sorted by: persnr wave
Note: dataset has changed since last saved
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The dataset now has 14 variables instead of 113. Clearly there are still 4,710 indi-
viduals in the dataset, but because the observations made on the several occasions for
each individual are stacked beneath each other, we end up with 122,460 observations.
Hence, the data are in long format, as they must be to use the commands for panel
data. And working with the xt commands is even more convenient if you declare the
data to be panel data. You can do this with the xtset command by specifying the
variable that identifies individuals followed by the variable that indicates time:

. xtset persnr wave

After reshaping the data once, reshaping from long to wide and vice versa is easy:

. reshape wide

. reshape long

Fixed-effects models

If the data are in long format, you can now run a simple OLS regression. For example, if
you want to find out whether aging has an effect on general life satisfaction, you could
run the following regression:

. generate age = wave - ybirth

. regress lsat age

Source SS df MS Number of obs = 86680
F( 1, 86678) = 496.98

Model 1666.28069 1 1666.28069 Prob > F = 0.0000
Residual 290617.155 86678 3.35283641 R-squared = 0.0057

Adj R-squared = 0.0057
Total 292283.435 86679 3.37202131 Root MSE = 1.8311

lsat Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.0086023 .0003859 -22.29 0.000 -.0093586 -.007846
_cons 7.301021 .0187129 390.16 0.000 7.264344 7.337698

From this regression model, you learn that life satisfaction tends to decrease with
age. However, after having read this chapter, you probably do not want to trust this
regression model, particularly because of omitted variables. Should you control the
relationships for quantities like gender, education, and the historical time in which the
respondents grew up?

Now let us imagine that you include a dummy variable for each GSOEP respondent.
Because there are 4,710 individuals in the dataset, this would require a regression model
with 4,709 dummy variables, which might be overwhelming to work with. But for small
datasets like those presented in table 9.3, this is not a problem. So let us deal with
these data for now.
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. preserve

. use beatles, clear
(Kohler/Kreuter)

. describe

Contains data from beatles.dta
obs: 12 Kohler/Kreuter
vars: 4 13 Feb 2012 17:08
size: 60

storage display value
variable name type format label variable label

persnr byte %9.0g Person
time int %9.0g Year of observation
lsat byte %9.0g Life satisfaction (fictive)
age byte %9.0g Age in years

Sorted by:

This dataset contains the age and (artificial) life satisfaction of four Englishmen at
three points in time in long format. The command

. regress lsat age

Source SS df MS Number of obs = 12
F( 1, 10) = 1.97

Model 13.460177 1 13.460177 Prob > F = 0.1904
Residual 68.2064897 10 6.82064897 R-squared = 0.1648

Adj R-squared = 0.0813
Total 81.6666667 11 7.42424242 Root MSE = 2.6116

lsat Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .6902655 .4913643 1.40 0.190 -.4045625 1.785093
_cons -14.32153 13.65619 -1.05 0.319 -44.74941 16.10635

mirrors the regression analysis from above, showing a slight insignificant, positive effect
of age on life satisfaction. Incorporating dummy variables for each individual of the
dataset into this regression is straightforward.
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. regress lsat age i.persnr

Source SS df MS Number of obs = 12
F( 4, 7) = 90.95

Model 80.125 4 20.03125 Prob > F = 0.0000
Residual 1.54166667 7 .220238095 R-squared = 0.9811

Adj R-squared = 0.9703
Total 81.6666667 11 7.42424242 Root MSE = .4693

lsat Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -1.625 .165921 -9.79 0.000 -2.017341 -1.232659

persnr
2 -6.916667 .5068969 -13.65 0.000 -8.115287 -5.718046
3 -8.541667 .6281666 -13.60 0.000 -10.02704 -7.056289
4 1.333333 .383178 3.48 0.010 .4272613 2.239405

_cons 53.45833 4.81933 11.09 0.000 42.06243 64.85424

Now it appears that age has a strong negative effect on life satisfaction. The sign
of the age effect has reversed, and we will soon see why. But let us first say something
about the individual dummies. The estimated coefficients of the individual dummies
reflect how strongly the life satisfaction of the four Englishmen differs. You can see that
persons 1 and 4 have a much higher life satisfaction than persons 2 and 3. You do not
know why these people differ in their life satisfaction; the differences are not surprising
because different people perceive life differently. Maybe they live in different neighbor-
hoods, have different family backgrounds, grew up under different circumstances, or
just have different habits about answering odd questions in population surveys. What
is important here is that because you put individual dummies into the regression model,
you have reliably controlled for any differences between the persons. In this sense, the
estimated coefficient for age cannot be biased because we omitted stable characteristics
of these persons. It is a pure aging effect, which rests solely on the development of the
life satisfaction during the aging process of these four men.
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This interpretation of the estimated age coefficient can be illustrated with the fol-
lowing plot.

. predict yhat

. separate yhat, by(persnr)

. separate lsat, by(persnr)

. graph twoway || line yhat? age, clstyle(p1..)
> || lfit lsat age, lpattern(dash)
> || scatter lsat? age, ms(O S Th Dh) msize(*1.5)
> || , legend(order(6 "John" 7 "Paul" 8 "George" 9 "Ringo"
> 1 "Fixed Effects Pred." 5 "Standard OLS Pred."))
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The plot is an overlay of a standard scatterplot with different markers for each
person in the dataset (scatter lsat? age), a conditional-effects plot of the regression
model with the person dummies (line yhat? age), and a simple regression line for
all the data (lfit lsat age). If you look at the markers for each person separately,
you will find that the life satisfaction decreases as the person gets older. At the same
time, however, Ringo and John, the two oldest people in the dataset, have a higher life
satisfaction than Paul and George. If we do not control for this, differences between
people contribute to the age effect. The age effect of the simple OLS regression just
shows that the older people have a higher life satisfaction than the younger ones. After
we control for the personal differences, the only variation left is that within each person,
and the age effect reflects the change in life satisfaction as each person gets older.

Because the regression model with person dummies restricts itself on the variation
within each person, the model is sometimes called the within estimator, covariance
model, individual dummy-variable model, or fixed-effects model.
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Whereas the derivation of the fixed-effects model is straightforward, the technical
calculation of the model in huge datasets is not. The problem arises because the num-
ber of independent variables in regression models is restricted to 800 in Stata/IC and
to 11,000 in Stata/MP and Stata/SE. Therefore, you cannot estimate a fixed-effects
model by incorporating individual dummies in datasets with more than 800 or 11,000
individuals, respectively.

Fortunately, in the linear regression model, you can use an algebraic trick to fit the
fixed-effects model, anyway. And even more fortunately, Stata has a command that does
this algebraic trick for you: xtreg with the option fe. Here you can use the command
for our small example data,

. xtreg lsat age, fe i(persnr)

which reproduces the estimated age coefficient of the model with dummy variables
exactly. You do not need to list the dummy variables in this command. Instead, you
either xtset your data or else specify the name of the variable, which identifies the
individuals in the option i().

The same logic applies if you want to fit the fixed-effects model for larger datasets.
Therefore, you can also use the same command with our previously constructed dataset.
Because you have already used the command xtset above (see page 332), you do not
need to specify the i() option.

. restore

. xtreg lsat age, fe

Fixed-effects (within) regression Number of obs = 86680
Group variable: persnr Number of groups = 4709

R-sq: within = 0.0200 Obs per group: min = 6
between = 0.0055 avg = 18.4
overall = 0.0057 max = 26

F(1,81970) = 1669.61
corr(u_i, Xb) = -0.3028 Prob > F = 0.0000

lsat Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.0325964 .0007977 -40.86 0.000 -.03416 -.0310328
_cons 8.398466 .0367987 228.23 0.000 8.326341 8.470591

sigma_u 1.287599
sigma_e 1.4066128

rho .45591217 (fraction of variance due to u_i)

F test that all u_i=0: F(4708, 81970) = 13.79 Prob > F = 0.0000

The values of the estimated coefficients for the 4,709 dummy variables are not shown
in the output and were not estimated. But the coefficient for age in the model is fit
as if the dummy variables were present. The fixed-effects model controls for all time-
invariant differences between the individuals, so the estimated coefficients of the fixed-
effects models cannot be biased because of omitted time-invariant characteristics. This
feature makes the fixed-effects model particularly attractive.
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One side effect of the features of fixed-effects models is that they cannot be used to
investigate time-invariant causes of the dependent variables. Technically, time-invariant
characteristics of the individuals are perfectly collinear with the person dummies. Sub-
stantively, fixed-effects models are designed to study the causes of changes within a
person. A time-invariant characteristic cannot cause such a change because it is con-
stant for each person.

9.6.3 Error-components models

Let us begin our description of error-components models with the simple OLS regression:

. regress lsat age

This model ignores the panel structure of the data and treats data as cross-sectional.
From a statistical point of view, this model violates an underlying assumption of OLS

regression, namely, the assumption that all observations are independent of each other.
In panel data, you can generally assume that observations from the same individual are
more similar to each other than observations from different individuals.

In observing the similarity of the observations from one individual, you might say
that the residuals of the above regression are correlated. That is, an individual with a
high positive residual at the first time of observation should also have a high positive
residual at the second time point, etc.

Let us show you that the residuals of the above regression model are in fact corre-
lated. First, we calculate the residuals from the above regression model,

. predict res, resid

and then we change the dataset to the wide format. Because we have generated a new
variable in the long format since last using reshape, we cannot just type reshape wide;
instead, we need to use the full syntax:

. reshape wide lsat mar whours hhinc age res, i(persnr) j(wave)

You end up with 26 variables containing the residuals for each individual for every year.
These variables can be used to construct a correlation matrix of the residuals. We will
display this correlation matrix only for the residuals from the 1980s:

. correlate res198?
(obs=2248)

res1984 res1985 res1986 res1987 res1988 res1989

res1984 1.0000
res1985 0.5122 1.0000
res1986 0.4437 0.4755 1.0000
res1987 0.3801 0.4244 0.5020 1.0000
res1988 0.3674 0.3946 0.4590 0.5240 1.0000
res1989 0.3665 0.3914 0.4005 0.4843 0.5268 1.0000
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The residuals are in fact highly correlated. Let us now define this correlation matrix
as Rt,s:

Rt,s =




1
rei2,ei1

1
...

...
. . .

reiT ,ei1
reiT ,ei2

. . . 1




As we said, in computing the simple OLS regression on panel data, you assume among
other things that all correlations of this correlation matrix are 0, or more formally,

Rt,s =

{
1 for t = s

0 otherwise

As we have seen, this assumption is not fulfilled in our example regression. Hence,
the model is not correctly specified. This is almost always the case for panel data. With
panel data, you should expect correlated errors. In error-components models, you can
therefore hypothesize about the structure of Rt,s. Probably the simplest model after
the simple regression model is the random-effects model:

Rt,s =

{
1 for t = s

ρ otherwise

Here the hypothetical structure of Rt,s is that observational units are more similar to
each other over time than observations across observational units. The Stata command
for random-effects models is xtreg with the option re.

. reshape long

. xtreg lsat age, re

Another reasonable assumption for the correlation structure of the residuals might
be that the similarity between observations within each observational unit is greater
the shorter the elapsed time between the observations. This structure can be imposed
using an AR(1) correlation matrix:51

Rt,s =

{
1 for t = s

ρ|t−s| otherwise

Different structures for the correlation matrix allow for a nearly infinite number of
model variations. All of these variations can be estimated using the xtgee command
with the corr() option for specifying predefined or customized correlation structures.
Typing

51. AR is short for autoregression.
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. xtgee lsat age, corr(exchangeable)

specifies the random-effects model and produces results similar to those from xtreg,

re.52 Typing

. xtgee lsat age, corr(ar1)

produces a model with an AR(1) correlation matrix. Typing

. xtgee lsat age, corr(independent)

produces the standard OLS regression model described at the beginning of this section.

You can interpret the estimated coefficients of error-components models just like the
estimated coefficients of a simple OLS regression model. But unlike in the simple OLS

model, in an error-components model, if the error structure is correctly specified, the
estimates are more accurate. Because the estimated coefficients are based on variations
within and between the individuals, you should have no problem investigating the effects
of time-invariant independent variables on the dependent variable. Unlike in the fixed-
effects model, the estimated coefficients can be biased because of omitted time-invariant
covariates.

9.7 Exercises

1. Set up a regression model with data1.dta to test the hypothesis that household
income (hhinc) increases general life satisfaction (lsat). How many observations
are used in your model? What is the estimated life satisfaction for respondents
with a household income of e 12,000? How does the predicted life satisfaction
change when household income increases by e 6,000?

2. Check whether the correlation between general life satisfaction and household
income is due to factors that are influences of life satisfaction or correlated with
income (like gender, age, education, employment status). How does the effect of
household income change when you take these other variables into account?

3. Check your model for influential cases. List the three observations with the highest
absolute value of the DFBETA for household income.

4. Check your model for nonlinearities. Discuss your findings. Go through the fol-
lowing three steps and see how your model improves.

• Recalculate your regression model with log household income instead of
household income and add a squared age variable to the regression model.

• Reiterate the regression diagnosis for the new model. What would you further
do to improve your model?

• Reiterate the process until you are satisfied.

52. xtgee, corr(exchangeable) and xtreg, re produce slightly different results because of imple-
mentation details that are too technical to discuss here. In practice, the results are usually quite
similar.
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5. Check the homoskedasticity assumption for your final model. What do you con-
clude? Recalculate the model with robust standard errors, if necessary.

6. Sociologist Ronald Inglehart has proposed the theory that younger generations
are less materialistic than older generations.

• Which testable implication has this hypothesis for your regression model?

• Change your regression model to test this implication. Is Inglehart correct?

• Create a conditional-effects plot to illustrate the results of your analysis of
Inglehart’s hypotheses.



10 Regression models for categorical
dependent variables

Researchers in the social sciences often deal with categorical dependent variables, whose
values may be dichotomous (for example, rented apartment: yes or no), nominal (party
identification: CDU, SPD, or Green Party), or ordinal (no concerns, some concerns,
strong concerns). Here we will present several procedures used to model variables such
as these by describing a procedure for dealing with dichotomous dependent variables:
logistic regression.

Logistic regression is most similar to linear regression, so we will explain it as an
analogy to the previous chapter. If you have no experience or knowledge of linear
regression, first read chapter 9 up to page 266.

As in linear regression, in logistic regression a dependent variable is predicted by
a linear combination of independent variables. A linear combination of independent
variables can look like this:

β0 + β1x1i + β2x2i + · · · + βK−1xK−1,i

Here x1i is the value of the first independent variable for interviewee i, x2i is the re-
spective value of the second independent variable, and so on. The regression parameters
β1, β2, . . . , βK−1 represent the weights assigned to the variables.

We did not say, however, that the mean of the dependent variable yi is equal to
that linear combination. In contrast to linear regression, in logistic regression you must
consider a particular transformation of the dependent statistic. Why such a transforma-
tion is required and why linear regression is inappropriate are explained in section 10.1,
whereas the transformation itself is explained in section 10.2.1.

Section 10.2.2 explains the method by which the logistic regression coefficients are
estimated. Because this explanation is slightly more difficult and is not required to
understand logistic regression, you can skip it for now.

Estimating a logistic regression with Stata is explained in section 10.3. Then we
discuss methods of verifying the basic assumptions of the model in section 10.4. The
procedure for verifying the joint significance of the estimated coefficients is discussed in
section 10.5, and section 10.6 demonstrates a few possibilities for refining the modeling
of correlations.

341
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For an overview of further procedures—in particular, procedures for categorical vari-
ables with more than two values—see section 10.7.

As with linear regression (chapter 9), you will need to do some additional reading
if you want to fully understand the techniques we describe. We suggest that you read
Hosmer and Lemeshow (2000) and Long (1997).

10.1 The linear probability model

Why is linear regression not suitable for categorical dependent variables? Imagine that
you are employed by an international ship safety regulatory agency and are assigned to
take a closer look at the sinking of the Titanic. You are supposed to find out whether
the seafaring principle of “women and children first” was put into practice or if there is
any truth in the assumption made by the film Titanic, in which the first-class gentlemen
took places in the lifeboats at the expense of the third-class women and children.

For this investigation, we have provided you with data on the sinking of the Titanic.1

Open the file by typing2

. use titanic2

and before you continue to read, make yourself familiar with the contents of the dataset
by using the commands

. describe

. tab1 _all

You will discover that the file contains details on the age (age), gender (men), and
passenger class (class) of the Titanic’s passengers, as well as whether they survived
the catastrophe (survived).

To clarify the disadvantages of using linear regression with categorical dependent
variables, we will go through such a model. First, we will investigate whether children
really were rescued more often than adults. What would a scatterplot look like where
the Y variable represents the variable for survival and the X variable represents age?
You may want to sketch this scatterplot yourself.

The points can be entered only on two horizontal lines: either at the value 0 (did not
survive) or at 1 (survived). If children were actually rescued more often than adults,
the number of points on the 0 line should increase in relation to those on the 1 line the
farther to the right that you go. To check whether your chart is correct, type

1. The dataset was collected by the British Board of Trade in their investigation of the sinking and
made publicly available by Dawson (1995). For teaching purposes, we have changed the original
dataset in that we have created a fictional age variable, because the original set differentiates merely
between adults and children. Among the files you installed in the steps discussed in the Preface is
the do-file we used to create the dataset (crtitanic2.do).

2. Please make sure that your working directory is c:\data\kk3; see page 3.
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. scatter survived age

This diagram is not particularly informative, because the plot symbols are often directly
marked on top of each other, hiding the number of data points.

With the help of the scatter option jitter(), you can produce a more informative
diagram. jitter() adds a small random number to each data point, thus showing
points that were previously hidden under other points. Within the parentheses is a
number between 1 and 30 that controls the size of the random number; you should
generally use small numbers if possible.

. scatter survived age, jitter(10)
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On examining the chart, you might get the impression that there is a negative cor-
relation between ages and survival of the Titanic disaster. This impression is confirmed
when you draw the regression line on the chart (see also section 9.1.2):



344 Chapter 10 Regression models for categorical dependent variables

. regress survived age

. predict yhat

. scatter survived age, jitter(10) ms(oh) || line yhat age, sort

−
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Passenger survived y/n Fitted values

The chart reveals one central problem of linear regression for dichotomous dependent
variables: the regression line in the illustration shows predicted values of less than 0
from around the age of 60 onward. What does this mean with regard to the content?
Remind yourself of how the predicted values of dichotomous dependent variables are
generally interpreted. Until now, we have understood the predicted values to be the
estimated average extent of the dependent variables for the respective combination of
independent variables. In this sense, you might say, for example, that the survival of a
5-year-old averages around 0.77. This is an invalid interpretation if you consider that
passengers can only survive or not survive; they cannot survive just a little bit.

However, the predicted value of the dichotomous dependent variable can also be
interpreted in a different way. You need to understand what the arithmetic mean of
a dichotomous variable with the values of 0 and 1 signifies. The mean of the variable
survived, for example, is 0.323. This reflects the share of passengers who survived.3

So, we see that the share of survivors in the dataset amounts to around 32%, or in other
words, the probability that you will find a survivor in the dataset is 0.32. In general,
the predicted values of the linear regression are estimates of the conditional mean of
the dependent variable. Thus you can use the probability interpretation for every value
of the independent variable: the predicted value of around 0.77 for a 5-year-old means
a predicted probability of survival of 0.77. From this alternative interpretation, the
linear regression model for dichotomous dependent variables is often called the linear
probability model or LPM (Aldrich and Nelson 1984).

How can you interpret the negative predicted values for passengers over 60 with
the help of the probability interpretation? In fact, you cannot, because according to
the mathematical definition of probabilities, they must be between 0 and 1. Given

3. You can confirm this for yourself by typing tab survived.
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sufficiently small or large values of the X variable, a model that uses a straight line to
represent probabilities will, however, inevitably produce values of more than 1 or less
than 0. This is the first problem that affects ordinary least-squares (OLS) regression of
dichotomous variables.4

The second problem affects the homoskedastic assumption of linear regression that
we introduced in section 9.3.2. According to this assumption, the variance of errors for
all values of X (and therefore all values of Ŷ ) should be constant. We suggested that the
scatterplot of the residuals against the predicted values indicated a possible violation of
this assumption. You can achieve a graph such as this for our linear probability model
by typing

. predict r, resid

. scatter r yhat, yline(-.6 .4) ylab(-.6 .4 1.4) xline(.6)
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Here you can observe that only two possible residuals can appear for every predicted
value. Less apparent is that both of these residuals result directly from the predicted
values. If a survivor (survived = 1) has a predicted value of 0.6 because of her age,
she will have a residual of 1 − 0.6 = 0.4. If you predict a value of 0.6 for an individual
who did not survive (survived = 0), you will receive a value of 0 − 0.6 = −0.6.

Thus the residuals are either 1−ŷi or −ŷi. The variance of the residuals is ŷi×(1−ŷi)
and is therefore larger as the predicted values approach 0.5. The residuals of the linear
probability model are therefore by definition heteroskedastic so the standard errors of
the estimated coefficients will be wrong.

In conclusion, although a linear regression with a dichotomous dependent variable
is possible, it leads to two problems. First, not all predicted values can be interpreted,
and second, this model does not allow for correct statistical inference. To avoid these

4. In practice, this is a problem of little importance when predicted values of more than 1 or less than
0 do not appear for real values of the independent variables. However, using a model that would
prevent such impossible probabilities from the start seems sensible.
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problems, you need a model that produces probabilities only between 0 and 1 and
relies on assumptions that are maintained by the model. Both are fulfilled by logistic
regression, the basic principles of which we will introduce now.

10.2 Basic concepts

10.2.1 Odds, log odds, and odds ratios

Earlier we found that the linear OLS regression of dichotomous dependent variables can
produce unwanted predicted values. This is clearly because we attempted to represent
values between 0 and 1 with a straight line. The values estimated with a linear regression
are basically not subject to any restrictions.

This means that, theoretically, values between −∞ and +∞ may emerge. Therefore,
regression models that are based on a linear combination should use only dependent
variables whose range of values are equally infinite.

Because the range of values for probabilities lies between 0 and 1, they are not suited
to be estimated with a linear combination. An alternative is the logarithmic chance,
which we will explain using the Titanic data from the previous section.

We previously received indications that children had a higher chance of survival than
adults did. Now we want to investigate whether women were more likely to survive than
men. You can obtain an initial indication of the chance of survival for women and men
through a two-way tabulation between men and survived:

. tabulate men survived, row

Key

frequency

row percentage

Male Passenger survived
passenger y/n

y/n No Yes Total

No 126 344 470
26.81 73.19 100.00

Yes 1,364 367 1,731
78.80 21.20 100.00

Total 1,490 711 2,201
67.70 32.30 100.00
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In section 7.2.1, we interpreted tables like this using row or column percentages. By
using the available row percentages, we determine that the overall share of survivors
was around 32%, whereas that of the women was about 50 percentage points higher
than that of the men (73% compared with 21%). You can do a similar comparison by
dividing the number of survivors by the number of dead. For the women, this ratio
would be 344:126.

. display 344/126
2.7301587

You will get the same number5 if you divide the proportional values (in this case,
the row percentages):

. display .7319/.2681
2.7299515

You can interpret these ratios as follows: for women, the estimated probability of
surviving is almost three times as high as the estimated probability of dying. The
estimated probability of dying is around one-third (1 : 2.73 = 0.366) the estimated
probability of surviving. In practice, we would say that the estimated odds of surviving
are generally around 2.73 to 1, whereas the estimated odds of dying are around 1 to 2.73.

In general, this relationship can be written as

oddssurviving =
Probabilitysurviving

Probabilitydying

or slightly shorter by using symbols instead of text:

odds =
Pr(Y = 1)

1 − Pr(Y = 1)
(10.1)

The probabilities of survival, Pr(Y = 1), and dying, Pr(Y = 0), can be found,
respectively, in the numerator and the denominator. Because the only two alternatives
are surviving or dying, their probabilities sum to 1, so we replace Pr(Y = 0) with
1 − Pr(Y = 1).

You can also estimate the chance of survival for men. Their odds of survival are
considerably lower than those of the women: 367/1364 = 0.269. This means that for
men, the estimated probability of survival stands at 0.269 :1; men are 3.72 times more
likely to be among the victims.

5. The deviations are due to roundoff error.
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Of course, you can compare the odds of survival for men and women using a measured
value. For instance, you can compare the estimated chance of survival for men with
that of women by dividing the odds for men by the odds for women:

. display .269/2.73

.0985348

This relationship is called the odds ratio.

Here we would say that the odds of survival for men are 0.099 times, or one-tenth,
the odds for women. Apparently, the principle of women and children first appears to
have been adhered to. Whether this appearance actually holds is something that we
will investigate in more detail in section 10.6.2.

However, first we should consider the suitability of using odds for our statistical
model. Earlier, we looked at the probabilities of surviving the Titanic catastrophe by
passenger age. We found that predicting these probabilities with a linear combination
could result in values outside the definition range of probabilities. What would happen
if we were to draw upon odds instead of probabilities?

In the first column of table 10.1, we list several selected probability values. You
will see that at first the values increase slowly, then rapidly, and finally slowly again.
The values are between 0 and 1. If we presume that the values represent the estimated
chance of survival for passengers of different ages on the Titanic, the first row would
contain the group of the oldest passengers with the lowest chance of survival, and the
bottom row would contain the group of the youngest passengers with the highest chance
of survival. Using (10.1), you can calculate the odds that an individual within each of
these groups survived the Titanic catastrophe. Furthermore, imagine that each of these
groups contains 100 people. Because the first group has a probability of 0.01, 1 person
out of 100 should have survived, a ratio of 1 to 99 (1 : 99). If you calculate 1/99, you
get 0.010. You can perform this calculation for each row in the table. The values of
the odds lie between 0 and +∞; odds of 0 occur if there are no survivors within a
specific group, whereas odds of +∞ occur when everyone in a large group survives. If
the number of survivors is equal to the number of victims, we get odds of 1.
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Table 10.1. Probabilities, odds, and logits

Pr(Y = 1) odds = Pr(Y =1)

1−Pr(Y =1)
ln(odds)

0.01 1/99 = 0.01 −4.60
0.03 3/97 = 0.03 −3.48
0.05 5/95 = 0.05 −2.94
0.20 20/80 = 0.25 −1.39
0.30 30/70 = 0.43 −0.85
0.40 40/60 = 0.67 −0.41
0.50 50/50 = 1.00 0
0.60 60/40 = 1.50 0.41
0.70 70/30 = 2.33 0.85
0.80 80/20 = 4.00 1.39
0.95 95/5 = 19.00 2.94
0.97 97/3 = 32.33 3.48
0.99 99/1 = 99.00 4.60

Odds are therefore slightly better suited than probabilities to be estimated with a
linear combination. No matter how high the absolute value is when predicting with a
linear combination, it will not be outside the definition range of the odds. However, a
linear combination also allows for negative values, but negative odds do not exist. You
can avoid this problem by using the natural logarithm of the odds. These values, called
logits, are displayed in the last column of the table.

Now look at the values of the logits more closely. Although the odds have a minimum
boundary, the logarithmic values have no lower or upper boundaries. The logarithm
of 1 is 0. The logarithm of numbers less than 1 results in lower figures that stretch to
−∞ as you approach 0. The logarithm of numbers over 1 stretch toward +∞. Note
also the symmetry of the values. At a probability of 0.5, the odds lie at 1 : 1 or 50 : 50;
the logarithmic value lies at 0. If you look at the probabilities above and below 0.5, you
will see that at equal intervals of probabilities of the odds’ logarithm, only the algebraic
sign changes.

The logit is not restricted and has a symmetric origin. It can therefore be represented
by a linear combination of variables and hence is better suited for use in a regression
model. Unfortunately, the logit is not always easy to interpret. Your employers are
unlikely to understand you if you tell them that the logarithmic chance of survival of a
male Titanic passenger is −1.31, whereas that of a female passenger is +1.00. However,
you can convert the values of the logits back into probabilities

Pr(Y = 1) =
eL

1 + eL
(10.2)
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where L is logit and e is Euler’s constant (e ≈ 2.718). A functional graph of this
transformation can be drawn as follows:

. twoway function y=exp(x)/(1+exp(x)), range(-10 10)
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In this graph, we see another interesting characteristic of logits: although the range
of values of the logits has no upper or lower boundaries, the values of the probabilities
calculated from the logits remain between 0 and 1. For logits between around −2.5
and 2.5, the probabilities increase relatively rapidly; however, the closer you get to the
boundary values of the probabilities, the less the probabilities change. The probabilities
asymptotically approach the values 0 and 1, but they never go over the boundaries.
From this, we can deduce that on the basis of a linear combination, predicted logits can
always be converted into probabilities within the permitted boundaries of 0 and 1.

To summarize, the logarithmic chance is well suited to be estimated with a linear
combination and can therefore be used in a regression model. The equation for such a
model could be

Li = β0 + β1x1i + β2x2i + · · · + βK−1xK−1,i (10.3)

This is called the logistic regression model or logit model. The formal interpretation
of the β coefficients of this model is identical to that of the linear regression (OLS).
When an X variable increases by one unit, the predicted values (the logarithmic odds)
increase by β units.

Before we use logistic regression, let us examine the procedure for estimating the β
coefficients of (10.3). For the linear regression, we used the OLS procedure for estimation.
For the logistic regression, we instead use the process of maximum likelihood. The logic
of this process is somewhat more complex than that of OLS, even though the basic
principle is similar: you look for the β coefficients that are optimal in a certain respect.
We will explain this process in detail in the following section. However, you do not need
to work through the example to understand the section that follows it!
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10.2.2 Excursion: The maximum likelihood principle

In discussing linear regression, we explained the OLS process used to determine the b
coefficients, which are estimators of the β coefficients. In principle, you could calculate
the logarithmic odds for each combination of the independent variables and use these in
an OLS regression model. Nevertheless, for reasons we will not explain here, a procedure
such as this is not as efficient as the process of estimation applied in logistic regression, a
process called the maximum likelihood principle.6 Using this technique, you can deter-
mine the b coefficients so that the proportionate values you observed become maximally
probable. What does this mean? Before we can answer this question, we need to make
a little detour.

On page 344, we informed you that 32.3% of the Titanic passengers survived. Sup-
pose that you had determined this figure from a sample of the passengers. Here you
could ask yourself how likely such a percentage may be, when the true number of the
survivors amounts to, say, 60% of the passengers? To answer this question, imagine that
you have selected one passenger from the population. If 60% of the passengers survived,
the estimated probability that this passenger will be a survivor is 0.6, and the estimated
probability that he or she will be a victim is 0.4. Now select a second passenger from the
population. Whether this person is a survivor or a victim, the estimated probabilities
remain the same (sampling with replacement).

In figure 10.1, we have conducted all possible samples with three observations. We
obtained 2n = 23 = 8 samples with n = 3. In the first sample, we observed only survivors
(S). The probability that a sample randomly selects three survivors is 0.6× 0.6× 0.6 =
0.63 = 0.216. In the second, third, and fifth samples, we observed two survivors and one
victim (V). Each of these samples has probability 0.6× 0.6× 0.4 = 0.62 × 0.41 = 0.144.
In total, the probability of such a sample is 0.144 × 3 = 0.432. The probabilities
of samples 4, 6, and 7 are each 0.6 × 0.4 × 0.4 = 0.6 × 0.42 = 0.096. In total, the
probability of these samples is therefore 0.096 × 3 = 0.288. Finally, there is sample 8,
where the probability lies at 0.4 × 0.4 × 0.4 = 0.43 = 0.064. If, from the samples given
in the mapping, we ask how likely it is that one of three survives, the answer is that it
is as likely as samples 4, 6, and 7 together, that is, 0.288.

6. Andreß, Hagenaars, and Kühnel’s (1997, 40–45) introduction to the maximum likelihood principle
served as a model for the following section.
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Figure 10.1. Sample of a dichotomous characteristic with the size of 3

Generally, the probability of observing h successes in a sample of size n is

Pr(h|π, n) =

(
n

h

)
πh(1 − π)n−h (10.4)

where π defines the probability of a positive outcome in the population. The term
(
n
h

)

stands for n!/h!(n − h)!. It enables us to calculate the number of potential samples
in which the dichotomous characteristic appears n times. In Stata, the probability of
samples 4, 6, and 7 in our mapping can be calculated with this command:

. display comb(3,1) * .6^1 * .4^2

.288

In practice, we are usually not interested in this figure; instead our attention is
on π, the characteristic’s share in the population. Although π is unknown, we can
consider what value of π would make the given sample most probable. For this, we can
use various values for π in (10.4) and then select the value that results in the highest
probability. Formally, this means that we are searching for the value of π for which the
likelihood

L(π|h, n) =

(
n

h

)
πh(1 − π)n−h (10.5)

is maximized. We can forgo a calculation of
(
n
h

)
, because this term remains constant for

all values of π. The likelihood is calculated with the same formula as in (10.4). If (10.4)
is evaluated for all possible values of h, then the probabilities sum to 1, but this is not
the case for the values of L and all possible values of π. Therefore, we must differentiate
between likelihood and probability.
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You can do this for sample 2 from figure 10.1 (two survivors and one victim) by
creating an artificial dataset with 100 observations:

. clear

. set obs 100

Now generate the variable pi by rendering a series of possible values for π:

. generate pi = _n/100

Because h and n are known from the sample, you can calculate the likelihood for
the various values of π:

. generate L = pi^2 * (1 - pi)^(3-2)

With the help of a graph, you can then analyze which π results in a maximal likeli-
hood:

. line L pi, sort

0
.0

5
.1

.1
5

L

0 .2 .4 .6 .8 1
pi

The maximum of the likelihood lies around π = 0.66. This is the maximum likelihood
estimate of the share of survivors from the population, given that the sample contains
two survivors and one victim.

How can you estimate the β coefficients of our regression model with the maximum
likelihood principle from (10.3)? The answer is simple. Instead of directly inserting the
values for π, you can calculate π with the help of our regression model. Now insert
(10.3) in (10.2):

Pr(Y = 1) =
eβ0+β1x1i...+βK−1xK−1,i

1 + eβ0+β1x1i...+βK−1xK−1,i
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Also insert (10.3) in (10.5):

L(βk|f, n,m) = Pr(Y = 1)h × {1 − Pr(Y = 1)}n−h
=

(
eβ0+β1x1i+···+βK−1xK−1,i

1 + eβ0+β1x1i+···+βK−1xK−1,i+

)h

×
(

1 − eβ0+β1x1i+···+βK−1xK−1,i

1 + eβ0+β1x1i+···+βK−1xK−1,i

)n−h

After doing this, you can attempt to maximize this function by trying out different
values of βk. However, like with OLS regression, it is better to reproduce the first
derivative from βk and to set the resulting standard equation as 0. The mathematical
process is made easier when the log likelihood—that is, lnL—is used. You will not
find an analytical solution with this model, unlike with linear OLS regression. For this
reason, iterative algorithms are used to maximize the log likelihood.

We have introduced the maximum likelihood principle for logistic regression with a
dichotomous dependent variable. In principle, we can apply it to many different models
by adapting (10.5) to reflect the distributional assumptions we wish to make. The
resulting likelihood function is then maximized using a mathematical algorithm. Stata
has a command called ml to do this, which is described in detail in Gould, Pitblado,
and Poi (2010).

10.3 Logistic regression with Stata

Let us now set aside our Titanic example for an alternative. Say that you assumed that
when the age and household income of a surveyed individual increases, the probability
of living in an apartment or house they own also increases. Also you expect that the
share of individuals who own their own residences7 differs between West Germany and
East Germany.

Now let us load our dataset data1.dta.

. use data1, clear

To check your assumptions, you can calculate a logistic regression model of residence
ownership against household income, age, and an East–West variable.

Stata has two commands for fitting logistic regression models: logit and logistic.
The commands differ in how they report the estimated coefficients. logit reports the
actual b’s in (10.3), whereas logistic reports the odds ratios discussed previously.
Because we have emphasized using a linear combination of variables to explain the de-
pendent variable, we will focus on logit and show you how to obtain odds ratios after
estimation. Some researchers, particularly biostatisticians and others in the medical
field, focus almost exclusively on odds ratios and therefore typically use logistic in-
stead. Regardless of how the estimated coefficients are reported, both commands fit the
same underlying statistical model.

7. In the following, we will refer to living in an apartment or house that the individual owns as
residence ownership. In this respect, children may also be considered to “own” housing.
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At least one category of the dependent variable must be 0, because logit takes a
value of 0 to represent failure and any other value to represent success. Normally, you
use a dependent variable with the values 0 and 1, where the category assigned the value
of 1 means success. Here the variable owner should be generated with the values of 1
for house owner and 0 for tenant, as follows:8

. generate owner = renttype == 1 if !missing(renttype)

We generate the East–West variable analogously, as we did previously for our linear
regression model (page 271):

. generate east = inrange(state,11,16) if !missing(state)

To control for age, we generate an age variable from the year-of-birth variable, and we
center this variable.

. generate age = 2009-ybirth

. summarize age, meanonly

. generate age_c = age-r(mean)

Because household income is so heavily skewed to the right and we expect that the
effect of income on house ownership decreases when household income becomes very
large, we create a new variable that is log base-2 of household income.

. generate loghhinc = log(hhinc)/log(2)

Note that the value 10 of loghhinc is equal to a yearly household income of approxi-
mately e 1,000 (210 = e 1,024), and 11 is equal to an household income of approximately
e 2,000.9 Every unit increase on loghhinc is equal to doubling yearly household income.

8. For details on this command, see page 80. The command label list determines the assignment
of the values to labels (section 5.6).

9. There is a simple trick to estimate roughly the value of exponents of 2. For this, you need to
know that 210 is approximately 1,000. Then 211 is 210

× 21
≈ 1, 000 × 2 = 2, 000. Likewise,

215
≈ 1, 000 × 32 = 32, 000).
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Now we are ready to fit the logistic regression model:

. logit owner age_c loghhinc east

Iteration 0: log likelihood = -3739.5754
Iteration 1: log likelihood = -3247.7417
Iteration 2: log likelihood = -3246.6989
Iteration 3: log likelihood = -3246.6983
Iteration 4: log likelihood = -3246.6983

Logistic regression Number of obs = 5407
LR chi2(3) = 985.75
Prob > chi2 = 0.0000

Log likelihood = -3246.6983 Pseudo R2 = 0.1318

owner Coef. Std. Err. z P>|z| [95% Conf. Interval]

age_c .0228959 .0017586 13.02 0.000 .019449 .0263428
loghhinc 1.157434 .0438131 26.42 0.000 1.071562 1.243306

east .088873 .0692819 1.28 0.200 -.046917 .2246631
_cons -17.17416 .6571883 -26.13 0.000 -18.46223 -15.8861

The results table is similar to the one from linear regression. At the bottom of
the output is the coefficient table, which contains the estimated coefficients for the
independent variables and the constant along with their standard errors, significance
tests, and confidence intervals. At the top left is the iterations block with results that
are related to the maximum likelihood algorithm. At the top right, we see a block
describing the model fit. We will discuss each of these blocks along the lines of our
explanation of linear regression.

10.3.1 The coefficient table

The following description focuses on the coefficients in the first column of the table of
coefficients. For the meaning of the other columns, please refer to chapter 8. We like
to stress that if you are interested in inferential statistics for the commands shown in
this chapter, you need to svyset the dataset as shown on page 220 and to prefix all
regression commands with svy.

The b coefficients can be found in the first column of the coefficient table.10 The
b coefficients indicate how the predicted values change when the corresponding inde-
pendent variables increase by one unit, just like in linear regression, although here the
predicted values are the logarithmic odds of success, not the mean of the dependent
variable. For example, you would interpret the estimated regression coefficient of age c

as follows: the logarithmic odds of residence ownership rise on average by 0.023 if age
increases by 1 year. Likewise, the log odds of residence ownership increase by 1.157 if
log household income increases by one unit (that is, doubled).

10. In the second column, you will find the standard errors of the regression coefficients, which will help
you calculate significance tests and confidence interval limits; see chapter 8. In logistic regression,
you usually evaluate the significance of the coefficients using a likelihood-ratio test (section 10.5).
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From the estimated regression coefficient of east, we can say that with every one-unit
increase of the variable east, the estimated logarithmic chance of residence ownership
increases on average by 0.089. Because east can increase by one unit only once, we might
instead say that East Germans have, on average, a 0.089 bigger estimated logarithmic
chance of residence ownership than West Germans. The estimated regression constant
provides the predicted value for those individuals surveyed for whom all independent
variables show the value 0. Because we centered the age variable, the value 0 on age c

corresponds to the mean of age; because we use the log base-2 of household income,
the value 0 on loghhinc means 20 = e 1. Hence, the interpretation of the regression
coefficient is that the predicted logarithmic chance of residence ownership for West
German individuals with mean age and household income of e 1 is −17.174.

Because these changes in the logarithmic chance of positive outcome are hard to
understand, we will discuss some alternative interpretations below.

Sign interpretation

As a first step, consider just the signs and relative sizes of the estimated coefficients.
A positive sign means that the estimated probability or chance of residence ownership
increases with the respective independent variable, whereas a negative sign means that
it decreases. Here the estimated probability of house ownership increases with age and
household income, and is higher in the East than it is in the West.

Interpretation with odds ratios

Using the model equation, we want to calculate the predicted logarithmic chance of a
West German with a log household income of 15 (that is, 215 ≈ e 32,000). Using the
saved coefficients as shown in section 9.1.2, this can be done as follows:

. display _b[_cons] + _b[loghhinc]*15

.18734942

The estimated logarithmic odds of house ownership for West Germans at average age
with a household income of approximately e 32,000 is around 0.187.

By calculating the exponential of the regression function, you can convert the loga-
rithmic odds to odds:

. display exp(_b[_cons] + _b[loghhinc]*15)
1.2060486

The odds that households with a log household income of 15 have house ownership is
around 1.206.

Similarly, you can calculate the predicted odds for those who have a log household
income that is one unit larger:

. display exp(_b[_cons] + _b[loghhinc]*16)
3.8373555
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A household with a log household income of 16 has a substantially larger odds of
residence ownership than the household with a log household income of 15. We can use
the odds ratio (page 348) to compare the two odds. Here it amounts to

. display exp(_b[_cons] + _b[loghhinc]*16)/exp(_b[_cons] + _b[loghhinc]*15)
3.1817586

This means that if the log household income increases by one unit (doubles), a person is
around 3.182 times as likely to own his or her residence. Increasing log household income
by two units increases the odds of owning a residence by around 3.182×3.182 = 10.125.
Odds ratios work in a multiplicative fashion.

You can reduce the complexity of calculating odds ratios if you consider that to
determine the odds ratios, you must first calculate the odds for a particular value X
and then for the value X + 1. After that, you divide both results by each other, which
can be presented as follows:

̂odds ratio =
eb0+b1(X+1)

eb0+b1X
=

eb0+b1Xeb1

eb0+b1X
= eb1

You can therefore obtain the estimated odds ratio simply by computing the expo-
nential of the corresponding b coefficient.

Many logistic regression users prefer the interpretation of results in the form of the
odds ratio. For this reason, Stata also has the command logistic and the logit option
or that both directly report the estimated odds ratios. If you have already fit your model
using logit, you can type in logistic or logit, or to redisplay the output in terms
of odds ratios:

. logit, or

Logistic regression Number of obs = 5407
LR chi2(3) = 985.75
Prob > chi2 = 0.0000

Log likelihood = -3246.6983 Pseudo R2 = 0.1318

owner Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

age_c 1.02316 .0017994 13.02 0.000 1.019639 1.026693
loghhinc 3.181759 .1394028 26.42 0.000 2.919937 3.467057

east 1.092942 .0757211 1.28 0.200 .9541666 1.251901
_cons 3.48e-08 2.29e-08 -26.13 0.000 9.59e-09 1.26e-07
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Probability interpretation

The third possibility for interpreting the coefficient is provided by (10.2), which we used
to show you how to convert predicted logits into predicted probabilities. For example, to
compute the estimated probability of residence ownership for mean-aged West Germans
with household incomes of around e 32,000, you could type

. display exp(_b[_cons] + _b[loghhinc]*15)/(1 + exp(_b[_cons] + _b[loghhinc]*15))

.54670084

The predict command lets you generate a new variable that contains the predicted
probability for every observation in the sample. You just enter the predict command
along with the name of the variable you want to contain the predicted probabilities.

. predict Phat

Here the name Phat indicates that this variable deals with predicted probabilities. You
can also calculate the predicted logits with the xb option of the predict command.

margins provides another possibility to access the predicted probabilities. In the
following example, we use the command to calculate the predicted probabilities of res-
idence ownership for West German citizens of mean age with log household incomes
between 13 and 18 (the option noatlegend saves space):

. margins, at(loghhinc=(13(1)18) age_c=0 east=0) noatlegend

Adjusted predictions Number of obs = 5407
Model VCE : OIM

Expression : Pr(owner), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .1064508 .0088783 11.99 0.000 .0890497 .1238519
2 .2748636 .0109781 25.04 0.000 .2533469 .2963803
3 .5467008 .0085653 63.83 0.000 .5299132 .5634885
4 .7932755 .0092688 85.59 0.000 .775109 .811442
5 .9242971 .0066506 138.98 0.000 .9112623 .937332
6 .9749045 .0033467 291.30 0.000 .9683451 .981464

In this output, the first row shows the predicted probability of residence ownership for
West German citizens with mean age and yearly log household income of 13 (≈ e 8,000).
Not surprisingly, this probability is fairly small (around 10.6%). The following rows
in the table show the predicted probabilities for the corresponding persons with log
households incomes of 14, 15, . . . , 18. We see that the predicted probabilities increase
when log household income becomes larger. The predicted probability of residence
ownership for average-aged West German citizens with a log household income of 18
(≈ e 256,000) is almost 100%.
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One difficulty in interpreting predicted probabilities is that they do not increase
at the same rate for each unit increase in an independent variable. You can see that
very well from the table above. If you are comparing mean-aged West Germans with
log household income of 13 with those having a household income of 14, the predicted
probability of residence ownership increases by around 0.27 − 0.11 = 0.16. However,
if you compare the last two lines, that is, persons with log household incomes of 17
and 18, the predicted probability increases by only 0.97 − 0.92 = 0.05. We see that an
increase of log household income by one unit does not lead to a constant change in the
predicted probability.

One solution would be to show the predicted probabilities by means of conditional-
effects plot (see section 9.5.3). Like with linear regression, the combination of margins
and marginsplot lets you easily create these plots. Here is an example that shows the
effects of all independent variables in the model:

. margins, at(loghhinc=(13(1)18) age_c=(-30(30)30)) by(east)

(output omitted )

. marginsplot, by(east)

Variables that uniquely identify margins: loghhinc east
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Predictive Margins with 95% CIs

The graph shows that the increase in predicted probabilities is not constant over log
household income values. Depending on income, the predicted probability of residence
ownership will rise either rapidly or slowly. It is also visible that the effect of age on
the predicted probability of residence ownership is larger for log household incomes
around 14 than for log household incomes above 16. Finally, we see that West and East
Germans do not differ much in their predicted probability of residence ownership.
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Average marginal effects

As we have seen, the effects of the independent variables on the probability of success
is not constant across their levels. Generally, the effects of independent variables are
stronger when the predicted probabilities are close to 50% and weaker when the pre-
dicted probabilities approach 0% or 100%. Unlike in linear regression, there is therefore
not an obvious way to express the influence of an independent variable on the depen-
dent variable with one single number. So-called average marginal effects are a reasonable
candidate, however.

To introduce average marginal effects, we need to introduce marginal effects first. A
marginal effect is the slope of a regression line at a specific point. With linear regression,
the slope of the regression line is just the regression coefficient. However, as you can
see in the conditional-effects plot above, the slope of the regression line—and hence the
marginal effect—is not constant in the case of logistic regression. It is therefore only
possible to calculate the slope of the regression line at specific points. This can be done
with the option dydx(varlist) of margins. For example, the command

. margins, dydx(_all) atmeans noatlegend

Conditional marginal effects Number of obs = 5407
Model VCE : OIM

Expression : Pr(owner), predict()
dy/dx w.r.t. : age_c loghhinc east

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age_c .0057079 .0004387 13.01 0.000 .0048481 .0065678
loghhinc .2885477 .0109437 26.37 0.000 .2670983 .309997

east .022156 .0172725 1.28 0.200 -.0116974 .0560094

shows the slopes of the regression lines for all independent variables at their means.
Holding all variables at their averages, the predicted probabilities of residence ownership
increase by 0.006 with age, by 0.022 with East Germany, and by 0.289 with log household
income.
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If you fix the covariates at other points, the marginal effects change as well. Take
as an example the marginal effects for East Germans at an age of 20 years above the
average and a log household income of 15:

. margins, dydx(_all) at(age_c=20 loghhinc=15 east=1) noatlegend

Conditional marginal effects Number of obs = 5407
Model VCE : OIM

Expression : Pr(owner), predict()
dy/dx w.r.t. : age_c loghhinc east

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age_c .0050171 .0003387 14.81 0.000 .0043531 .005681
loghhinc .2536225 .0096303 26.34 0.000 .2347475 .2724976

east .0194743 .0148274 1.31 0.189 -.0095869 .0485354

Because the marginal effects differ with the levels of the covariates, it makes sense
to calculate the average of all marginal effects of the covariate patterns observed in the
dataset. This is the average marginal effect. You get the average marginal effects by
simply stating the command without specifying the values for which the marginal effects
should be obtained.

. margins, dydx(_all) noatlegend

Average marginal effects Number of obs = 5407
Model VCE : OIM

Expression : Pr(owner), predict()
dy/dx w.r.t. : age_c loghhinc east

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age_c .0047528 .0003443 13.80 0.000 .004078 .0054277
loghhinc .2402647 .0066963 35.88 0.000 .2271402 .2533891

east .0184486 .0143741 1.28 0.199 -.009724 .0466212

10.3.2 The iteration block

In the upper left part of the logit output (see page 356) are several rows beginning
with the word iteration. This sort of output is typical for models whose coefficients are
estimated by maximum likelihood. As we mentioned in our discussion of this proce-
dure, when you use the maximum likelihood principle, there is typically no closed-form
mathematical equation that can be solved to obtain the b coefficients. Instead, an it-
erative procedure must be used that tries a sequence of different coefficient values. As
the algorithm gets closer to the solution, the value of the likelihood function changes
by less and less.
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The first and last figures of the iteration block are in some respects similar to the
figures given in the ANOVA block of the linear regression (see section 9.1.2), which
contained figures for the total sum of squares (TSS), the residual sum of squares (RSS),
and the model sum of squares (MSS). TSS is the sum of the squared residuals from
predicting all the values of the dependent variables through arithmetic means. RSS is
the sum of the squared residuals from the regression model, and MSS is the difference
between TSS and RSS. MSS thus represents how many fewer errors we make when using
the regression model instead of the mean for predicting the dependent variable.

In the logistic regression model, the residuals used to estimate the regression coeffi-
cients cannot be interpreted in the same way as with linear regression. Two values of
the likelihood function are of particular interest, namely, the first and the last. The first
likelihood shows how probable it is that all β coefficients of the logistic regression apart
from the constant term equal 0 (L0).

11 The last likelihood represents the maximized
value. The larger the difference between the first and last values of the log likelihood,
the stronger the advantage of the model with independent variables compared with the
null model. In this sense, you can consider TSS analogous to L0, RSS to LK , and MSS

to L0 − LK .

Other than the first and last log likelihoods, the rest of the figures in the iteration
block are of little interest, with one exception. Sometimes the maximum likelihood
process delivers a solution for the coefficients that is not optimal. This may occur if
the domain where you are searching for the coefficients is not concave or flat. This
is a somewhat technical issue, so we will not delve further into it. However, many
iterations may indicate a difficult function to maximize, though it is difficult to say how
many iterations are too many. You should generally expect more iterations the more
independent variables there are in your model.

In general, the logistic regression model’s likelihood function is “well behaved”,
meaning that it is relatively easy to maximize. However, if you do have problems
obtaining convergence, you may want to remove a few independent variables from your
specification and try again.

10.3.3 The model fit block

R2 was used to assess the fit of a linear regression model. R2 is so commonly used
because it has, on one hand, clear boundaries of 0 and 1, and on the other, a clear
interpretation of the share of explained variance. There is no comparable generally
accepted measured value for logistic regression. Instead, many different statistics have
been suggested, some of which we will introduce here.

One such measure of fit is reported in the model fit block of logit: the pseudo-
R2 (p2). Nevertheless, it is already a mistake to speak of the pseudo-R2. There are

11. This is true for Stata’s logit and logistic commands. However, other maximum likelihood
commands use alternative starting values, and then the iteration-zero log likelihood is not the
value obtained when all the slope parameters are set to 0.
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various definitions for pseudo-R2 (Veall and Zimmermann 1994; Long and Freese 2006).
Therefore, you should always indicate which pseudo-R2 you are referring to. The one
reported by Stata is that suggested by McFadden (1973), which is why we refer to it as
p2
MF.

McFadden’s p2
MF is defined in a way that is clearly analogous to the R2 in linear

regression (recall that R2 = MSS/TSS = 1− RSS/TSS). p2
MF is defined as

p2
MF =

lnL0 − lnLK

lnL0
= 1 − lnLK

lnL0

where L0 is the likelihood from the model with just a constant term and LK is the
likelihood of the full model. As is the case in R2, p2

MF lies within the boundaries of 0
and 1; however, interpreting the content is disproportionately more difficult. “The
higher, the better” is really all you can say of p2

MF. In our example (page 356), the
value of p2

MF around 0.08 is what most people would say is rather small.

Besides McFadden’s pseudo-R2, the likelihood-ratio χ2 value (χ2
L) is another indi-

cator of the quality of the overall model. It too is based on the difference between the
likelihood functions for the full and constant-only models. However, unlike p2

MF, this
difference is not standardized to lie between 0 and 1. It is defined as

χ2
L = −2(lnL0 − lnLK)

χ2
L follows a χ2 distribution, and as with the F value in linear regression, you can

use χ2
L to investigate the hypothesis that the independent variables have no explanatory

power or, equivalently, that all the coefficients other than the constant are 0. The
probability of this hypothesis being true is reported in the line that reads “Prob >
chi2”. Here it is practically 0. Therefore, we can assume that at least one of the two
β coefficients in the population is not 0. As is the case in the linear regression F test,
rejection of this null hypothesis is not sufficient for us to be satisfied with the results.

As with linear regression, you should not judge a model’s suitability purely by the
measured values within the model fit block, especially in logistic regression, because
there is no single generally accepted measured value for doing so. Therefore, we will
discuss other measures that are not reported in the output.

Classification tables

The fit of the linear regression model was assessed primarily on the basis of the residuals
(y− ŷ). In logistic regression, one way to assess fit is with a classification table, in which
every observation is assigned one of the two outcomes of the dependent variable. The
positive outcome is normally assigned when the model predicts a probability of more
than 0.5, whereas an observation is assigned a negative outcome if a probability of less
than 0.5 is predicted. For example, you could do this manually, assuming you have
already created the variable Phat containing the predicted probabilities, by typing

. generate ownerhat = Phat >= .5 if !missing(Phat)
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The classified values so generated are typically presented in a classification table, a
simple cross-classified table containing the classified values and the original values:

. tabulate ownerhat owner, cell column

Key

frequency

column percentage

cell percentage

owner
ownerhat 0 1 Total

0 1,556 707 2,263
60.92 24.78 41.85
28.78 13.08 41.85

1 998 2,146 3,144
39.08 75.22 58.15
18.46 39.69 58.15

Total 2,554 2,853 5,407
100.00 100.00 100.00
47.24 52.76 100.00

The sensitivity and the specificity of the model are commonly used by people in
the medical profession. Sensitivity is the share of observations classified as residence
owners within the observations who actually do own their residences. Specificity is the
share of observations classified as tenants among those who are actual tenants. Here
the sensitivity is 75.22% and the specificity is 60.92%.

The count R2 is commonly used in the social sciences. It deals with the share of
overall correctly predicted observations, which you can determine by adding the overall
shares in the main diagonal of the above-generated table. However, it is easier to use
the estat classification command, which you can use to generate the table in a
different order, as well as derive the sensitivity, specificity, count, R2, and other figures:



366 Chapter 10 Regression models for categorical dependent variables

. estat classification

Logistic model for owner

True
Classified D ~D Total

+ 2146 998 3144
- 707 1556 2263

Total 2853 2554 5407

Classified + if predicted Pr(D) >= .5
True D defined as owner != 0

Sensitivity Pr( +| D) 75.22%
Specificity Pr( -|~D) 60.92%
Positive predictive value Pr( D| +) 68.26%
Negative predictive value Pr(~D| -) 68.76%

False + rate for true ~D Pr( +|~D) 39.08%
False - rate for true D Pr( -| D) 24.78%
False + rate for classified + Pr(~D| +) 31.74%
False - rate for classified - Pr( D| -) 31.24%

Correctly classified 68.47%

The classification table shows that we have a total of 3,144 observations classi-
fied as 1. For 2,146 observations, this corresponds to the true value, but for 998 it
does not. We have assigned the value 0 to 2,263 observations, which turned out to
be correct for 1,556 of the observations. In total, we correctly classified R2

count =
(2146 + 1556)/5407 = 68.47% of the observation, as shown in the final line of the table.

Overall, we might think that our model looks good. However, you can also correctly
classify some cases without knowing about the independent variable. If you know only
the distribution of the dependent variable, you will make fewer errors if you assign
all observations to the most-frequent category. If you were to predict that all the
observations are tenants, you would already be correct in 2853/5407 = 52.77% of the
cases. By comparing the correct classification obtained from the marginal distribution
with the correct classification obtained with the knowledge of the independent variable,
you can calculate the adjusted count R2 (Long 1997, 108):

R2
AdjCount =

∑
j njj − maxc(n+c)

n − maxc(n+c)

where n+c is the sum of column c and maxc(n+c) is the column with the higher value
of n+c.

∑
j njj is the sum of cases in the main diagonal of the classification table, that

is, the amount of correctly classified cases. Here we receive an R2
AdjCount of

. display ((2146 + 1556) - 2853)/(5407 - 2853)

.33241973

This means that when predicting with a model that includes independent variables,
our error rate drops by 33.24% compared with prediction based solely on the marginal
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distribution of the dependent variable. You can receive the adjusted count R2 and
other model fit–measured values through Scott Long and Jeremy Freese’s ado-package
fitstat, available from the SSC archive (see section 13.3.2).

Two further common fit statistics, the Akaike information criterion and the Bayesian
information criterion, are available with the estat ic command.

Pearson chi-squared

A second group of fit statistics is based on the Pearson residuals. For you to understand
these, we must explain the term covariate pattern, which is defined as every possible
combination of a model’s independent variables. In our example, this is every possible
combination of the values of log household income, age, and region. Every covariate
pattern occurs mj times, where j indexes each covariate pattern that occurs. By typing

. predict cpatt, number

. sort east age_c loghhinc

. list east age_c loghhinc cpatt, sepby(loghhinc)

you can view the index number representing the covariate pattern of each observation.

The Pearson residuals are obtained by comparing the number of successes having
covariate pattern j (yj) with the predicted number of successes having that covariate

pattern (mjP̂j , where P̂j is the predicted probability of success for covariate pattern j).
The Pearson residual is defined as

rP (j) =
(yj − mjP̂j)√
mjP̂j(1 − P̂j)

(Multiplying P̂j by the number of cases with that covariate pattern results in the pre-
dicted number of successes in pattern j.) Unlike residuals in linear regression, which
are in general different for each observation, the Pearson residuals for two observations
differ only if those observations do not have the same covariate pattern. Typing

. predict pres, resid

generates a variable containing the Pearson residuals. The sum of the square of this
variable over all covariate patterns produces the Pearson chi-squared statistic. You can
obtain this statistic by typing

. estat gof

Logistic model for owner, goodness-of-fit test

number of observations = 5407
number of covariate patterns = 5231

Pearson chi2(5227) = 6400.84
Prob > chi2 = 0.0000
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This test is for the hypothesis of the conformity of predicted and observed frequencies
across covariate patterns. A small χ2 value (high p-value) indicates small differences
between the observed and the estimated frequencies, whereas a large χ2 value (low p-
value) suggests that the difference between observed and estimated values cannot be
explained by a random process. Be careful when interpreting the p-value as a true
“significance” level: a p-value less than 0.05 may indicate that the model does not
represent reality, but values greater than 5% do not necessarily mean that the model
fits the data well. A p-value of, say, 6% is still fairly small, even though you cannot
formally reject the null hypothesis that the difference between observed and estimated
values is completely random at significance levels below 6%.

The χ2 test is unsuitable when the number of covariate patterns (here 5,231) is
close to the number of observations in the model (here 5,407). Hosmer and Lemeshow
(2000, 140–145) have therefore suggested modifying the test by sorting the data by
the predicted probabilities and dividing them into g approximately equal-sized groups.
They then suggest comparing the frequency of the observed successes in each group
with the frequency estimated by the model. A large p-value indicates a small difference
between the observed and the estimated frequencies.

You can obtain the Hosmer–Lemeshow test by using estat gof together with the
group() option. Enter the number of groups into which you want to divide the data
parentheses; g = 10 is often used.

. estat gof, group(10)

Logistic model for owner, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations = 5407
number of groups = 10

Hosmer-Lemeshow chi2(8) = 19.76
Prob > chi2 = 0.0113

10.4 Logistic regression diagnostics

We now discuss two methods to test the specification of a logistic regression model.
First, logistic regression assumes a linear relationship between the logarithmic odds
of success and the independent variables. Thus you should test the validity of this
assumption before interpreting the results.

Second, you need to deal with influential observations, meaning observations that
have a strong influence on the results of a statistical procedure. Occasionally, these
outliers, as they are also known, turn out to be the result of incorrectly entered data,
but usually they indicate that variables are missing from the model.
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10.4.1 Linearity

We used graphical analyses to discover nonlinear relationships in the linear regression
model, and we used smoothing techniques to make the relationship more visible. You can
also use certain scatterplots for logistic regression, but you should consider two issues.
First, the median trace used in linear regression as a scatterplot smoother does not work
for dichotomous variables because the median can take values of only 0 and 1.12 Second,
the functional form of the scatterplot does not have to be linear, because linearity is
assumed only with respect to the logits. The functional form between the probabilities
and the independent variable has the shape of an S (see the graph on page 350).

You may use a local mean regression as the scatterplot smoother instead of the
median trace. Here the X variable is divided into bands in the same way as for the
median trace, and the arithmetic mean of the dependent variable is calculated for each
band. These means are then plotted against the respective independent variable.

Ideally, the graph should show the local mean regression to have an S-shaped curve
like the illustration on page 350. However, the graph often only depicts a small section of
the S-shape, so if the band means range only from about 0.2 to 0.8, the mean regression
should be almost linear. U-shaped, reverse U-shaped, and other noncontinuous curves
represent potential problems.

Stata does not have a specific command for simple local mean regression, but you
can do it easily nonetheless:13

. generate groupage = autocode(age,15,16,90)

. egen mowner = mean(owner), by(groupage)

. scatter owner age, jitter(2) || line mowner age, sort

0
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.8
1

20 40 60 80 100
age

owner mowner

12. The value 0.5 can occur if there is an equal number of 0 and 1 values.
13. For the function autocode(), see page 173. For the command egen, see section 5.2.2 on page 92.
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In this graph, the mean of residence ownership first decreases with age, then increases
until the age of 40, and then remains constant until dropping with the oldest individuals
surveyed. This correlation certainly does not match the pattern assumed by logistic
regression.

Cleveland’s (1979) locally weighted scatterplot smoother (LOWESS)14 is an alterna-
tive that is often better for investigating functional forms.You can use this smoother
with the twoway plottype lowess or with the statistical graph command lowess. We
will not discuss the calculation of this smoother, but we refer you to the excellent ex-
planation of the logic behind LOWESS in Cleveland (1994). You can adjust the level of
smoothing by specifying a value between 0 and 1 in the bwidth() option, with higher
numbers specifying increased smoothing. And LOWESS is a computationally intensive
process, so it may take some time to display the following graph on your screen:

. lowess owner age, jitter(2) bwidth(.5)
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bandwidth = .5

Lowess smoother

This graph also displays the double U-shaped correlation between residence owner-
ship and age. The middle-age groups have a higher predicted probability of residence
ownership than the upper- and lower-age groups. The youngest individuals surveyed,
who presumably still live with their parents, are also likely to live in their own houses
or apartments.

Both graphs show a correlation that contradicts the S-shaped correlation required
by logistic regression. As with linear regression, U-shaped relationships can be modeled
through the generation of polynomials.

14. The process has recently also become to be known as loess. We use the older term, because it
corresponds to the name of the Stata plottype.
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Nevertheless, before you do this, check whether the U-shaped relationship is still
visible after controlling for household income. You can do this by replacing the age
variable in the regression with a set of dummy variables (see section 9.4.1.):15

. logit owner i.age loghhinc east

Fitting this model yields a huge number of coefficients, namely, one for each category
of age. Because some of the age categories have very few cases, we run into the problem
of high discrimination, indicated by a series of warnings about dropped cases. Some
b coefficients can therefore not be estimated. In our particular case, there is nothing
to worry about.16 Each b coefficient indicates how much higher the predicted logarith-
mic chance of residence ownership is for the respective age group compared with the
youngest surveyed individual. When the correlation between age and (the predicted log-
arithmic chance of) residence ownership is linear, the age b coefficients should increase
continuously and steadily. The simplest way to evaluate this is to graphically show the
effect of age on the logarithmic chance of residence ownership.

To obtain a plot of the estimated age effects, we again use a combination of margins
and marginsplot.

By default, margins produces averages of the predicted probabilities. To obtain
the average marginal effects on the linear prediction (that is, the estimated logarithmic
chance), we additionally state the option predict(xb) with margins. We also use the
marginsplot option noci to suppress the display of the confidence intervals.

. margins age, predict(xb)

. marginsplot, noci
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15. For the following process, see Hosmer and Lemeshow (2000, 90). Fox (1997) demonstrates a process
related to the component-plus-residual plot (page 285).

16. For further discussion of this problem, see
http://www.ats.ucla.edu/stat/mult pkg/faq/general/complete separation logit models.htm.
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The graph shows by and large the same curvilinear relationship between residence
ownership and age as the bivariate figures above. However, if we add dummy variables
for the categories of the relationship to the household head (rel2head), the decrease at
the beginning of the plot vanishes:

. logit owner i.age loghhinc east i.rel2head

. margins age, predict(xb)

. marginsplot, noci
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When we control for the relationship to the household head, the higher probability of
residence ownership of children living at their parents’ house is captured by the respec-
tive category of the rel2head variable; the estimated coefficients of age are therefore
net of that nuisance.

The insertion of rel2head does not solve the problem of decreasing probability at
high ages, however. We will deal with this in section 10.6.1.

10.4.2 Influential cases

Influential data points are observations that heavily influence the b coefficients of a
regression model. That is, if we were to remove an influential data point and then refit
our model, our coefficient estimates would change by more than a trivial amount. As
explained on page 290, influential observations are observations that exhibit an unusual
combination of values for the X variable (leverage), as well as an unusual characteristic
(given the X values) of the Y variable (discrepancy). Correspondingly, the measured
value of Cook’s D is calculated by multiplying leverage and discrepancy.
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This concept is somewhat more problematic in logistic regression than it is in linear
regression, because you can measure only the approximate leverage and discrepancy
(Fox 1997, 459). In Stata, you can approximate the leverage values by typing

. logit owner age_c loghhinc east i.rel2head

. predict leverage, hat

You must refit the original model with age c, loghhinc, and east as independent
variables, because predict always refers to the last model fit, and we just fit a model
including dummy variables to control for age. Because we found out that controlling
for rel2head is reasonable, we keep this variable in the model. After getting the pre-
dicted leverage values, you can obtain the standardized residuals as an approximation
to discrepancy by typing

. predict spres, rstandard

In logistic regression, the standardized residuals for observations having the same
covariate pattern are identical. The same also applies for the leverage values. To isolate
those covariate patterns having high leverage and discrepancy values, you can produce
a graph that compares the standardized residuals with the leverage values. Fox (1997,
461) uses a diagram with vertical lines at the mean of the leverage values and at two
and three times the mean. To produce this graph, we first calculate the mean of the
variable leverage. We save the mean, as well as its doubled and tripled values, in the
local macros ‘a’, ‘b’, and ‘c’ (see chapter 4) to later use them as vertical lines in the
graph.

. summarize leverage

. local a = r(mean)

. local b = 2 * r(mean)

. local c = 3 * r(mean)

Next we generate the graph with the standardized residuals against the leverage
values. To generate vertical lines, we use the xline() option. We use the number of
covariate patterns as the plot symbol. We must therefore create a new variable (cpatt2)
holding the covariate pattern because the cpatt variable that we created on page 367
does not identify the covariate pattern of the model with rel2head.
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. predict cpatt2, number

. scatter spres leverage, xline(`a´ `b´ `c´) yline(-2 0 2)
> mlabel(cpatt2) mlabpos(0) ms(i)
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No covariate pattern is particularly conspicuous; that is, there is no covariate pattern
with both high leverage and high discrepancy. However, there is pattern 2233 with
very large positive discrepancy and two others with outstanding negative discrepancies.
There are also several patterns with leverages higher than three times the mean. When
listing the observations with high absolute discrepancy with

. list cpatt2 hhnr2009 owner age hhinc east rel2head if abs(spres)>6 &
> !missing(spres)

cpatt2 hhnr2009 owner age hhinc east rel2head

1462. 1892 140421 0 41 441428 0 Partner
1649. 2113 140421 0 43 441428 0 Head
1748. 2233 156321 1 45 583 0 Head

we see that two of these patterns stem from observations of the same household that
have huge household incomes but do not own a residence. Pattern 2233 stems from an
observation who owns a residence but has an incredible low yearly household income. If
we had the chance to check the original questionnaires of these observations, we should
definitely do so. Perhaps there was an error during data entry.
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We might also want to analyze further the covariate patterns with high leverage.
This could be done, for example, with

. generate high = leverage > `c´ if !missing(leverage)
(4 missing values generated)

. tabstat owner age hhinc east, by(high)

Summary statistics: mean
by categories of: high

high owner age hhinc east

0 .5273474 49.66903 37103.64 .2462199
1 .56 33.28 42113.8 .48

Total .5276493 49.51748 37149.97 .2483817

The high leverage patterns tend to be comparably young East Germans with rather
high incomes.

In linear regression, the influence of individual observations on the regression result
is determined by Cook’s D (see section 9.3.1), which involves multiplying the leverage
and discrepancy. An analogous measured value for logistic regression is

∆β =
r2
P (j)

(1 − hj)2︸ ︷︷ ︸
Discrepancy

× hj︸︷︷︸
Leverage

where hj is the value for the leverage. In Stata, you can obtain this value with

. predict db, dbeta

as a variable under the name db. A scatterplot of ∆β against the predicted probabilities
is often used, in which observations with success as the outcome are displayed in a
different color or symbol than those of failure. The separate command is particularly
useful for the latter:17

17. For an explanation of separate, type help separate. The variable Phat was generated on page 359
with predict Phat.
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. separate db, by(owner)

. scatter db0 db1 Phat, mlab(cpatt2 cpatt2)
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The curve from the bottom left to the top right consists of all tenants, whereas
the curve that slopes downward from the top left to the bottom right consists of all
residence owners. Far left in the plot, we find again covariate pattern 2233. It stands
out for being a residence owner, despite having a very low probability for it. There
are also a number of observations that strongly influence the regression result despite
having only intermediate predicted probabilities. If we look at those observations with

. list hhnr2009 owner age hhinc east rel2head if abs(db)>.1 & !missing(db)

we do not find anything particularly conspicuous among those covariate patterns—
except, perhaps, that they all stem from observations who do not belong to the core
family. Should we restrict our model to household heads and their partners?

We postpone the answer to that question and go on introducing a further statistic
for influential observations. As shown in section 10.3.3, the sum of the squared Pearson
residuals is a measure of the deviation of the predicted values from the observed values.
The contribution of each covariate pattern to this measure matches the square of the
Pearson residual. If you divide this contribution by 1 − hj , you get ∆χ2

P (j), which
indicates the change in the Pearson chi-squared statistic when the covariate pattern j is
removed from the dataset. The scatterplot of ∆χ2

P (j) against the predicted probabilities
is well suited to the discovery of covariate patterns that are hard to predict through the
model. Here it would be useful to enter Hosmer and Lemeshow’s raw threshold value
of ∆χ2

P (j) into the graph (Hosmer and Lemeshow 2000, 163):



10.5 Likelihood-ratio test 377

. predict dx2, dx2

. separate dx2, by(owner)

. scatter dx20 dx21 Phat, yline(4) mlabel(cpatt2 cpatt2)
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Once again, the conspicuous covariate pattern 2233 stands out. As a first measure,
we should therefore deal with the observation that produced this covariate pattern. As
we have seen before, the observation has a household income of only e 583 per year,
which is good for buying only around 13 Big Macs per month but nothing else. The
information on household income for this observation is highly untrustworthy, and this
seems to be a good reason to remove the observation from the estimation sample:

. replace loghhinc = .c if cpatt2==2233

However, in the more general case, you should be extremely reluctant to remove
observations from the dataset. Normally, if you can eliminate data errors, you should
determine if a variable important to the model was left out. This could be a subgroup
for which the assumed correlation between age, household income, region, and residence
ownership does not hold.

10.5 Likelihood-ratio test

In section 10.3.3, we showed you how to calculate χ2
L. That statistic compares the

likelihood of the fitted model with that of a model in which all the coefficients other
than the constant are set to 0. A large value of χ2

L indicates that the full model does
significantly better at explaining the dependent variable than the constant-only model.
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You can apply the same principle to determine whether the addition of more inde-
pendent variables achieves a significant increase in the explanatory power of our model
compared with a null model with fewer independent variables. For example, you can ask
whether the fit of a model on residence ownership against household income increases
if we include an age variable. To answer this question, you can carry out a calculation
that is analogous to the test of the overall model by again using −2 times the difference
between the log likelihood of the model without age (lnLwithout) and the log likelihood
of the model with age (lnLwith):

χ2
L(Diff) = −2(lnLwithout − lnLwith)

Like χ2
L, this test statistic also follows a χ2 distribution, in which the degrees of

freedom is the difference in the number of parameters between the two models.

You can easily calculate χ2
L(Diff) in Stata by using the lrtest command. Here we

want to investigate the significance of the joint contribution of the rel2head dummy
variable. First, we calculate the model with the variable we want to investigate:

. logit owner age_c loghhinc east i.rel2head

We store this model internally using the command estimates store, and we name
the model full:

. estimates store full

Now we calculate the reduced model.

. logit owner age_c loghhinc east

Then you can use lrtest to test the difference between this model and the previously
stored model. You can simply list the name of the stored model (full) and, optionally,
the name of the model against which it should be compared. If you do not specify a
second name, the most recent model is used:

. lrtest full

Likelihood-ratio test LR chi2(4) = 109.12
(Assumption: . nested in full) Prob > chi2 = 0.0000

Negative two times the difference of the log likelihood of the full model and the reduced
model is 109.12. The probability of receiving a χ2

L(Diff) value of that size or higher
in our sample is very small when the coefficient of rel2head in the population is 0.
You can therefore be fairly certain that the joint effect of all categories of rel2head
is not 0 in the population. However, this statistic reveals nothing about the degree
of influence of rel2head on residence ownership; for that, you need to consider the
estimated coefficient on age.
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When using the likelihood-ratio test, only models that are nested can be compared
with one another. This means that the full model must contain all the variables of the
reduced model. Furthermore, both models must be calculated using the same set of
observations. The latter may be problematic if, for example, some observations in your
full model must be excluded because of missing values, while they may be included in
the reduced model if you leave out a variable. In such cases, Stata displays a warning
message (“observations differ”).

If you wish to compare models not fit to the same sets of observations, an alternative
is to use information criteria that are based on the log-likelihood function and are valid
even when comparing nonnested models. Two of the most common information criteria
are the Bayesian information criterion and Akaike’s information criterion, which are
obtained through the estat ic command mentioned earlier (page 367). An excellent
introduction to the statistical foundations of these indices is provided by Raftery (1995).

10.6 Refined models

As with the linear regression model, the logistic regression model might be expanded in
various ways to investigate more complicated research questions. In what follows, we
will discuss nonlinear relations and investigate varying correlations between subgroups
(interaction effects).

10.6.1 Nonlinear relationships

During the diagnosis of our regression model, we saw signs of a U-shaped association
between age and the logarithmic chance of residence ownership (section 10.4.1). In this
respect, U-shaped associations are only one form of nonlinear relationships. Logarithmic
or hyperbolic relationships can also occur. The model assumption of logistic regression
is violated only if these relationships appear between the logits and the independent
variables. With respect to probabilities, logarithmic or hyperbolic relationships are to
a certain extent already taken into account by the S-shaped distribution of the logit
transformation.

There are many ways to account for nonlinear relationships. If you have an assump-
tion as to why older people are less likely to own a residence than middle-aged people,
you should incorporate the variable in question into the regression model. If, for ex-
ample, you suspect that the observed decline is a consequence of older people moving
into nursing homes to receive full-time care, you might want to introduce some type of
variable indicating whether a person is in poor health.

Another way of controlling for a nonlinear relationship is to categorize the inde-
pendent variable into several groups and use a set of dummy variables instead of the
continuous variable. We discussed a strategy like this on page 371. A more common
strategy is to use transformations or polynomials of the independent variables. The
rules for linear regression apply here, too: for hyperbolic relationships, the X variable
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is squared, and for logarithmic relationships, the logarithm of the X variable is used.
For U-shaped relationships, we use the squared X variable in addition to the original
X variable.

However, instead of generating a squared version of the continuous variable for age,
we recommend that you use factor-variable notation (see [U] 11.4.3 Factor variables)
to specify the interaction of age with itself:

. logit owner c.age##c.age loghhinc east i.rel2head, nolog

Logistic regression Number of obs = 5406
LR chi2(8) = 1156.28
Prob > chi2 = 0.0000

Log likelihood = -3160.7975 Pseudo R2 = 0.1546

owner Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1219795 .0129222 9.44 0.000 .0966525 .1473064

c.age#c.age -.0008032 .0001157 -6.94 0.000 -.0010299 -.0005765

loghhinc 1.073894 .045947 23.37 0.000 .98384 1.163949
east .0272748 .0708097 0.39 0.700 -.1115096 .1660592

rel2head
2 .105434 .0684178 1.54 0.123 -.0286625 .2395305
3 1.848891 .1554012 11.90 0.000 1.54431 2.153471
4 .3396665 .5262689 0.65 0.519 -.6918015 1.371134
5 .8898796 .4800361 1.85 0.064 -.0509738 1.830733

_cons -19.99336 .7447019 -26.85 0.000 -21.45295 -18.53377

It would be best to display the results of this regression model in a conditional-effects
plot. In such a plot, we can inspect the curvilinearity of the correlation between age
and the probability of home ownership that is induced both by the general functional
form of the logistic regression and by the significant age#age coefficient.
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. margins, at(age = (20(5)80) loghhinc=(14(1)16)) over(east)

. marginsplot, by(east)
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10.6.2 Interaction effects

Let us continue our investigation into the Titanic catastrophe (see section 10.1). You
want to see whether the seafaring principle of women and children first was put into
practice or whether, as shown in the film Titanic, the first-class gentlemen took their
places in the lifeboats at the expense of the third-class women and children.

The above research question can be translated into expectations about the effects
of logistic regression models. At the outset, women and children first means that,
controlling for age and gender, the passenger class should not have any effect on the
chance of surviving, while this should not be the case under the Hollywood movie
hypothesis. However, the two principles go a little bit further. To start with, women
and children first implies that

1. women and children should have a higher probability of surviving regardless of
their passenger class, and

2. gender should not have an effect for children.

The Hollywood movie hypothesis, on the other hand, means that

1. the effect of gender might differ between social classes, either because male first-
class men survive more often or because lower-class women survive less often.
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To decide which of the two principles was used, we must therefore also analyze
whether the effect of gender varies with social class and whether the effect of gender
varies with age. Effects of independent variables that vary between subgroups are called
interaction effects.

Now let us load the original dataset:18

. use titanic, clear

This dataset contains the dummy variables survived, adult, and men, as well as
the categorical variable class with categories for crew (0), first-class passengers (1),
second-class passengers (2), and third-class passengers (3).

To check whether social class had an effect on the chance of surviving, we can set
up a multiple logistic regression of survived on the categories of class controlling
for the dummy variables for men and adult. To use the independent variable class

in the regression model, you create dummy variables for each of its categories or you
apply factor-variable notation. If you apply factor-variable notation, Stata’s default is
to choose the value with the lowest level as the base category. Here we want to choose
the third-class passengers (class==3) as the base category. This can be done with the
ib. operator:

. logit survived adult men ib3.class, nolog

Logistic regression Number of obs = 2201
LR chi2(5) = 559.40
Prob > chi2 = 0.0000

Log likelihood = -1105.0306 Pseudo R2 = 0.2020

survived Coef. Std. Err. z P>|z| [95% Conf. Interval]

adult -1.061542 .2440257 -4.35 0.000 -1.539824 -.5832608
men -2.42006 .1404101 -17.24 0.000 -2.695259 -2.144862

class
0 .9200861 .1485865 6.19 0.000 .6288619 1.21131
1 1.777762 .1715666 10.36 0.000 1.441498 2.114027
2 .7596673 .1763533 4.31 0.000 .4140211 1.105313

_cons 1.327618 .2480381 5.35 0.000 .8414719 1.813763

According to the signs associated with the adult and men coefficients, adults were
less likely to survive than children, and men were less likely to survive than women. So
far, this supports the principle of women and children first. However, it also becomes
apparent that the first-class passengers have the largest estimated chance of survival
compared with the rest. The third-class passengers had the smallest chances of survival;
in fact, their chances of survival were even smaller than those of the crew. In conclusion,
you can state that women and children were indeed favored for rescue, but apparently
passenger class also played a role.

18. The data were collected by the British Board of Trade in their investigation of the sinking of the
Titanic and made publicly available by Dawson (1995).



10.6.2 Interaction effects 383

Notice as an aside that all coefficients would be considered significant by usual
standards. However, the significance tests do not refer to a population but to a data-
generating principle. Basically, the test asks whether the observed pattern could have
been created just by chance. The answer to this? No, this is very unlikely (see sec-
tion 8.3).

Checking for the interaction terms could be also done with factor-variable notation:

. logit survived i.men##i.adult i.men##ib3.class, nolog

Logistic regression Number of obs = 2201
LR chi2(9) = 634.70
Prob > chi2 = 0.0000

Log likelihood = -1067.3785 Pseudo R2 = 0.2292

survived Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.men -.226458 .4241198 -0.53 0.593 -1.057718 .6048015
1.adult -.1803451 .3617946 -0.50 0.618 -.8894496 .5287593

men#adult
1 1 -1.358117 .4551 -2.98 0.003 -2.250096 -.4661373

class
0 2.089406 .6381427 3.27 0.001 .8386694 3.340143
1 3.753608 .5298566 7.08 0.000 2.715108 4.792108
2 2.13911 .3295635 6.49 0.000 1.493178 2.785043

men#class
1 0 -1.562327 .6562461 -2.38 0.017 -2.848546 -.2761087
1 1 -2.665672 .5673195 -4.70 0.000 -3.777598 -1.553746
1 2 -2.327067 .4140798 -5.62 0.000 -3.138648 -1.515485

_cons -.0119411 .3362455 -0.04 0.972 -.6709701 .647088

Before starting to interpret the output, you should be aware of one pitfall of logistic
regression or, more generally, of all nonlinear probability models: You cannot really
compare the estimated coefficients between groups, and interpretation of the estimated
coefficients of interaction terms are therefore error-prone (Allison 1999). The problem
basically is that the estimated coefficients of logistic regressions are identified up to an
unknown scale parameter and this parameter could be different between groups. To the
best of our knowledge, there is no single best solution to this problem, although the
statistical literature provides a number of techniques for specific situations. We cannot
go into the details of all those solutions here, but we strongly recommend that you
consider the literature before interpreting interaction terms of logistic regression (see
Breen, Karlson, and Holm [2011], Williams [2009], and Wooldridge [2010]).
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Let us use average marginal effects as one possible solution. The following shows
the average marginal effects of gender for categories of adult and class:

. margins adult class, dydx(men)

Average marginal effects Number of obs = 2201
Model VCE : OIM

Expression : Pr(survived), predict()
dy/dx w.r.t. : 1.men

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

1.men
adult

0 -.2509003 .0814881 -3.08 0.002 -.410614 -.0911865
1 -.5502979 .0327675 -16.79 0.000 -.6145209 -.4860748

class
0 -.6304944 .0713626 -8.84 0.000 -.7703626 -.4906262
1 -.6201961 .0376232 -16.48 0.000 -.6939362 -.546456
2 -.7395926 .0408843 -18.09 0.000 -.8197242 -.6594609
3 -.2949521 .0401417 -7.35 0.000 -.3736283 -.2162758

Note: dy/dx for factor levels is the discrete change from the base level.

The predicted probability of surviving is on average around 25 percentage points lower
for male children than for female children. For adults, the difference in the predicted
probability of surviving for men is 55 percentage points lower than for women. Thus as
expected by women and children first, the gender effect is stronger for adults than for
children, although the gender effect is not zero among children.

We also see how the gender effect co-varies with class. Obviously, the survival rates
of men and women are much more equal among third-class passengers than among all
others, which fits the expectation that third-class women did not find a place in the
lifeboats. Hence, we found indications of both data-generating principles, women and
children first and the Hollywood movie mechanism.

Calculating average marginal effects can be a reasonable technique for interpreting
interaction terms of logistic regression models, but they cannot be used in all situations.
The reason is that the size of the average marginal effects depends on the observed distri-
butions of the independent variables. Strictly speaking, the average marginal effects are
only comparable if the distributions of the independent variables are also comparable.
As a principle, we would be particularly reluctant to interpret average marginal effects
between groups formed from various population samples, because those distributions
might be affected by sample selection or other influences.

10.7 Advanced techniques

Stata allows you to fit many related models in addition to the logistic regression we
have described above. Unfortunately, we cannot show them in detail. However, we will
describe the fundamental ideas behind some of the most important procedures. For
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further information, we will specifically refer you to the entry in the Stata Reference
Manual corresponding to each command. There you will also find references to the
literature.

10.7.1 Probit models

In the logistic regression model, we attempted to predict the probability of a success
through a linear combination of one or more independent variables. To ensure that the
predicted probabilities remained between the limits of 0 and 1, the probability of the
success underwent a logit transformation. However, using the logit transformation is
not the only way to achieve this. An alternative is the probit transformation used in
probit models.

To get some idea of this transformation, think of the density function of the standard
normal distribution:

. twoway function y = 1/sqrt(2*_pi) * exp(-.5 * x^2), range(-4 4)
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You can interpret this graph in the same way as a histogram or a kernel density
estimator (see section 7.3.3); that is, for this variable, the values around 0 occur most
often, and the larger or smaller they become, the more rarely they occur.

Suppose that you randomly selected an observation from the variable X. How large
would the probability be of selecting an observation that had a value of less than −2?
Because values under −2 do not occur very often in the X variable, the intuitive an-
swer is, “not very large”. If you want to know the exact answer, you can determine
the probability through distribution-function tables for standard normal distribution or
through the Stata command

. display normal(-2)

.02275013
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The probability of selecting an observation with a value less than or equal to −2
from a standard normal variate is therefore 0.023. You can repeat the same calculation
for any value of X and then show the results graphically. This results in the cumulative
density function for the standard normal distribution Φ depicted in the following graph:

. twoway || function y = normal(x), range(-4 4)
> || function y = exp(x)/(1+exp(x)), range(-4 4)
> ||, legend(order(1 "Probit-Transformation" 2 "Logit-Transformation"))
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The function shows an S-shaped curve, similar to the probabilities assigned to the logits,
which we have also included in the graph.

As with the logit transform you used with logistic regression, the normal distribution
function can also be used to transform values from −∞ and +∞ into values between 0
and 1. Correspondingly, the inverse of the distribution function for the standard normal
distribution (Φ−1) converts probabilities between 0 and 1 for a success [Pr(Y = 1)] into
values between −∞ and +∞. The values of this probit transformation are thus also
suited to be estimated with a linear model. This yields the probit model:

Φ−1{Pr(Y = 1)} = β0 + β1x1i + β2x2i + · · · + βK−1xK−1,i (10.6)

You can estimate the b coefficients of this model through maximum likelihood. You
can interpret the estimated coefficients the same way as in logistic regression, except that
now the value of the inverse distribution function of the standard normal distribution
increases by b units instead of the log-odds ratio increasing by b units for each one-
unit change in the corresponding independent variable. Using the distribution function
for the standard normal distribution, you can then calculate probabilities of success.
Usually, the predicted probabilities of probit models are nearly identical to those of
logistic models, and the estimated coefficients are often about 0.58 times the value of
those of the logit models (Long 1997, 49).
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The Stata command used to calculate probit models is probit. For example, you
can refit the previous model (see page 383) using probit instead of logit:

. probit survived men adult i.class, nolog

Probit regression Number of obs = 2201
LR chi2(5) = 556.83
Prob > chi2 = 0.0000

Log likelihood = -1106.3142 Pseudo R2 = 0.2011

survived Coef. Std. Err. z P>|z| [95% Conf. Interval]

men -1.44973 .0808635 -17.93 0.000 -1.608219 -1.29124
adult -.5803382 .1377535 -4.21 0.000 -.85033 -.3103463

class
1 .5399101 .0951552 5.67 0.000 .3534092 .7264109
2 -.0898158 .1028857 -0.87 0.383 -.2914681 .1118364
3 -.4875252 .0800342 -6.09 0.000 -.6443893 -.3306611

_cons 1.277019 .1648489 7.75 0.000 .9539214 1.600117

See [R] probit for more information on this model.

10.7.2 Multinomial logistic regression

Multinomial logistic regression is used when the dependent variable exhibits more than
two categories that cannot be ranked. An example for this would be party preference
with values for the German parties CDU, SPD, and all other parties.

The main problem with using multinomial logistic regression is in the interpretation
of the estimated coefficients, so this will be the focus point of this section. Never-
theless, to understand this problem, you must at least intuitively grasp the statistical
fundamentals of the process. These fundamentals will be discussed shortly (cf. Long
1997).

In multinomial logistic regression, you predict the probability for every value of the
dependent variable. You could initially calculate a binary logistic regression19 for every
value of the dependent variable. Here you could calculate three separate logistic regres-
sions: one with the dependent variable CDU against non-CDU, one with the dependent
variable SPD against non-SPD, and one with the dependent variable for the other parties
against the CDU and SPD together:

19. To differentiate it from multinomial logistic regression, we call the logistic regression of a dichoto-
mous dependent variable a binary logistic regression.
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ln
Pr(Y = CDU)

Pr(Y = not-CDU)
= β

(1)
0 + β

(1)
1 x1i + β

(1)
2 x2i + · · · + β

(1)
K−1xK−1,i

ln
Pr(Y = SPD)

P(Y = not-SPD)
= β

(2)
0 + β

(2)
1 x1i + β

(2)
2 x2i + · · · + β

(2)
K−1xK−1,i

ln
Pr(Y = Sonst.)

P(Y = not-Sonst.)
= β

(3)
0 + β

(3)
1 x1i + β

(3)
2 x2i + · · · + β

(3)
K−1xK−1,i

The superscript in parentheses means that the β coefficients differ between the in-

dividual regression equations: β
(1)
k 6= β

(2)
k 6= β

(3)
k . To simplify the notation, we refer to

β
(1)
1 . . . β

(1)
K−1 as b(1) and refer to the sets of b coefficients from the other two equations

as b(2) and b(3), respectively.

Each of the unconnected regressions allows for a calculation of the predicted prob-
ability of every value of the dependent variable. These predicted probabilities do not
all add up to 1. However, they should, as one of the three possibilities—SPD, CDU, or
other—must occur.20

Therefore, it is sensible to jointly estimate b(1), b(2), and b(3) and to adhere to the
rule that the predicted probabilities must add up to 1. However, it is not possible to
estimate all three sets of coefficients. To do so, you must constrain one of the coefficient
vectors to be equal to a fixed value, 0 being by far the most common choice. After
making such a normalization, you can estimate the remaining coefficients by using the
maximum likelihood principle. Which one of the three sets of coefficients you constrain
to be 0 does not matter. By default, Stata’s mlogit command constrains the coefficient
vector corresponding to the most frequent outcome.

Let us show you an example of interpreting the estimated coefficients. Please load
data1.dta:

. use data1, clear

Now generate a new variable for party choice that leaves aside all parties that are
not in the German parliament and generate an age variable:

. generate party:pib = pib if pib < 6

. generate age = 2009 - ybirth

The Stata command for multinomial logistic regression is mlogit. The syntax for the
command is the same as for all estimation commands; that is, the dependent variable
follows the command and is in turn followed by the list of independent variables. With
the baseoutcome() option, you can select the equation for which the b coefficients are
set to 0.

20. Here you disregard the possibility of no party preference. If you did not, you would have to calculate
a further regression model for this alternative. The predicted probabilities for the four regression
should then add up to 1.
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Let us calculate a multinomial logistic regression for party preference against edu-
cation (in years of education) and year of birth. Here the b coefficients of the equation
for the SPD are set at 0:

. mlogit party yedu age, base(1) nolog

Multinomial logistic regression Number of obs = 1948
LR chi2(8) = 193.62
Prob > chi2 = 0.0000

Log likelihood = -2515.1866 Pseudo R2 = 0.0371

party Coef. Std. Err. z P>|z| [95% Conf. Interval]

SPD (base outcome)

CDU_CSU
yedu .0145588 .0195694 0.74 0.457 -.0237966 .0529141
age .0098657 .0032362 3.05 0.002 .0035228 .0162086

_cons -.6472421 .3364861 -1.92 0.054 -1.306743 .0122586

FDP
yedu .1797254 .0308604 5.82 0.000 .1192401 .2402108
age -.0059135 .0059058 -1.00 0.317 -.0174887 .0056618

_cons -3.61921 .5720866 -6.33 0.000 -4.740479 -2.497941

Greens_B90
yedu .2504939 .0275987 9.08 0.000 .1964014 .3045864
age -.021925 .005449 -4.02 0.000 -.0326048 -.0112451

_cons -3.478488 .5036535 -6.91 0.000 -4.465631 -2.491346

Linke
yedu .1104863 .0318876 3.46 0.001 .0479877 .1729849
age .0146143 .0058458 2.50 0.012 .0031568 .0260718

_cons -3.828885 .5941485 -6.44 0.000 -4.993395 -2.664375

In contrast to binary logistic regression, the coefficient table is split into several parts.
The first panel contains the estimated coefficients of the equation for the CDU/CSU,
followed by the estimated coefficients for FDP, and so on. There is a panel of coefficients
for each category of party except for the base category.

As a result of setting b(SPD) = 0, you can interpret the estimated coefficients of
the other two equations in relation to the SPD supporters. By this, we mean that es-
timated coefficients in the equation for the CDU/CSU indicate how much the predicted
logarithmic chance of preferring the CDU/CSU and not the SPD changes when the inde-
pendent variables increase by one unit. The equation for the FDP indicates changes in
the predicted logarithmic chance of preferring the FDP and not the SPD, and so on.

Interpreting the estimated coefficients for a multinomial logistic regression is not as
easy as for binary logistic regression, because the sign interpretation cannot be used.
The positive sign for length of education in the CDU/CSU equation does not necessarily
mean that the predicted probability of a preference for the CDU/CSU increases with
education. We can demonstrate this with the estimated coefficient for the variable yedu
from the equation for the CDU/CSU. Writing the probability of preferring the CDU/CSU
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as PCDU/CSU and the probability of preferring the SPD as PSPD, the b coefficient for
yedu in the CDU/CSU equation can be written as

b
(CDU/CSU)
yedu = ln

(
P̂CDU/CSU|yedu+1

P̂SPD|yedu+1

)
− ln

(
P̂CDU/CSU|yedu

P̂SPD|yedu

)

= ln

(
P̂CDU/CSU|yedu+1

P̂CDU/CSU|yedu

/
P̂SPD|yedu

P̂SPD|yedu+1

)

The b coefficient for years of education in the equation for the CDU/CSU, on one
hand, depends on the change in the predicted probability of CDU/CSU preference with
the years of education. On the other hand, it also depends on the respective change in
predicted probability for choosing the SPD. In contrast to the binary logit model, in the
multinomial logit model, the change in the predicted probability of SPD preference does
not completely depend on the change in the probability of CDU/CSU preference. In this
respect, the b coefficient can be solely, mainly, or partly dependent on the probability
relationship in the base category.

To avoid misinterpreting the multinomial logistic regression, we recommend that you
use average marginal effects or the conditional-effects plot for the predicted probabilities.
The plot can be created with margins and marginsplot, as usual. However, when using
margins, we have to specify the equation on which the command should be applied.
We use predict(outcome(2)) to specify that we want the predicted probabilities for
outcome 2, the CDU/CSU. We also fix the age to 40.

. margins, at(yedu=(9(1)18) age=40) predict(outcome(2))

. marginsplot
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Note that the predicted probability of preferring the CDU/CSU decreases with years of
education despite the positive effect of yedu in the respective equation.
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10.7.3 Models for ordinal data

Models for ordinal data are used when the dependent variable has more than two values
that can be ordered. An example would be the question regarding concerns about
the increase of crime, which respondents could answer with “no concerns”, “moderate
concerns”, or “strong concerns”. In a dataset, these could be assigned respective values
of 0, 1, and 2, or equivalently, 0, 10, and 12. The difference between two consecutive
categories is immaterial—all that matters is that the outcomes can be ordered.

In principle, there are two strategies available for modeling ordinal dependent vari-
ables. The first uses multinomial logistic regression, whereby certain constraints are im-
posed upon the coefficients (stereotype model). The second strategy generalizes binary
logistic regression for variables with more than two values (proportional-odds model).
Anderson (1984) discusses the underlying assumptions for both models.

The logic behind the stereotype model is simple. In multinomial logistic regression,
every value of the dependent variable has its own set of coefficients. The effect of age
in the regression model on page 389 was positive on the predicted chance of preferring
the CDU/CSU (and not the SPD), and at the same time the effect was negative on the
predicted chance of preferring the FDP (and not the SPD). If the dependent variable
indicates the presence of ranking, you would normally not expect a directional change
in the effects. For example, consider the variable for concerns about increasing crime
(wor09), which contains the values 1 for strong concerns, 2 for moderate concerns,
and 3 for no concerns. First, calculate a multinomial logistic regression for this variable
against the length of education. Before you do this, however, you should reverse code
the variable wor09 so that large values stand for strong concerns:

. generate worries = 4 - wor09

. mlogit worries yedu, base(1)

You will get an estimated coefficient of around −0.116 in the equation for moderate
concerns and −0.232 in the equation for strong concerns. The direction of the effects
does not change here. This should come as little surprise, because if education reduces
the chance of having moderate concerns (and not of having no concerns), it should
also reduce the chance of having strong concerns (and not of having no concerns).
However, if you calculate a multinomial logistic regression, this assumption is ignored.
Nevertheless, you can include such assumptions in the model by imposing constraints
on the b coefficients.

Using constraints, you can impose certain structures for the b coefficients before
calculating a model. You could, for example, require that education reduces the chance
of having moderate concerns (and not of having no concerns) to the same extent that
it does for having strong concerns (and not of having moderate concerns). Here the
coefficient of education for strong concerns would have to be exactly twice as large as
the coefficient of education for moderate concerns. With the constraint command,
you can set this structure for the mlogit command. With

. constraint define 1 [3]yedu = 2*[2]yedu
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you define constraint number 1, which states that the coefficient of the variable yedu in
the third equation must be twice as large as the coefficient of the variable yedu in the
second equation. You impose the constraint by specifying the constraints() option
of the mlogit command. Here you would enter the number of the constraint you wish
to use in the parentheses.

. mlogit worries yedu, base(1) constraints(1)

If you calculate this model, you will discover that it is almost identical to the previous
model. However, it is far more economical, because in principle only one education
coefficient has to be estimated. The other estimate is derived from the ordinal structure
of the dependent variable and our assumption that education proportionately increases
concerns.

Establishing specific constraints that take into account the ordinal structure of the
dependent variable is one way of modeling the ordinal dependent variable. Neverthe-
less, the constraint is just one example of many alternatives. See [R] slogit for more
information about this model.

The proportional-odds model follows a different approach: the value of the ordinal
variable is understood as the result of categorizing an underlying metric variable. Here
you could assume that answers in the worries variable provide only a rough indication
of the attitudes toward the increase in crime. The attitudes of people probably vary
between having infinitely many concerns and no concerns whatsoever, so they might
take any value between; that is, attitude is actually a continuous variable E. Instead of
observing E, however, all you see are the answers reported on the survey—no concerns,
moderate concerns, or strong concerns. Because you have three outcomes in the model,
there must also exist two points, κ1 and κ2, that partition the range of E into the
three reported answers. That is, if E < κ1, then the person reported no concerns;
if κ1 ≤ E ≥ κ2, the person reported moderate concerns; and if E > κ2, the person
reported strong concerns.

Remember the predicted values (L̂) of the binary logistic regression. These values
can take on any values from −∞ to +∞. In this respect, you could interpret these
predicted values as the unknown metric attitude E. If you knew the value of κ1 and
κ2 by assuming a specific distribution for the difference between E and L̂, you could
determine the probability that each person reported each of the three levels of concern.
The proportional-odds model estimates the b’s in the linear combination of indepen-
dent variables as well as the cutpoints needed to partition the range of E into discrete
categories.

An example may clarify this concept. The command for the proportional odds model
in Stata is ologit. The syntax of the command is the same as that for all other model
commands: the dependent variable follows the command and is in turn followed by the
list of independent variables. We will calculate the same model as above:
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. ologit worries yedu

Iteration 0: log likelihood = -4947.8488
Iteration 1: log likelihood = -4843.702
Iteration 2: log likelihood = -4843.087
Iteration 3: log likelihood = -4843.0868

Ordered logistic regression Number of obs = 5002
LR chi2(1) = 209.52
Prob > chi2 = 0.0000

Log likelihood = -4843.0868 Pseudo R2 = 0.0212

worries Coef. Std. Err. z P>|z| [95% Conf. Interval]

yedu -.1496667 .0104568 -14.31 0.000 -.1701617 -.1291717

/cut1 -3.590283 .136148 -3.857128 -3.323438
/cut2 -1.066422 .1241718 -1.309794 -.8230495

The predicted value of this model for respondents with 10 years of education is S10 =
−0.150×10 ≈ −1.50. The value for κ1 and κ2 are provided beneath the coefficient table.
The predicted probability that respondents with a predicted value of −1.50 are classified
as individuals with no concerns matches the probability of −1.50 + uj ≤ −3.590, or in
other words, the probability that uj ≤ −2.09. If you assume that the error term follows
the logistic distribution, the predicted probability is 1 − 1/(1 + e−2.09) ≈ 0.11.

For more information on ordered logistic regression in Stata, see [R] ologit.

10.8 Exercises

1. Download a subset of the 1988 National Longitudinal Survey by typing

. webuse nlsw88, clear

2. Create a regression model where union is the dependent variable. Create and use
the following independent variables for your model:

• tenure (centered)

• age (centered)

• collgrad

• race

3. Calculate the predicted values for all cases.

4. Request the display of

a. the predicted odds of being unionized for respondents with mean age and
mean tenure without a college diploma.

b. the predicted odds of being unionized for black respondents with mean age
and mean tenure with a college diploma.
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c. the estimated odds ratio of being unionized for college graduates versus non-
college graduates.

d. the odds ratio for all covariates using the logistic command.

e. the probability of being unionized for respondents with mean age, mean
tenure, and a college diploma.

5. Predict the probability of being unionized as a function of tenure for respondents
with mean age and without a college diploma. Display these probabilities graph-
ically.

6. Predict the respective probability for mean-aged respondents with a college
diploma. Add a line for these probabilities to the graph from the last problem.

7. Investigate the functional form of the effect of tenure. Does the relationship appear
linear?

8. Generate a classification table manually and then using the built-in function.

9. Perform a likelihood-ratio test between the full model including age and a reduced
model that excludes age. What do you conclude from this test?

10. Produce a plot of δχ2 by predicted probabilities. Label the marker symbol with
the covariate pattern. Describe the problem your model suffers from most.

11. Investigate the correlation of high influence points with the industrial branch.
What do you conclude? See how your results change if you reformulate your
model by including a variable for an industrial branch with three categories.
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In previous chapters, we asked you to load some data into Stata. Usually, you just
needed to type the command use followed by a filename, for example,1

. use data1

In practice, however, reading data into Stata is not always that easy—either because
the data you want to use are in a format other than Stata, such as SAS, SPSS, or Excel,
or because they are not available as a machine-readable dataset.

After defining a rectangular dataset in section 11.1, we will explain how to import
different forms of machine-readable data into Stata in section 11.2. Machine-readable
data are data stored on a hard drive, a CD-ROM, a memory stick, a website, or any other
medium that can be read by a machine. However, most types of machine-readable data,
such as information in statistical yearbooks or questionnaires, are not in Stata format
and therefore cannot be read into Stata with use. In section 11.3, we will discuss how
to deal with data that are not yet machine readable. Then we will move on to data that
are already in Stata format but spread across several data files. Section 11.4 shows you
how to combine the information from different files into one rectangular dataset using
data from the GSOEP database. In section 11.5, we will show you how to save the Stata
files you created.

11.1 The goal: The data matrix

Before you start, look again at data1.dta, which we used in previous chapters:

. describe

1. Make sure that your working directory is c:\data\kk3 before invoking the command (see page 3
for details).

395
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As you can see, the dataset consists of 5,411 observations and 65 variables. To get
an impression of the data, type

. browse

Figure 11.1. The Data Editor in Stata for Windows

This command opens the Data Editor (figure 11.1), which is a separate window
with a table containing text or numerical cells. The gray headline (the first row in the
table) shows the names of the variables. The first column, which is also gray, displays
an observation number for each observation. Correspondingly, each row in this table
contains information on one of the 5,411 interviewed persons (cases, observations). Each
column in the table contains an entry for each of the 65 variables for all 5,411 persons.
We call such a table a data matrix.

The first white column displays the personal identification number, which is unique
for each interviewed person. If you look in the fourth column of the row for the person
identified by the number 8501, you will find that this person was born in 1932. In
column 12, the information about the income of person 8501 is missing. Instead of a
specific value, the Data Editor displays a dot representing a missing value. Because
dots are used in all empty cells (missings), the data matrix is rectangular; that is, the
matrix has the same number of observations for all variables and the same number of
variables for all observations.



11.2 Importing machine-readable data 397

Now you have seen what the structure of the data should resemble. In the following
sections, you will learn how to put your data into such a structure. At this point, you
can close the Data Editor: press Alt+F4 or use the mouse to close the window, as
appropriate in your operating system.

11.2 Importing machine-readable data

Statistical offices and other research institutions produce large amounts of data on
machine-readable media (for example, CD-ROMs) or on the Internet.2 You can use these
data for secondary data analyses.3

However, such datasets, or data that you might get from a collaborator, are often
not available in Stata format. Often you will be confronted with data from other
statistical packages (SAS, SPSS, and R), databases (Access, Oracle, and MySQL), or
spreadsheet programs (Excel and OpenOffice Calc). The origin of a new file usually
can be determined from the filename extensions. Most software automatically assigns a
specific extension to the filename that the user has chosen while saving a file; Microsoft
Word, for example, adds the extension .docx. Hence, if we get a file with the extension
.docx, we know that this file is from Microsoft Word. Table 11.1 lists some extensions
of frequently used software for statistical analysis:

Table 11.1. Filename extensions used by statistical packages

Extension Origin

.dta Stata

.odf OpenOffice Calc

.por SPSS (portable)

.rda, .rdata R

.sas7bdat SAS dataset

.sav SPSS

.xls, .xlsx Excel

.xpt SAS (portable)

The file types listed in table 11.1 share the characteristic that they are all binary file
formats. Although some of these files can be read directly into Stata, they are designed
to be read particularly by their originating software. If Stata cannot read these files
directly, you need to transform them to another format before you can load them into
Stata.

If the new file has none of the above extensions, chances are that they are plain
ASCII files. Unlike the binary file types mentioned in table 11.1, plain ASCII files do
not have a standard filename extension (typical extensions are .txt, .tsv, .csv, .raw,

2. A list of data archives can be found at http://www.ifdo.org/wordpress/?page id=35.
3. Analyses are called secondary if they are carried out using data collected by others.
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.out, and .asc). Within Stata, the easiest way to determine that a new file is in ASCII

format is to use the Stata command type filename. With this command, the contents
of the specified file are displayed in the Results window, without loading the file into
memory. You can see the difference between a binary file and an ASCII file by typing
the following commands:

. type popst1.dta

. type popst1.xls

. type popst1.raw

The output of the first two commands is rather confusing. Only the output of type
popst1.raw is readable for humans.4 This is a good indication that it is a plain ASCII

file, meaning a file without program-specific control characters. Plain ASCII files can be
loaded directly into Stata.

11.2.1 Reading system files from other packages

Reading Excel files

Many freely accessible datasets are available in Excel format. Stata therefore provides
an import filter to read those files into Stata. However, when importing Excel-formatted
files into Stata, a few things are not as straightforward as one would think. Figure 11.2
shows an example of an Excel file loaded into OpenOffice Calc. The dataset is arranged
in a data matrix very similar to the arrangement of data in Stata’s browser window (see
figure 11.1). However, there are differences:

• The first line of the Excel data matrix has a line explaining the contents of each
column. Excel files usually have at least one such line, if not several lines. How
this first line and subsequent lines are read into Stata will affect your resulting
dataset.

• If you open the contents of an Excel file with Excel (or OpenOffice Calc), the data
are viewed as a table within a large table (the worksheet). It is thereby possible
that the worksheet contains more than one such table. In figure 11.2, there might
be another table in the cells from AA-1 to AF-17, for example, and this would be
visibly indistinguishable from the case where we just have data in the area from
A-1 to F-17. To Stata, the empty rows and columns between the different subtables
are variables and observations with missing values.

• A particular cell in Excel might contain a number created from other entries in
the same table through a formula, for example, a summary of all values in the
table. In these cases, Stata imports the number, not the formula.

4. All files of the data package with filenames starting with pop contain information on the number
of inhabitants and the size of various German regions in 2010. All files have been created with the
do-file crpop.do from the list of German communities provided by the German Statistical Office
(http://www.destatis.de).
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• Excel’s data type is cell based. You cannot infer from a cell containing a number
that all cells in the same column contain numbers as well. Some values displayed
as numbers might be formatted as a string of characters.

• Excel files often contain more than one worksheet. The file popst1.xls contains,
for example, the worksheet Absolute with absolute numbers and the worksheet
Percent with relative frequencies.

Figure 11.2. Excel file popst1.xls loaded into OpenOffice Calc
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Now that you know these peculiarities, we introduce the command import excel,
Stata’s import filter for Excel files. In its simplest form, the command expects just a
filename. Let us give this a try:

. import excel popst1, clear

. describe

Contains data
obs: 17
vars: 6
size: 1,751

storage display value
variable name type format label variable label

A str22 %22s
B str17 %17s
C str10 %10s
D str17 %17s
E str19 %19s
F str18 %18s

Sorted by:
Note: dataset has changed since last saved

The Excel worksheet is imported as a Stata dataset with 6 variables and 17 obser-
vations. The dataset contains all nonempty cells of the first worksheet of the Excel
file. The variable names A, B, . . . , F were inherited from the column addresses of the
Excel file. Most importantly, all variables in the Stata dataset are string variables (see
section 5.3). The reason is that if a column contains at least one nonnumerical text,
the entire column is imported as a string variable. Because of the explanation line, the
first cell of each column is not a number, and the columns are thus imported as string
variables.

There are two ways to import popst1.xls in a form that is more suitable for being
analyzed with Stata. The first way is to specify the option firstrow of import excel.
With firstrow, Stata takes the contents of the first row of the Excel file as variable
names. If the contents of the first row are not valid variable names, Stata creates valid
variable names from the contents—basically by stripping out all characters that are not
allowed in variable names—and moves the information of the first line into the variable
labels:
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. import excel popst1, clear firstrow

. describe

Contains data
obs: 16
vars: 6
size: 800

storage display value
variable name type format label variable label

Statename str22 %22s State (name)
Areainkm2 double %10.0g Area in km^2
Population long %10.0g Population
Populationmale long %10.0g Population (male)
Populationfem~e long %10.0g Population (female)
Populationden~y double %10.0g Population density

Sorted by:
Note: dataset has changed since last saved

This creates a pretty nice dataset with 16 observations—one for each German state—
and 5 numerical variables. If you prefer shorter variable names than the ones auto-
matically created, the Stata command rename lets you change the names. We do not
recommend changing the first line in the Excel file itself, because such an exercise would
hamper the full reproducibility of your analysis.

The option firstrow does not necessarily prevent import excel from importing
Excel columns into string variables. Particularly, firstrow does not work if there are
two or more lines of explanations before the numerical values or if there is another string
in a cell somewhere below the numerical values. Note that a column will be imported
as a string variable if just one cell in the column contains a white space character (that
is, a tab or a space). In all of these situations, the option cellrange() allows you to
specify the area of the Excel worksheet that should be used in the Stata dataset. For
example,

. import excel state area pop_total pop_male pop_female
> using popst1, clear cellrange(A2:E17)

instructs Stata to load only the cells between cell A2 and E17. Thus we have cut out
the first line, all cells below row 17 (where there are no further data points), and all
columns to the right of column E (we intentionally left out the values in column F). Also
we specified a list of variable names directly after import excel, which means that we
avoided having to rename the complicated variable names created by firstrow. How-
ever, now variable labels are not created automatically. The structure of the command
has changed slightly, and the keyword using has to be placed in front of the filename.

So far, we have only dealt with the first worksheet of a workbook. To load the second
worksheet, which we do in our final example, we need the option sheet("sheetname"):

. import excel popst1, clear sheet("Percent") firstrow
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Reading SAS transport files

Stata has an import filter for reading system files in SAS transport format (SAS XPORT

files, .xpt). You can read SAS XPORT files into Stata by using the command import

sasxport. For example, the file popst1.xpt is imported into Stata with

. import sasxport popst1, clear

Reading other system files

To read all other system files into Stata, you can either use a data-conversion program
or export the data as an ASCII file from the program in which they were saved. Then
you can read them directly into Stata.5

We know of two programs that convert system files from one statistical package to
another: Stat/Transfer by Circle Systems and DBMS/COPY from DataFlux, a subsidiary
of SAS Institute. The advantage of using a conversion program is that you can keep
variable and value labels that have been assigned to a data file and, in some cases, even
keep missing-value definitions. But to import data into your system, you need not pay
for an external program. As we said, you can always save data as an ASCII file and
follow the description in the upcoming sections.

11.2.2 Reading ASCII text files

Stata has three commands for reading ASCII files: infile, insheet, and infix. The
last two commands are simplified special cases of the infile command. Once you are
at ease using infile, you can read in all ASCII files with no problems. We begin with
the insheet command, which is very easy to use. However, because not all datasets
can be read in using insheet, we will explain the use of infile in detail.

Reading data in spreadsheet format

In a simple case where data are in an ASCII data file, each observation is written into a
separate row, and the columns (variables) are separated by commas or tabs. Spreadsheet
programs usually export ASCII files of this type, which is why the format is also known
as spreadsheet format. Windows files are often tab-delimited with the file extension
.txt or comma-separated with the extension .csv. We have prepared a data file called
popst1.raw:6

5. The user-written program usespss loads SPSS-format (.sav) datasets into Stata. See chapter 13
for information on how to install user-written commands.

6. We use the extension .raw because it is the Stata default extension for ASCII files. See section 3.1.8
for more information.
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. type popst1.raw
Baden-Wuerttemberg,35742,10744921,5285946,5458975,301
Bayern,68025,,6136004,6374327,184
Berlin,892,3442675,1686256,1756419,3861
Brandenburg,29482,2511525,1244101,1267424,85
Bremen,404,661716,322227,339489,1637
Hamburg,755,1774224,866623,907601,2349
Hessen,20788,6061951,2970776,3091175,292
Mecklenburg-Vorpommern,23189,1651216,818119,833097,71
Niedersachsen,46510,7928815,3894627,4034188,170
Nordrhein-Westfalen,34088,17872763,8719694,9153069,524
Rheinland-Pfalz,19847,4012675,1970665,2042010,202
Saarland,2569,1022585,497605,524980,398
Sachsen,18420,4168732,2039451,2129281,226
Sachsen-Anhalt,20449,2356219,1153749,1202470,115
Schleswig-Holstein,15700,2832027,1387049,1444978,180
Thueringen,16172,2249882,1110714,1139168,139

The file popst1.raw contains the same information on the number of inhabitants and
the sizes of the German states as the information presented in the Excel file in figure 11.2.
Every row begins with the name of the state and continues with the numbers for the
sizes and inhabitants. Every row in this file is a new observation, and each observation
contains six pieces of information, separated by commas. In the second row, there seem
to be only five values—the state name “Bayern” (Bavaria) and four numbers. But if you
look closely, you will find two commas, one directly after the other. The value between
is missing, so we do not know what the population was in Bavaria, but we do know that
the value of the third entry is missing. There are still six pieces of information in the
second row. This is an important point because the data must be rectangular. Each
observation must appear in one row, and each row must contain the same number of
entries, even if one of the values is missing.

A text file generated by a spreadsheet program may also separate variables by tabs
instead of commas. For humans, however, tabs are difficult to distinguish from blanks.
The option showtabs with the type command displays characters representing tabs:

. type popst5.raw

. type popst5.raw, showtabs

Datasets delimited with commas or tabs can be read into Stata using the command
insheet. To read in popst1.raw, for example, you could type

. insheet using popst1.raw, clear

. describe

Following insheet, the keyword using is issued to specify the file to be read in. If
the extension of a file is .raw, you can omit it. As you see in the output of describe,
Stata automatically assigned six variable names, v1–v6, for the six columns. If you
prefer other variable names, you can indicate these between insheet and using:

. insheet state area pop_total pop_mal pop_female pop_dens using popst1, clear
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When you enter variable names, Stata knows how to deal with numbers, so you can
also use

. insheet state area pop1-pop4 using popst1.raw, clear

Many spreadsheet programs store column titles in the first row of spreadsheet files.
If this is the case, insheet uses the first row as variable names and all other rows as
observations. The file popst2.raw contains such a row. From

. insheet using popst2.raw, clear

you obtain the same dataset as the one you created with the previous command.

Although insheet is fairly easy to use, checking the state of your data is crucial.
Different spreadsheet programs have different problems exporting ASCII files, so you
need to be careful. In addition to the problems already mentioned in section 11.2, be
aware of the following:

• A common problem is that commas are used in numbers as thousands separators
or—depending on the country you work in—as decimal points. In both cases, one
numeric value would be split by Stata into two or more variables.

• Sometimes missing values are coded as blanks or dots in the plain ASCII spread-
sheet file. In this case, the respective column will be imported into Stata as string
variables. With insheet, the characters separating cells should always be next to
each other if the value between them is missing.

• If the individual variables in the ASCII file are separated by blanks or if characters
other than commas or tabs were used to separate cells, you must use the delimiter
option. See help insheet for details.

• You cannot use insheet if cells are not separated or if the values of any observa-
tions span across multiple rows. You need to use another Stata command called
infile.

You can solve some of these problems by cleaning up your file with the Stata com-
mand filefilter or by loading the dataset with the infile command. Unless it is
fully automated, we do not recommend repairing the text file with a text editor.
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Reading data in free format

Sometimes ASCII files are in free format, which means that individual variables are
separated by blanks, tabs, commas, or line breaks. Take popst3.raw as an example:

. type popst3.raw
Baden-Wuerttemberg

35742 10744921 5285946 5458975 301
Bayern 68025 12510331 6136004 6374327 184
Berlin 892 3442675 1686256 1756419 3861
Brandenburg 29482 2511525 1244101 1267424 85
Bremen 404 661716 322227 339489 1637
Hamburg 755 1774224 866623 907601 2349
Hessen 20788 6061951 2970776 3091175 292
Mecklenburg-Vorpommern 23189 1651216 818119 833097 71
Niedersachsen 46510 7928815 3894627 4034188 170
Nordrhein-Westfalen 34088 17872763 8719694 9153069 524
Rheinland-Pfalz 19847 4012675 1970665 2042010 202
Saarland 2569 1022585 497605 524980 398
Sachsen 18420 4168732 2039451 2129281 226
Sachsen-Anhalt 20449 2356219 1153749 1202470 115
Schleswig-Holstein 15700 2832027 1387049 1444978 180
Thueringen 16172 2249882 1110714 1139168 139

Here the information for the state Baden-Württemberg is for some reason spread
over two rows. Unlike in the spreadsheet format, observations in the free format can
be spread over several rows. This has an important implication: Stata can no longer
automatically identify how many variables the dataset contains. You must enter this
information.

ASCII files in free format are read in using the infile command. You indicate the
number of variables by specifying a variable list. The file popst3.raw, for example, can
be read with

. infile str22 state area pop_tot pop_male pop_female pop_dens using popst3.raw,
> clear

or

. infile str22 state area pop1-pop4 using popst3.raw, clear
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After specifying infile, you enter a variable list, followed by using and a file-
name. From the specified variable list, Stata can infer that there are six variables to
read. Therefore, a new observation starts every sixth entry.7 One problem reading in
popst3.raw is the first variable, which contains the name of the state. Because this
variable contains text, it must be marked as a string variable (str in the variable list).
In doing so, you must specify the maximum number of letters the variable may contain.
Here because “Mecklenburg-Vorpommern” is the longest and therefore limiting element,
with 22 characters, we use str22 as the storage type. However, instead of counting the
letters, you will usually find it easier to allow for more space than necessary and later
optimize the dataset using compress.

In this form of the infile command, everything that is not a blank, tab, comma, or
line break is read as the value of a variable until one of these characters appears. This
logic prohibits the use of blanks within string variables and is a common source of error
messages. In popst4.raw, for example, the hyphen in “Mecklenburg-Vorpommern” has
been erased. If you repeat the last command, inserting popst4.raw as the filename,
you get the following:

. infile str22 state area pop1-pop4 using popst4.raw, clear
´Vorpommern´ cannot be read as a number for area[8]
´Niedersachsen´ cannot be read as a number for area[9]
´Nordrhein-Westfalen´ cannot be read as a number for area[10]
´Rheinland-Pfalz´ cannot be read as a number for area[11]
´Saarland´ cannot be read as a number for area[12]
´Sachsen´ cannot be read as a number for area[13]
´Sachsen-Anhalt´ cannot be read as a number for area[14]
´Schleswig-Holstein´ cannot be read as a number for area[15]
´Thueringen´ cannot be read as a number for area[16]
(eof not at end of obs)
(16 observations read)

What happened? The moment you have a blank in an unexpected place, the al-
location of values to variables shifts. “Mecklenburg” is read into the string variable
state. The blank between “Mecklenburg” and “Vorpommern” is understood as the
beginning of a new variable. Stata then tries to read “Vorpommern” as a numerical
value of the variable pop90, fails, and reports this. This mistake is continued through
all rows because infile attributes values to one observation until the variable list ends.

To avoid problems with strings containing blanks, you should enclose strings within
quotation marks. Missing strings should appear as two consecutive quotes to keep your
data rectangular.

7. The same logic applies to the spreadsheet format, which is a special case of the free format, so we
can therefore use the above commands to read the files popst1.raw and popst2.raw.
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Reading data in fixed format

Fixed-format data have no specific separating characters between variables. Instead, we
know from external information what the numbers at certain positions of the file mean.
The file popst6.raw is an example of a fixed-format dataset:

. type popst6.raw
Baden-Wuerttemberg357421074492152859465458975 301

Bayern680251251033161360046374327 184
Berlin 892 3442675168625617564193861

Brandenburg29482 251152512441011267424 85
Bremen 404 661716 322227 3394891637

Hamburg 755 1774224 866623 9076012349
Hessen20788 606195129707763091175 292

Mecklenburg-Vorpommern23189 1651216 818119 833097 71
Niedersachsen46510 792881538946274034188 170

Nordrhein-Westfalen340881787276387196949153069 524
Rheinland-Pfalz19847 401267519706652042010 202

Saarland 2569 1022585 497605 524980 398
Sachsen18420 416873220394512129281 226

Sachsen-Anhalt20449 235621911537491202470 115
Schleswig-Holstein15700 283202713870491444978 180

Thueringen16172 224988211107141139168 139

Here the individual variables cannot be separated unless you know, for example, that
the variable area starts at the 23rd position of each row and ends at the 28th position.

For this type of file, the command infile must be used in combination with a
dictionary. This technique can also be used for the other data formats. It is the
most general way of entering data. The dictionary is an auxiliary file8 used to define
the positions of the variables. Variable labels and comments can be inserted, and
unimportant variables or rows can be omitted. A simple version of such an auxiliary
file consists solely of a row with the name of the file containing the data and a simple
list of variables to be read in. Here is an example:

begin: popst5kk.dct
1: dictionary using popst5.raw {
2: state
3: area
4: pop_total
5: pop_male
6: pop_female
7: pop_dens
8: }

end: popst5kk.dct

8. A dictionary can also be written directly before the rows of numbers in the ASCII data. Here,
however, the ASCII data would be worthless for other statistical packages. Also writing the dic-
tionary in an editor before rows of numbers is often difficult because many editors cannot read in
large datasets. We therefore recommend setting up the dictionary as an external file.
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This dictionary merely lists the variable names and, for string variables, the corre-
sponding specifications. As the positions of the variables are not defined, this dictionary
clearly cannot read in popst6.raw. But you can use it to read popst5.raw. To un-
derstand how dictionaries work, try that first—and we will develop the dictionary for
popst6.raw later.

Type the above example in the Stata Do-file Editor (or any other editor) and save
it as popst5.dct9 in your working directory. Windows users should make sure that the
file is not accidentally saved as popst5.dct.txt. Then return to Stata and type the
following command:

. infile using popst5.dct, clear

Unlike the command on page 405, this command does not contain a variable list.
Furthermore, using is followed by the reference to the dictionary file instead of to
the data file. You can even leave out the extension of the dictionary file, because
Stata automatically expects a file with extension .dct. The reason is that the infile

command is entered without a variable list. Here Stata automatically assumes that
using will be followed by a dictionary.

In this example, this procedure not only seems but also is unnecessarily complicated.
Nonetheless, the use of such a dictionary can be extremely useful. On the one hand,
it allows a detailed description of the dataset; on the other hand, it is the only way to
read fixed-format datasets.

The following syntax extract shows you some of the more important ways to design
a dictionary. Stata allows some further options, but these are rarely necessary and will
therefore not be described here. For an overview with examples, type the command
help infile2.

[
infile

]
dictionary

[
using filename

]
{

* comments may be included freely

lrecl(#)

firstlineoffile(#)

lines(#)

line(#)

newline
[
(#)

]

column(#)

skip
[
(#)

]
[
type

]
varname

[
:lblname

] [
% infmt

] [
"variable label"

]

}

9. You can also find the dictionary among the files you installed at the beginning under the name
popst5kk.dct.
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Let us start with the second-to-last row. Recall that all elements in square brackets
are optional. The only required element is therefore a variable name. For every variable,
you can also specify the storage type

[
type

]
(see section 5.7), give a variable label[

"variable label"
]
, and specify the width of the variable

[
% infmt

]
and the name of the

value label
[
:lblname

]
.

The most important additional element in the syntax for dictionaries is probably
column(#). With column(#), you can mark at what point in your file a specific
variable begins. You can determine the end of the variable by specifying the format.
To specify that the variable area in the file popst6.raw begins in the 23rd column and
has a width of five digits, you would type the following:

column(23) area %5f

We have chosen %5f as the format type because the area numbers do not contain
more than five characters. With the other variables, proceed correspondingly.

The three line options refer to the rows in your file. Using firstlineoffile, you
determine in which row your data begin. Some files might contain a title, references, or
comments on the data collection, which you can skip by specifying the first row with
real data. Using lines, you can state how many rows constitute an observation. This
is necessary for data in fixed format when an observation is spread over several rows.
The availability of lines is also helpful for data in free format if you do not want to
read all the rows into Stata. You determine the rows from which to read the values using
line. The values following this option always refer to the rows within an observation.

Most likely, you will not need a dictionary file right away. However, it is important
to know that this possibility exists and how to use it. Let us therefore show you a
simple example of a dictionary file in popst6kk.dct. We recommend that you copy the
dictionary file to popst6.dct, use your copy to read the data into Stata, and finally
work through some alterations of the dictionary file. You will quickly learn that things
are not nearly as complicated as they seem.

begin: popst6kk.dct
1: dictionary using popst6.raw {
2: _column(1) str22 state %22s "State (name)"
3: _column(23) area %5f "Area in km^2"
4: _column(28) pop_total %8f "Total Population"
5: _column(36) pop_male %7f "Male Population"
6: _column(43) pop_female %7f "Female Population"
7: _column(50) pop_dens %4f "Population Density"
8: }

end: popst6kk.dct
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For data in fixed format, the infix command offers an easier, although less flexible,
alternative to the infile command. The infix command allows you to specify the
variable names and column positions directly within the command. Because datasets
in fixed format without separating characters are less common now, we will not discuss
this command further here but instead leave you with an example that reads in the first
three variables of popst6.raw:

. infix str22 state 1-22 area 23-27 pop_total 28-35 using popst6.raw, clear

11.3 Inputting data

For one of the examples in discussing graphs, we used temperature data from 1779
to 2004. Parts of these data are listed in table 11.2. The table contains the average
temperatures by year for July and December for the small city of Karlsruhe, Germany,
from 1984 to 1990. Printed this way, the information is an example of data that are not
machine readable.10 To analyze these data, you first need to input the data by hand
using Stata’s Data Editor or the input command.

Table 11.2. Average temperatures (in oF) in Karlsruhe, Germany, 1984–1990

Time Yearly July December

1984 49.82 65.84 36.86
1985 48.92 68.54 40.28
1986 50.18 67.28 38.66
1987 49.64 67.10 38.12
1988 52.16 66.56 40.82
1989 52.16 68.90 38.48
1990 52.88 68.00 35.24

11.3.1 Input data using the Data Editor

We need to begin this section with no data in memory:

. clear

10. The data are in machine-readable form at http://www.klimadiagramme.de/Europa/special01.htm.
Here, however, we prefer to stick to the printed table with its Fahrenheit information. The webpage
contains an HTML table of monthly temperatures in degrees Celsius from 1779 to 2004. If you
want to read such data into Stata, just copy the table to a powerful text editor, do some searching
and replacing, and import the data into Stata with insheet or infile.
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You can open the Data Editor by typing the command

. edit

Typing edit opens a window containing an empty data matrix. The upper left
corner of the data matrix is highlighted; this is the currently active cell, and you can
alter its contents. Above the table, to the left of an input field, you see “var1[1]”. Here
you can type the value of the first variable (“var1”) for the first observation (“[1]”).
If you press the Down Arrow key, the highlighting also shifts downward but remains
within variable 1; however, the value within the square brackets changes. Every cell
therefore corresponds to a new observation.

Now type, say, the value 1984 in the input field to the right of “var1[1]”. Then
confirm your entry by pressing Enter. The number 1984 is written in the first cell, the
second observation becomes the active cell, and the variable is given a name. You can
now directly type the value for the second observation, for example, 1985.

Use the mouse to click on the cell in the first row of the second column and type
a value (for example, 49.82) for “var2[1]” into the input field. Confirm this entry by
pressing Enter. The dot that appears in the second row of column 2 is a placeholder
for a missing value. As soon as a value is entered for an observation, the program adds
missing values for the remaining rows that already contain data. This way, the dataset
always stays rectangular. If you continue entering data into the second column, the
missing values are simply overwritten.

Before we end this example, use the mouse to double-click on the gray field with the
label var1 at the top of the first column. This sets the focus to the Stata properties
panel on the right-hand side of the Data Editor window. Here you can enter the name
and label definitions of the highlighted variable. Type year in the first textbox and
Year of observation in the second textbox.

Now close the Data Editor by pressing Alt+F4 or clicking on the button that closes
windows in your operating system. This will bring you back to the normal Stata window.
You can now treat the dataset like any other Stata file.

11.3.2 The input command

Another method to enter data into Stata is the input command. The main advantage
of this method, compared with entering the data using the Data Editor, is that it can
be used in do-files, so you can replicate your steps.

To begin with, we will use the command input to enter just one observation of data
from table 11.2. Begin by clearing Stata:

. clear
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Start entering data using input. Type the command and list all variable names for
which you want to enter values, for example,

. input year temp

Following this entry, the two variable names appear on the screen, together with the
number 1:

year temp

1.

Here 1. is the entry request of the input command. You are asked to enter the values
for the first observation. According to table 11.2, these are the numbers 1984 and 49.82.
Type these numbers, separated by a blank, in the Command window and confirm your
entry by pressing Enter. The entry request for the second observation, 2., appears on
the screen. Now you could enter the second observation accordingly, but for now, just
type

. end

which brings you back to the normal Stata prompt.

As we said, the main advantage of input is that you can easily use the command in
do-files. Let us give this a try. Open the Stata Do-file Editor (or any other text editor)
and produce the following do-file:

begin: crkatemp.do
1: clear
2: input year mean jul
3: 1984 49.82 65.84
4: 1985 48.92 68.54
5: 1986 50.18 67.28
6: 1987 49.64 67.1
7: 1988 52.16 66.56
8: 1989 52.16 68.9
9: end
10: exit

end: crkatemp.do

After saving the do-file under, say, crkatemp.do, you can run the file as usual.
Running the do-file will produce the data:

. do crkatemp

You can also use input to add new variables or more observations to an existing
dataset. To add observations, type input without a variable list. Stata will then
automatically let you input further observations. Let us use this feature to add the
temperatures for the year 1990, which we have forgotten in the do-file:

. input

. 1990 52.88 68

. end
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To add another variable, type input with a new variable name. Here we add the
average December temperatures to our dataset:

. input dec

. 36.86

. 40.28

. 38.66

. 38.12

. 40.82

. 38.48

. 35.24

Here you can omit typing end. Stata knows that the dataset contains seven obser-
vations and will not let you input more observations if you use input with a varlist for
an existing dataset. However, if you need to reproduce your steps, a better place to
add variables or observations to the dataset would probably be the do-file we produced
above.

Which numbers to assign?

So far, we have assumed that the numbers or text you enter are from the printed
data. If you collected the data yourself, or if the printed data you enter include text
(nonnumerical information) that you would like to use in your analysis, or if data are
missing in the sources, you will have to make some coding decisions, which we want to
address briefly.

• First of all, make sure that your file has an identification variable. You saw in our
file data1.dta that the variable persnr was an identification variable. For the
temperature data we just entered, year would serve the same purpose. It is easy
to forget to enter an identification variable, especially when the printed data or
data you find on the Internet provide this information through sorting. Suppose
that you enter grades for a class and, being lazy, skip the names of the students to
avoid typing. That seems fine because the data are ordered alphabetically and you
will always know who is who. However, once your data are entered into Stata,
you can sort them in various ways, and the relevant mapping information will
then be lost. This will become even more problematic when you combine different
datasets (see section 11.4).

• An equally important point is how to code missing values. In our population data
example, we left the missing information for the population value in Mecklenburg-
Vorpommern blank, and once the data are read into Stata, a period will appear
indicating the missing value. Other data you enter, however—especially survey
data—may contain some information about the missing values, so do not throw
away essential information. In an interview, for example, there may be various
reasons why data are missing: the respondent was not willing to answer, the re-
spondent did not know the answer, or filter questions were used, so the respondent
was never asked a particular question. If you merely leave this information out
and assign a period to a missing value, you will not be able to determine why the
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value is missing when analyzing the data. For this reason, you should use codes for
all variables that explain why a value is missing in a given case. In many datasets,
97 is used for “do not know”, 98 for “answer refused”, and 99 for “not applicable”.
You cannot use this coding if the true answers can contain such numbers. But
you can resolve this by using missing-value codes that always contain one digit
more than the answer categories (for example, 997, 998, 999). This type of coding
is unambiguous but has the disadvantage that it differs across variables. A uni-
form codification considerably simplifies dealing with missing values. A possible
alternative would be to use negative values as codes. Usually, you will not have
any negative values as possible answers, so you can use, for example, the values
-1, -2, and -3 as missing-value codes for all variables. In Stata, you can code all
of these values into 27 different missing-value codes: the usual period, as well as
.a to .z.

• When you enter plain text (such as the name of a state in the population example,
names of students, or job titles), you can either use codes when entering them or
enter the text directly into Stata. Which of the two options you choose essentially
depends on the question asked. If the number of possible answers is limited, you
can easily assign a number to every answer. Write down the allocation while
entering the data and merely enter the number in the data file. This procedure
is easiest if you are entering the data by yourself. If several people are entering
data simultaneously, make sure that the codes have been defined previously (and
are known to everyone). On the other hand, if the answer context allows for an
unforeseeable number of possibilities, compiling a list before entering the data will
be difficult, if not impossible. Here we recommend that you enter the text directly
into Stata and read section 5.3.

• Sometimes your data will contain dates—not just years, as in the temperature
example, but days and months. In this case, we recommend that you include the
century in the year. If you add data later and if the old and new data are to be
joined, the dates must be unambiguous.

• Make sure that every variable contains only one logical unit, that is, one piece
of information. Sometimes respondents are asked to mark all answer categories
that apply to one question. Here each of the possible answers should be stored
in a separate variable with a “yes” or “no” indicator. We recommend that you
use variable names that display the content of these questions, as the variables
eqphea to eqpnrj do in our data1.dta.

• To avoid errors, we recommend that you enter data twice, merge the datasets
afterward, and check for differences (see section 11.4). Sometimes time and finan-
cial constraints will often preclude such double entry. Then some other strategies
are helpful. For example, when you enter data from a questionnaire that has no
codes printed next to the boxes, copy the questionnaire on a transparency and
write the codes behind the boxes on the transparency. When you enter the data,
you can then simply place the transparency on top of the questionnaire.11 Also

11. For details on designing questionnaires, see, for example, Fowler (1984).
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do not try to modify data or make coding changes while you are entering the
data. For instance, in our temperature example, there is no point in converting
the temperatures from Fahrenheit to Celsius before you have finished entering the
data. You can automate almost everything later within Stata (see chapter 5).

11.4 Combining data

Suppose that you want to analyze how life satisfaction develops over time by using data
collected with different surveys at different times. Or suppose that you want to compare
the life satisfaction of German and American citizens by using survey data collected in
both countries. Finally, suppose that you want to control for population density in the
regression of rents (from chapter 9) by using the dataset constructed above. In any of
these examples, the information you need is spread over several files, so to perform your
analyses, you need to combine the files into a rectangular dataset.

Here we explain how to combine datasets, using as examples several datasets from
the German Socio-Economic Panel (GSOEP), which is the same source that we used to
produce data1.dta. The GSOEP is a representative longitudinal study that has collected
information annually on more than 28,000 households and nearly 70,000 persons since
1984. At present, the information from the GSOEP is stored in 326 different files and is
therefore an excellent resource for demonstrating data-management tasks, both simple
and difficult.12

To follow our examples, you need to understand the file structure in the GSOEP

database. We will provide a brief overview in section 11.4.1.

Stata has three commands for combining different datasets: merge, append, and
joinby. joinby, however, is needed only in exceptional cases; for more information, see
[D] joinby. merge and append apply more generally. With merge, you add variables
(columns) to a dataset, and in our examples, we will combine data from different points
in time, as well as personal information and household information (see section 11.4.2).
append adds observations (rows) to a dataset. In section 11.4.3, we will show by example
how to combine data from the GSOEP with the U.S. Panel Study of Income Dynamics
(PSID).

11.4.1 The GSOEP database

In a panel survey, the same people are interviewed several times, so it is not surprising
that multiple datasets may contain information from the same persons. These datasets

12. Two user-written programs exist to ease the process of putting together the files of the GSOEP
database. PanelWhiz, by John Haisken-DeNew, is a large-scale project for the data man-
agement of various panel datasets, including the GSOEP. PanelWhiz is downloadable from
http://www.panelwhiz.eu. The other program, soepuse by Ulrich Kohler, offers far less func-
tionality than PanelWhiz but is somewhat simpler to use. Read more about user-written programs
in chapter 13.
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are updated every year. Of course, the new information could have been written into
the existing data file right away, but usually it is entered into a separate file for storage
reasons. Our task later will be to add the variables that are spread over different files
to one file.

The GSOEP is a household panel, which means that all persons aged 16 and older
from randomly selected households are included. Moreover, not only data on the indi-
viduals in households are gathered but also characteristics of the household as a whole
(household-level data). However, because the information about the entire household
is the same for all persons within the household, these data are stored in separate files:
one in which each observation is a household and another in which each observation is a
person. The household information can be merged with the person data when needed.
In one of our examples, we will merge household information (for example, the state in
which the household lives) with the person data.

You will find household panels like the GSOEP in several countries. In fact, one of
the first panels of this kind was the PSID, which is a U.S. panel study that has been
running since 1968. In recent years, efforts have been made to make the collected data
comparable, so that you can now combine, for example, PSID data and GSOEP data,
which are translated into internationally comparable variables. These are also stored in
separate files.

Our data package includes 78 of the original 326 files of the GSOEP database.13 To
get an impression of the data structure, look at the files in the c:\data\kk3\kksoep

directory by typing

. dir kksoep/

<dir> 10/14/04 08:36 .
<dir> 10/14/04 08:36 ..
26.6k 10/14/04 08:36 ahbrutto.dta
94.7k 10/14/04 08:36 ap.dta

201.1k 10/14/04 08:36 apequiv.dta
27.5k 10/14/04 08:36 bhbrutto.dta
86.4k 10/14/04 08:36 bp.dta

183.4k 10/14/04 08:36 bpequiv.dta
26.5k 10/14/04 08:36 chbrutto.dta
83.4k 10/14/04 08:36 cp.dta
(output omitted )

The data from the different data collection years (called waves) are stored in different
data files. All information gathered in the first year (1984) of the GSOEP is written into
files whose names start with the letter a; information from 1985 is written to files whose
names start with b; and subsequent years start with successive alphabetical letters up
to the last survey year we have here (2009), which is written to files whose names start
with the letter z.

13. The data files that you downloaded contain only a few of the variables of the original GSOEP files.
Also the number of respondents is reduced: our data are a 37.5% sample from the observations of the
original database. In accordance with German regulations for data confidentiality, we randomized
parts of the information in the data files.
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For each year (or, equivalently, letter), you see three file types: hbrutto, p, and
pequiv. The observations (rows) of the hbrutto files are households, which are in-
dicated by the letter h on the second character in the filenames. These files contain
information about the households that is known prior to the survey, for example, the
state in which the household lives. Other types of household-level data of the GSOEP,
which are not included among the files you installed in the Preface, contain information
such as apartment size or monthly rent. More generally, all information that is the same
for all persons within a household is stored in a household-level dataset. Storing this
information for each respondent would be redundant and a waste of disk space.

The observations (rows) of the two other file types represent persons, as indicated
by the letter p in the filenames. In general, answers from persons to survey questions
are in the p files. Other file types at the person level contain variables constructed out
of the respondents’ answers, such as indices or scales. A special sort of these generated
variables is stored in the pequiv files, which contain variables that are comparable with
variables in other panel studies.

Our data by no means represent all the information in the original GSOEP database.
However, our explanation should be enough to give you an idea of its structure. In panel
studies, you cannot collect data at every point in time from all respondents. You may
lose contact with some respondents, some may refuse to answer the questionnaires, and
some may die. At the same time, respondents may be added to the study, depending on
how the survey is conducted. For example, one policy on follow-ups in the GSOEP is that
if spouses get divorced and one of them moves into the household of another person, all
persons of this new household will be interviewed as well. Also panel studies commonly
draw refreshment samples from time to time or include more samples. Because of the
German reunification, the GSOEP had one additional sample to collect information from
respondents from the former German Democratic Republic and another sample in 1993–
1994 to collect data on immigrants from eastern Europe. A refreshment sample for the
entire sample was taken in 2002. Naturally, all of these mechanisms lead to changing
numbers of observations for each survey year.

We will explain how to combine data from several file types and survey years.

11.4.2 The merge command

The merge command is used to add variables to a given dataset. merge joins correspond-
ing observations from the dataset currently in memory with those from a Stata-format
dataset stored on the disk. In the simplest case, which we will call a 1:1 match with
rectangular data, new variables are added for each observation, as shown in figure 11.3.
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Figure 11.3. Representation of merge for 1:1 matches with rectangular data

The basic syntax of the merge command starts with the command itself, the speci-
fication of the merge type, a variable list, and the specification of the file that you want
to merge with the file in memory:

merge match type varlist using filename ...

We describe the command merge in four steps. We start with an example of using
the command for the simplest case, a 1:1 match with rectangular data. We then proceed
with a 1:1 match for nonrectangular data; here the major difficulty is keeping track of
the observations in the new dataset. We then provide an example of performing a series
of 1:1 matches. Finally, we merge individual data with aggregate data and vice versa
to show examples for the match types m:1 and 1:m.

Merge 1:1 matches with rectangular data

Suppose that you want to use data from the GSOEP to investigate the relationship
between general life satisfaction and hours worked in 2001. The information on life
satisfaction is part of 2001’s person data files:
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. describe using kksoep/rp

Contains data PPFAD: 09/10/10 10:14:13-634
DB09

obs: 7,704 13 Feb 2012 17:08
vars: 7
size: 154,080

storage display value
variable name type format label variable label

hhnr long %12.0g Ursprungshaushaltsnummer
persnr long %12.0g Unveraenderliche Personennummer
rhhnr long %12.0g Haushaltsnummer 2001
rp111 byte %20.0g rp111 Allg. Parteienpraeferenz
rp112 byte %25.0g rp112 Parteipraeferenz
rp113 byte %20.0g rp113 Parteipraeferenz-Intensitaet
rp13501 byte %20.0g rp13501 Lebenszufriedenh. gegenwaertig

Sorted by:

The number of hours worked is one of the variables that were generated for international
comparability and stored in 2001’s pequiv file:

. describe using kksoep/rpequiv

Contains data PPFAD: 09/10/10 10:14:13-634
DB09

obs: 7,704 13 Feb 2012 17:08
vars: 12
size: 292,752

storage display value
variable name type format label variable label

hhnr long %12.0g Ursprungshaushaltsnummer
persnr long %12.0g Unveraenderliche Personennummer
rhhnr long %12.0g Haushaltsnummer 2001
d1110401 byte %29.0g d1110401 Marital Status of Individual
d1110601 byte %8.0g Number of Persons in HH
d1110701 byte %8.0g Number of Children in HH
d1110901 float %9.0g Number of Years of Education
e1110101 int %12.0g Annual Work Hours of Individual
e1110301 byte %20.0g e1110301 Employment Level of Individual
i1110101 long %10.0g HH Pre-Government Income
i1110201 long %10.0g HH Post-Government Income
i1111001 long %10.0g Individual Labor Earnings

Sorted by:

To perform your analysis, you need to combine these two datasets so that identical
respondents are combined into one row (observation) of the new dataset.
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To combine the two datasets, you must understand the concepts of the key variable
and the match type. Let us start with the match type. In our example, each of the
observations (rows) of the two datasets rp.dta and rpequiv.dta represents respondents
of the same survey. Hence, each of the 7,704 observations (respondents) in the file
rp.dta has a corresponding observation in file rpequiv.dta. We are calling this a 1:1

match, so the match type to be used with merge is 1:1.

Knowing that each respondent in one file corresponds to one respondent in the second
file is not enough to merge the two files together. To do so, you also have to indicate
which observation of the two different files belong together. This information is specified
using a key, a variable that is part of both datasets and that has a unique value for each
observation. In the GSOEP dataset, persnr is such a key variable. Each person who
was entered at least once in the GSOEP sample was assigned a personal identification
number that does not change over time and is stored in the variable persnr in every
GSOEP file containing personal information. Hence, you can use this variable as a key
to match the right observations of the datasets with each other.

To combine two datasets, you begin by loading one of them into the computer’s
memory; we will use the term master data for this file. To use the merge command, you
then specify the match type, followed by the name of the key variable, the word using,
and the name of the second dataset. We call that dataset the using dataset.

Let us try it. Load rp.dta into the computer’s memory and merge rpequiv.dta with
persnr as a key. Remember that both datasets are stored in the subdirectory kksoep

of c:\data\kk3. You therefore need to add the directory name to the filename:14

. use kksoep/rp, clear
(PPFAD: 09/10/10 10:14:13-634 DB09)

. merge 1:1 persnr using kksoep/rpequiv

Result # of obs.

not matched 0
matched 7,704 (_merge==3)

Let us take a look at the merged data file:

. describe, short

Contains data from kksoep/rp.dta
obs: 7,704 PPFAD: 09/10/10 10:14:13-634 DB09
vars: 17 13 Feb 2012 17:08
size: 300,456

Sorted by: persnr
Note: dataset has changed since last saved

. describe, simple
hhnr rp111 rp13501 d1110701 e1110301 i1111001
persnr rp112 d1110401 d1110901 i1110101 _merge
rhhnr rp113 d1110601 e1110101 i1110201

14. Remember from section 3.1.8 that it is not necessary to add the file extension .dta after using.
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The new dataset has again 7,704 observations, and nine variables were added to the
original file rp.dta (d1110401 to i1111001). The variables hhnr and rhhnr were part
of both datasets, so they are not added from the using dataset to the master dataset.
Unless otherwise stated, a variable remains unchanged in the master data when the
same variable is also found in the using data. Finally, there is a newly added variable,
which has not been used in either of the two datasets: merge. This is an indicator
variable to check the merge process. A value 3 for merge indicates that all observations
from the master data were found in the using data. As you can see from

. tabulate _merge

_merge Freq. Percent Cum.

matched (3) 7,704 100.00 100.00

Total 7,704 100.00

in our last merge command, every observation is in both files, which is why we said
that the data are rectangular. You could see this same information in the output of the
merge command. By default, Stata creates the merge variable when you use merge

because it is useful for looking closer at the results of the merge.

You must delete the variable merge before running another merge command. After
checking the results of your merge command, you should therefore

. drop _merge

Before we proceed, one more word about the key. As mentioned before, the key
is used to ensure that each observation of the using data is merged to exactly the
same observation in the master data. Therefore, the key must uniquely identify the
observations of the datasets. However, it is not necessary for the key to be a single
variable. Instead you can use a list of variables that jointly identify each observation
by specifying a variable list between the match type and using.

Merge 1:1 matches with nonrectangular data

The files we merged in the last section had a special property: both files contained
exactly the same observations, or, in other words, the data were rectangular. A slightly
more complicated case arises if you have to merge nonrectangular data. Then one of the
files contains observations that are not part of the other file and vice versa—a situation
that is likely with panel data. Some respondents from an earlier panel might have
refused to take part in the later year, whereas in the later year, some new respondents
appear who had not participated in an earlier year (see figure 11.4 for a schematic).



422 Chapter 11 Reading and writing data

1

2

4

5

6

7

8

11

12

etc.

1

4

5

6

8

9

10

11

13

etc.

Key Var 1 Key Var 2

File 1 File 2

Source: grmerge1.do

Figure 11.4. Representation of merge for 1:1 matches with nonrectangular data

If you merge two datasets with different numbers of observations, you need to keep
track of the merging process. Suppose that you want to explore the development of life
satisfaction and therefore combine data from 2001 with data collected at the beginning
of the panel study. Life satisfaction in 1984 is stored in ap. From the command

. describe using kksoep/ap

Contains data PPFAD: 09/10/10 10:14:13-634
DB09

obs: 4,648 13 Feb 2012 17:08
vars: 7
size: 92,960

storage display value
variable name type format label variable label

hhnr long %12.0g Ursprungshaushaltsnummer
persnr long %12.0g Unveraenderliche Personennummer
ahhnr long %12.0g Haushaltsnummer 1984
ap5601 byte %20.0g ap5601 Allgemeine Parteienpraeferenz
ap5602 byte %20.0g ap5602 Parteienidentifikation
ap5603 byte %20.0g ap5603 Staerke Parteizuneigung
ap6801 byte %45.0g ap6801 Allgemeine

Lebenszufriedenheit,heute

Sorted by:
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we learn that this file contains information about 4,648 respondents, whereas the file
produced so far contains 7,704 observations. What happens if we merge the two files?
Technically, there are no difficulties in doing so. Simply merge the files as before:

. use kksoep/rp, clear
(PPFAD: 09/10/10 10:14:13-634 DB09)

. merge 1:1 persnr using kksoep/ap

Result # of obs.

not matched 9,306
from master 6,181 (_merge==1)
from using 3,125 (_merge==2)

matched 1,523 (_merge==3)

Now let us note some properties of the merged-data file. As expected, the new file
contains variables from both files, and again the variable merge has been added:

. describe, simple
hhnr rhhnr rp112 rp13501 ap5601 ap5603 _merge
persnr rp111 rp113 ahhnr ap5602 ap6801

However, the combined data file has 10,829 observations, neither just 4,648 from ap.dta

nor just 7,704 from rp.dta.

. describe, short

Contains data from kksoep/rp.dta
obs: 10,829 PPFAD: 09/10/10 10:14:13-634 DB09
vars: 22 13 Feb 2012 17:08
size: 508,963

Sorted by:
Note: dataset has changed since last saved

What happened? The answer can be seen from merge:

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 6,181 57.08 57.08
using only (2) 3,125 28.86 85.94

matched (3) 1,523 14.06 100.00

Total 10,829 100.00

The variable merge has three values: 1, 2, and 3; that is, the new dataset contains
three different types of observations. Here value 1 indicates that 6,181 observations were
only part of the master data. As the file rp.dta has been the master data, these are
respondents interviewed in 2001 but not in 1984. Value 2 indicates observations that
are only in the using data. This means that for our example, 3,125 respondents were
interviewed in 1984 who had not been interviewed in 2001.



424 Chapter 11 Reading and writing data

The variable merge allows us to fine-tune our dataset. Do we want to keep all the
respondents or only those interviewed on both occasions? Here we proceed with the
latter, which gives us what panel-data analysts call a balanced panel dataset:

. keep if _merge==3

Merging more than two files

Suppose that you want to add data on life satisfaction from every year to your dataset
in memory—to merge not just two nonrectangular files but more than two. Merging
more than two files is done by applying merge several times; if there are many files to
merge, you might want to take advantage of a loop (section 3.2.2). However, the main
problem with merging more than one nonrectangular dataset is to keep track of the
observations being used in the merged dataset. Below you see one solution that works
well with the GSOEP and many other large-scale panel datasets around the world.

Many large databases provide supplemental files to give more information about the
observations in the dataset. In the GSOEP, the file ppfad.dta contains some general
information about all persons for whom the entire GSOEP database has at least one
piece of information. Such metadata commonly exist for all nonrectangular data kept
in relational databases.

For GSOEP, the variables anetto to znetto of the file ppfad.dta indicate whether
a specific person has been interviewed in a specific year and, if not, why not. With
the help of these variables, you can precisely specify the observations to be kept. So
you could use the information in ppfad.dta to first define the observation base and
then merge the other files with the option keep(3), which causes merge to keep only
observations in the using data for which the variable merge equals 3.

In our example below, we first construct a new variable nwaves, which counts how
often a person has been interviewed so far; the variables anetto, bnetto, etc., have
values between 10 and 19 if at least some information was observed in the given year
for a specific respondent. We then drop observations with fewer than five interviews
(which is an arbitrary number for our example).

After designing the observational database, we start adding variables from the var-
ious p files. Therefore, we set up a foreach loop over all single lowercase letters from
“a” to “z”. Inside the loop, we apply the merge command as before except that we
use the option keep(3) and nogen. The former keeps only those observations for which
the variable merge would equal 3; thus the observational database remains unchanged.
The latter keeps the variable merge from being generated; thus we do not need to drop
it before we merge the next file.
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. use kksoep/ppfad, clear

. egen nwaves = anycount(?netto), values(10(1)19)

. drop if nwaves < 5

. foreach stub in a b c d e f g h i j k l m n o p q r s t u v w x y z {

. merge 1:1 persnr using kksoep/`stub´p, keep(3) nogen

. }

Merging m:1 and 1:m matches

So far, we have merged datasets where the observations have the same meanings. That
is, in any file we merged, an observation was a respondent. Now consider a case in which
the meanings of the observations in the files are not identical. Such a case arises if you
want to merge the person datasets of the GSOEP with the household data. Whereas the
observations of the person datasets are individuals, the observations of the household
dataset are households. The same case arises if you want to merge the population sizes
used in section 11.2.2 with the person data from the GSOEP. Here the observations are
states in one file and persons in the other.

To merge data with different observational levels, you first need to know how the
observations of the different datasets are linked. This is quite obvious for the personal
and household data of the GSOEP. The persons described by the person data live in
the households of the household data. The same is true for persons and states: the
persons represented in person data live in the states of the state data. In each case, the
observations of any of those datasets somehow belong together. Second, you need to
decide for which observational units the analysis should be performed after merging the
files. Should the observations of the new data be persons, households, or states? This
crucial decision guides the entire remaining process, and the answer depends entirely on
your research question. Do you want to make a statement about persons, households,
or states? In the following example, we will first merge households and states with the
person data by keeping the data as person data. Afterward, we do the opposite.

The hbrutto file of the GSOEP has data on households. If we are to add the household
data to person data, each person belonging to the same household should get the same
information from the household data. Because in this situation one observation from
the household data has to be added to many observations of the person data, we call
that an m:1 or a 1:m match, depending on which of the two files is the master dataset.
Figure 11.5 shows an m:1 match, where the person data comprise the master dataset
and the household data comprise the using dataset.
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Figure 11.5. Representation of merge for m:1 matches

To merge datasets in which the observations form an m:1 match, we specify m:1 as
match type. However, as the household data do not contain the variable persnr, this
variable cannot be used as a key. Instead, the keys for our merging problem are the
current household number. Each hbrutto file contains the household number of the
current year, and this variable is also part of every person’s data. To merge household
information from, say, the 2009 household file zhbrutto with the 2009 person file zp,
we thus specify

. use kksoep/zp, clear
(PPFAD: 09/10/10 10:14:13-634 DB09)

. merge m:1 zhhnr using kksoep/zhbrutto,

Result # of obs.

not matched 0
matched 5,306 (_merge==3)

. drop _merge

It does not matter which of the two files you specify as master and using. However, if
you merge the files the other way around, you have to specify 1:m as match type.
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The same logic principally applies if we want to merge the population sizes in the
file popst1.dta (see section 11.2) with our present dataset. However, as it is frequently
the case, some difficulties arise with that example. The command

. describe using popst1

Contains data Population 2009
obs: 16 13 Feb 2012 17:08
vars: 6
size: 992

storage display value
variable name type format label variable label

state_name str22 %22s State (name)
area double %8.0f Area in km^2
pop_total double %8.0f Population
pop_male double %8.0f Population (male)
pop_female double %8.0f Population (female)
pop_dens float %8.0f Population density

Sorted by: state_name

tells us that popst1.dta contains the variable state name, which holds the name of
each German state, while the present dataset contains the numeric variable zbula, which
also holds information about the state names. Unfortunately, however, both variables
are different in several aspects. They have different names, different formats—string
versus numeric—and slightly different information: state name has the names of each
German state while zbula does not distinguish between the states Rheinland-Pfalz and
Saarland.

To merge the two datasets, we need to construct a state variable that is strictly
comparable in both datasets. The variable should have the same name, the same format,
and, most importantly, the same content. Because we cannot regain the difference
between Rheinland-Pfalz and Saarland in our present dataset, we need to collapse the
information of those two states in the file popst1.dta. Therefore, we save our present
dataset as it is

. save tomerge, replace

and load popst1.dta into memory:

. use popst1, replace
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We then apply encode to create the numerical variable zbula from the string variable
state name. Defining a label before using encode, let us control the numerical code
used for each state:

. label define zbula 0 "Berlin" 1 "Schleswig-Holstein" 2 "Hamburg"
> 3 "Niedersachsen" 4 "Bremen" 5 "Nordrhein-Westfalen"
> 6 "Hessen" 7 "Rheinland-Pfalz" 8 "Baden-Wuerttemberg"
> 9 "Bayern" 10 "Saarland" 12 "Mecklenburg-Vorpommern"
> 13 "Brandenburg" 14 "Sachsen-Anhalt" 15 "Thueringen"
> 16 "Sachsen"
. encode state_name, generate(zbula) label(zbula)

This assigns the same numbers to each state as the numbers assigned in the other
dataset. We use the code 10 for Saarland because this has not been used so far.

On the next step, we combine Rheinland-Pfalz and Saarland into one category:

. replace zbula = 7 if zbula == 10

We then sum up the area and population variables of the combined state using collapse:

. collapse (sum) area pop_total pop_male pop_female, by(zbula)

We re-create the population density of all states, including the new unified state in
the south east of Germany.

. generate pop_dens = pop_total/area

Finally, we only keep the second of the two observations from which we created the
joined category:

. bysort zbula: keep if _n==_N

Now we are ready to merge the dataset tomerge.dta, which we saved above, with
our dataset in memory. This time, we merge many observations with each state, so we
need to specify 1:m as match type. However, before we do that, please save the present
dataset for later use:

. save popst1V2

. merge 1:m zbula using tomerge, assert(3) nogen

The option assert() is used here to check whether merge is equal to 3 for all ob-
servations. You would get an error message if the assertion is not true. If the command
runs without error, the creation of the variable merge is not necessary, and we there-
fore suppress its creation by using the option nogen. The last two examples resulted
in datasets with the respondents as units of analysis. Now for the other way around:
suppose that you want to merge person data with household data, or person data with
state data, and you want to end up with household or state data, respectively. Here
the merging process involves deciding how the values associated with persons can be
aggregated. Consider general life satisfaction. Each person in a household has his or
her own general life satisfaction. If you want to end up with a household dataset, you



11.4.3 The append command 429

need to decide how this different information from one household can be summarized. It
might make sense to consider the mean general life satisfaction of all persons from one
household. Or you might use the general life satisfaction of the head of the household
and merge this information with the household data. The answer once more depends
on your research question. But after you decide, you must form a new aggregated
dataset before you merge your data with the other dataset. The command for forming
an aggregated dataset is collapse. For example, the command

. collapse (mean) zp15701, by(zhhnr)

calculates the means of the general life satisfaction from 2009 by current household num-
ber (zhhnr) and stores the result in a new dataset. This dataset is now no longer person
data but household data. Merging this file with household data therefore becomes a
1:1 matching type:

. merge zhhnr using kksoep/zhbrutto

And, of course, the same applies if you want to form state data:

. collapse (mean) zp15701, by(zbula)

. merge 1:1 zbula using popst1V2

11.4.3 The append command

Adding observations to an existing dataset is straightforward. The append command
adds a new dataset to the bottom of an existing dataset. This means that you extend the
data matrix of your current dataset by one or several rows of observations. Identical
variables are written one below the other, whereas new variables are added in new
columns (see figure 11.6).
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Figure 11.6. Representation of append

The structure and function of append are simple. The basic syntax is

append using filename
[
filename ...

] [
, nolabel

]

Let us illustrate this with an example. We have mentioned before that the GSOEP

database contains PSID-equivalence files, which are part of the Cross-National Equiva-
lent File (CNEF) set assembled by the Cornell College of Human Ecology. The CNEF

contains files with equivalently defined variables for panel studies from the United States,
Germany, the United Kingdom, and Canada.15 Like those of the GSOEP, the data of
the CNEF are also split into several files: one file for each year and each country. Among
the files you installed, we have inserted one of them: a downsized version of the file with
data from the 2007 U.S. PSID: pequiv07kk.dta. You might take a look at it with

15. The panel data distributed in the CNEF are the Panel Study of Income Dynamics (PSID), the
German Socio-Economic Panel (GSOEP), the British Household Panel Study (BHPS), the Cana-
dian Survey of Labor and Income Dynamics (SLID), and several others. See
http://www.human.cornell.edu/PAM/Research/Centers-Programs/German-Panel/cnef.cfm for a
more complete description of the CNEF.
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. describe using pequiv07kk

Contains data
obs: 22,102 13 Feb 2012 17:08
vars: 11
size: 906,182

storage display value
variable name type format label variable label

x11101ll long %12.0g person identification number
x1110207 int %8.0g hh identification number
d1110407 byte %8.0g marital status of individual
d1110607 byte %8.0g number of persons in hh
d1110707 byte %8.0g number of children in hh
d1110907 byte %8.0g number of years of education
e1110107 int %8.0g annual work hours of individual
e1110307 byte %8.0g employment level of individual
i1110107 double %10.0g hh pre-government income
i1110207 double %10.0g hh post-government income
i1111007 double %10.0g individual labor earnings

Sorted by: x11101ll

This file by and large contains the same variables as the file xpequiv.dta from the
GSOEP. All variables have equivalent names in both files except for the unique person
and household numbers, which are called persnr and hhnr in the GSOEP, but x11101ll
and x1110207 in the PSID.

For a cross-national comparison between Germany and the United States, you need
to combine the two files. You begin the process by loading one of the datasets into Stata.
Which one you load does not matter, but we begin with the U.S. file pequiv07kk:

. use pequiv07kk, clear

Again we will use the term master file for the file in the working memory. You can
examine that file using describe, and you will see that there are 22,102 observations
and 11 variables in the data file. One of the variables is e1110107, the annual work
hours of the respondents in the U.S. dataset.

Before you append another file to the master file, you should harmonize the variable
names

. rename x11101ll persnr

. rename x1110207 xhhnr

and generate a variable that marks the observations of the master file. This variable
will later help you to separate U.S. respondents from German respondents. We will do
this by constructing a string variable that is “United States” for all observations in the
current file:

. generate country = "United States"
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Using append, you can now add the respective file of the GSOEP at the bottom
of pequiv07kk. The data for Germany are stored in the subdirectory kksoep. The
command contains the directory name and the file name (kksoep/xpequiv):

. append using kksoep/xpequiv

The new dataset has now 28,068 observations: 22,102 from the United States and
5,966 from Germany. Variables that are in both datasets can have valid values for
all observations. On the other hand, variables that are part of only one of the two
datasets get a missing value for any observation from the dataset without that variable.
Therefore, the variable country created above is missing for all German respondents:

. describe, short

Contains data from pequiv07kk.dta
obs: 28,068
vars: 13 13 Feb 2012 17:08
size: 1,656,012

Sorted by:
Note: dataset has changed since last saved

. tabulate country, missing

country Freq. Percent Cum.

5,966 21.26 21.26
United States 22,102 78.74 100.00

Total 28,068 100.00

After replacing the missing value in country with, say, “Germany”, you can use
country to make the intended comparison:

. replace country = "Germany" if missing(country)

. histogram e1110107 if e1110107 > 0, by(country)
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Two small points that might come in handy when working with append: First,
we could have generated a numerical version of the country variable with the option
generate of append. This was less practical for us because we use the country labels
in the graphs. However, in many settings such a numerical variable will be sufficient.
Second, you should know that you can append more than just one file within a single
command by listing all relevant files behind using.

11.5 Saving and exporting data

You have taken a lot of trouble to construct a dataset with which you and your col-
leagues can easily work. Saving this dataset, on the other hand, is straightforward:
with the command save filename, you save the dataset in memory with the name
filename.dta as a Stata system file in the current working directory. With the option
replace, you can overwrite a previous version of the same dataset.

Saving the data is therefore fairly easy. Just before saving, however, you should
consider three issues:

1. If no data type is specified, variables are by default created as floats (see sec-
tion 5.7). These variables often take up more storage space than is necessary. The
command compress optimizes all variables with regard to their storage space, with
no loss of information. You should therefore always use compress before saving.

2. Working with a dataset is often easier if the variables are in a certain order. The
commands order and aorder can be used to order the variables in the dataset.

3. Like variables and values, the dataset can also be given a label. The corresponding
command is label data. The data label is shown in the output of describe on
the upper right. In data1.dta, for example, it is “SOEP 2009 (Kohler/Kreuter)”.

So far, we have focused on the different ways of reading data from other formats into
Stata. At times, however, you will need to read a Stata dataset into another program.
Of course, you can do this by using the software packages described in section 11.2.1.
Stata also has export filters for Excel (export excel) and SAS XPORT Transport format
files (export sasxport). However, because practically all statistical packages can read
ASCII files, it is just as easy to save your Stata data to an ASCII file.

In Stata, you can save ASCII files in spreadsheet format and in free format. To save
in spreadsheet format, you can use outsheet; to save in free or fixed format, you can
use outfile. Both commands basically work the same way: after the command, you
can specify a variable list followed by the code word using and the filename.

For both commands, the contents of string variables are written between quotes. If
you do not want to use quotes, specify the noquote option. Important: Variables with
value labels are saved as string variables unless you use the nolabel option to prevent
this.
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11.6 Handling large datasets

Stata always loads the entire dataset into the computer’s working memory. On modern
computers, this should not provide any problems, and Stata is quite good in managing
working memory. However, if you find yourself faced with the error message “no room
to add more variables”, you should know a bit about working memory and the Stata
commands memory and query memory. The first will indicate the current memory us-
age and the allocated memory. The second will provide ways to change the allocated
memory.

11.6.1 Rules for handling the working memory

The working memory is part of the hardware of your computer. It consists of two parts,
the physical and the virtual working memory. The physical working memory consists of
special chips (RAM), which quickly remember and retrieve pieces of information. The
virtual working memory is a file on the hard disk (a swap file), which in principle works
like physical memory but much more slowly.

Stata loads its data into the working memory. Whether the data then end up in
physical memory or the swap file is determined by the operating system. If the data
end up in physical memory, the processor can access them quickly; if they end up in the
swap file, it takes longer. You can even hear the access to the swap file because it will
involve a lot of reading and writing on the hard disk.

For Stata to work efficiently, the datasets should be kept in physical memory if
possible. Generally, the swap file is used only when the physical memory is full. The
memory does not, however, contain only Stata data. The operating system needs part
of the memory, and every program that is running uses memory. So, to prevent the first
problem, close all applications that you do not really need.

Programs likely to use a lot of memory include Internet browsers and various office
packages.

Closing applications, unfortunately, does not automatically eliminate the error mes-
sage “no room to add more variables”. This message appears if the working memory is
too small to store another variable. Many Stata procedures create temporary variables,
so that error message may appear even when you are not trying to create or load any
new variables.

You can find out how much working memory you have from

. query memory

See help memory for more information on how Stata uses memory and on settings
that you can tweak on your system.
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11.6.2 Using oversized datasets

Ideally, the amount of working memory reserved would be large enough to easily fit the
dataset and small enough to prevent the use of the swap file. For some datasets, it is
impossible to comply with this rule. This is the case for datasets that are larger than
the RAM. If you often work with such datasets, we have only one piece of advice: buy
more RAM. If this is an exceptional situation, we suggest the following:

• Do you need all variables in the dataset? If not, load only the variables you need:

. use persnr hhnr income emp using data1, clear

• Do you need all observations in the dataset? If not, import only the observations
you need:

. use data1 if state <= 9, clear

• Does your dataset take up more storage space than necessary? Try reading in
your dataset a little at a time and optimizing it. To do so, you first import only
specific observations or variables, optimize the storage space used by this partial
dataset with compress, and save it under a new name. Repeat this procedure
for the remaining variables or observations and join the different partial datasets
using merge or append (section 11.4).16

• Does your dataset contain many identical observations? You should transform the
dataset into a frequency-weighted dataset (page 66).

11.7 Exercises

• Obesity

1. Point your browser to the interactive database on European Quality of Life
of the European Foundation for the Improvement of Working and Living
Conditions17. On this webpage, find the tables for the percentage of people
who are very overweight. Create a Stata dataset holding this table.

2. Merge this file with the information on the share of people who have strong
underweight from the same website. Save this file for later use.

3. Download data from the National Health and Nutrition Examination Study
(NHANES) using the following command:

. webuse nhanes2, clear

16. If you do not know beforehand which variables or how many observations your dataset contains, see
the dataset with describe using data1.dta. You can use the describe command even without
loading the data into Stata’s working memory. The only condition is that you add using to the
command.

17. http://www.eurofound.europa.eu/areas/qualityoflife/eurlife/index.php
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4. By using the definition of the European Foundation for the Improvement of
Working and Living Conditions (ignoring the differences in the age of the
observations), produce an aggregated dataset for the share of people who
have strong overweight and strong underweight by region.

5. Produce an integrated dataset of the American figures and European figures
from 2005.

• Income

1. Merge the files ap and apequiv of the subdirectory kksoep of the file package
of this book.

2. Produce a dataset holding the “HH Post-Government Income” of all the
GSOEP equivalence files (kksoep/*pequiv). Use only those respondents that
have records in each of the data files (this is called balanced panel design).

3. Produce the same dataset as above, but this time use those respondents for
whom there are records in at least 10 data files.

4. Merge the files ahbrutto and ap. Explore whether there is a difference when
you reverse the order in which you merge the two data files.

5. Create a household file out of ap, that is, a data file where each household is
one observational unit (row). Add ahbrutto to this file.



12 Do-files for advanced users and
user-written programs

When working on a substantial data analysis, you will often want to reuse a previous
command. For example, you might want to repeat your analysis or replicate it with
different data, or your dataset might contain a series of similar variables that should be
treated in the same way. Perhaps during your analysis, you are recalculating certain
measured values or creating certain graphs for which there are no existing commands in
Stata. In all of these situations, you can save work by learning the programming tools
that we will introduce in this chapter.

We will distinguish among four programming tools: macros, do-files, programs, and
ado-files. We will cover these in detail in section 12.2. In section 12.3, we will show you
how you can use these tools to create your own Stata commands. However, before we
start, we will give two examples of possible ways to use these tools.

12.1 Two examples of usage

Example 1

Imagine that you are working with one of our example datasets, the panel dataset
progex.dta. The dataset contains the life satisfaction of 506 interviewees who partic-
ipated in all survey waves of the German Socio-Economic Panel (GSOEP). The dataset
is organized so that answers from every survey wave are in a different variable. You can
view the structure of the dataset through the following commands:1

. use progex

. describe

. list in 1

The variable for the respondent’s life satisfaction appears 26 times in this file. You
will find the data from 1984 in ap6801, those from 1985 in bp9301, those from 1986
in cp9601, and so on (see section 11.4.1 for an explanation of the structure of variable
names in the GSOEP).

1. Make sure that your working directory is c:\data\kk3. More information on this can be found on
page 3.

437
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Imagine that you want to generate new variables, which differ between respondents
with a life satisfaction below and above the yearly average life satisfaction. You would
have to enter commands like the following for each year:

. label define lsat .a "No answer" 0 "below avarage" 1 "above avarage"

. summarize ap6801 if ap6801 > -1

. generate lsat1984:lsat = ap6801 > r(mean) if ap6801 > -1

. replace lsat1984 = .a if ap6801 == -1

. label variable lsat1984 "Life satisfaction above average (1984)"

Repeat these commands (except the first) for the answers from 1985, 1986, and so
on. After 104 commands, you will have generated and labeled your variables. Naturally,
you will not have created all of these commands interactively, but you will have entered
the above block into a do-file. Once you have done this, you can simply copy the entire
block 26 times and change the years in the variable names. Nevertheless, this still
requires a lot of work and is comparatively error prone.

What would happen if you wanted to use the median as the differentiation point
instead of average and if you wanted to put the missing category −1 into a category 3
for “other”? Or what if you wanted to separate those responses with a life satisfaction
of 0 and 10, respectively?

You can probably guess what we are driving at. Overall, it seems slightly unwieldy
to have a do-file that repeats only one set of commands. One solution for this problem
can be found in the do-file crlsat.do, which you already downloaded. In this file, we
used a foreach-loop (see section 3.2.2) together with more tricks that we will discuss
in this chapter.

Example 2

Suppose that when carrying out logistic regressions, you would rather specify Aldrich
and Nelson’s pseudo-R2 (Aldrich and Nelson 1984, 57) than McFadden’s, which is the
one calculated by Stata (McFadden 1973). To do this, you can calculate the value with
the display command after a logistic regression:

. generate satisfied1984 = ap6801==10

. logit satisfied1984 ybirth

. display "p2 = " e(chi2)/(e(chi2) + e(N))

However, instead of writing the equation each time, you might write a small ado-file
to accomplish this task. If you save the ado-file on your hard drive, in the future you can
enter the name of the ado-file after the logistic regression to get Aldrich and Nelson’s
pseudo-R2. Our version of this ado-file can be installed by typing2

. net install p2, from(http://www.stata-press.com/data/kk3/)

2. Notes on installing ado-files can be found in chapter 13.
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Now please load our data1.dta.

. use data1, clear

12.2 Four programming tools

Here we discuss several features of Stata that you will find yourself using repeatedly.
We begin with an introduction to local macros, which allow you to store results, strings,
and other items. We then show you how to write your own commands and parse syntax.
We end with discussions of do-files and ado-files.

12.2.1 Local macros

We have already dealt with local macros in chapter 4 and covered the long-term storage
of internal results in various parts of the book. Here we want to introduce local macros
as a more general concept.

A local macro contains strings of characters. When you define a local macro, a name
is given to these characters. Once you have defined it, you can enter the name of the
macro instead of the characters.

You can define a local macro with the command local. Let us use this command
to define the local macro a:

. local a income yedu ybirth

This command assigns the string of characters income yedu ybirth to the macro
name a.

If you wish to use the content of local macro a, you have to inform Stata that “a”
is the name of a local macro and not the name of a variable. To do this, you place
a single opening quotation mark (‘) before the name of the local macro and a single
closing quotation mark (’) after it. On many American keyboards, the opening quote
is found toward the top left (near the Esc key), whereas the closing quote is found
toward the right, near the Enter key. On European keyboards, the position of both
characters changes substantially from country to country. Often the opening quote is
used to produce the French accent grave, which forces you to press the space key before
the sign appears on the screen.
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Whenever Stata comes across a local macro, the macro is immediately replaced by
its contents. Whenever you have to type income yedu ybirth, you can instead simply
type the macro name, for example,

. summarize `a´

Variable Obs Mean Std. Dev. Min Max

income 4779 20540.6 37422.49 0 897756
yedu 5039 11.80419 2.676028 8.7 18

ybirth 5411 1959.493 18.12642 1909 1992

With this command, Stata sees summarize income yedu ybirth once the macro has
been expanded. If it does not, then you have probably used the wrong characters for
identifying the local macro. Make sure that you have used the correct quotation marks
around the macro name a.

Local macros enable you to save a lot of typing. However, remember three key points
if you are using local macros for this purpose:

• The name of a local macro must be no more than 31 characters long.

• A local macro can contain up to 165,200 characters. This limit is for Stata/IC. For
Small Stata, the limit is 8,681. For Stata/MP and Stata/SE, the limit is 1,081,511
characters.

• Local macros apply only within the environment in which they are defined. If you
define a local macro in a do-file, the macro is accessible only in that do-file. If the
do-file has finished, the local macro is no longer defined. If you interactively define
a local macro, Stata will recognize it as long as you are working interactively. As
soon as you start a do-file, you cannot use the interactively defined macro. You
can use the interactively defined macro again only once the do-file has finished
and you have begun working interactively again. One advantage of this is that
you can use the same macro names in different contexts without having to worry
about mixing them up.

Calculating with local macros

Besides using local macros to save on typing, you use them to carry out calculations.
There are two options, which we show in this example:

. local m1 2+2

. local m2 = 2+2
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The commands differ by the use of the equal sign. Both commands work and ap-
parently lead to the same result:

. display `m1´
4

. display `m2´
4

However, there is one difference, which you will see if you embed the macro name
in quotation marks. With quotation marks, display displays text, whereas without
quotation marks, display shows the value of an expression (section 3.1.6). For this
reason, the results above show the evaluation of the expression saved in the local macro.
In both instances, the result was 4. But if you display the contents of the local macros as
text, then you can see that the first macro contains the expression, whereas the second
contains the result.

. display "`m1´"
2+2

. display "`m2´"
4

Note a crucial difference when multiplying

. display 2*`m1´
6

because 2 × 2 + 2 = 6 and

. display 2*`m2´
8

because 2 × 4 = 8.

Combining local macros

You can combine several local macros. Here are a few examples. Type these commands
to get some practice and understanding of local macros. However, before typing these
command lines, remember to check that your working directory (page 3) contains our
do-files and datasets:

. local a dir *.

. local b dta

. local c do

. `a´`b´

. `a´`c´

. local b `a´`b´

. display "`b´"

. `b´
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Changing local macros

Imagine that you wanted to add the number 1 to an existing macro, in this case, i,
which contains the number 5. The command is as follows:

. local i 5

. local i = `i´ + 1

In the second command, the macro i on the right side of the equation must be
embedded in the characters ‘ and ’, whereas the macro i on the left side must not.
The reason is that ‘i’ is replaced by the number 5; the command is therefore converted
into local i = 5 + 1. If you had enclosed the i on the left side in quotation marks,
the command would have become local 5 = 5+1. This, in fact, would have created a
new local macro with the name “5”.

Besides this minor glitch, it is not difficult to modify local macros. Here are some
examples:

. local i 1

. local i = `i´ + 10

. display `i´
11

. local i = `i´ + `i´

. display `i´
22

. local i "i is `i´"

. display "`i´"
i is 22

You can redefine a local macro whenever you want with the contents of an expression,
a string, or an extended macro function (see section 12.3.8). Two commonly used macro-
extension operators add or subtract the number 1 from a macro, either immediately
before Stata expands the macro or immediately thereafter. Consider, for example,

. local i 1

. display `i++´
1

. display `i´
2

Here we first define the local macro i. Afterward, we display i with an extension
operator (++), which means that the macro is expanded, and then 1 is added to the
macro; that is, the content of the macro is changed to 2. If you put the extension
operator in front of the macro name, 1 is added to the macro before the macro is
expanded. The same applies to the extension operator -- for subtracting 1:
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. display `++i´
3

. display `i--´
3

. display `--i´
1

12.2.2 Do-files

Say that you want your computer to display the words “hello, world”. To achieve this,
you can type the following command:

. display "hello, world"
hello, world

You would have to repeatedly type this command every time you wanted to see
“hello, world” displayed. Admittedly, this is not too much of a problem, because the
command is not very long. Nevertheless, the command could be longer, so you might
want to know how to save yourself some work.

Enter the following do-file and save it under the name hello.do in your working
directory. As always, remember to write only the Stata commands. The solid line with
the filename and the line number indicate that the commands are placed into a file:

begin: hello.do
1: display "hello, again"
2: exit

end: hello.do

Once you have done this, you can execute hello.do by typing

. do hello

We get the same result that we would get by entering display "hello, world",
but now we just have to type do hello to see the message again. Of course, a do-file
will typically have many more lines of code.

12.2.3 Programs

Besides do-files, the command program offers a second option for accessing many com-
mands at the same time. The way program works can be better illustrated through
an example. Please type the commands below. The first line begins the definition of
a program named hello; you may use any other name that it is not longer than 31
characters. When you are finished with the first line and press the Enter key, you will
see that Stata displays 1. at the beginning of the next line. This is Stata’s way of
prompting you to type the first command of the program. Please type the command
without typing the number.
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. program hello
1. display "Hello, world"
2. end

When you confirm this entry by pressing Enter, the prompt for the second command
that the program should carry out appears on the screen. Here we want to end the
program, so we type end in the Command window. This will now return you to the
normal prompt.

Now that the program is defined, you can type hello in the Command window:

. hello
Hello, world

You entered hello, and Stata replied with “Hello, world”.

The program command defines programs. However, in contrast to do-files, these
programs are stored in the computer’s memory and not in a file on the computer’s hard
disk. If you type some word into the Stata Command window, Stata will look in the
memory (see section 11.6) for something called the same as the word you just entered
into the command line. Therefore, if you enter hello in the window, Stata will search
the memory for a program called hello and will find the hello program you previously
saved there with the program command. The Stata commands between program and
end are then carried out.

In many respects, these programs are similar to the do-files you have already seen.
However, there are some differences:

• Do-files are saved in a file on the computer’s hard drive, whereas programs are
stored in memory.

• Do-files are not deleted when Stata is closed or the computer is shut down. Pro-
grams are lost when Stata is closed.

• A do-file is accessed by typing do filename, whereas a program is accessed by
typing the program name without any command in front.

• Because Stata searches for programs in memory, programs must be loaded before
they can be accessed. Do-files must be saved to the hard drive.

• Do-files display the results of Stata commands that have been carried out, as well
as the commands themselves. Programs only display the results.

The most important difference between do-files and programs is that do-files remain
available for long-term access. Programs, on the other hand, are available only during
a Stata session. In the following section, we will therefore concern ourselves with the
options for storing programs over a long period. Before we do this, we need to look at
several typical problems that may arise when saving and accessing programs.
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The problem of redefinition

Imagine that you want your computer to display “Hi, back” instead of “Hello, world”
when you type hello. So you try reentering the program:

. program hello
hello already defined
r(110);

Stata knows that a program in memory is already named “hello” and does not allow
you to overwrite it. First, you must delete the old version from the RAM before you can
create the new version:

. program drop hello

. program hello
1. display "Hi, back"
2. end

. hello
Hi, back

The problem of naming

Imagine that you wanted the program to be called q instead of hello:

. program q

. display "Hello, world"

. end

. q

Surprisingly, this displays the settings of various Stata parameters. The reason is
that the letter q is a shortcut for the Stata command query, which is a “built-in” Stata
command. Stata searches for programs only when it has not found a built-in Stata
command with the specified name. Thus you should never define a program with the
same name as a built-in command.

To ascertain whether a command with a given name already exists, enter which

commandname. If Stata replies with “Command commandname not found as either
built-in or ado-file”, you may use the name for your program.

The problem of error checking

Stata checks the syntax of a program only when it has been executed:

. program hello2
1. displai "Hello, world"
2. end
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Here displai was entered instead of display, so Stata will detect an error when
executing the program:

. hello2
unrecognized command: displai
r(199);

Because the individual commands are not repeated on screen as they are in do-files,
it is often hard to find an incorrectly entered command in lengthy programs. By using
the command set trace on, you can instruct Stata to display a program’s commands.
This enables you to follow the program command by command while it is being executed
and thus find the incorrect command. Lines that are to be executed begin with a hyphen.
If a line in the program contains a macro, another line beginning with an equal sign
shows the line with expanded macros. Unfortunately, the trace creates a large volume
of output when it is dealing with lengthy programs. So do not forget to switch off the
trace once you have found the error in a program: set trace off. See [P] trace or
help trace for more information.

12.2.4 Programs in do-files and ado-files

Earlier we interactively stored a program by entering the respective commands in the
Command window. One of the disadvantages of this process is that the stored programs
are lost when the Stata session ends (at the latest). Another disadvantage is that you
are unlikely to enter a lengthy program without typos, which will become apparent only
when the program is executed. To correct the typo, you will have to reenter the entire
program. If you want to store a program for a long time, then you have to enter the
definition of the program in a do-file.

To help you learn how to define programs in do-files, you should rewrite the file
hello.do, which you created on page 443, as follows:

begin: hello.do
1: program hello
2: display "hello, again"
3: end
4: exit

end: hello.do

This do-file contains a new version of the hello program from the previous section.
The difference is that our program should now display “hello, again”. More importantly,
the definition of the program should now be written in a do-file. We have slightly
indented the list of commands between program and end. This helps us to find the
beginning and end of the program definition, but does not affect Stata in any way. Now
that the program definition is written into the do-file, we do not have to rewrite the
definition of the program every time we close Stata; executing the do-file is sufficient.
Let us try it. Please save the do-file and execute it. If you have followed all our steps
in section 12.2.3, then you should receive an error message:
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. do hello

. program hello
hello already defined
r(110);

The reason for the error message is that Stata recognizes the names of the programs
already loaded in memory and will not allow them to be overwritten. Because we have
already interactively defined hello, it is currently being stored in memory. Therefore,
you must delete this older version before you can create the new version. This is best
done directly in the do-file through capture program drop hello. By using program

drop hello, the hello program is deleted from memory; capture ensures that no
error messages will follow if there is no such program (also see section 2.2.3). Change
hello.do to

begin: hello.do
1: capture program drop hello
2: program hello
3: display "hello, again"
4: end
5: exit

end: hello.do

Save these changes and try it again:

. do hello

The program hello has not been executed, because it has been stored in memory
only through the commands in the do-file. However, we can now execute the program
interactively:

. hello
hello, again

We can also call the program directly in the do-file as follows:

begin: hello.do
1: capture program drop hello
2: program hello
3: display "hello, again"
4: end
5: hello // <- Here we call the execution of the program
6: exit

end: hello.do

Here the program is first defined and then executed. Give it a try:

. do hello

A further option for saving programs is offered by ado-files, which are also known
as “ados”. How ados work becomes clearer if we go back one step. First, delete the
program hello from memory:

. program drop hello
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Then reload hello.do in your Editor. Remove the commands in hello.do related
to deleting and calling up the program. The file hello.do should now look like this:

begin: hello.do
1: program hello
2: display "hello, again"
3: end
4: exit

end: hello.do

Once you have saved it, the do-file can be executed with

. run hello

The command run is the same as the do command, the only difference being that
after you enter run, the individual command lines do not appear on the screen. If you
enter run hello, hello.do is quietly executed while the program hello is loaded in
memory. After this, you can interactively execute the program:

. hello
hello, again

Now to the ado-files: If we save a do-file with the extension .ado instead of .do, the
above-mentioned steps are both automatically carried out. Entering the name of the
ado-file will suffice. Go ahead and try it. Save the last version of your do-file with the
extension .ado under the name hello.ado and then enter the following:

. program drop hello

. hello
hello, again

It works. To understand why, let us take a closer look at the steps that take place
after hello. In general, after a command has been entered, Stata takes the following
steps:

1. Stata checks if hello is an internal command. If so, then Stata will have executed
it. Because hello is not an internal command, it moves on to the next step.

2. Stata checks if hello is stored in memory. If so, the program would be executed.
Because we deleted the hello program from memory shortly before entering the
command hello, Stata would not find a program called hello in memory and
would move to the next step.

3. Stata searches for the file hello.ado. Here Stata searches in various places on the
hard drive, including the working directory. When Stata finds the file hello.ado,
it essentially gives itself the command run hello.ado and subsequently checks if
the program hello is now in memory. If so, as in this example, then the program
is executed. If not, then Stata will display the error message “unrecognized com-
mand”. If the ado-file contains subprograms, Stata will also load any subprograms
of hello.ado and make them available solely to hello.
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Because of the second step, programs defined by ado-files must be deleted from mem-
ory before any potential changes to the program take effect. If you rewrite hello.ado

as

begin: hello.ado
1: program hello
2: display "hi, back again"
3: end
4: exit

end: hello.ado

and then type hello, at first nothing will have changed:

. hello
hello, again

You must first delete the old program from memory before the ado-file can be reim-
ported. To do so, you can use the program drop command or the discard command.
discard forces Stata to drop all automatically loaded programs from memory and reload
them from disk the next time they are called; see help discard for details.

. discard

. hello
hi, back again

Let us summarize what we have learned so far: if we enter the command hello at
the command prompt, Stata will find the program hello in memory and then execute
it, or Stata will not find it. In the latter case, Stata searches for hello.ado, loads the
program in memory, and executes it. The command hello therefore works just like a
normal Stata command. In fact, the command hello is a normal Stata command: an
“external” Stata command.

Stata generally differentiates between external and internal commands. We have
already mentioned the idea of internal commands a couple of times, so we will now
define them in more detail. Internal commands are commands programmed in the
C programming language and compiled for various hardware platforms and operating
systems. External commands, on the other hand, are the ado-files that we have just
introduced you to: programs that are saved in files with the extension .ado. Nearly all
Stata commands are ado-files. If you enter the command adopath, you will receive a
list of directories that Stata searches for ado-files. You can view the contents of ado-files
with any editor.

12.3 User-written Stata commands

As we said at the beginning, ado-files comprise nothing more than the definition of a
program. If you enter the name of an ado-file in Stata, the program is stored in memory
and then executed. In effect, an ado-file behaves just like every other Stata command;
or, as we stated above, the ado-file is a normal Stata command.
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To execute an ado-file, you must save it on the hard drive where Stata can find
it, such as the personal ado-directory. The command adopath will indicate where the
personal ado-directory can be found on your computer. In Windows, the personal ado-
directory will generally be found at c:\ado\personal (see section 13.3.3).

Here, with the help of an example, we will briefly demonstrate how ados are pro-
grammed. We will not cover all the programming options available to you. Instead
consider this section as a sort of ladder that allows you to climb a fruit tree. To pick
the best fruit, you will have to choose the best branches by yourself. All the Stata
commands and the tools described in the previous section are available for your use.
The book An Introduction to Stata Programming by Baum (2009) and the Stata In-
ternet courses NetCourse 151 and NetCourse 152 (section 13.1) will give you a detailed
introduction to programming in Stata. Before you take the time to program your own
Stata command, you should thoroughly check to see whether someone has already done
the work. The Statalist archive and the sources of information listed in section 13.3.3
should help you do this. Nevertheless, it is certainly worthwhile learning a little bit
about Stata programming. If you are using ados written by other users, it is especially
useful to be able to “read” what is actually happening in Stata code. This is also true
for the commands supplied with the program.

In what follows, we will show you step by step how to program a Stata command for
superimposed kernel density estimates. We have discussed such graphs in section 7.3.3,
and an example is printed on page 195. In modern versions of Stata, these graphs can be
relatively easily produced by overlaying several layers of the twoway plottype kdensity.
For didactic reasons, we will use the twoway plottype connected, which will allow us
to talk about some important programming tools later.

If you look at the do-file denscomp.do below, you will see that twoway connected

is used to show the results of the variables fmen and fwomen, which are created by the
stand-alone version of kdensity in lines 5 and 6. In the two kdensity commands, the
option at() is being used. The at() option specifies the values of a variable at which
the densities should be estimated. Here they are taken from the variable xhelp, which
was generated in lines 3 and 4. Those two commands generate a variable that holds the
values of the log income variable at 50 equally spaced intervals between the minimum
and the maximum of log income (see section 7.3.1).

begin: denscomp.do
1: use data1, clear
2: generate linc = log(income)
3: summarize linc, meanonly
4: generate xhelp = autocode(linc,50,r(min),r(max))
5: kdensity linc if sex == 1, gen(fmen) at(xhelp) nodraw
6: kdensity linc if sex == 2, gen(fwomen) at(xhelp) nodraw
7: graph twoway connected fmen fwomen xhelp, ///
8: title(Income by Gender) ytitle(Density) xtitle(Log (Income)) ///
9: legend(order(1 "Men" 2 "Women")) sort
10: exit

end: denscomp.do
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If you run this do-file, you will get a graph that connects the density values estimated
at the 50 equally spaced intervals of log income for men and women of data1.dta.
Starting from such a do-file, one might now try to generalize the commands so that
they can be run with any variable from any dataset.

. run denscomp
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12.3.1 Sketch of the syntax

The first step in programming a command is sketching the syntax, which includes choos-
ing a name for the program and which elements of the Stata language (section 3.1) should
be allowed. Regarding the name, you should use a name that does not exist already; the
command search, all (page 475) is the most efficient way to find out whether a spe-
cific name already exists. Moreover, proper English words, such as analyze, table, or
predict, and single-letter names should be avoided. Leaving this aside, you can create
arbitrary names using combinations of lowercase letters, numbers, and the underscore.
Our program is designed to compare densities; thus we choose the name denscomp and
propose the following sketch of the syntax:

denscomp varname
[
if
] [

in
]
, by(varname)

[
at(#) twoway options

]

Our command requires the specification of a variable name and the option by(varname).
To re-create our example above, we would specify varname as linc, the by-option as
by(sex), and the option at() with 50. The command allows if and in qualifiers and
all options allowed with graph twoway.
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12.3.2 Create a first ado-file

The generalization of the do-file starts with a first version of an ado-file. This first version
is almost identical to the above denscomp.do. In fact, you can just save denscomp.do

with the name denscomp.ado. Once you have done this, you can make the following
changes:

1. Delete the use command and the command that generates the variables linc.

2. Type the command program denscomp in the first line of the file.

3. Type the command version 12 in the second line of the file. You already know
this command from the chapter on do-files. It indicates in which Stata version
this program has been written. This guarantees that your program will work error
free in later Stata versions.

4. Type the command end to indicate the end of the program in the next-to-last line
of the file. The command exit ends the ado-file, not the program.

The preliminary version of denscomp.ado should now look like this:

begin: denscomp.ado
1: program denscomp
2: version 12
3: summarize linc, meanonly
4: generate xhelp = autocode(linc,50,r(min),r(max))
5: kdensity linc if sex == 1, generate(fmen) at(xhelp) nodraw
6: kdensity linc if sex == 2, generate(fwomen) at(xhelp) nodraw
7: graph twoway connected fmen fwomen xhelp, ///
8: title(Income by Sex) ytitle(Density) xtitle(Log (Income)) ///
9: legend(order(1 "Men" 2 "Women")) sort
10: end
11: exit

end: denscomp.ado

You should check to see that everything still works. Checks such as these should be
made after every major step. Save this ado-file in your current working directory and
then type denscomp.

If you run denscomp, you will now receive an error message:

. denscomp
xhelp already defined
r(110);

The reason is that the variables xhelp, fmen, and fwomen created by
denscomp.do remain in the dataset. denscomp.ado tries to create them; however,
because they already exist, you receive an error message. Therefore, you have to first
delete xhelp, fmen, and fwomen before you run denscomp.ado:

. drop xhelp fmen fwomen

. denscomp
(2001 missing values generated)
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If you did not run denscomp.do above, you will probably receive this error message:

. denscomp
variable linc not found
r(111);

If you receive instead the error message “no variables defined”, then you have not
loaded the dataset. In both cases, load data1.dta and create the linc variable (see
section 7.3.3):

. use data1, clear

. generate linc = log(inc)

You can try running denscomp again after these steps:

. denscomp

The graph should now be displayed on your screen. We created the graph with one
command; however, denscomp will re-create the graph only with the same variables and
options.

12.3.3 Parsing variable lists

The next step in generalizing denscomp.ado is allowing the graph to be displayed for
arbitrary variables.

You can achieve this with the syntax command. The syntax command is used to
define the structure with which a user is to call our program. Here we assume that the
program is accessed through the name of a command and a variable name. This setup
is parsed to the program in line 3 of the following program snippet:

begin: denscomp.ado
1: program denscomp
2: version 12
3: syntax varname(numeric)
4: summarize `varlist´, meanonly
5: generate xhelp = autocode(`varlist´,50,r(min),r(max))
6: kdensity `varlist´ if sex == 1, gen(fmen) at(xhelp) nodraw
7: kdensity `varlist´ if sex == 2, gen(fwomen) at(xhelp) nodraw
8: graph twoway connected fmen fwomen xhelp ///

end: denscomp.ado

We will print only those parts of the ado-file that we talk about. However, we have
printed the final version of denscomp.ado on page 465.

The syntax command has two functions: verifying input and parsing program ar-
guments. syntax checks whether the user’s input makes sense and either produces an
error message or parses the input so that the program can use it.

Let us clarify. Because we code syntax varname, Stata tries to interpret everything
written behind denscomp as a variable name. If denscomp is typed without a variable
name, Stata will issue an error message indicating that a variable name is required.
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Moreover, Stata will check whether the user gave one or more variable names. Because
we specified syntax varname, Stata will produce an error message if the user acciden-
tally specified more than one variable name. If we had decided to allow the user to
specify more than one variable name, we would have coded syntax varlist, with the
effect that the user could have specified a list of variable names. Finally, because we
specified syntax varname(numeric), Stata will check whether the variable input by
the user is a numeric variable or a string variable. If it is a string variable, Stata will
issue an error message and exit the program immediately.

The second function of syntax is to parse program arguments given by the user.
The syntax command in our example causes Stata to save the specified variable names
in the local macro varlist when the program is called. With this in mind, we can use
‘varlist’ in our program instead of the hard-coded variable name linc—see lines 4–7
of the program code.

We now call this program by typing denscomp linc. Go ahead and try it. You will
first have to save denscomp.ado and then delete the old version of the program from
memory with discard and delete the variables xhelp, fmen, and fwomen. Afterward,
your program should run free of errors.

. discard

. drop xhelp fmen fwomen

. denscomp linc

12.3.4 Parsing options

These changes have made the program more generalized. However, the distributions of
men and women are still being compared with each other. We should have the option of
using the graph to compare other subgroups. We would like to have an option we could
use to define the variable whose values will be compared. For example, this option could
be called by(varname). The question that remains is how to transfer these options to
the program.

For this, we again turn to the syntax command. As indicated above, by using
syntax, we are informing a program about the structure of the command. To enable
the option by(varname), we amend the syntax command as shown in line 3 below:

begin: denscomp.ado
"

3: syntax varname(numeric), by(varname)
4: summarize `varlist´, meanonly
5: generate xhelp = autocode(`varlist´,50,r(min),r(max))
6: kdensity `varlist´ if `by´ == 1, generate(fmen) at(xhelp) nodraw
7: kdensity `varlist´ if `by´ == 2, generate(fwomen) at(xhelp) nodraw

end: denscomp.ado

With these changes, the program denscomp now expects to be called with an option
after the name of a numeric variable. We add the option by placing a comma in the
syntax command. Because we did not place the list of options (we refer to a list of
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options even though currently only one option is allowed) in square brackets, we must
specify the option. If we had used syntax varname(numeric) [, by(varname)], the
option would not have been required. Square brackets in syntax commands work just
as described in the syntax diagram in the online help.

As it stands, we only allow one option: by(). Only one variable name is allowed
inside the parentheses of by(). There is no restriction on numeric variables; hence, in
this case, string variables are also allowed. As above, if we mistakenly type the name
of a variable into by() that does not exist in the dataset, syntax will display an error
message. Also syntax will place the variable name given in by() in the local macro
called by. You can see how we use this local macro in lines 4 and 5 of our program
snippet above.

You can apply the same logic for the at() option. In this option, we wish to specify
the number of values for which the densities are estimated; that is, the number used in
the second argument of the function autocode() in line 5 of the program. We type

begin: denscomp.ado
"

3: syntax varname(numeric), by(varname) [ at(integer 50) ]
4: summarize `varlist´, meanonly
5: generate xhelp = autocode(`varlist´,`at´,r(min),r(max))

end: denscomp.ado

We used the keyword integer in the at() option because we want to allow the
user to specify integer values. Because at(integer 50) is mentioned between square
brackets, the option is not required. The number 50 is used whenever the user does not
specify the option.

To try out these changes, save your file and type the following commands in Stata.
You need to use the discard command to remove the current ado-file from memory.
Only then will the changes become effective.

. discard

. drop xhelp fmen fwomen

. denscomp linc, by(sex) at(20)

You should now see the familiar graph, but this time with only 20 marker symbols.
If not, carefully check your file for any errors. To determine which program line is faulty,
you can use the command set trace on, which was described on page 446. A further
help in locating errors is to display suspect program lines with display. To do so, you
must modify the program with lines 6 and 8:

begin: denscomp.ado
"

5: generate xhelp = autocode(`varlist´,`at´,r(min),r(max))
6: display "generate xhelp = autocode(`varlist´,`at´,r(min),r(max))"
7: kdensity `varlist´ if `by´ == 1, generate(fmen) at(xhelp) nodraw
8: display "kdensity `varlist´ if `by´ == 1, generate(fmen) at(xhelp) nodraw"

end: denscomp.ado
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With these lines, the program is called, and the output of display shows you the
command line after macro expansion. This often helps to find typos. Once the program
is error free, delete the display commands. During your search for errors, do not forget
to type the commands discard and drop xhelp fmen fwomen after every change made
to the ado-file.

12.3.5 Parsing if and in qualifiers

Before we refine our ado-file further, we would like to show you how to include if and
in qualifiers in the program. Once again, our starting point is syntax:

begin: denscomp.ado
"

3: syntax varname(numeric) [if] [in], by(varname) [ at(integer 50) ]
4: marksample touse
5: summarize `varlist´ if `touse´, meanonly
6: generate xhelp = autocode(`varlist´,`at´,r(min),r(max))
7: kdensity `varlist´ if `by´ == 1 & `touse´, gen(fmen) at(xhelp) nodraw
8: kdensity `varlist´ if `by´ == 2 & `touse´, gen(fwomen) at(xhelp) nodraw

end: denscomp.ado

Entering [if] and [in] lets you use if and in qualifiers. Because both of them
are in square brackets, neither element is required. Again syntax saves the qualifiers
that have been entered by the user in local macros—here, in if and in, respectively.
In doing so, syntax saves the whole expression, including the keywords if and in, in
the macro.

So far, we have enabled if and in qualifiers. Stata will not print an error message
when the user invokes denscomp with an if qualifier. Now we must make our program
exclude observations that do not satisfy those conditions. One solution is to use the keep
command to delete all the observations for which the preconditions are not applicable
and only execute the following commands for the remaining observations. A better
solution would be to use marksample (see line 4). marksample generates a temporary
variable; in our example, the name of this temporary variable is touse (short for: to
use).3 In this variable, all cases to be used are assigned the value 1, and all other cases
are assigned the value 0. marksample receives the information about which cases to use
from the if and in qualifiers.

If the temporary variable touse has been defined by marksample, this variable can
be used to restrict the statistical commands in the program to the observations marked
with 1. You see examples of how to achieve this in lines 5, 7, and 8 of the program snippet
above. Because touse is a temporary variable, it is placed between single quotation
marks just like a local macro. In fact, touse is a local macro containing the name of
the temporary variable. You do not need to specify if ‘touse’==1, because touse

contains only 0 and 1, which is Stata’s way to express false and true (see section 3.1.6).

3. We discuss temporary variables in section 12.3.9 in more detail. Like local macros, they are cursory
and available only in a given environment.
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12.3.6 Generating an unknown number of variables

Before we continue, let us contemplate our situation. Save your current ado-file and
type the following commands:

. discard

. drop xhelp fmen fwomen

. denscomp linc, by(emp)
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This time, we have used employment status as the variable in the option by(). In
principle, this should work.4 Nevertheless, something is not quite right here. The graph
shows only two density curves, even though we were expecting one for every type of
employment status, which would mean a total of four curves. According to the labeling,
the graph still shows the income of men and women instead of the income of individuals
with varying employment status.

Apparently, there is still some work to be done. We should start with the first
problem: why are only two density curves being displayed instead of four? The cause
lies in lines 7 and 8 of the program:

begin: denscomp.ado
"

7: kdensity `varlist´ if `by´ == 1 & `touse´, gen(fmen) at(xhelp) nodraw
8: kdensity `varlist´ if `by´ == 2 & `touse´, gen(fwomen) at(xhelp) nodraw

end: denscomp.ado

These lines contain the calculations for the density of the values 1 and 2 for the
variable given in by(). If we type the command with the option by(emp), the local
macro by is replaced by emp, and the densities for the first two values of employment
status are displayed. There are no commands for any further categories.

4. If your program still will not work despite a thorough check for errors, then you can fall back on our
file denscomp.txt. This contains the version of our program with which we generated the graph.
You can use it by simply replacing your ado-file with the program definition in denscomp.txt.
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The problem, however, is that the number of categories can vary with the variable
specified in by(). This in turn means that we do not know how often we want the
program to execute the kdensity command.

If we knew the number of categories, we could create a loop in our program that
would execute kdensity for every variable in by() and stop when there are no remaining
categories. Therefore, we must somehow find out how many categories the variable in
by() has. The easiest way to get this information is to use the command levelsof.

In general, levelsof is used to look into a specific variable and store the existing
distinct values of this variable in a local macro. The variable emp, for example, contains
values of 1–5, although the value 3 is not used. The following command will store these
values in the local macro K:

. levelsof emp, local(K)

. display "`K´"

Now let us see how you can use this in our program. You find the levelsof command
in line 7 of the program excerpt below. We put quietly in front of the command.
quietly can be used in front of any Stata command to suppress all of its output.

begin: denscomp.ado
"

7: quietly levelsof `by´ if `touse´, local(K)
8: foreach k of local K {
9: kdensity `varlist´ if `by´==`k´ & `touse´, gen(fx`k´) at(xhelp) nodraw

end: denscomp.ado

As you can see in line 7, we used levelsof to store the distinct values of the by()

variable in the local macro K. Then we set up a foreach loop over all elements of the
local macro K. Within the loop, kdensity is executed for each employment category. We
changed the option gen() of the kdensity command in line 7. Instead of generating
hard-coded variable names fmen and fwomen, we generate variables with names fx1,
fx2, etc., according to the element name of the loop. That is, if we specify denscomp

with the option by(emp), we generate variables fx1, fx2, fx4, and fx5 because there
are no observations for which emp equals 3.

Next, because the number of fx variables is no longer fixed, we have to adapt the
graph command accordingly. Thus we create a list with the names of the generated fx

variables within the loop and then save it in a local macro called yvars (line 10):

begin: denscomp.ado
"

8: foreach k of local K {
9: kdensity `varlist´ if `by´==`k´ & `touse´, gen(fx`k´) at(xhelp) nodraw
10: local yvars `yvars´ fx`k´
11: }

end: denscomp.ado
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We can now include the local macro yvars in the graph command instead of fmen
and fwomen:

begin: denscomp.ado
"

12: graph twoway connected `yvars´ xhelp, ///
13: title(Income by Sex) ytitle(Density) xtitle(Log (Income)) ///
14: legend(order(1 "Men" 2 "Women")) sort

end: denscomp.ado

Now it is time for another search for any errors:

. discard

. drop xhelp fmen fwomen

. denscomp linc, by(emp)

It looks a lot better. Nevertheless, it is far from perfect. In particular, the labeling
of the graph remains a problem. We still have a bit of work ahead of us.

12.3.7 Default values

The first question is how to label the graph. We suggest that you make the default title
“variable by by-variable”. “Density” would be suitable as the title of the y axis, and
the title of the x axis should contain the variable name. The meaning of the data area
would be explained in the legend by the categories of the by-variable.

Let us start with the title of the graph. A simple way of achieving the desired result
is to change the graph command (line 13):

begin: denscomp.ado
"

12: graph twoway connected `yvars´ xhelp, ///
13: title(`varlist´ by `by´) ytitle(Density) xtitle(Log (Income)) ///
14: legend(order(1 "Men" 2 "Women")) sort

end: denscomp.ado

This, however, has the disadvantage of not being changeable by the user. To be
able to change the title when calling up the program, we first have to include the
corresponding option in the syntax statement at the beginning of the program:

begin: denscomp.ado
"

3: syntax varname(numeric) [if] [in], by(varname) ///
4: [ at(integer 50) TItle(string asis) ]

end: denscomp.ado

With line 4, we allow the user to specify an option called title(), where an arbi-
trary string can be specified, which is parsed inside the program asis; this means that
quotation marks are part of the macro contents. The user now can enter a title when
calling up the program. Because we do not want to be obliged to enter a title, we have
written the option in square brackets. The two capital letters indicate the minimum
abbreviation, so the user can specify ti() instead of title().
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As was the case before, the syntax command saves everything within the parentheses
in the local macro title. We can use this local macro in the title option of the graph

command further down:

begin: denscomp.ado
"

14: graph twoway connected `yvars´ xhelp, ///
15: title(`title´) ytitle(Density) xtitle(Log (Income)) ///
16: legend(order(1 "Men" 2 "Women")) sort

end: denscomp.ado

Now we no longer have a default title, so we will add one. Add line 13 to the
program:

begin: denscomp.ado
"

13: local title = cond(`"`title´"´ == `""´, `"`varlist´ by `by´"´, `"`title´"´)
14: graph twoway connected `yvars´ xhelp, ///
15: title(`title´) ytitle(Density) xtitle(Log (Income)) ///
16: legend(order(1 "Men" 2 "Women")) sort

end: denscomp.ado

Two things require our comments in line 13: the function cond(x,a,b) and the
compound quotes. We start with the former. The function cond() returns the second
argument, a, if the expression in the first argument, x, is true; otherwise it returns
the third argument (also see section 5.1.3). Consider the following simplified version
of the cond() function in line 13: cond("‘title’" == "", "‘varlist’ by ‘by’",

"‘title’"). Now think of a user who specified no title option. The first argument of
the condition would become "" == "". This condition is true, so the second argument is
returned: local title = "‘varlist’ by ‘by’". Hence, we will have a default title.
If the user specifies title(My title), the first argument becomes "My title" == "".
This condition is false. Here Stata returns the third argument (local title = "My

title"), which sets the title to the user-specified string.

Now for the compound quotes. Consider a user who includes title("My" "title")

when invoking denscomp. This user wants the word “My” as the first line of the title,
and “title” as the second. Again the first argument in the cond() function will be
false. However, the simplified version of line 11 will become local title = ""My"

"title"". The problem here is that Stata cannot distinguish the opening quotation in
front of “My” from a closing quotation mark. In fact, Stata cannot distinguish opening
and closing quotation marks at all. To differentiate between the beginning of a quotation
and the end of a quotation, we use compound quotes. To start a quotation, we use ‘"

(a single opening quotation, followed by a double quotation); to end a quotation, we use
"’ (a double quotation, followed by a single closing quotation). We recommend that
you always use compound quotes inside programs. They never cause problems, but are
often necessary.
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The same procedure may be used for the other characteristics of the graph, for
example, the title of the y and x axes:

begin: denscomp.ado
1: program denscomp
2: version 12
3: syntax varname(numeric) [if] [in], by(varname) ///
4: [ at(integer 50) TItle(string asis) ///
5: YTItle(string asis) XTItle(string asis) * ]
6: marksample touse
7: summarize `varlist´ if `touse´, meanonly
8: generate xhelp = autocode(`varlist´,`at´,r(min),r(max))
9: quietly levelsof `by´ if `touse´, local(K)
10: foreach k of local K {
11: kdensity `varlist´ if `by´==`k´ & `touse´, gen(fx`k´) at(xhelp) nodraw
12: local yvars `yvars´ fx`k´
13: }
14: local title = cond(`"`title´"´ == `""´, `"`varlist´ by `by´"´, `"`title´"´)
15: local ytitle = cond(`"`ytitle´"´ == `""´, `"Density"´, `"`ytitle´"´)
16: local xtitle = cond(`"`xtitle´"´ == `""´, `"`varname´"´, `"`xtitle´"´)
17: graph twoway connected `yvars´ xhelp, ///
18: title(`title´) ytitle(`ytitle´) xtitle(`xtitle´) sort `options´
19: end

end: denscomp.ado

In our graph command, we have not specified any other options, such as colors
or marker symbols. Therefore, apart from the explicitly defined defaults, the graph
resembles a standard Stata graph. At the same time, we want to be able to define
all the graph’s characteristics whenever we call the program. To do so, we have also
specified the wildcard element in the syntax command (line 5). The star (*) means
that the user can enter further options in addition to those explicitly allowed. These
options are saved by syntax in the local macro options and can be included in the
graph command as shown in line 18.

You should now try out these changes; type

. drop xhelp fx*

. discard

. denscomp linc, by(emp) ti(My Graph) xtitle(My X-Title) ytitle(My Y-Title)

12.3.8 Extended macro functions

Now all that is missing is an informative legend. This is a little tricky. By default, the
variable labels of the data being plotted are used as the text in the legend. We can
change this default setting by labeling the individual variables generated by kdensity

with the appropriate caption. Ideally, the legend should inform us of the category of
the variable in by(). We should therefore use the value label of the variable in by() as
the text for the legend.
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We can achieve this by using the extended macro function label. The general syntax
for extended macro functions is

local macroname: extended macro function

Using a colon instead of an equal sign informs Stata that an extended macro function
is to follow.

Here we add lines 10, 14, and 15 to the program, which concerns the foreach loop
calculating the various density estimations. Also we slightly changed the command for
displaying the graph (line 22).

begin: denscomp.ado
"

10: local i 1
11: foreach k of local K {
12: kdensity `varlist´ if `by´==`k´ & `touse´, gen(fx`k´) at(xhelp) nodraw
13: local yvars `yvars´ fx`k´
14: local label: label (`by´) `k´
15: local order `order´ `i++´ `"`label´"´
16: }
"

20: graph twoway connected `yvars´ xhelp, ///
21: title(`title´) ytitle(`ytitle´) xtitle(`xtitle´) ///
22: legend(order(`order´)) sort `options´

end: denscomp.ado

To customize the legend on a graph, we use the legend() option. In our sketch, we
specified legend(order(1 "Men" 2 "Women")), that is, a number and a label for each
category in the by-variable. To generalize this for an arbitrary number of levels, we let
the loop create the string inside the order() option.

Before the loop begins, the macros label and order are empty, and the macro i

is 1. During the first iteration of the loop, the macro label is filled with the value label
corresponding to the first level of the by() variable. The order macro is then set to 1

"text"), where text is the text contained in label. Thereby, the macro i is incremented
so that next time it will be equal to 2. In later iterations of the loop, the order macro
is modified by adding elements of the form (x "text"), where x is the level of the by()

variable and text is the value label corresponding to that level.

The local macro order can then easily be used for the definition of the legend in the
graph command (line 22).

With this change, the first raw version of the ado-file would be ready. To check the
situation so far, you should try the program again:

. discard

. drop xhelp fx*

. denscomp linc, by(sex)

. drop xhelp fx*

. denscomp linc, by(edu)
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Before you work through the next section, you should make sure your program will
run without errors, because locating errors will become more difficult in the next section.
Try as many combinations of graph options, if and in qualifiers, and variables as you
can.

12.3.9 Avoiding changes in the dataset

A program that generates variables is usually inconvenient. Users really do not enjoy
deleting the variables generated by the previous command every time they use it. There-
fore, an obvious solution would be to delete the newly generated variables at the end
of every program. This is not much better either, because it assumes that the program
will actually run until it finishes. If the user aborts the program or if it crashes and
displays an error message, the variables generated until then will remain in the dataset.

The solution is to use temporary variables. You already came across a temporary
variable when you were using marksample. Temporary variables are automatically re-
moved when a program exits and are defined in two steps:

1. Declaring the variables’ names

2. Generating the temporary variables

You declare temporary variables using the tempvar command, and you generate
them using generate. However, the variable names are enclosed in single quotation
marks, as is the case with local macros.

If, for example, you wanted to include the temporary variables x1 and x2 in a
program, you could code

. tempvar x1 x2

. generate `x1´ = 1

. generate `x2´ = `x1´/_n

In our program snippet below, we declared the temporary variables for xhelp in
front of the command that generates the variable (line 8). Because we do not know
from the beginning how many variables holding the density estimations are created,
these variables are declared as temporary variables inside the foreach loop (line 15).
Once the temporary variables are declared, you should include all names of variables
created by the program in ‘ and ’. Note the two single quotation marks around ‘fx‘k’’

(lines 16 and 17). The first ‘ indicates the end of the local macro k, whereas the second
’ indicates the end of the temporary variable. You also need to replace every instance
of fx‘k’ in the program with ‘fx‘k’’.
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begin: denscomp.ado
"

8: tempvar xhelp
9: summarize `varlist´ if `touse´, meanonly
10: generate `xhelp´ = autocode(`varlist´,`at´,r(min),r(max))
"

14: foreach k of local K {
15: tempvar fx`k´
16: kdensity `varlist´ if `by´==`k´ & `touse´, gen(`fx`k´´) at(`xhelp´) nodraw
17: local yvars `yvars´ `fx`k´´
18: local label: label (`by´) `k´
19: local order `order´ `i++´ `"`label´"´
20: }
"

26: graph twoway connected `yvars´ `xhelp´, ///
27: title(`title´) ytitle(`ytitle´) xtitle(`xtitle´) ///
28: legend(order(`order´)) sort `options´

end: denscomp.ado

After this step, a first beta version of the ado-file is ready, and figure 12.1 shows the
entire code. We have inserted some blank lines to make the code a bit more readable.
You may want to try the command with the following settings:

. discard

. denscomp linc, by(emp) ms(o..) mcolor(red green blue pink)
> lcolor(red green blue pink) ti("")
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begin: denscomp.ado
1: program denscomp
2: version 12
3: syntax varname(numeric) [if] [in], by(varname) ///
4: [ at(integer 50) TItle(string asis) ///
5: YTItle(string asis) XTItle(string asis) * ]
6: marksample touse
7:

8: tempvar xhelp
9: summarize `varlist´ if `touse´, meanonly
10: generate `xhelp´ = autocode(`varlist´,`at´,r(min),r(max))
11:

12: quietly levelsof `by´ if `touse´, local(K)
13: local i 1
14: foreach k of local K {
15: tempvar fx`k´
16: kdensity `varlist´ if `by´==`k´ & `touse´, gen(`fx`k´´) at(`xhelp´) nodraw
17: local yvars `yvars´ `fx`k´´
18: local label: label (`by´) `k´
19: local order `order´ `i++´ `"`label´"´
20: }
21:

22: local title = cond(`"`title´"´ == `""´, `"`varlist´ by `by´"´, `"`title´"´)
23: local ytitle = cond(`"`ytitle´"´ == `""´, `"Density"´, `"`ytitle´"´)
24: local xtitle = cond(`"`xtitle´"´ == `""´, `"`varname´"´, `"`xtitle´"´)
25:

26: graph twoway connected `yvars´ `xhelp´, ///
27: title(`title´) ytitle(`ytitle´) xtitle(`xtitle´) ///
28: legend(order(`order´)) sort `options´
29: end

end: denscomp.ado

Figure 12.1. Beta version of denscomp.ado

12.3.10 Help files

Once you are satisfied with your ado-file, you should write a help file. Help files are
straightforward ASCII files displayed on screen by Stata when one types

. help command

For Stata to find the help file for a command, the help file must have the same name
as the ado-file, albeit with the file extension .sthlp. Here the help file would be called
denscomp.sthlp.



466 Chapter 12 Do-files for advanced users and user-written programs

For your help file to have the same look and feel as common Stata help files, you can
use the Stata Markup and Control Language (SMCL). In Stata, all output is in SMCL

format, be it normal command output or output from invoking a help file. In SMCL, di-
rectives are used to affect how output appears. Say, for example, your denscomp.sthlp
file includes the following text:

begin: denscomp.sthlp
1: {smcl}
2: {* January 17, 2012 @ 17:36:12 UK}{...}
4: {cmd:help denscomp}
5: {hline}
6:

7: {title:Title}
7: {p 4 8 2} {hi:denscomp} {hline 2} Comparing density estimates in one graph
8:

9: {p 8 17 2}
10: {cmd:denscomp}
11: {varname}
12: {ifin}
13: {cmd:,} {cmd:by(}{it:varname}{cmd:)}
14: [{cmd:at(}{it:#}{cmd:)} {it:twoway_options}]
15:

16: {title:Description}
17:

18: {p 4 4 2}
19: {cmd:denscomp} uses {helpb kdensity} to estimate densities of {it:varname}
20: for categories of {cmd:by()}.
21:

22: {title:Options}
23:

24: {p 4 8 2}{cmd:by(}{it:varname}{cmd:)} is required. It is used to separate
25: density estimation for each category of {it:varname}.
26:

27: {p 4 8 2}{cmd:at(}{it:#}{cmd:)} is an integer that controls at how many
28: levels the densities are estimated.
29:

30: {p 4 8 2}{it:twoway_options} are any of the options documented in
31: {manhelpi twoway_options G-3}, excluding {cmd:by()}. These include options
32: for titling the graph (see {manhelpi title_options G-3})
33: and for saving the graph to disk (see {manhelpi saving_option G-3}).
34:

35: {title:Example}
36:

37: {cmd:. denscomp linc, by(edu)}
38:

39: {title:Also see}
40:

41: Manual: {hi:[R] kdensity}
42:

43: Help: {manhelp kdensity R}
end: denscomp.sthlp

When you type help denscomp, line 19, “denscomp uses kdensity to estimate densities
of varname for categories of by()”, will be displayed, with “denscomp” displayed in bold
face and “kdensity” displayed in blue and clickable. By clicking on kdensity, you will
open the help file for kdensity in the viewer window.
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In [P] smcl, you will find further information on creating help files, as well as rec-
ommendations for organizing your help files.

12.4 Exercises

1. Create a local macro that holds the name of the directory in which you have stored
the data package of this book.

2. In Stata, change to an arbitrary directory and load data1.dta into memory using
your local macro.

3. Change to the directory in which you have stored our data package using your
local macro.

4. Create a new dataset of all the GSOEP person files (kksoep/*p). Save this dataset
for later use.

5. Rename the variables anetto, bnetto, . . . , snetto into netto1984, netto1985,
. . . , netto2002 with a loop.

6. Rename all variables for life satisfaction into lsat1984, lsat1985, . . . , lsat2002
with a loop.

7. Add to your last loop a command that keeps track of the original variable name
using note. After reloading your dataset, rerun the loop for life satisfaction.

8. Save your loop as the program mysoepren. Run the program after having reloaded
your dataset.

9. Store your program mysoepren in the file mysoepren.ado in the current working
directory of your computer. Exit and relaunch Stata and rerun mysoepren.

10. Change mysoepren.ado such that you can parse an arbitrary list of variables to
be renamed. Rerun the program for the life-satisfaction variables and the netto*

variables.

11. Change mysoepren.ado such that you can use arbitrary numbers for the new
variable names. Rerun the program for the life-satisfaction variables and the
netto* variables using numbers 1–26 instead of 1984–2009.

12. Change mysoepren.ado such that you will get a confirmation if the number of
variable names to be renamed and the number of new variable names match. Use
the command to rename only the first five occurrences of the household number.
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13.1 Resources and information

In addition to the manuals, several resources are available to help you learn Stata. The
Stata webpage http://www.stata.com has the most complete and up-to-date versions
of official resources, as well as links to a wealth of user-written resources. Of particular
interest are the following:

• The Stata Journal (SJ):1 A printed peer-reviewed quarterly journal containing
articles about data analysis with Stata. The Stata Journal replaced the Stata
Technical Bulletin (STB)2. The Stata Journal also publishes Stata software for
general use (see section 13.3.1).

• FAQs:3 A webpage with answers to frequently asked questions.

• The Statalist:4 An open Internet discussion forum where you can post questions
about tricky Stata problems or general statistical techniques. Even simple ques-
tions will be posted and answered, so do not be shy. However, we recommend
that you consult Stata’s documentation and check out the Statalist archive5 be-
fore you post a question to Statalist. To participate, send an email to major-
domo@hsphsun2.harvard.edu with “subscribe statalist” in the body of the mes-
sage. The subject line remains empty. To unsubscribe, send an email with “un-
subscribe statalist” to the same address. Participating in Statalist is free.

• Stata Bookstore:6 A collection of books about Stata, as well as an excellent selec-
tion of books regarding particular statistical techniques; many of these books use
Stata for illustration. You can order the books online.

• Stata Press:7 The publisher of the Stata manuals, the Stata Journal, and many
books on Stata. The Stata Press offers a webpage that also contains all datasets
used in the manuals.

• Stata NetCourses:8 Internet courses offered and run by StataCorp. Once a week,
the instructor will post lecture notes and assignments on a password-protected

1. http://www.stata-journal.com
2. http://www.stata.com/support/stb/faq/
3. http://www.stata.com/support/faqs/
4. http://www.stata.com/statalist/
5. http://www.stata.com/statalist/archive/
6. http://www.stata.com/bookstore/
7. http://www.stata-press.com
8. http://www.stata.com/netcourse/
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website. The discussion between participants and instructors takes place on a
message board at the NetCourse website. Instructors will respond to questions
and comments usually on the same day as they are posted. NetCourses are avail-
able on beginner and advanced levels. There is a course fee for the NetCourses.
Participation requires a valid Stata serial number.

• Additional links:9 Links to many other resources, including the impressive col-
lection of Stata textbook and paper examples from UCLA Academic Technology
Services (ATS).10

13.2 Taking care of Stata

In the past, a new Stata version has been released roughly every two years. However,
this does not mean that there is no development between new releases. On the contrary,
Stata updates are available on average every couple of months. These updates include
improvements to existing commands, as well as more commands added since the last
Stata version. Even if you are not interested in more commands, some of the changes
may, for example, affect the overall speed of the program. We therefore recommend
that you regularly update your copy of Stata. Updating Stata is free.

We distinguish between official and user-written Stata commands. Official Stata
commands are distributed by StataCorp with the installation DVD and with the updates.
Everyone who installed Stata will have the official Stata commands. User-written Stata
programs will be only on those machines where the user has installed them. Here we
will show you how to update the official commands. The next section will discuss how
to install and update user-written commands.

Updating the official Stata installation takes place with the command update. To
begin, please type

. update query
(contacting http://www.stata.com)

Update status
Last check for updates: 24 Apr 2012
New update available: 24 Apr 2012 (what´s new)
Current update level: 04 Apr 2012 (what´s new)

Possible actions

Install available updates (or type -update all-)

The command update query compares information on the installed files with the
latest available version of these files. In our example, the most recent Stata is from
24 April 2012 while we have a Stata version from 04 April 2012. We should therefore
update our installation. To do so, type

. update all

9. http://www.stata.com/links/resources.html
10. http://www.ats.ucla.edu/stat/stata/
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Stata will connect to the Internet, search for the required files, and save them at the
right place on your machine. After successfully updating, you can see a list of changes
by typing help whatsnew.

The procedure described above assumes that you have a direct connection to the
Internet. If this is not the case for your computer, you can download the official update
as a compressed zip archive.11 Once you are at your machine, you unzip the archive with
the appropriate program. However, you need to make sure that you keep the archive
directory structure. Now you can proceed as described above, using the option from() of
the update command. Just type the name of the directory that you used to unpack the
zip archive name within the parentheses (for example, update all, from(c:\temp)).

13.3 Additional procedures

Any Stata user can write ados (see chapter 12), so many statisticians and others all over
the world have written ados for statistical procedures that do not exist in Stata. Once
an ado is written, any user can install it and use it just like any other command. Here
we will show you how to install such user-written programs.

13.3.1 Stata Journal ado-files

We call ados published with the Stata Journal or the Stata Technical Bulletin SJ-
ados and STB-ados, respectively. Stata itself knows about SJ-ados or STB-ados; the
command search will provide information about their existence. SJ- and STB-ados can
be downloaded for free from the Internet.

Say that you want to present the results of all the many regressions you run in a table
similar to table 9.2 on page 314: you want to display the t statistic or the standard error
in parentheses below each coefficient, you want to add stars to indicate their significance
level, and you want to print summary measures like R2 below the coefficients. To do so,
you could of course use estimates table as shown in section 9.5.1, but this would not
create the final table. If you are lucky, you might find a Stata command that does the
work for you. One way to find such a command is to use the Stata command search.
Try, for example,

. search regression output

11. http://www.stata.com/support/updates/
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which will give you several hits. Among them are

(output omitted )

SJ-7-2 st0085_1 . . . . . . . . . . . . Making regression tables simplified
(help estadd, estout, _eststo, eststo, esttab if installed) . B. Jann
Q2/07 SJ 7(2):227--244
introduces the eststo and esttab commands (stemming from
estout) that simplify making regression tables from stored
estimates

(output omitted )

The entry you see refers to issue 2 in volume 7 of the Stata Journal. This means
that there is an article with the title “Making regression tables simplified” written by
Ben Jann (2007). There is an entry number attached to the article, st0085 1, which
we will discuss a little later. More important is the description “(help estadd, estout
. . . if installed)”. This line indicates that you are dealing with a program (or several
programs) because only programs can be installed. From the short description of the
program, we learn that in this version, some small bugs were fixed. Our example
introduces additions (eststo and esttabs to an already existing program, estout).
The program itself simplifies the creation of regression tables from stored estimates.
Sounds good! That is what we were looking for. You will learn more if you read the
respective SJ article or if you install the program and read the online help.

The easiest way to install SJ- or STB-ados is to click on the entry number. This
will open a window that guides you through the installation. However, if you want to
install a program within your do-files, you can use the net commands. The installation
happens in two steps:

1. The command net sj volume-issue will connect you to a web address of the Stata
Journal holding all ados published in the specified issue. Likewise, the command
net stb issue will do the same for STB-ados.

2. The command net install pkgname will install the program pkgname.
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For example, to install the program estout, you would type

. net sj 7-2

http://www.stata-journal.com/software/sj7-2/
(no title)

DIRECTORIES you could -net cd- to:
.. Other Stata Journals

PACKAGES you could -net describe-:
gr0001_3 Update: Generalized Lorenz curves and related graphs
st0085_1 Update: Making regression tables simplified
st0097_1 Update: Generalized ordered logit/partial

proportional odds models for ordinal dependent variables
st0122 Fit population-averaged panel-data models using

quasileast squares
st0123 Maximum likelihood and two-step estimation of an

ordered-probit selection model
st0124 Two postestimation commands for assessing confounding

effects in epidemiological studies
st0125 Estimation of Nonstationary Heterogeneous Panels
st0126 QIC criterion for model selection in GEE analyses

This will show a list of all available programs in volume 7, issue 2, of the SJ. Among
others, you will find the package “Making regression tables simplified” with the entry
“st0085 1”. This is the same entry number you saw with search, and it is the package
name that you use to install the program:

. net install st0085_1

If you want to see a description of the package before you install it, you can type

. net describe st0085_1

13.3.2 SSC ado-files

Another source of user-written Stata commands is the Statistical Software Components
(SSC) archive maintained by Boston College.12 Many of the commands stored there
are discussed on Statalist. In Stata, the ssc install command can be used to install
them; for more information, type help ssc.

For example, in the SSC archive is a command called soepuse written by one of the
authors of this book (U. Kohler). The command makes data retrievals from the GSOEP

data base easy. Type

. ssc install soepuse

12. http://ideas.repec.org/s/boc/bocode.html
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to install the command. Once the command has been installed, it is possible to update
the command by typing

. adoupdate soepuse, update

Type

. adoupdate all, update

if you want to update all user-written commands.

13.3.3 Other ado-files

In addition to SJ-, STB-, and SSC-ados, there are many other user-written commands.
You can get an idea of the variety of ados by following one of the links displayed when
you type

. net from http://www.stata.com

Most of these ados can be installed with net install, so the only challenge is to
actually find the right ado-file for your problem. However, before we discuss how to find
the right ado-file, you should know how to install ados in case Stata’s net facilities do
not work. This can happen if

• the computer you work on is not connected to the Internet.

• you programmed your own ado-file.

• the author of the ado-file did not prepare the file appropriately. To detect an
ado-package with net from and to install it with net install, there must be a
table of contents file (stata.toc) and a package description file stored under the
URL. If an author does not provide these files, you cannot use the net commands
to install the ado-file.

• the stata.toc refers to packages on another computer. Then the particular file
must be downloaded with net get and installed by hand, as explained below.

Usually, you can get the desired ado-packages outside Stata and install them by hand.
Every ado-package should have at least two files: the ado-file itself and an accompanying
help file. The ado-file has the extension .ado, and the help file has the extension .sthlp

or .hlp. To install both of them, you copy the files in your personal ado-directory.

You can determine the location of your personal ado-directory by typing

. adopath

Official ados are saved in the first two directories (UPDATES and BASE). The third
directory, called SITE, is meant for network administrators to install ados that should
be accessible for all network users. The fourth directory, here indicated with “.”, refers
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to your current working directory. Finally, you find the address of your personal ado-
directory (PERSONAL), in which you can copy ados “by hand”. Ados you wrote yourself
should be stored here. The most common place for the personal ado-directory under
Windows is c:\ado\personal; however, this depends on the local installation. You
must create c:\ado\personal by hand; this can be done using the Stata command
mkdir.

Finally, the PLUS directory contains ados you have downloaded with Stata’s Internet
facilities (for example, net install and ssc install). The c:\ado\plus directory
is created by Stata when you first use net install or ssc install. OLDPLACE is the
place where ados before Stata 7.0 were installed. The order of the path matches the
order with which ados will be searched on your machine when you type a command (see
section 12.2.4).

Now back to the interesting question: Where do you find the “right” ado-file? We
have already discussed this above with respect to the SJ-ados. For SSC-ados, you can
also browse the SSC archive with any Internet browser.13 Also you will find several links
on the Stata website.14 The best way to find Stata ados, however, is by adding the
option all to search. This searches in the online help, as well as the FAQs on the Stata
website, the Stata Journal, and many other Stata-related Internet sources. You can try
search, all with arbitrary keywords, known package names, or just author names.
search displays results with the addresses of entries matching your search term. If you
click on the address, you will be led through the installation process.

13.4 Exercises

1. Find out whether your Stata is up to date.

2. If necessary, update your Stata to the most recent version or explain to your local
network administrator how he or she can update Stata.

3. Explore the changes of the most recent Stata update.

4. Install the following frequently used SJ-ados:

a. The value label utilities labeldup and labelrename from SJ 5-2.

b. The package dm75 of STB-53 for safe and easy matched merging.

c. The lean graphic schemes from SJ 4-3.

d. The enhanced graphing model diagnostic tools described in SJ 4-4.

5. Install the following ado-packages from the SSC archive:

a. egenmore

b. fitstat

c. tostring

13. http://ideas.repec.org/search.html
14. http://www.stata.com/links/resources.html
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d. vclose

e. fre

6. Find and install user-written packages for the following tasks:

a. Center metric variables

b. Draw thematic maps

c. Sequence analysis

7. Starting from http://www.stata.com/users/, explore the ado-directories of the
following users or institutions:

a. Nicholas J. Cox

b. Bill Rising

c. University of California in Los Angeles (UCLA)

d. Jeroen Weesie

e. Scott Long and Jeremy Freese

f. Ben Jann
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