

EViews Workshop I

Agenda (1)

I. Introduction to EViews

- EViews Interface
- Types of Data based on EViews
- ➤ Unstructured/Undated Data
- ➤ Dated Regular frequency Data
- > Panel Balanced Data

II. Empirical Example 1: Unstructured/Undated Data

- •Example of a test in Finance for 60 students
- Probability density function
- •Basic Distribution parameters (mean, standard deviation, skewness, kurtosis)

Agenda (2)

III. Empirical Example 2 : Dated – Regular frequency Data

- •Example of monthly returns for equity indices of G7 countries
- Distribution parameters (covariance, correlation)

IV. Empirical Example 3: Transformations of data

Example of simple and continuous compounding returns for ETE

V. Empirical Example 4: Correlation vs. Regression

Example of simple returns of ETE and ATHEX

Agenda (3)

VI. Classical Linear Regression Model Estimation

- Empirical Example 5 : CAPM model
- Model Estimation
- ➤ Hypothesis Testing
- **>**Wald Test
- ➤ Multiple Hypothesis : the F -test

VII. Multiple Linear Regression Model Estimation

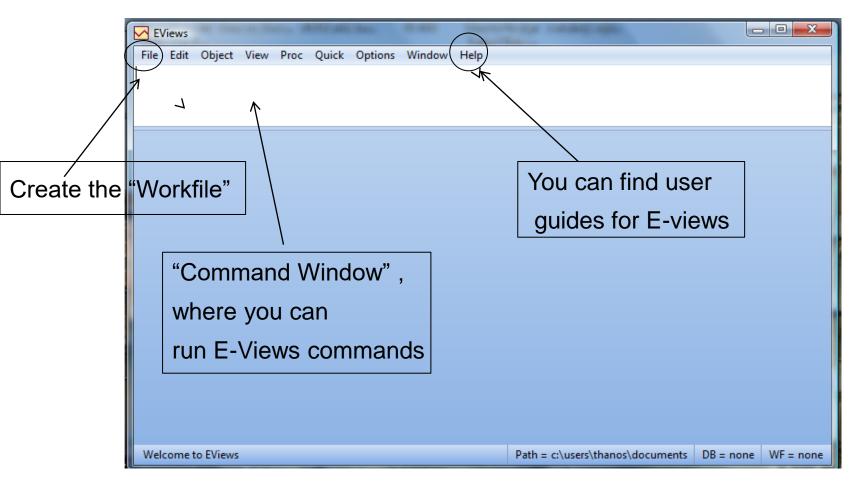
- Empirical Example 6 : APT Model
- Model Estimation
- ➤ Hypothesis Testing
- ➤ Wald Test
- ➤ Multiple Hypothesis: the F-test
- ➤ Stepwise procedure equation estimation
- ➤ R-squared & F-Statistic

Econometric Packages for modeling financial data

Econometric	Package Software
Package	Supplier
Eviews	QMS Software
GAUSS	Aptech Systems
LIMDEP	Econometric Software
MATLAB	The Mathworks
RATS	Estima
SAS	SAS Institute
SHAZAM	Northwest Econometrics
SPLUS	Insightful Corporation
SPSS	SPSS
TSP	TSP International

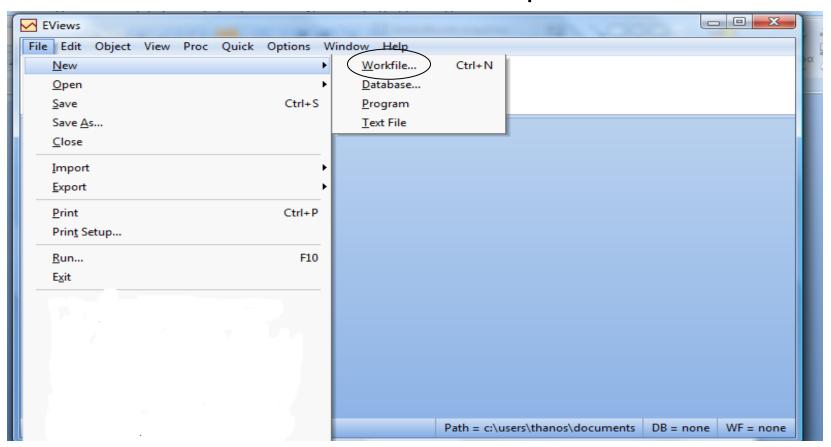
Source: Introductory Econometrics

for Finance, Chris Brooks


Introduction to EViews

E- views Interface

1. Open EViews from PC- lab

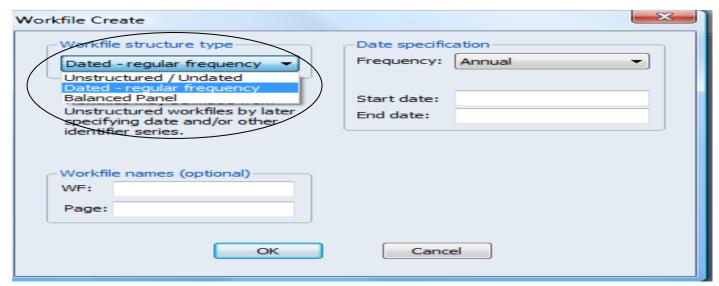

Double Click on the EViews on the desktop of your pc

2. Go to File ----- New ------ Workfile

• Workfile constitutes the main workspace in EViews

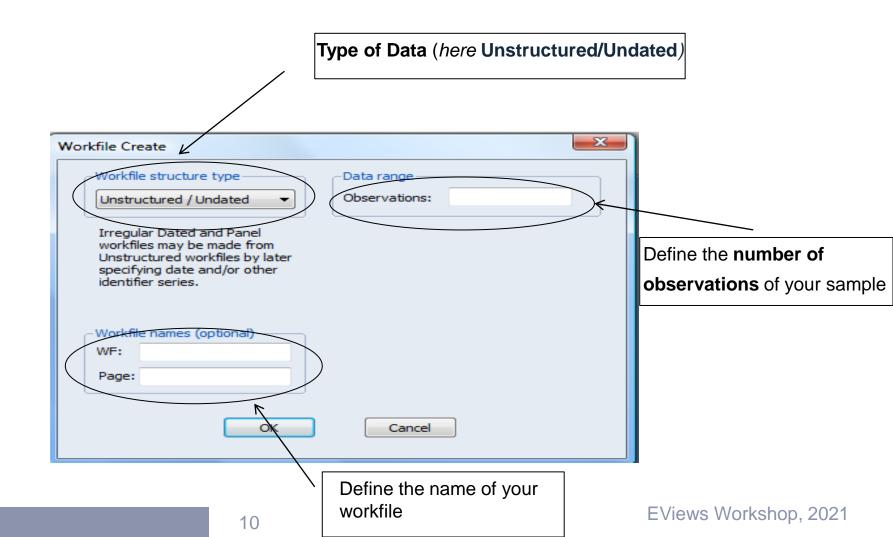
Create a Workfile

3. Workfile Create

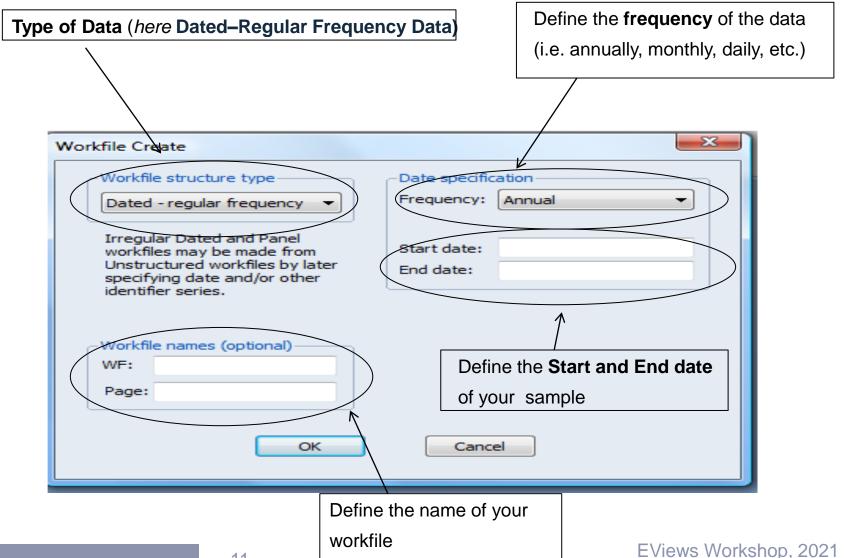

Types of Data

I. Cross- sectional Data (Unstructured/Undated)

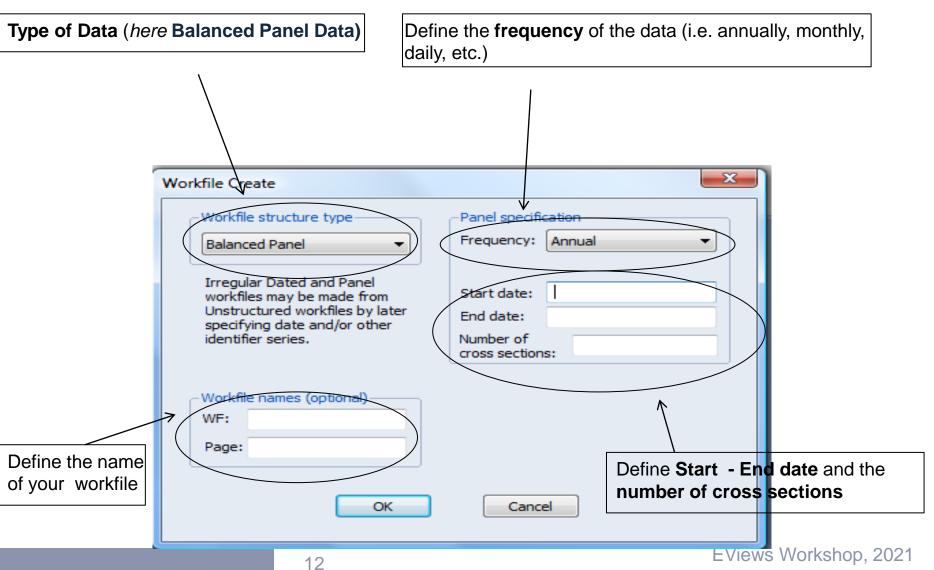
Data on one or more variables collected at a single point in time (i.e. Cross-section of stock returns on the Athens Stock Exchange)


- II. <u>Time-Series Data (Dated-regular frequency)</u>
 - We need start & end date + frequency (i.e. Daily/ Weekly/Monthly/ Annually Returns on S&P500)
- III. Panel Data (Balanced Panel)

Combination of I and II. (i.e. Monthly prices of energy stocks over five years)


Workfile - <u>Unstructured/Undated Data</u>

3.1 Unstructured/Undated Data

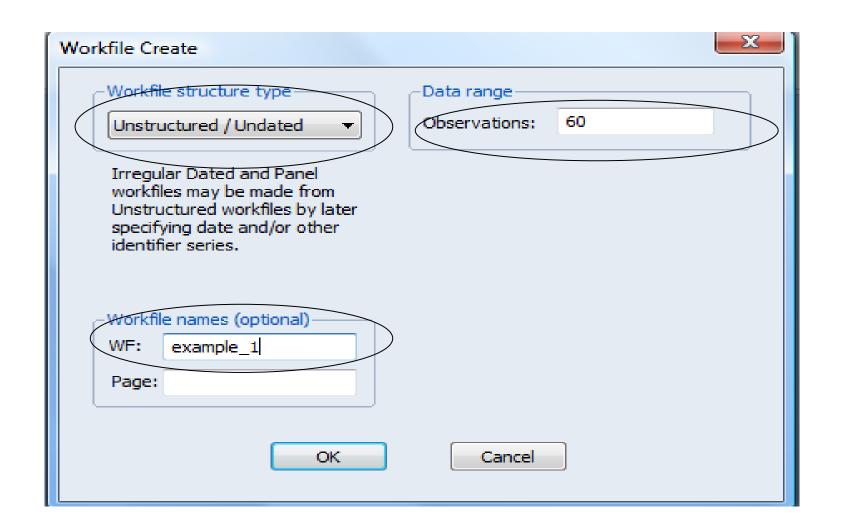

Workfile - <u>Dated- Regular Frequency Data</u>

3.2 Dated - Regular frequency Data

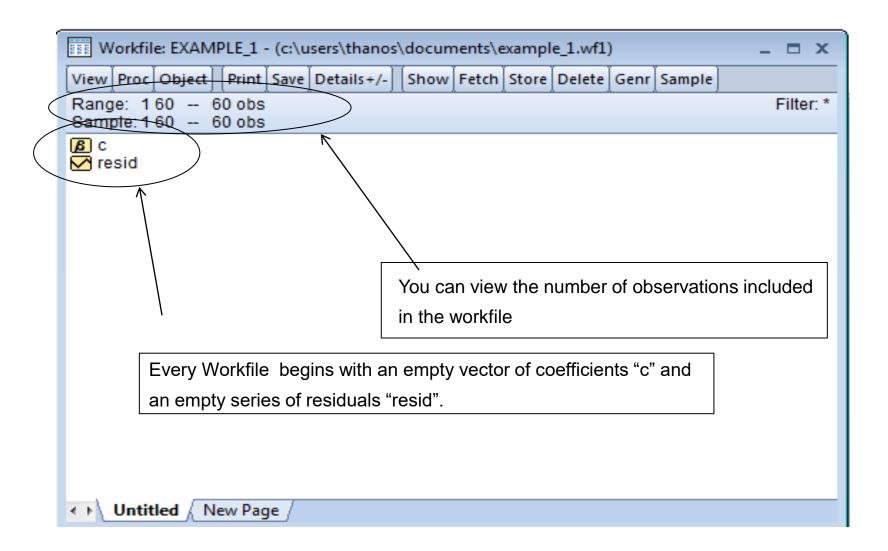
3.3 Balanced Panel Data

Empirical Example 1:

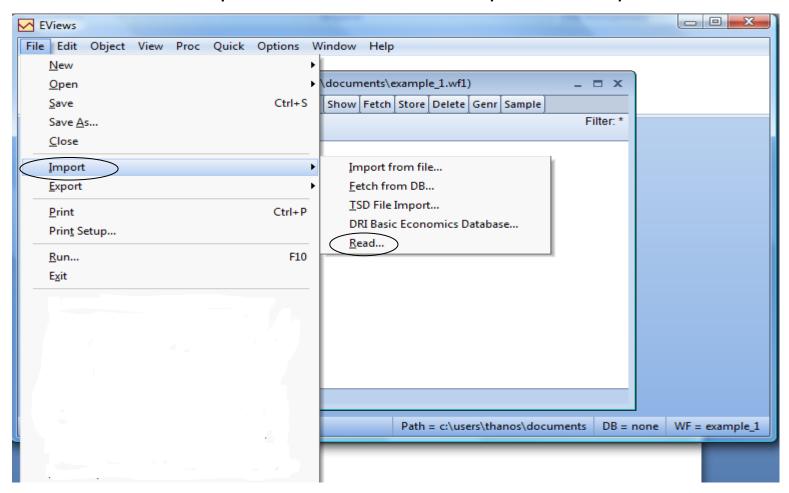
Unstructured/Undated Data

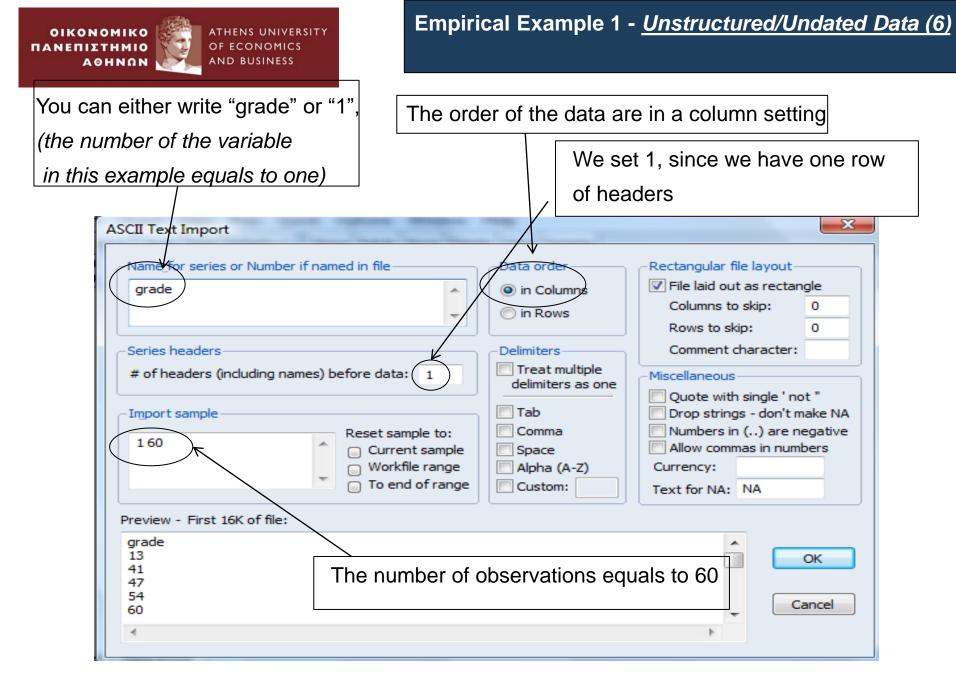

Empirical Example 1 - <u>Unstructured/Undated Data (1)</u>

- 1. Go to folder Empirical Examples → Example_1
- Shows the results of a test in Finance for 60 students (Source: "Econometrics for Financial Analysis", A. G. Merikas, A. A. Merika)
 - 2. Open txt file: example_1.txt
 - 3. Define the type of the data: Unstructured/Undated Data
 - 4. Define the number of observations of the sample: 60
 - 5. Close txt file


- 6. Open EViews from PC lab
- 7. Go to File ----- New ----- Workfile
- 8. Set Workfile Structure Type: Unstructured/Undated
- 9. Set Data Range / Observations equal to 60
- 10. Set the name of your workfile WF: Example_1
 - •Set the Page Blank, as it is.
- 11. Click OK.

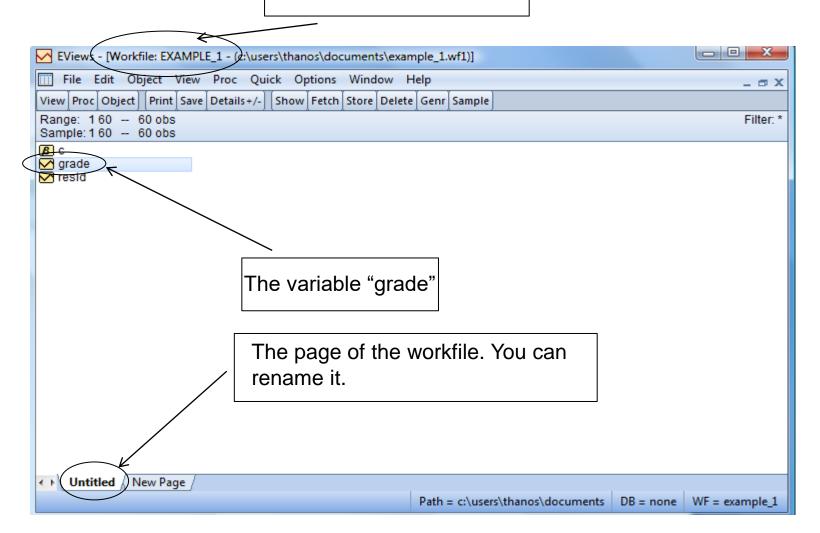
Empirical Example 1 - <u>Unstructured/Undated Data (3)</u>


Empirical Example 1 - <u>Unstructured/Undated Data (4)</u>



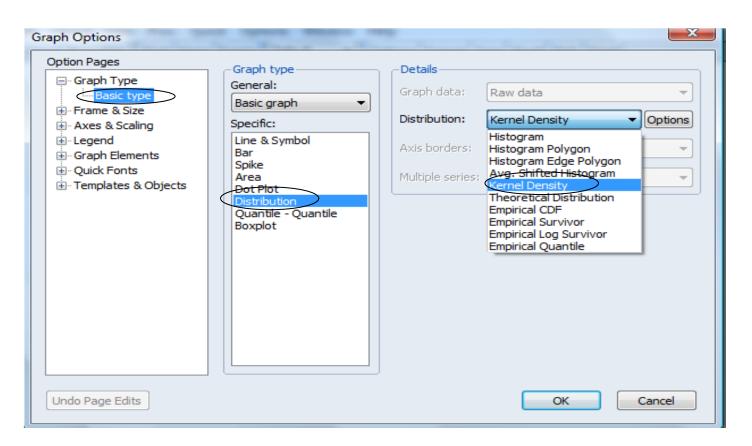
12. Go to File → Import → Read

Find the txt file example_1.txt in the folder "empirical examples"



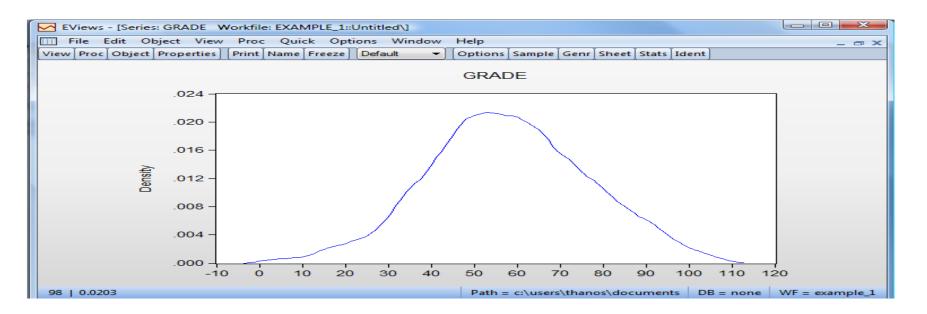
13. Click OK

The name of the workfile



14. Double Click on the variable "grade"

15. Go to View → Graph


Select Basic type / Distribution / Kernel Density

We can visualize the shape of distribution

Distinction between normal and non-normal distributions

The above diagram shows the probability density function (pdf) of the variable "grade". In a first view resembles the "normal distribution" with pdf function:

$$f(X) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{X-\mu}{\sigma}\right)^2\right]$$

However, we have to derive the basic distribution parameters.

Empirical Example 1 - <u>Unstructured/Undated Data (10)</u>

We can now define the basic distribution parameters

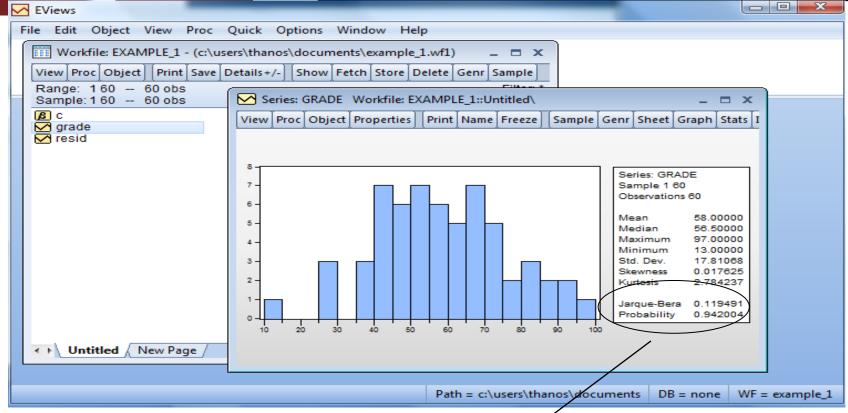
- •Mean: The expected value $E(X) = \frac{1}{n} \sum_{i=1}^{n} X_{i}$
- •Standard deviation: A measure of spread $s = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} (X E(X))^2 \right)}$

$$s = \sqrt{\frac{1}{n-1} \left(\sum_{i=1}^{n} \left(X - E(X) \right)^{2} \right)}$$

•Skewness: Measures the extent to which the distribution is **not** symmetric

$$\mu_{3} = E[X - E(X)]^{3} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X - E(X)}{s\sqrt{(n-1)/n}} \right)^{3}$$

- > If $\mu_3 > 0$ the right tail is the longer
- ► If μ_3 < 0 the left tail is the longer
- > If $\mu_3 = 0$ the distribution is normal
- •Kurtosis: Measures the "thickness of the tails" $\mu_4 = E[X E(X)]^4 = \frac{1}{n} \sum_{i=1}^n \left(\frac{X E(X)}{c_i / (n-1) / n} \right)^4$
- \triangleright If $\mu_4 > 3$ the distribution has long or thick tails (leptokurtic)
- If $\mu_4 < 3$ the distribution has short or thin tails (platykurtic)
- \triangleright If $\mu_A = 3$ the distribution is normal


16. Go to View Stats

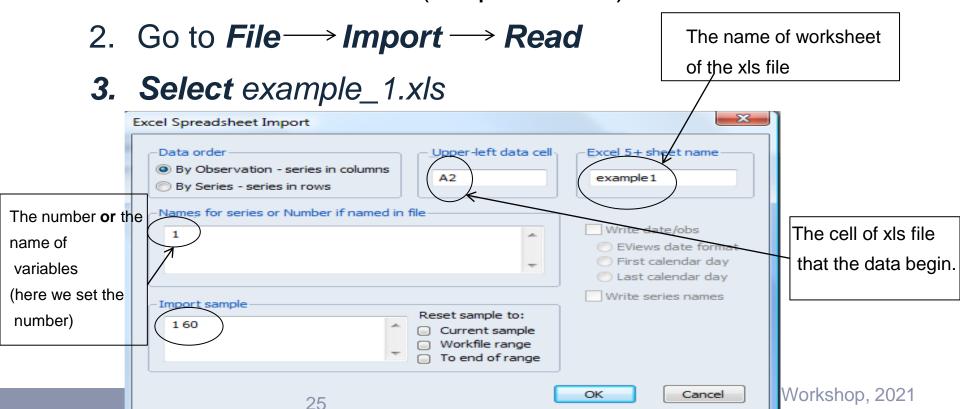
Descriptive Statistics and Tests

Histogram and

Empirical Example 1 - <u>Unstructured/Undated Data (11)</u>

Jarque-Bera: is a test statistic for testing whether the series are normally distributed. Probability is the probability that Jarque-Bera statistic exceeds in absolute value the observed value under the null hypothesis of a normal distribution. $JB = \frac{n}{6} \left(\mu_3^2 + \frac{(\mu_4 - 3)^2}{4} \right)$

17. Close the above window \longrightarrow Go to File \longrightarrow Save as...



Alternative ways of importing data

So far we have shown how to import data from a txt file

From xls file

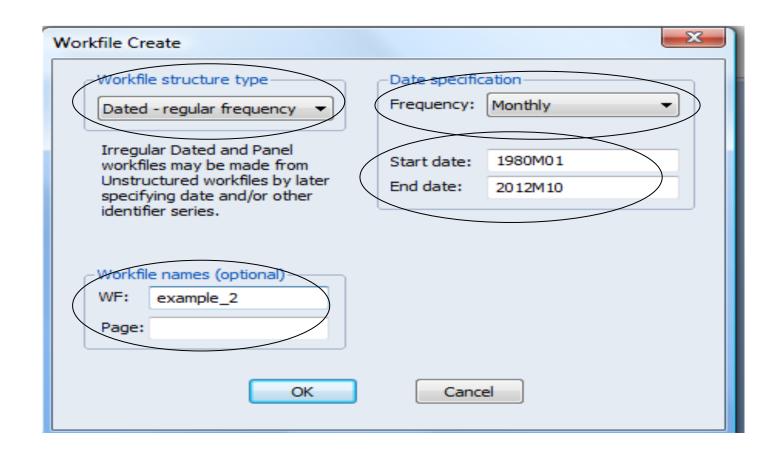
1. Create the Workfile (Steps 1 to 11)

A general way to import any types of files:

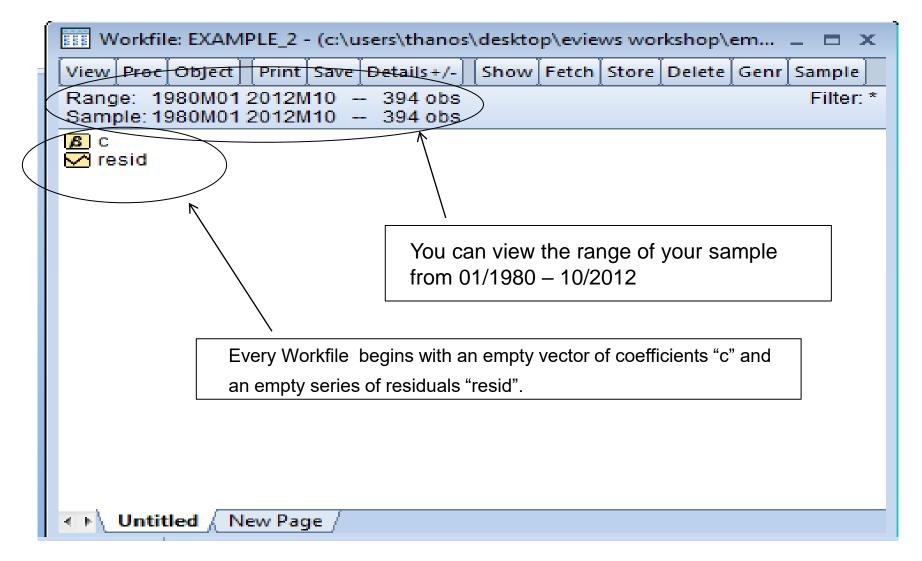
- 1. Create the Workfile (Steps 1 to 11)
- 2. Go to File → Import → Import from file
- 3. Select example_1.xlsx/example_1.xls/example.csv /etc..

Empirical Example 2:

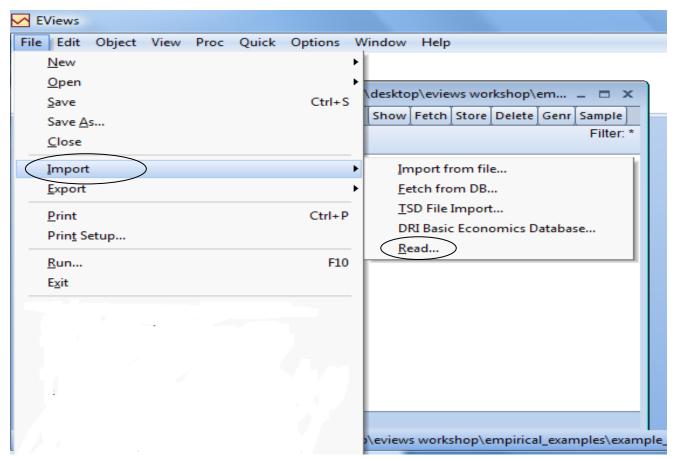
Dated - Regular frequency Data

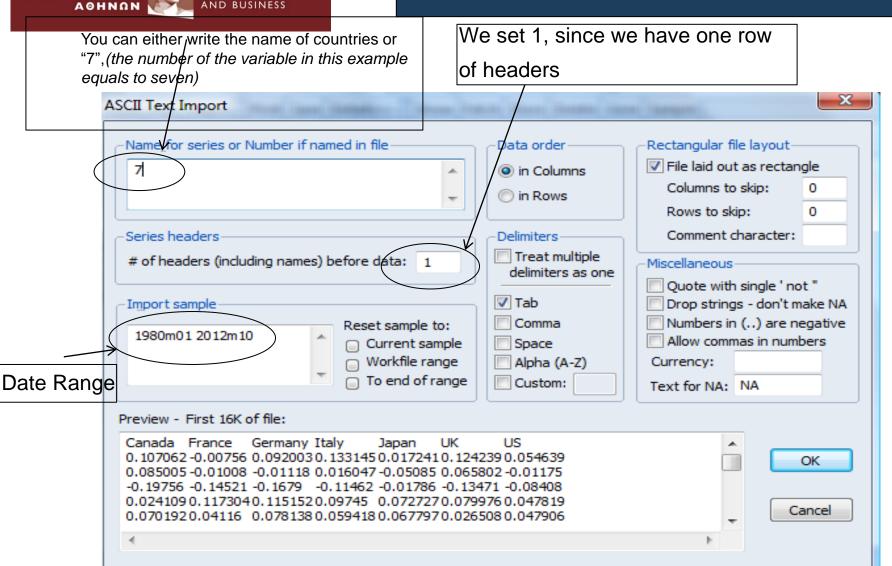

- 1. Go to folder Empirical Examples → Example_2
- Shows the monthly total simple returns(capital + dividends) in \$ of the equity indices of G7 countries from 31/01/1980 31/10/2012.

(Source : DataStream)

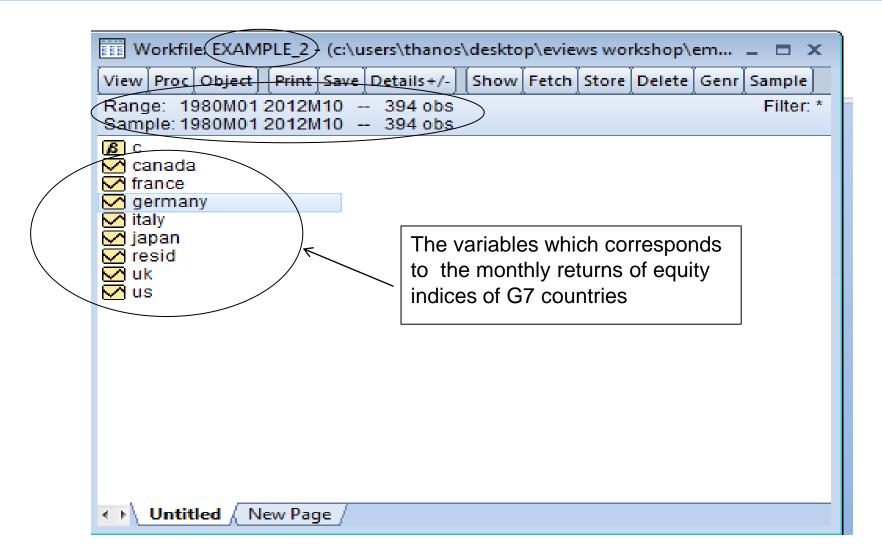

- 2. Open txt. file: example_2.txt
- 3. Define the type of the data: Dated Regular frequency data
- 4. Close txt. file

- 5 . Open EViews from PC lab
- 6. Go to File ---- New ---- Workfile
- 7. Set Workfile Structure Type: Dated Regular frequency data
- 8. Set Start Date: 1980M01 End Date: 2012M10
- 9. Set the name of your workfile WF: Example_2
 - •Set the Page Blank, as it is.
- 10. Click OK.




11. Go to File \longrightarrow Import \longrightarrow Read

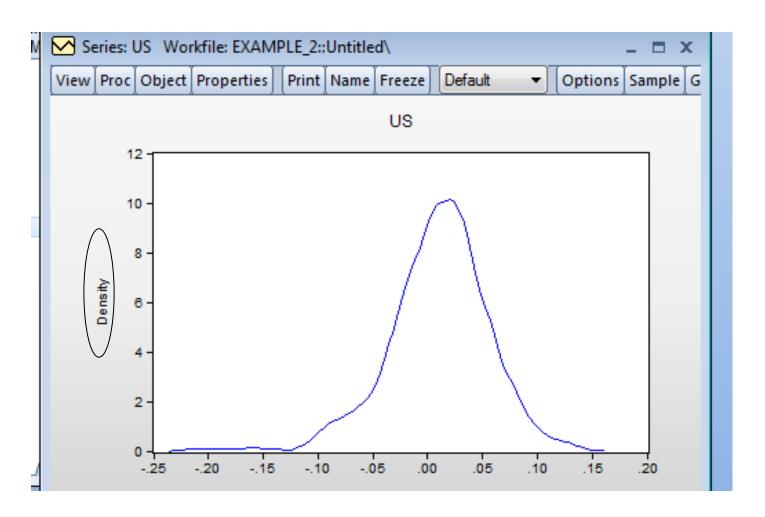
Find the xlsx file example_2.xlsx in the folder "empirical examples"



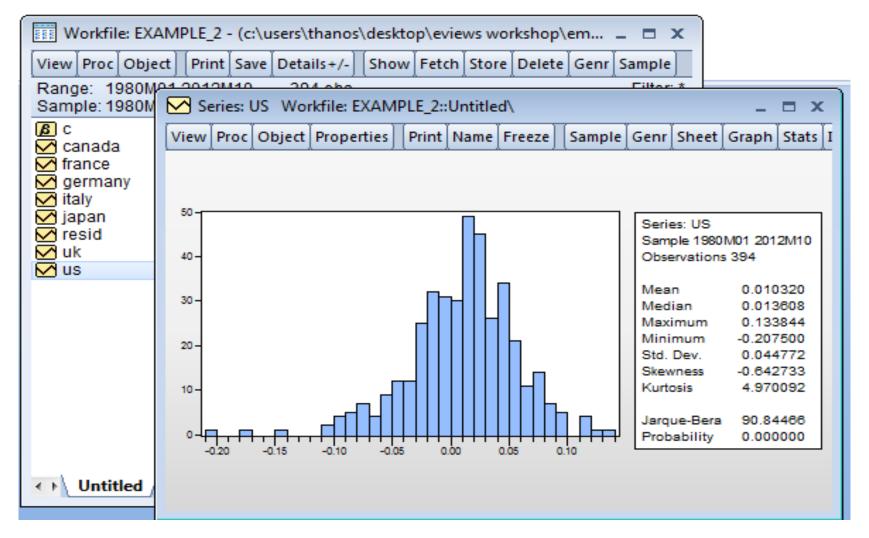
Empirical Example 2- <u>Dated – Regular frequency Data (6)</u>

12. Click OK

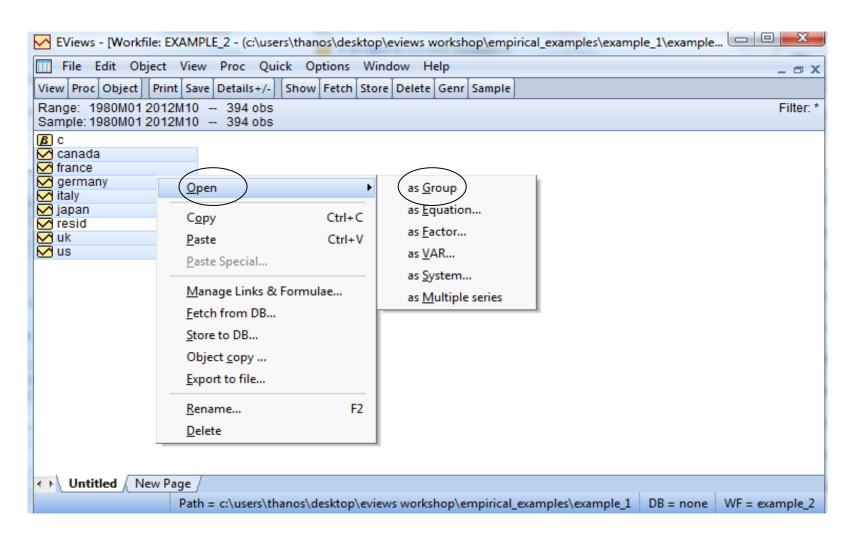
13. Double Click on the variable "us"


14. Go to View → Graph

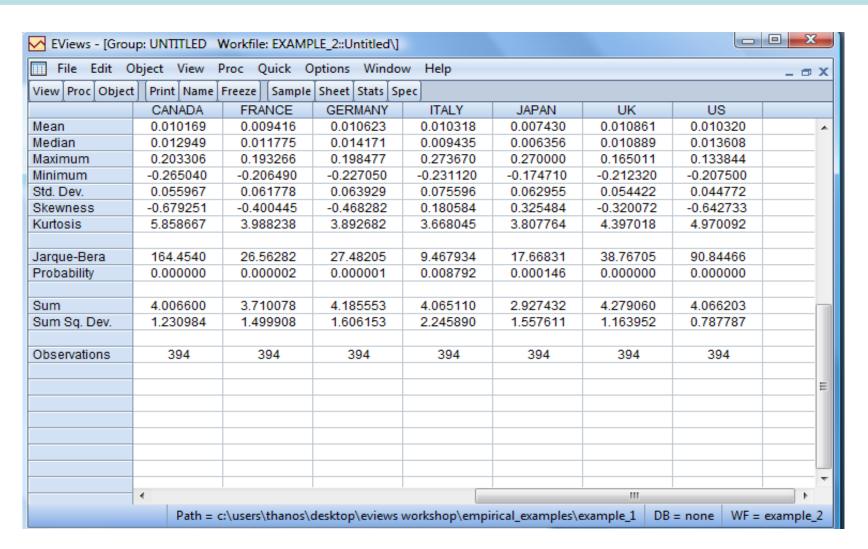
Select Basic type / Distribution / Kernel Density


We can visualize the shape of distribution

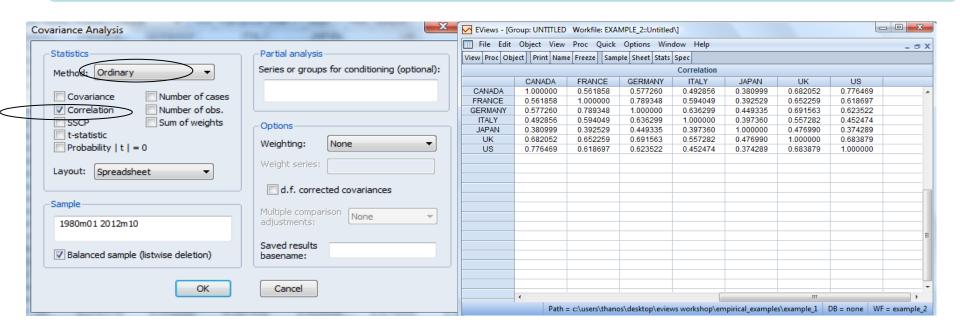
Distinction between normal and non-normal distributions



15. Go to View —→Descriptive Statistics and Tests —→ Histogram and Stats



16. Select G7 → Right Click → Open → as Group

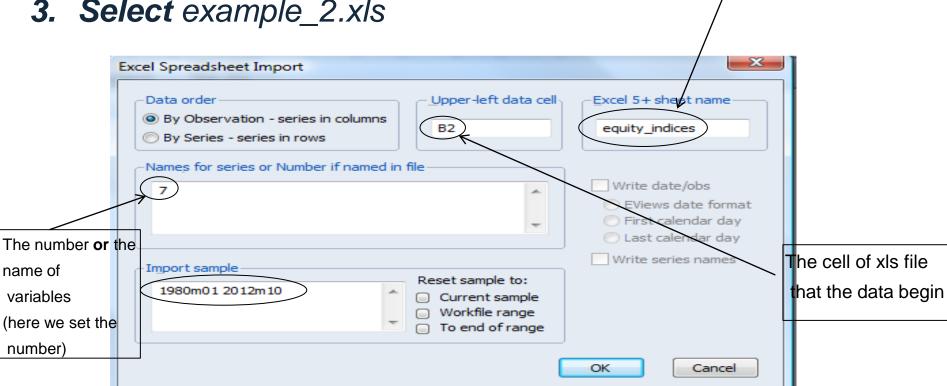


17. Go to View ---> Descriptive Stats ---> Common Sample

18. Go to View → Covariance Analysis → Correlation

We can here define

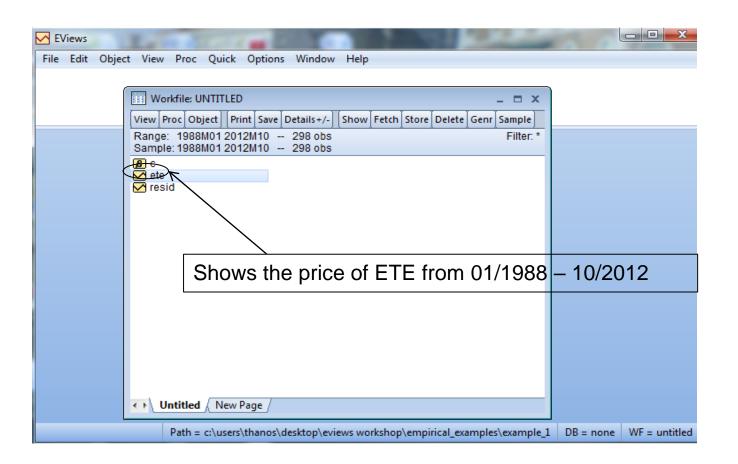
- Covariance between X and Y variables Cov(X,Y) = E(XY) E(X)E(Y)
- Correlation between X and Y variables $\rho = \frac{Cov(X,Y)}{\sqrt{V \operatorname{ar}(X)Var(Y)}}$
- 19. Close the above window \longrightarrow Go to File \longrightarrow Save as...


the xls file

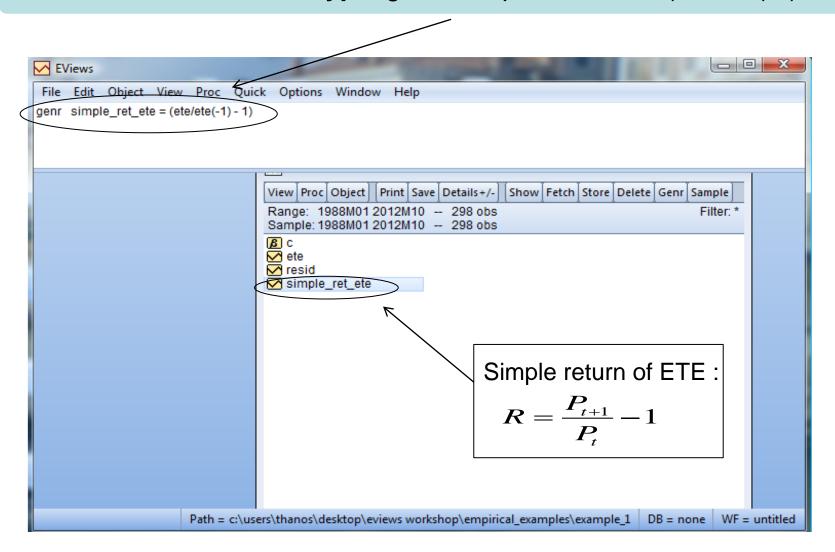
The name of worksheet of

From xls file

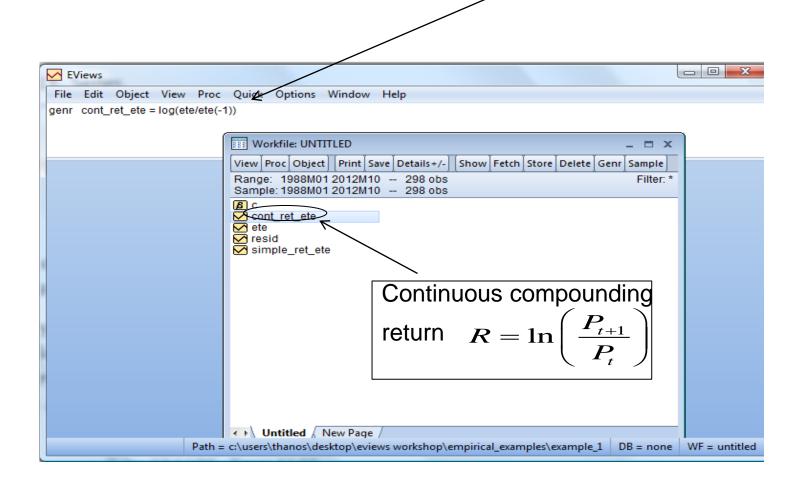
- 1. Create the Workfile (Steps 1 to 11) 2. Go to **File** \longrightarrow **Import** \longrightarrow **Read**
- 3. Select example_2.xls


Empirical Example 3:

Transformations of Data


1.Go to folder Example_3→ Double click on Example_3.wf1 (eviews workfile)

• We present the price of ETE from 01/1988 – 10/2012 (Source: DataStream)



On the command window **type** genr simple_ret_ete = (ete/ete(-1) - 1)

On the command window **type** genr cont_ret_ete = log(ete/ete(-1))

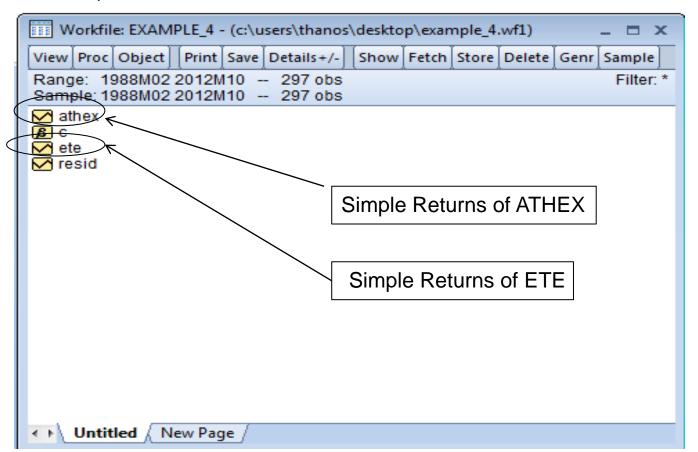
Continuous compounding or log- returns

Advantages

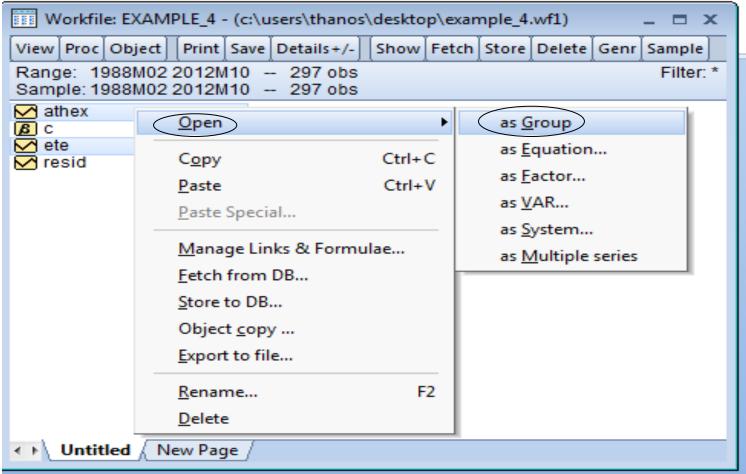
- Are time additive.
- Assets can be compared since the frequency of compounding return does not play any role.

Disadvantages

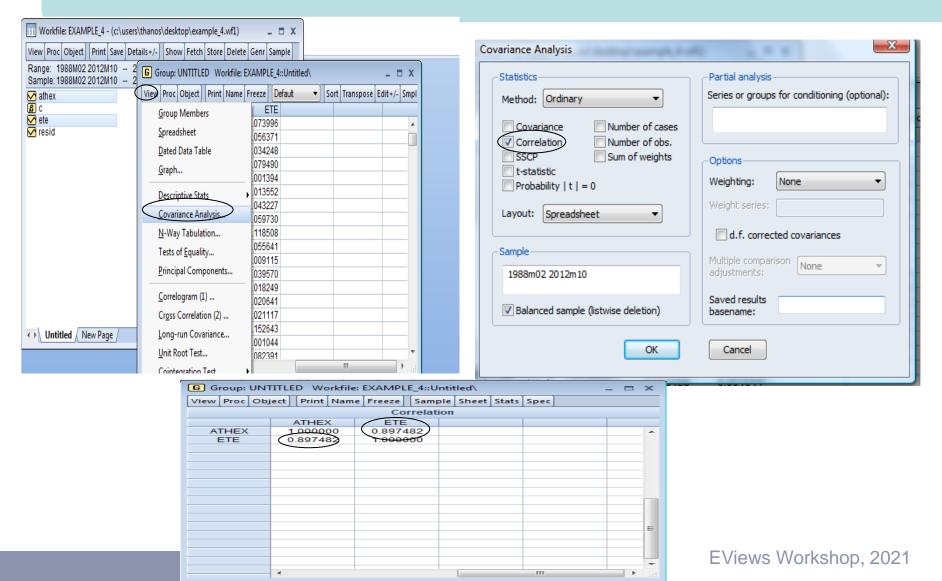
- In Investments , the simple portfolio return is a weighted average of the simple returns on the individual assets. $R_{pt} = \sum_{i=1}^{n} w_i R_{it}$
- **However**, this is not feasible for log returns since the log of a sum is not the same as the sum of a log.


Empirical Example 4:

Correlation vs. Regression

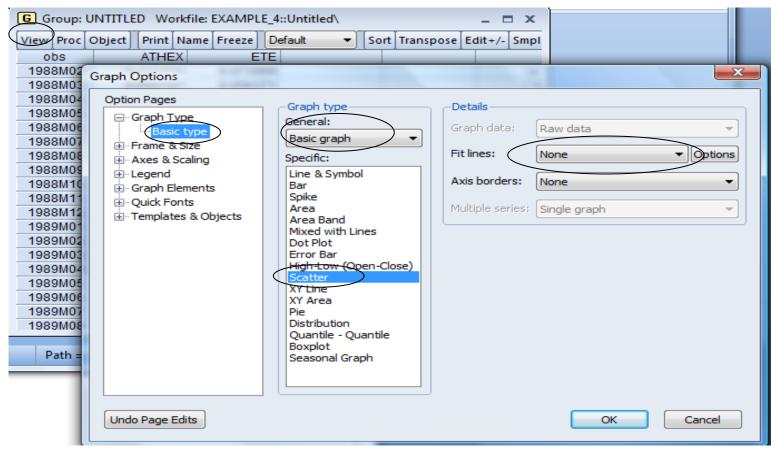

1.Go to folder *Example_4* → Double click on *Example_4.wf1* (eviews workfile)

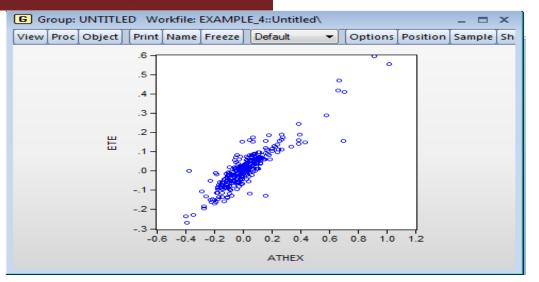
We present the simple returns of ETE and ATHEX from 02/1988 – 10/2012 (Source: DataStream)



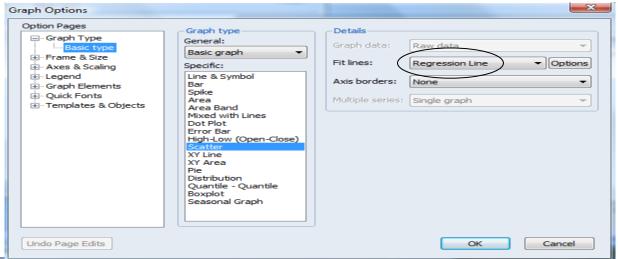
2.Select athex & ete→ right click→ open → as group

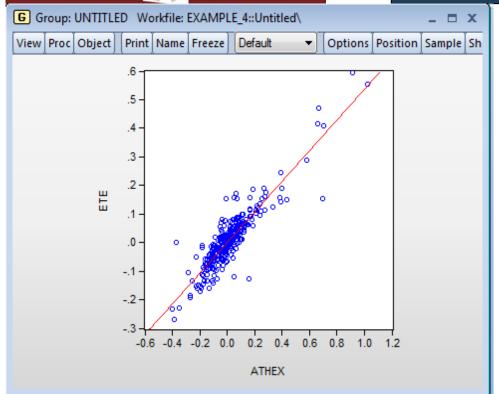
3. Define the correlation : View \longrightarrow Covariance Analysis \longrightarrow Correlation




- The <u>correlation coefficient</u> is a measure of linear association between two variables. Values of the correlation coefficient are always between -1 and +1.
- A correlation coefficient of +1 indicates that two variables are perfectly related in a positive linear sense,
- A correlation coefficient of -1 indicates that two variables are perfectly related in a negative linear sense,
- A correlation coefficient of 0 indicates that there is no linear relationship between the two variables.
- It is **not** implied that changes in one variable causes changes in the other variable and vice versa.
- Correlation shows an evidence for a linear relationship between two variables.

4. Scatter plot: Follow step 2 → View → Scatter


Scatter plot shows the quantitative relationship between two sets of data.



If a scatter diagram shows a linear relationship, as in our case, we would like to review the overall pattern by drawing a line on the scatter diagram.

5. Scatter plot: Go back to Graph and select Regression Line

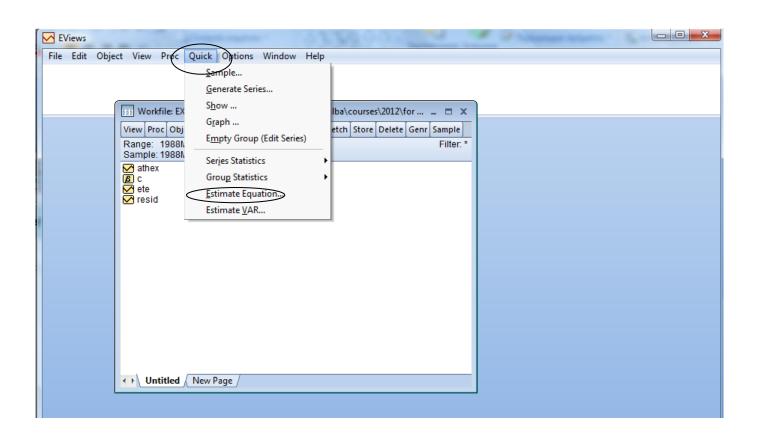
Empirical Example 4: Correlation vs. Regression(7)

We need a formal way to draw an optimal line that will be set as close to the points as possible.

Based on the least square method we can define the least squares regression line of Y (here ete) on X (here athex):

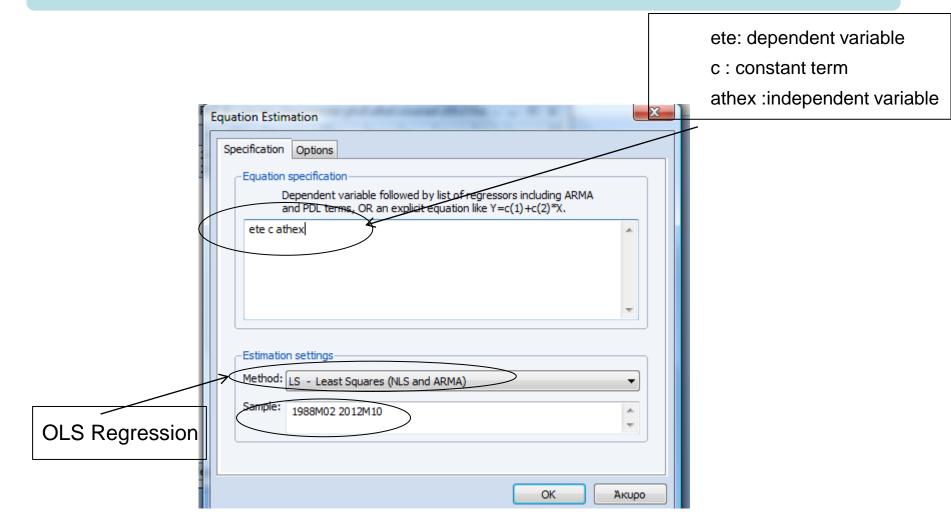
$$Y = a + bX + error$$

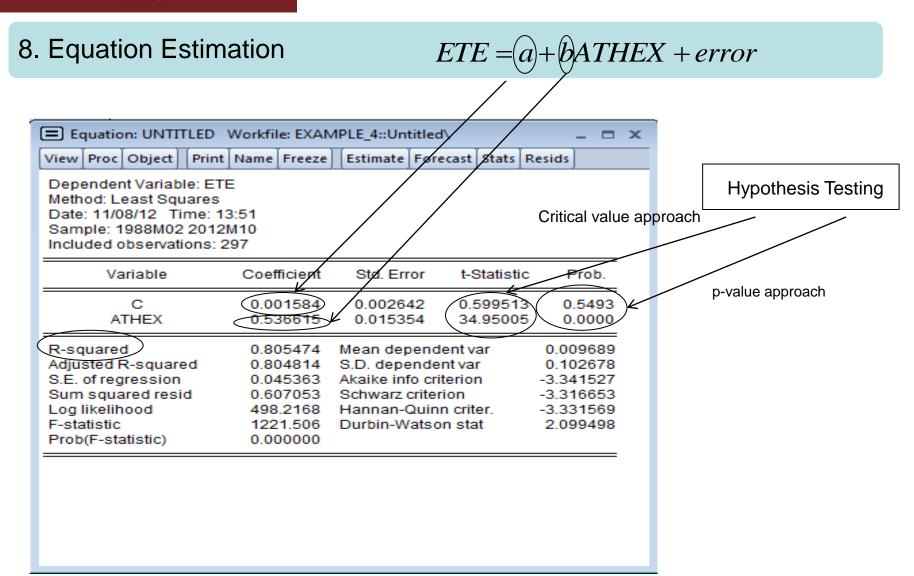
 $ETE = a + bATHEX + error$


where a: the intercept and b:slope

- •In regression, variations in ATHEX cause changes in ETE
- •Regression describes the relationship between a given variable and one (simple regression) or more other variables

Regression as a tool is more flexible and powerful than correlation

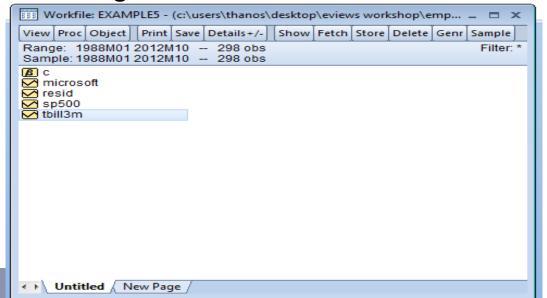

6. How to run a regression : Quick ---> Estimate Equation


Empirical Example 4: Correlation vs. Regression(9)

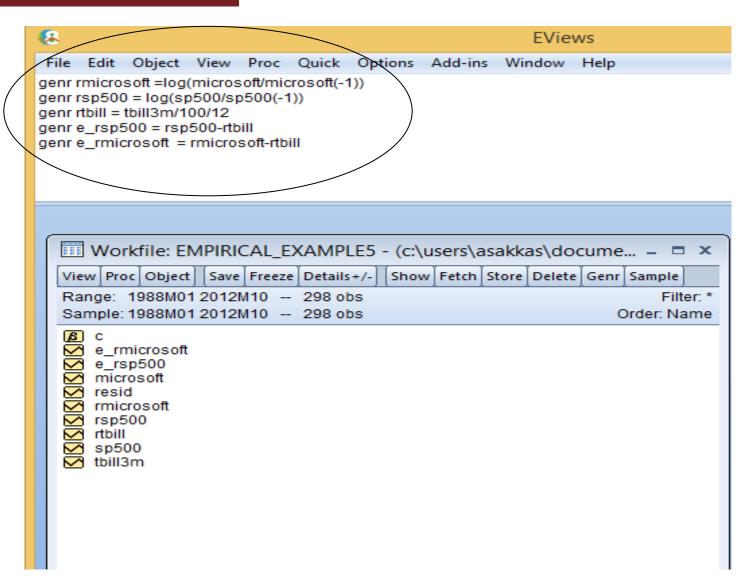
7. Equation Estimation

ETE = a + bATHEX + error

Empirical Example 4: Correlation vs. Regression(10)

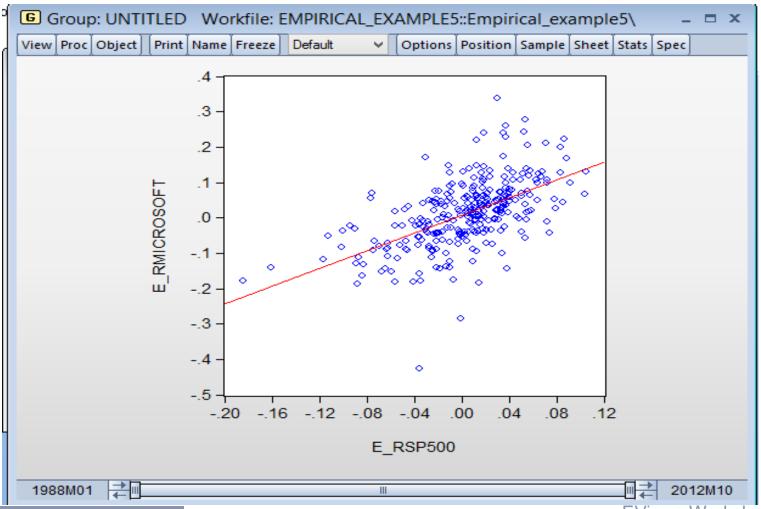


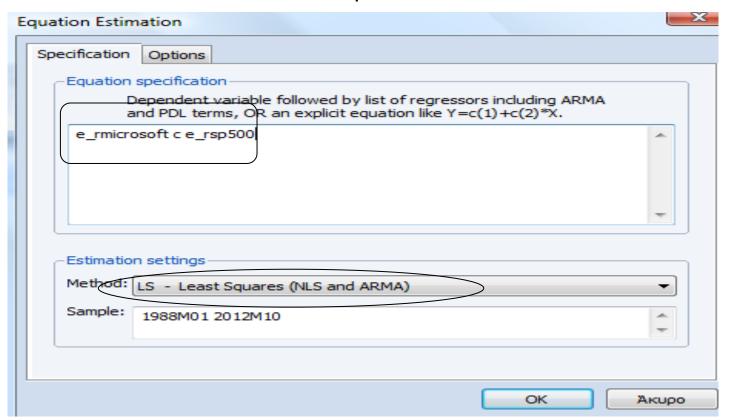
Classical Linear Regression Model Estimation



Microsoft stock and S&P 500 Index

- 1. Import the "empirical_example5.xls" file
 - Monthly RI for Microsoft and S&P500 and T-bill rate for 29/01/21988- 31/10/2012
- 2. Calculate the log returns for Microsoft and the S&P 500 and the monthly T-bill3m
 - •Use the **genr** in the command window





3. Do the Scatter Plot

- 3. Estimate the CAPM equation : $\left(R_{Microsoft} r_f\right)_t = \alpha + \beta \left(R_M r_f\right)_t + u_t$
 - Quick ———> Estimate Equation

Assumptions underlying the CLR model

 $E(u_t) = 0$

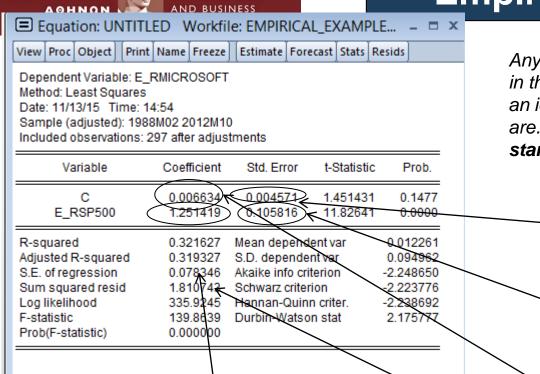
The errors have zero mean (Mean Independence)

 $\operatorname{var}(u_t) = \sigma^2$

The variance of the errors is constant (Homoskedasticity)

 $cov(u_i, u_j) = 0$

The errors are linearly independent of one other


 $cov(u_t, x_t) = 0$

There is no relationship between the error and the corresponding variate x

 $u_t \sim N(0, \sigma^2)$

The errors are normally distributed (**Normality**)

Any set of (X,Y) are specific to the sample used in their estimation. It would be desirable to have an idea of how reliable/ precise these estimates are. Thus we need an estimate given by the **standard error**.

The standard error

$$SE(\hat{a})$$

The standard error

$$SE(\hat{\boldsymbol{\beta}})$$

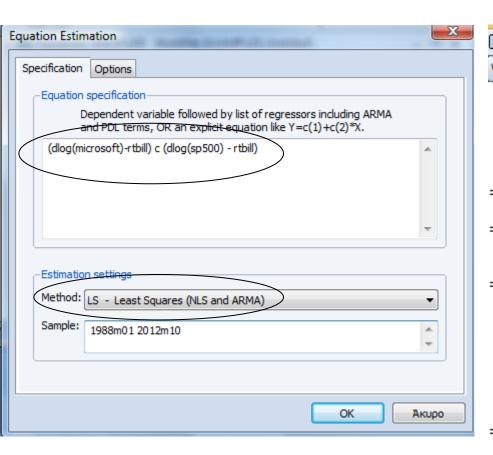
The beta coefficient (the slope coefficient) estimate is 1.25

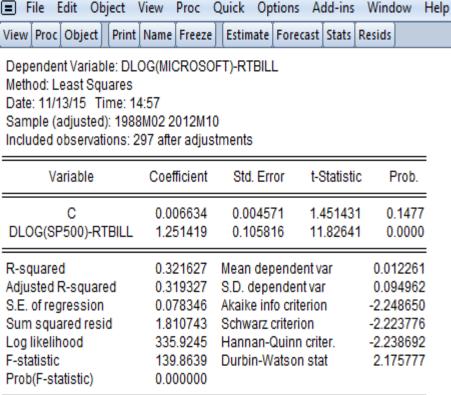
$$\hat{\beta} = \frac{Cov(ExcR_{Microsoft}, ExcR_{SP500})}{Var(ExcR_{SP500})}$$

The a coefficient estimate is 0.006

$$\hat{\alpha} = E(Y) - \hat{\beta} E(X)$$

Standard error of regression (or Root Mean Square error)


Measures the standard deviation of Y around the estimated regression line


$$s = \sqrt{\frac{1}{n-2} \sum_{i} \hat{u_i^2}}$$

An other way...

Quick ——— Estimate Equation

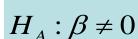
4.1. Hypothesis Testing – Critical value approach

Two -sided Test

 $H_0: \alpha = 0$

 $H_A: \alpha \neq 0$

a = 5% significance level


Critical value approach

test statistic

We do **not** reject the Null Hypothesis for a; thus a is insignificant

test statistic

We reject the Null Hypothesis for b; thus b is significant

 $H_0: \beta = 0$

View Proc Object | Print Name Freeze | Estimate Forecast Stats Resids Dependent Variable: E_RMICROSOFT Method: Least Squares Date: 11/13/15 Time: 14:54 Sample (adjusted): 1988M02 2012M10 Included observations: 297 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C E_RSP500	0.006634 1.251419	0.004571 0.105816	1 451431 11.82641	0.477
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.321627 0.319327 0.078346 1.810743 335.9245 139.8639 0.000000	Mean depend S.D. dependo Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	0.012261 0.094962 -2.248650 -2.223776 -2.238692 2.175777

Equation: UNTITLED Workfile: EMPIRICAL_EXAMPLE...

4.2. Hypothesis Testing – Confidence interval approach

Two -sided Test

$$H_0: \alpha = 0$$

$$H_{A}: \alpha \neq 0$$

 $H_0: \beta = 0$

 $H_{A}: \beta \neq 0$

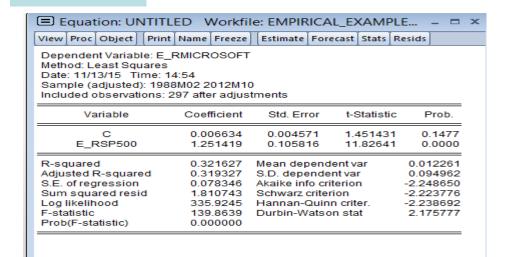
Confidence interval approach

a = 5% significance level

$$a \pm t_{crit} SE(a)$$

$$\stackrel{\wedge}{\beta} \pm t_{crit} \stackrel{\wedge}{SE} \stackrel{\wedge}{(\beta)}$$

(-0.002, 0.014)


We do **not** reject the Null Hypothesis for a; thus a is **Insignificant**, since 0 lies within confidence interval

(1.05, 1.45)

We reject the Null

Hypothesis for b; thus b is significant, since 0 does not

lie within confidence interval

4.3. Hypothesis Testing – p-value approach

Two -sided Test

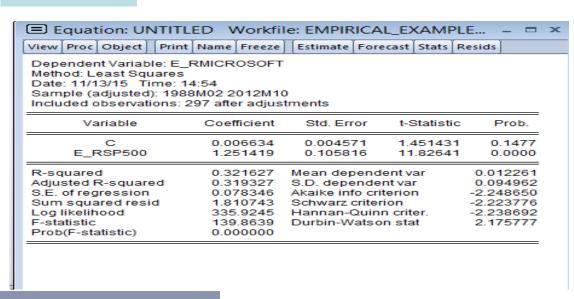
$$H_0: \alpha = 0$$

$$H_{A}: \alpha \neq 0$$

 $H_0: \beta = 0$

 $H_{A}: \beta \neq 0$

P-value approach

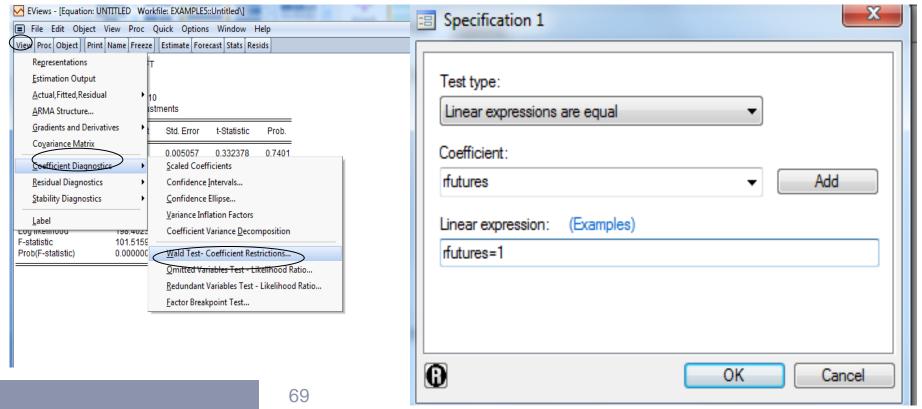

a = 5% significance level

p-value is termed as the

"plausibility" of the Null Hypothesis;

the smaller the p-value, the less plausible is the null hypothesis.

Is the largest significance level at which we fail to reject the null hypothesis.



5. Suppose now we want to test the null hypothesis that

 $H_0: \beta = 1$

 $H_A: \beta \neq 1$

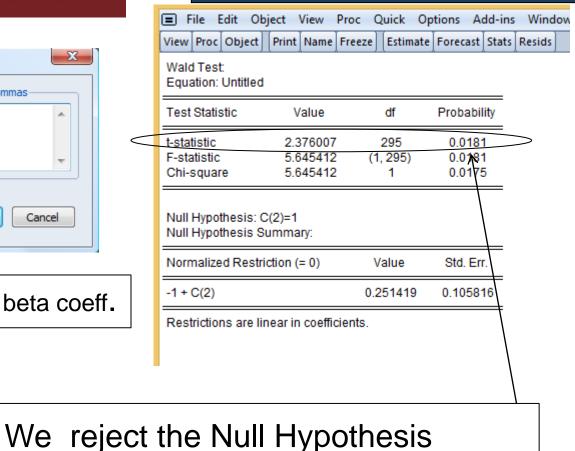
5.1 Go to View → Coefficient Diagnostics → Wald Test Coefficient Restrictions

OK

c(2) denotes the beta coeff.

Cancel

Coefficient restrictions separated by commas-


Wald Test

c(2)=1

Examples

C(1)=0, C(3)=2*C(4)

Empirical Example 5:CLR

□F-statistic and X-square statistic are identical since we are testing a hypothesis about only one parameter

6. Testing Multiple Hypothesis: The F- test

The t-test was used to test single- hypothesis (one coefficient hypothesis)

For more than one parameter hypothesis we use F - statistic

$$t - statictic = \frac{RRSS - URSS}{URSS} \times \frac{T - k}{m} \sim F(m, T - k)$$

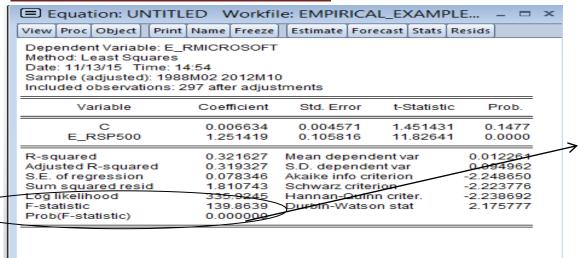
$$Z \sim t_{T-k}$$

$$Z^{2} \sim t_{T-k}^{2}$$

$$\sim F(1, T-k)$$

•URSS: Residual sum of squares from unrestricted regression

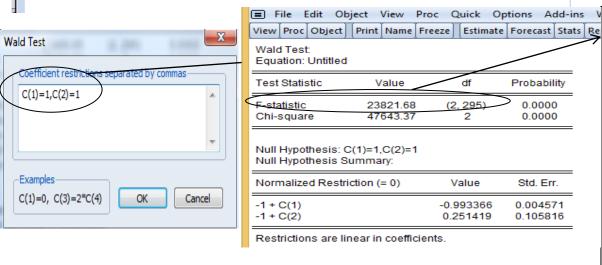
•RRSS: Residual sum of squares from restricted regression


•m: number of restrictions

T: number of observations

•k : number of regressors in unrestricted regression

Reject the Null when $F \succ t_{crit}$



 $H_0: \beta = 0$

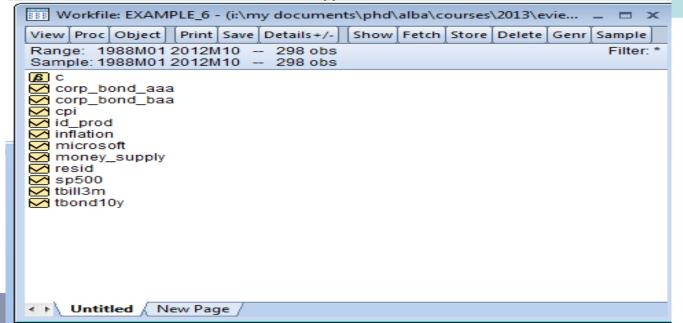
 $H_A: \beta \neq 0$

We reject the Null Hypothesis for levels of significance 1%, 5% and 10%, since p-value of F – statistic is 0.000. In this case F-test statistic is equal to the square of the slope t-stat.

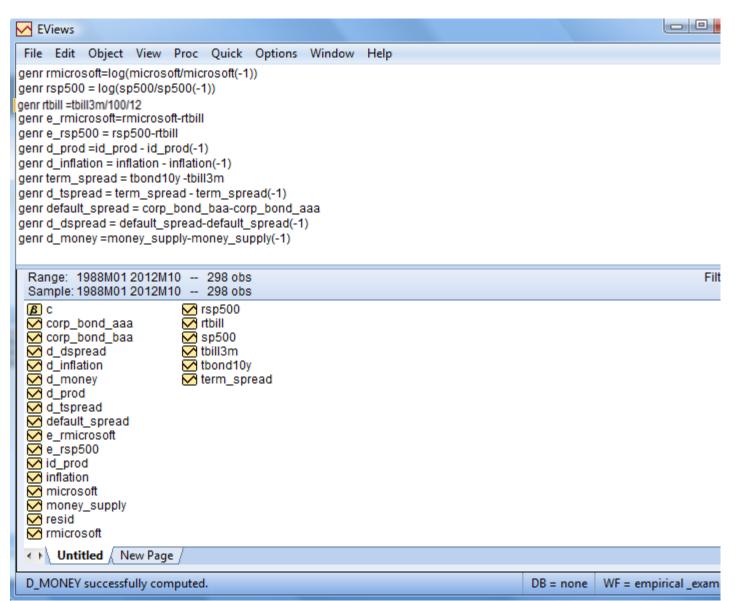
 $H_0: \alpha = 1$ and $\beta = H_A: \alpha \neq 1$ or $\beta \neq 1$

We reject the joint Null Hypothesis for levels of significance 1%, 5% and 10%.

☐ The F-version is adjusted for small sample bias and should be used when the regression is estimated using a small sample

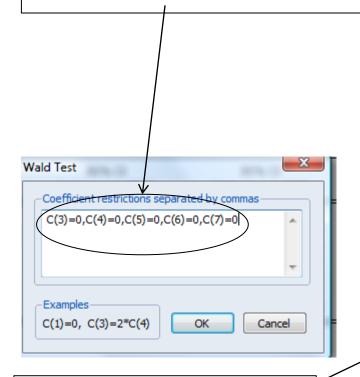


Multiple Linear Regression Model Estimation

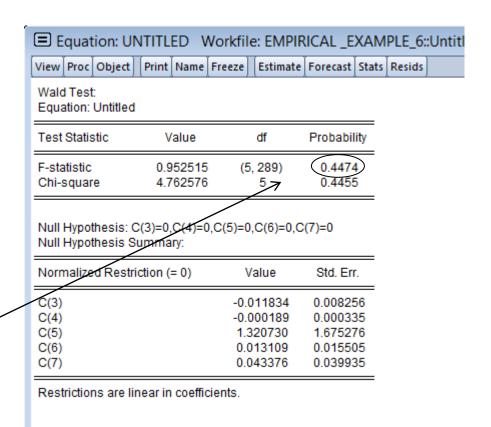


APT model: Microsoft stock - Market + Macroeconomic and financial variables

- 1. Open "empirical_example6" eviews workfile
 - Monthly RI for Microsoft and S&P500,T-bill rate CPI, money supply, industrial production, corporate bond yields with rates AAA and BAA, yield of US Treasury Bond10y for 29/01/21988- 31/10/2012
- 2. Calculate the log returns for Microsoft and the S&P 500 and the monthly T-bill3m as well as the changes in macroeconomic variables

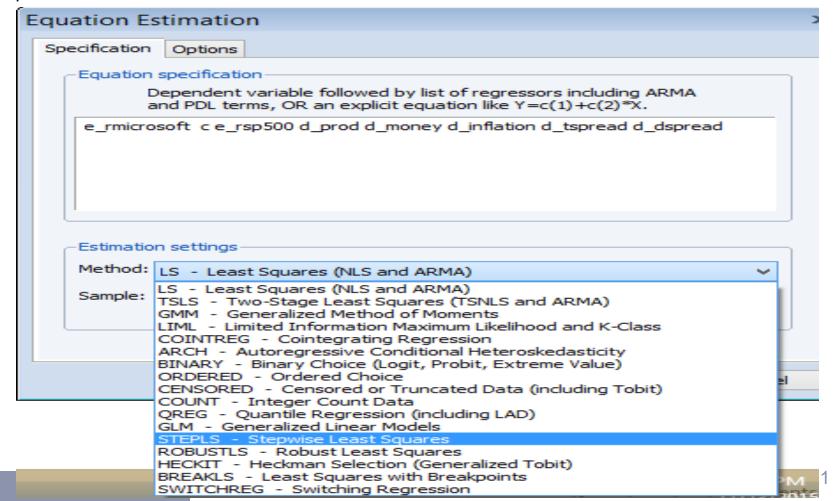

Quick ———— Estimate equation

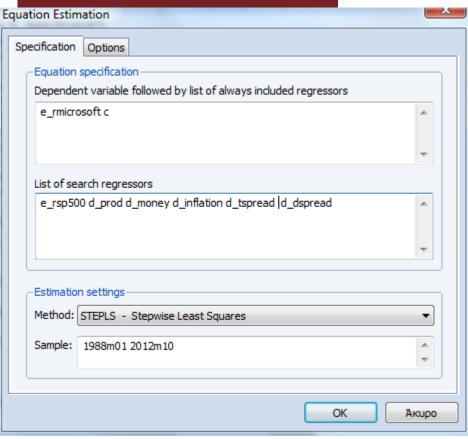
$$(R_{Microsoft} - r_f)_t = \alpha + \beta_1 (R_M - r_f)_t + \beta_2 (d _prod) + \beta_3 (d _money) + \beta_4 (d _inflation) + \beta_5 (d _tspread) + \beta_6 (d _dspread) + u_t$$



$$H_0: \beta_2 = 0$$
 and $\beta_3 = 0$ and $\beta_4 = 0$ and $\beta_5 = 0$ and $\beta_6 = 0$

$$H_A: \beta_2 \neq 0 \text{ or } \beta_3 \neq 0 \text{ or } \beta_4 \neq 0 \text{ or } \beta_5 \neq 0 \text{ or } \beta_6 \neq 0$$


Do not Reject the joint Null Hypothesis



Stepwise Regression

It constitutes an automatic variable selection procedure which chooses jointly the most important independent variables from a set of candidate variables

Dependent Variable: E_RMICROSOFT

Method: Stepwise Regression Date: 11/13/15 Time: 15:27

Sample (adjusted): 1988M03 2012M10 Included observations: 296 after adjustments Number of always included regressors: 1

Number of search regressors: 6 Selection method: Stepwise forwards

Stopping criterion: p-value forwards/backwards = 0.5/0.5

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
С	0.007848	0.004689	1.673807	0.0952
E_RSP500	1.295735	0.112455	11.52225	0.0000
D_PROD	-0.011036	0.008125	-1.358237	0.1754
D_TSPREAD	0.013468	0.015474	0.870370	0.3848
D_DSPREAD	0.041593	0.039764	1.045985	0.2964
D_INFLATION	1.227519	1.665196	0.737162	0.4616
R-squared	0.331356	Mean depend	lent var	0.012106
Adjusted R-squared	0.319828	S.D. dependent var		0.095085
S.E. of regression	0.078419	Akaike info criterion		-2.233444
Sum squared resid	1.783358	Schwarz criterion		-2.158639
Log likelihood	336.5497	Hannan-Quin	n criter.	-2.203493
F-statistic	28.74275	Durbin-Watso	on stat	2.194578
Prob(F-statistic)	0.000000			
	Selection	Summary		

Added E_RSP500 Added D_PROD Added D_TSPREAD Added D_DSPREAD Added D_INFLATION

Goodness of fit measures

 \mathbb{R}^2 A measure of how well the regression model fits the data or how well does the model containing the propose independent variables which explain the variation in the dependent variable

$$R^{2}adjusted = 1 - \left[\frac{T-1}{T-k}\left(1-R^{2}\right)\right]$$

Decision making tool for determining whether a given variable should be included in a regression model: if R-squared adjusted rise include the variable

The relationship between regression F and \mathbb{R}^2 $F-stat = \frac{R^2(T-k)}{1-R^2(k-1)}$

$$F - stat = \frac{R^2(T - k)}{1 - R^2(k - 1)}$$

EViews Workshop II

Agenda (1)

I. Testing for heteroskedasticity

- ➤Wald Test
- ➤ Breusch-Pagan- Godfrey Test

II. Testing for serial correlation

- ➤ Durbin- Watson Test
- ➤ Cohrane Orcutt Test
- ➤ Breusch-Godfrey Test

III. Testing for non normality

- ➤ Jarque Bera Test
- **≻**Dummies

IV. Testing for multicollinearity

- **≻**Correlation Matrix
- ➤ Add/Remove of Explanatory variable

Agenda (2)

V. Testing for linear relationship between Y and X

➤ Ramsey RESET Test

VI. Testing for stability

≻Chow Test

VII. Univariate Time Series Modelling of US Home Prices

- ➤ Autoregressive Process (AR)
- ➤ Moving Average Process (MA)
- >ARMA model

VIII. Stationarity

CLRM

Assumptions underlying the CLR model

 $E(u_t)$ =0 The errors have zero mean (Mean Independence)

 $var(u_t) = \sigma^2$ The variance of the errors is constant (Homoskedasticity)

 $cov(u_i, u_i)=0$ The errors are linearly independent of one other

 $cov(u_t,x_t)=0$ There is no relationship between the error and the corresponding variate x

 $u_t \sim N(0,\sigma^2)$ The errors are normally distributed (Normality)

Violation of one of the above assumptions may lead to

- 1. Biased coefficient estimates
- 2. Biased standard errors
- 3. Inappropriate distributions

Thus, we need to test and solve for these violations

The tests that detect any violation are based on the calculation of test statistic

LM test

- Chi-squared distribution
- df equal to the number of restrictions

Wald Test

- F-distribution
- df equal to (m, T-k)

$$\frac{\chi^2(m)}{m} \stackrel{A}{\square} F(m,T-k)$$

1st Assumption: Mean Independence

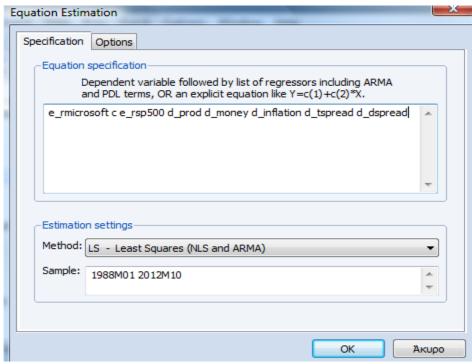
 $E(u_t)$ =0 The errors have zero mean (Mean Independence)

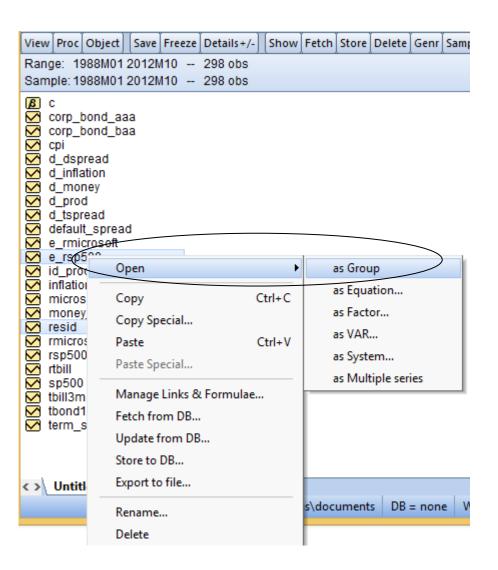
- •If we include a constant term in the regression equation, this assumption will never be violated.
- •If financial theory suggest a model without intercept then
- a. R-squared may be negative (the sample average of y explains more of the variation in y than the explanatory variables x).
- b. Severe biases in slope coefficients.

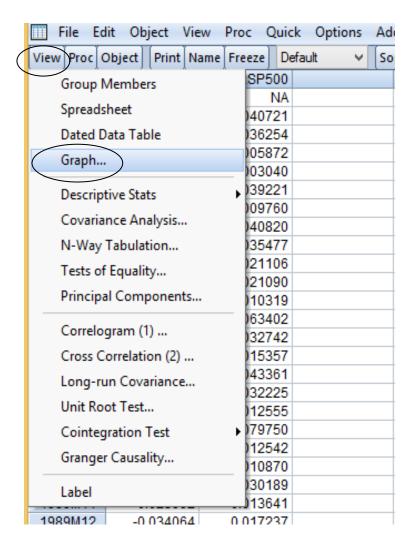
2nd Assumption: Homoskedasticity

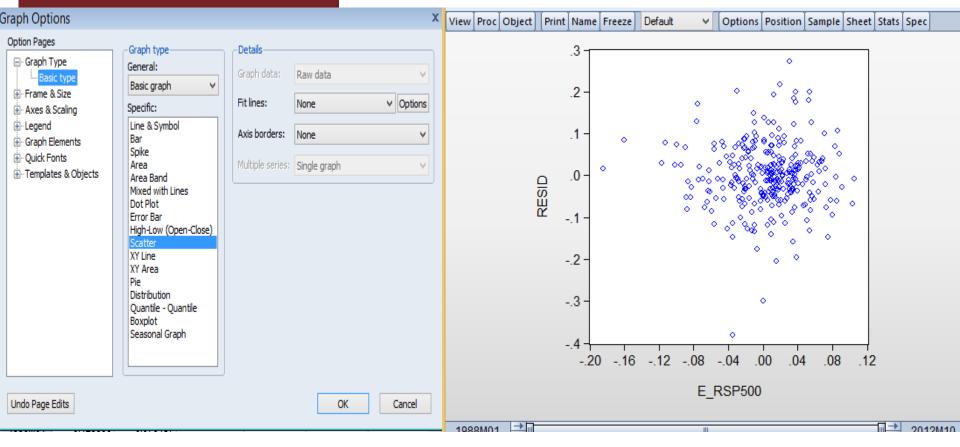
 $var(u_t) = \sigma^2$ The variance of the errors is constant (Homoskedasticity)

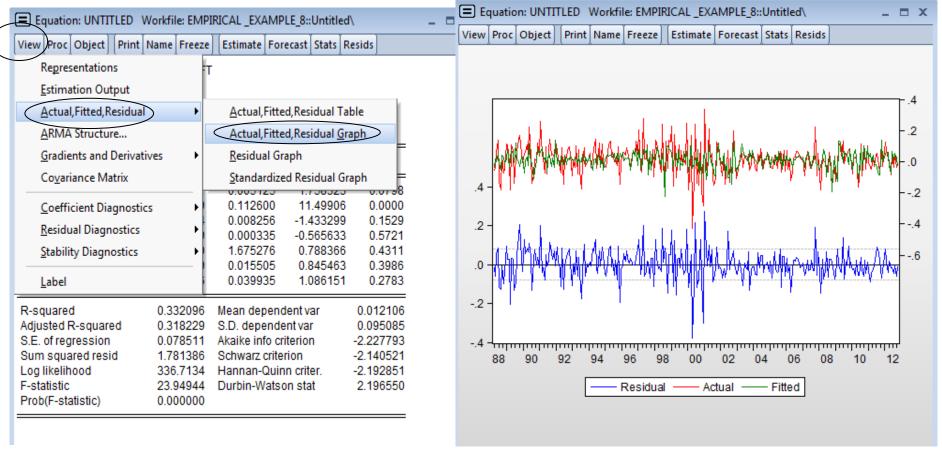
•You can plot the residuals with an explanatory variable; however, it is difficult to detect the presence or not of heteroskedasticity, since we do not know the form of the latter.

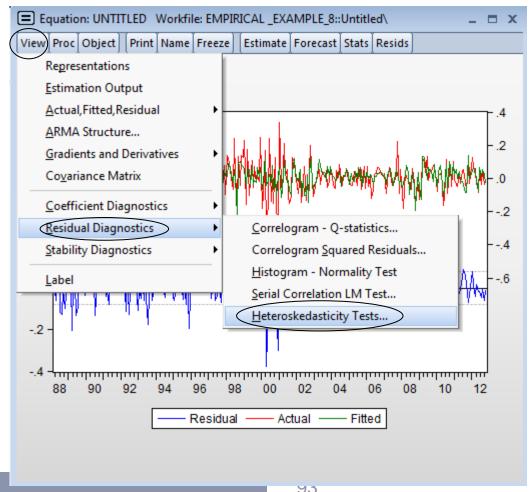

Thus, we use a number of tests that detect heteroskedasticity here in EViews: White Test and Breusch-Pagan- Godfrey Test

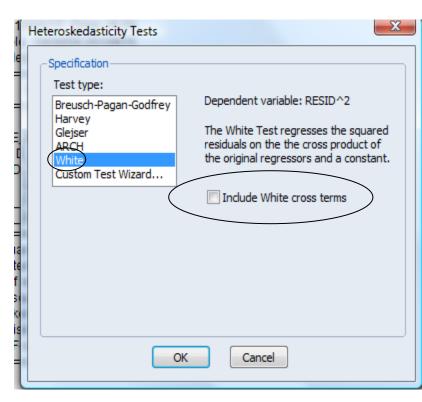

Open empirical_example_8.wf1 -----> Quick -----> Estimate equation

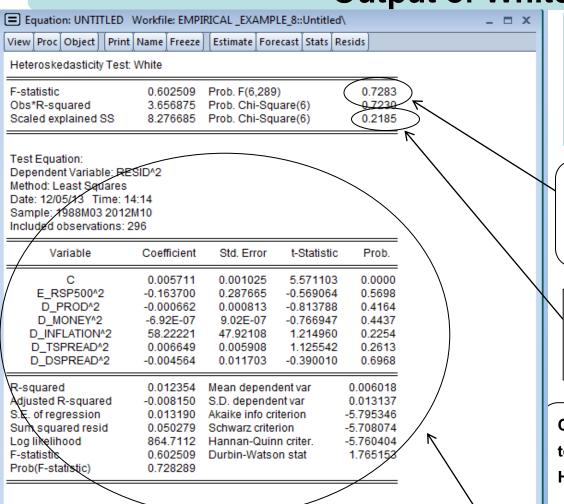

$$(R_{Microsoft} - r_f)_t = \alpha + \beta_1 (R_M - r_f)_t + \beta_2 (d prod) + \beta_3 (d money) + \beta_4 (d inflation) + \beta_5 (d tspread) + \beta_6 (d dspread) + u_t$$








Graphical Illustration of possible heteroskedasticity


How to detect it?: View — → Residual Diagnostics → Heteroskedasticity Tests → Select White

Output of White Test

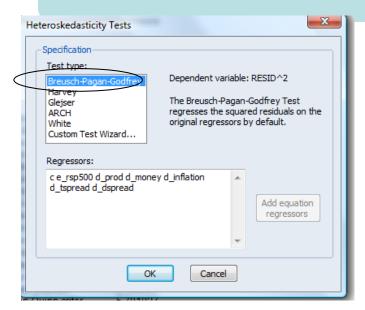
 H_0 : Homoskedasticity

 H_A : Heteroskedasticity

p-values are above 0.05 for **F and chisquared versions** of the test statistic, so we do not find evidence for presence of heteroskedasticity.

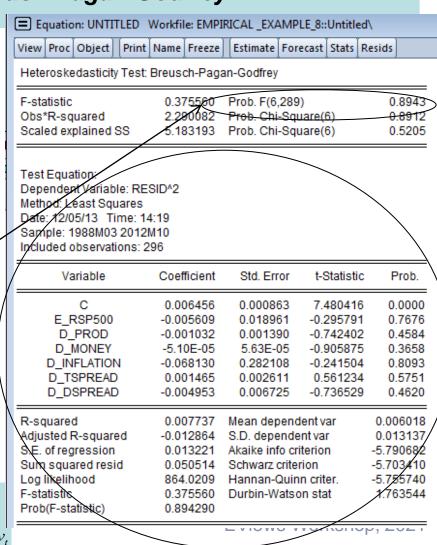
p-value for the third version " **Scaled explained SS**" is 0.21 so we do not find evidence for the presence of

heteroskedasticity.


Conclusion: Based on the three versions of the test we do not find evidence for the presence of Heteroskedasticity.

Auxiliary Regression

$$\hat{u_t^2} = \alpha + \beta_1 (R_M - r_f)_t^2 + \beta_2 (d _ prod)_t^2 + \beta_3 (d _ money)_t^2 + \beta_4 (d _ i \text{ nflation})_t^2 + \beta_5 (d _ tspread)_t^2 + \beta_6 (d _ dspread)_t^2 + v_t^{2021}$$


How to detect it? Another Test: View → Residual Diagnostics → Heteroskedasticity Tests → Select *Breush-Pagan-Godfrey*

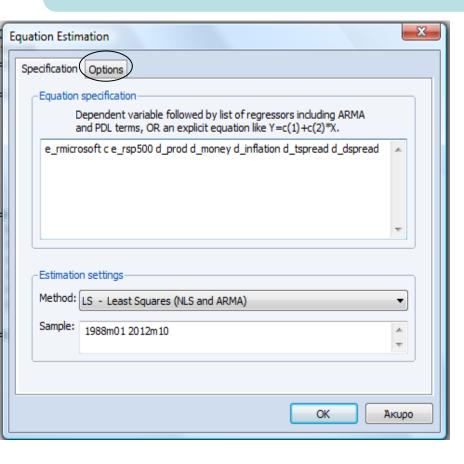
p-values are above 0.05; so we do not find evidence for the presence of heteroskedasticity.

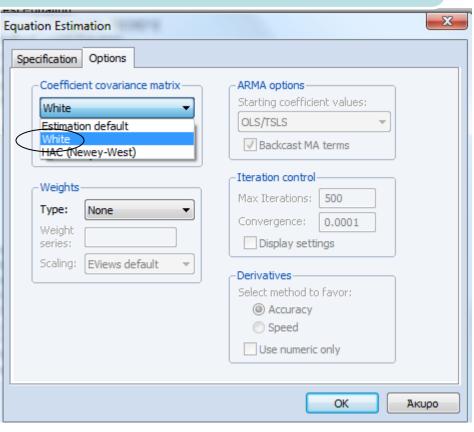
Auxiliary Regréssion

 $\hat{u_t^2} = \alpha + \beta_1 (R_M - r_f)_t + \beta_2 (d prod)_t + \beta_3 (d money)_t + \beta_4 (d inflation)_t + \beta_5 (d tspread)_t + \beta_6 (d dspread)_t + v_t$

Change the estimation period → **Detect Heteroskedasticity**

1990M01-2000M10


Equation: UNTITLED Workfile: EMPIRICAL EXAMPLE 8::Untitled		Workfile: EMP			
Heteroskedasticity Test: White F-statistic 3.976778 Prob. F(6,123) 0.0011	/iew Proc Object Print		IRICAL _EXAMP	LE_8::Untitled	Λ.
F-statistic 3.976778 Prob. F(6,123) 0.0011 Obs*R-squared 21.12129 Prob. Chi-Square(6) 0.0017 Scaled explained SS 32.29206 Prob. Chi-Square(6) 0.0000 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/05/13 Time: 15:06 Sample: 1990M01 2000M10 Included observations: 130 Variable Coefficient Std. Error t-Statistic Prob. C 0.004518 0.001878 2.405559 0.0176 E_RSP500^2 0.084755 0.487055 0.174015 0.8621 D_PROD^2 -0.000346 0.003782 -0.091596 0.9272 D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183		Name Freeze	Estimate For	ecast Stats R	esids
Obs*R-squared 21.12129 Prob. Chi-Square(6) 0.0017 Scaled explained SS 32.29206 Prob. Chi-Square(6) 0.0000 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 12/05/13 Time: 15:06 Sample: 1990M01 2000M10 Included observations: 130 Variable Coefficient Std. Error t-Statistic Prob. C 0.004518 0.001878 2.405559 0.0176 E_RSP500^2 0.084755 0.487055 0.174015 0.8621 D_PROD^2 -0.000346 0.003782 -0.091596 0.9272 D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	Heteroskedasticity Test	: White			
Dependent Variable: RESID^2 Method: Least Squares Date: 12/05/13	Obs*R-squared	21.12129	Prob. Chi-Squ	uare(6)	0.0017
C 0.004518 0.001878 2.405559 0.0176 E_RSP500^2 0.084755 0.487055 0.174015 0.8621 D_PROD^2 -0.000346 0.003782 -0.091596 0.9272 D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	Dependent Variable: RE Method: Least Squares Date: 12/05/13 Time: 1 Sample: 1990M01 2000	15:06 0M10			
E_RSP500^2 0.084755 0.487055 0.174015 0.8621 D_PROD^2 -0.000346 0.003782 -0.091596 0.9272 D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	Variable	Coefficient	Std. Error	t-Statistic	Prob.
D_PROD^2 -0.000346 0.003782 -0.091596 0.9272 D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	С	0.004518	0.001878	2.405559	0.0176
D_MONEY^2 -7.09E-06 2.07E-05 -0.342389 0.7326 D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	E RSP500^2	0.084755	0.487055	0.174015	0.8621
D_INFLATION^2 653.7758 140.0555 4.667975 0.0000 D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183		-0.000346	0.003782	-0.091596	0.9272
D_TSPREAD^2 -0.006284 0.012581 -0.499506 0.6183	_				
<u>-</u>	D_PROD^2		2.07E-05	-0.342389	0.7326
D DSPREADA2 0.1186/1 0.122018 0.07232/ 0.3328	D_PROD^2 D_MONEY^2	-7.09E-06			
D_DSFREAD 2 0.110041 0.122010 0.572324 0.5320	D_PROD^2 D_MONEY^2 D_INFLATION^2	-7.09E-06 653.7758	140.0555	4.667975	0.0000
R-squared 0.162471 Mean dependent var 0.007274	D_PROD^2 D_MONEY^2 D_INFLATION^2	-7.09E-06 653.7758	140.0555	4.667975	0.0000
Adjusted R-squared 0.121616 S.D. dependent var 0.013496	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2	-7.09E-06 653.7758 -0.006284 0.118641	140.0555 0.012581 0.122018	4.667975 -0.499506 0.972324	0.0000 0.6183 0.3328
S.E. of regression 0.012649 Akaike info criterion -5.850171	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2 R-squared	-7.09E-06 653.7758 -0.006284 0.118641 0.162471	140.0555 0.012581 0.122018 Mean depend	4.667975 -0.499506 0.972324	0.0000 0.6183 0.3328 0.007274
	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2 R-squared Adjusted R-squared	-7.09E-06 653.7758 -0.006284 0.118641 0.162471 0.121616	140.0555 0.012581 0.122018 Mean depend S.D. depende	4.667975 -0.499506 0.972324 Jent var	0.0000 0.6183 0.3328 0.007274 0.013496
Log likelihood 387.2611 Hannan-Quinn criter5.787431	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2 R-squared Adjusted R-squared S.E. of regression	-7.09E-06 653.7758 -0.006284 0.118641 0.162471 0.121616 0.012649	140.0555 0.012581 0.122018 Mean depend S.D. depende Akaike info cri	4.667975 -0.499506 0.972324 lent var ent var iterion	0.0000 0.6183 0.3328 0.007274 0.013496 -5.850171
F-statistic 3.976778 Durbin-Watson stat 2.029333	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid	-7.09E-06 653.7758 -0.006284 0.118641 0.162471 0.121616 0.012649 0.019679	140.0555 0.012581 0.122018 Mean depende S.D. depende Akaike info cri Schwarz criter	4.667975 -0.499506 0.972324 lent var ent var iterion rion	0.0000 0.6183 0.3328 0.007274 0.013496 -5.850171 -5.695765
Prob(F-statistic) 0.001135	D_PROD^2 D_MONEY^2 D_INFLATION^2 D_TSPREAD^2 D_DSPREAD^2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-7.09E-06 653.7758 -0.006284 0.118641 0.162471 0.121616 0.012649 0.019679 387.2611	140.0555 0.012581 0.122018 Mean depende S.D. depende Akaike info cri Schwarz criter Hannan-Quin	4.667975 -0.499506 0.972324 lent var ent var iterion rion in criter.	0.0000 0.6183 0.3328 0.007274 0.013496 -5.850171 -5.695765 -5.787431



Correcting for heteroskedasticity

Use White robust standard errors in the estimation

Estimate Equation --- Options --- Select White --> Press Ok

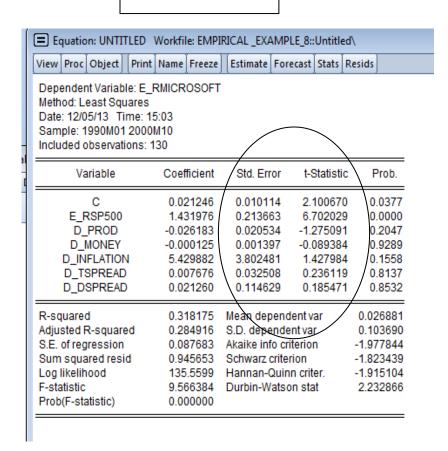
Comparison

Comparing the results <u>before and after</u> using the heteroskedasticity robust standard errors.

After....

Equation: UNTITLED Workfile: EMPIRICAL_EXAMPLE_8::Untitled\

View Proc Object | Print Name Freeze | Estimate Forecast Stats Resids

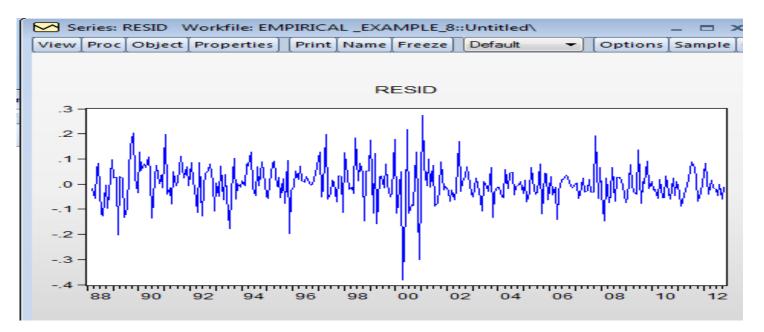

Dependent Variable: E_RMICROSOFT

Method: Least Squares Date: 12/05/13 Time: 15:09 Sample: 1990M01 2000M10 Included observations: 130

White heteroskedasticity-consistent standard errors & covariance

			$\overline{}$	
Variable	Coefficient	Sta. Error	t-Statistic	Prob.
C E_RSP500 D_PROD D_MONEY D INFLATION	0.021246 1.431976 -0.026183 -0.000125 5.429882	0.010146 0.244356 0.020297 0.001217 5.818300	2.094027 5.860210 -1.289981 -0.102596 0.933242	0.0383 0.0000 0.1995 0.9185 0.3525
D_INPEATION D_TSPREAD D_DSPREAD	0.007676 0.021260	0.032402 0.122796	0.933242 0.236894 0.173134	0.3525 0.8131 0.8628
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.318175 0.284916 0.087683 0.945653 135.5599 9.566384 0.000000	Mean depende S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.026881 0.103690 -1.977844 -1.823439 -1.915104 2.232866

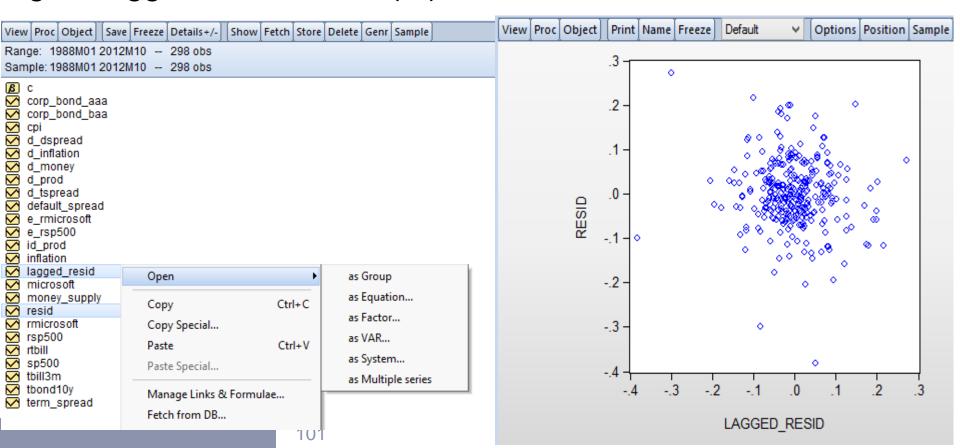
Before...


Testing for Serial Correlation/Autocorrelation

3nd Assumption: No serial autocorrelation

$cov(u_i, u_i)=0$ The errors are linearly independent of one other

- Errors are uncorrelated with one another
- •If errors are not uncorrelated with one another, it would be stated that they are *autocorrelated or serially correlated*.


Plot of residuals over time for our model

3nd Assumption: No serial autocorrelation

Plot of residuals against their lagged value

In the command window type :
 genr lagged_resid = resid(-1)

How detect autocorrelation??

From the estimation output a simple test is Durbin -Watson Test

Equation: UNTITLED Workfile: EMPIRICAL_EXAMPLE_8::Untitled\

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

Dependent Variable: E_RMICROSOFT

Method: Least Squares Date: 12/05/13 Time: 16:27

Sample (adjusted): 1988M03 2012M10 Included observations: 296 after adjustments

White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.009011	0.005324	1.692479	0.0916
E_RSP500	1.294789	0.106406	12.16844	0.0000
D_PROD	-0.011834	0.007143	-1.656595	0.0987
D_MONEY	-0.000189	0.000292	-0.647642	0.5177
D_INFLATION	1.320730	1.757288	0.751573	0.4529
D_TSPREAD	0.013109	0.016608	0.789352	0.4306
D_DSPREAD	0.043376	0.033288	1.303038	0.1936
R-squared	0.332096	Mean depend	lent var	0.012106
Adjusted R-squared	0.318229	S.D. dependent var		0.095085
S.E. of regression	0.078511	Akaike info criterion		-2.227793
Sum squared resid	1.781386	Schwarz criterion		-2.140521
Log likelihood	336.7134	Hannan-Quinn criter.		-2.192851
F-statistic	23.94944	Durbin-Watso	n stat	2.196550
Prob(F-statistic)	0.000000			

 $DW \approx 2(1-\rho)$

The Durbin- Watson test statistic is 2.19, close to 2

Durbin – Watson(DW) is a test for **first order autocorrelation**.(tests the relationship between an error and its immediately previous value).

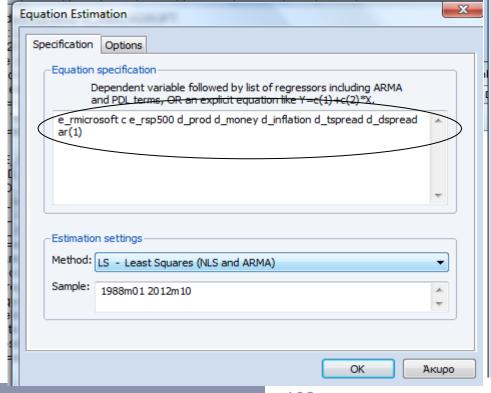
$$u_{t} = \rho u_{t-1} + v_{t}$$

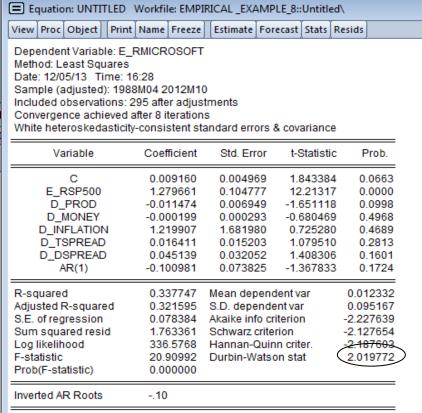
 $H_0: \rho = 0$ (No Autocorrelation)

 $H_A: \rho \neq 0$ (Autocorrelation)

Conditions for DW to be a valid Test

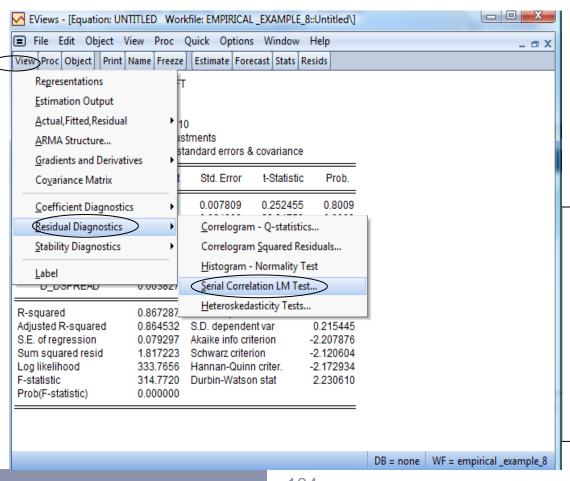
- 1. Existence of a constant term.
- Non –stochastic regressors.
- **3. No** lags of dependent variable.

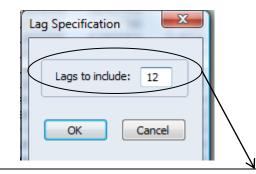



Another way

Cohrane –Orcut Procedure (Recalculate the model assuming the error term follows a **first** order autoregressive process)

$$Y_t = a + b_1 x_{1t} + \dots + b_6 x_{6t} + u_t$$





Another more robust test than DW is **Breush – Godfrey Test**

Specify the number of lags equal to 12. There is no an obvious answer to this, you can experiment on a range of number. You can relate the number of lags with the frequency of your data. (for monthly data use 12, for quarterly data 4, etc)

View Proc Object Print Name Freeze Estimate Forecast Stats Resids

Breusch-Godfrey Serial Correlation LM Test:

F-statistic 1.169460 Prob. F(12,277) 0.3049 Obs*R-squared 14.27300 Prob. Chi-Square(12) 0.2836

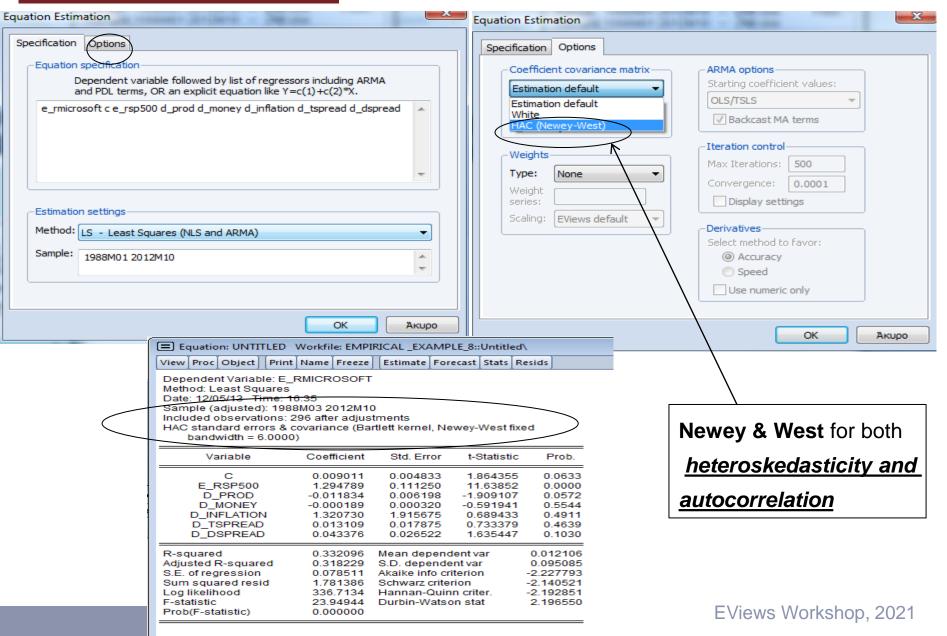
Test Equation:

Dependent Variable: RESID Method: Least Squares Date: 12/05/13 Time: 16:33 Sample: 1988M03 2012M10 Included observations: 296

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.20E-05	0.005116	0.006257	0.9950
E_RSP500	-0.014864	0.114914	-0.129345	0.8972
D_PROD	-0.000382	0.008360	-0.045694	0.9636
D_MONEY	5.90E-06	0.000336	0.017543	0.9860
D_INFLATION	-0.968758	1.700562	-0.569669	0.5694
D_TSPREAD	0.000876	0.015749	0.055592	0.9557
D_DSPREAD	0.002545	0.040532	0.062796	0.9500
RESID(-1)	-0.104130	0.060425	-1.723308	0.0859
RESID(-2)	-0.085033	0.060916	-1.395916	0.1639
RESID(-3)	0.090240	0.061194	1.474662	0.1414
RESID(-4)	0.002533	0.061301	0.041321	0.9671
RESID(-5)	0.004603	0.060912	0.075573	0.9398
RESID(-6)	-0.024474	0.060441	-0.404918	0.6859
RESID(-7)	0.099058	0.061313	1.615602	0.1073
RESID(-8)	0.056159	0.060662	0.925772	0.3554
RESID(-9)	-0.052242	0.061241	-0.853065	0.3944
RESID(-10)	-0.025008	0.061504	-0.406602	0.6846
RESID(-11)	-0.030298	0.060947	-0.497129	0.6195
RESID(-12)	0.066893	0.060719	1.101688	0.2716
R-squared	0.048220	Mean dependent var		-3.90E-18
Adjusted R-squared	-0.013629	S.D. dependent var		0.077708
S.E. of regression	0.078236	Akaike info criterion		-2.196133
Sum squared resid	1.695488	Schwarz criterion		-1.959252
Log likelihood	344.0277	Hannan-Quinn criter.		-2.101291
F-statistic	0.779640	Durbin-Watso	on stat	1.990552
Prob(F-statistic)	0.723794			

p-values for both versions of the test

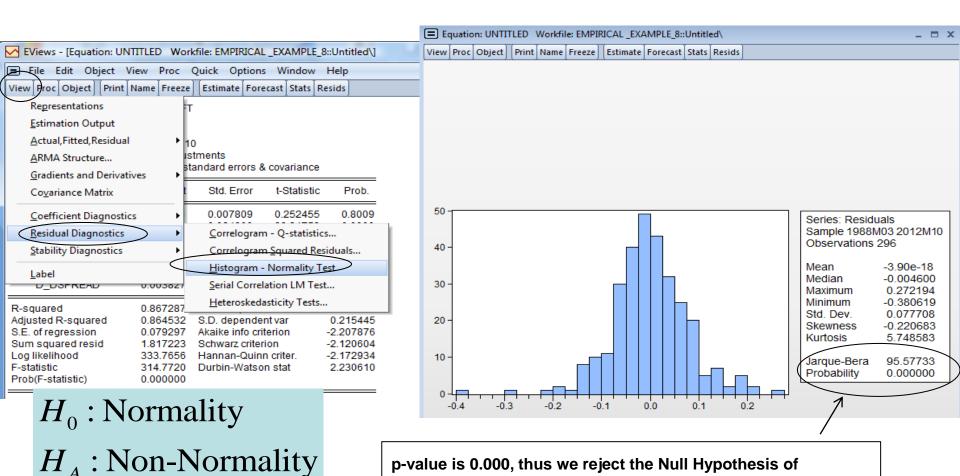

F and chi-squared are in
excess of 0.05; thus we cannot reject
the Null Hypothesis of no autocorrelation
/ no serial correlation.

$$H_0: \rho_1=0 \text{ and } \rho_2=0 \text{ and } ... \rho_{12}=0$$

$$H_A: \rho_1 \neq 0 \text{ or } \rho_2 \neq 0 \text{ or...} \rho_{12} \neq 0$$

Summarizing...

Testing for Non- Normality

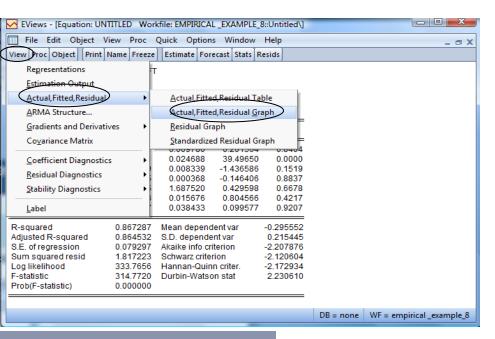

Testing for Non- Normality

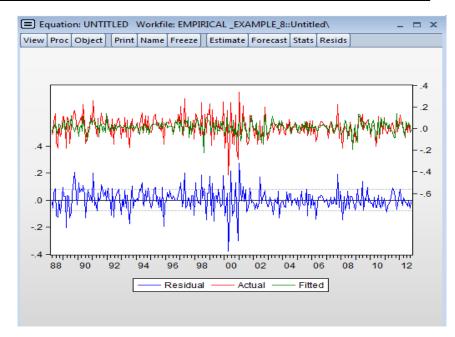
residual normality. Residuals negatively skewed and are leptokurtic

 $u_t \sim N(0,\sigma^2)$ The errors are normally distributed (Normality)

How to detect Non –Normality ?? Use Jarque – Bera Test:

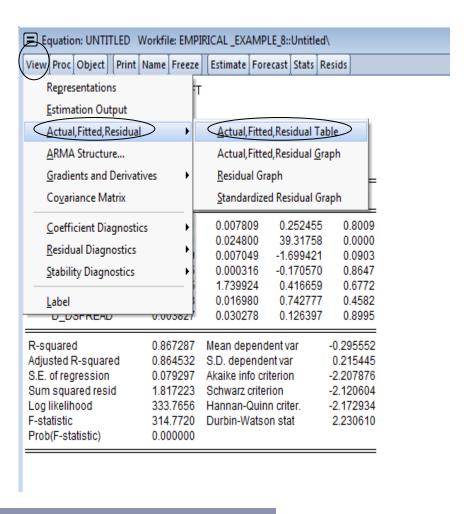
View → Resid. Diagnostics → Histogram –Normality Test

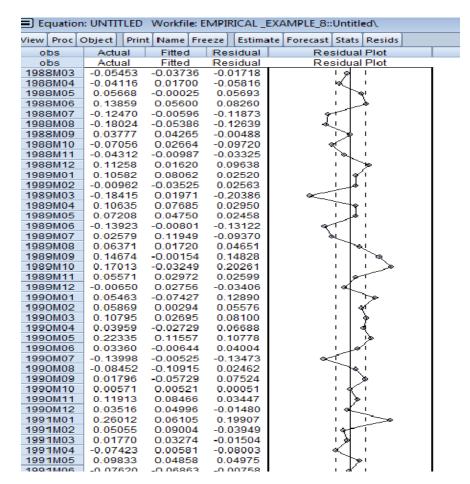




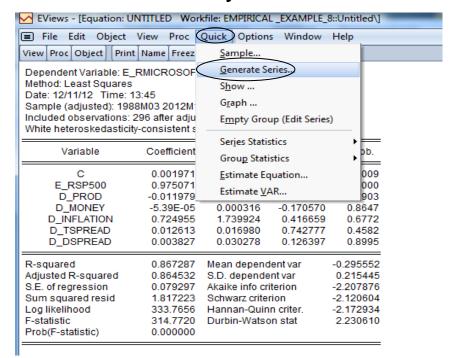
What to do if evidence of non-normality is found?

- •Central Limit Theory: The test statistics will asymptotically follow the appropriate distribution even in the absence of error normality; the sample mean converges to a normal distribution.
- •Financial/ Economic theory: One or two very extreme residuals cause a rejection of normality assumption (outliers)

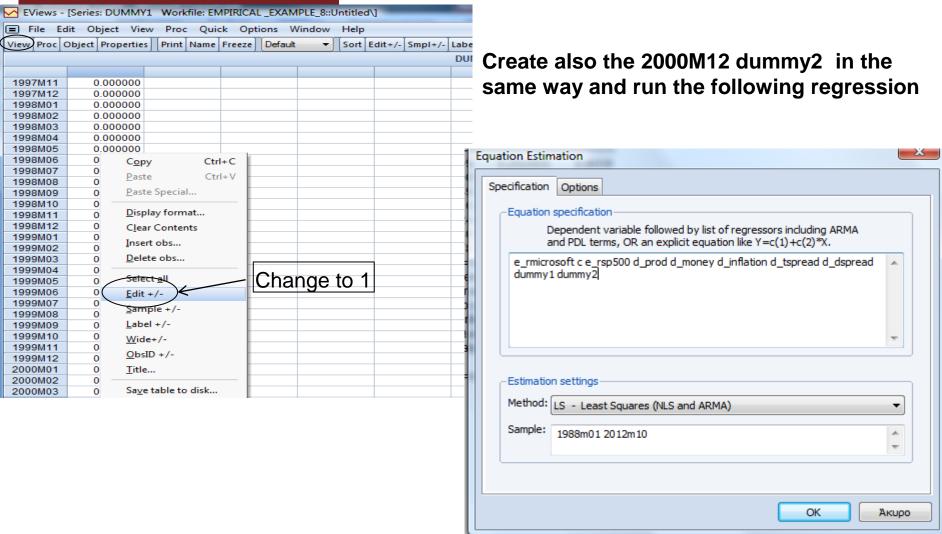

A plausible solution : Use of dummy variables



From the graph, we observe a small number of outliers in early 2000. We can also see the table with the corresponding values


1999M06 0.10732 0.07399 0.03334 1999M07 -0.05368 -0.03782 -0.015871999M08 0.07157 -0.009830.08140 1999M09 -0.02591 -0.02580-0.000111999M10 0.01758 0.06852 -0.050941999M11 -0.020930.01132 -0.032241999M12 0.24422 0.06500 0.17922 2000M01 -0.06500-0.116142000M02 -0.09567 -0.02116 -0.074512000M03 0.16805 0.11737 0.05068 2000M04 -0.42573 -0.04511 -0.380622000M05 -0.11344 -0.01337 -0.100072000M06 0.24096 0.02415 0.21681 2000M07 -0.141442000M08 -0.00526 0.07766 -0.082922000M09 -0.15147 -0.06686 -0.084602000M10 0.00055 0.12689 0.12744 -0.18786 -0.10605 -0.08181 2000M11 2000M12 -0.28463 0.01522 -0.299850.06566 2001M01 0.33786 0.27219 2001M02 2001M03 -0 07949 -0.07159 -0.00789

Extreme residuals:


2000M04, 2000M12

Construct the dummy variables in order to remove big outliers

•Create 2000M04 dummy 1:

With Dummies

Dependent Variable: E_RMICROSOFT

Method: Least Squares Date: 12/05/13 Time: 16:48

Sample (adjusted): 1988M03 2012M10

Included observations: 296 after adjustments

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

bandwidth = 6.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C E_RSP500 D_PROD D_MONEY D_INFLATION D_TSPREAD D_DSPREAD DUMMY1 DUMMY2	0.011695 1.265716 -0.011751 -0.000227 0.367889 0.017380 0.046554 -0.391750 -0.302171	0.004575 0.101805 0.006335 0.000308 1.412260 0.016146 0.026051 0.010734 0.006651	2.556130 12.43277 -1.854849 -0.735616 0.260497 1.076453 1.787039 -36.49662 -45.43132	0.0111 0.0000 0.0646 0.4626 0.7947 0.2826 0.0750 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.421973 0.405861 0.073292 1.541672 358.1030 26.18956 0.000000	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.012106 0.095085 -2.358804 -2.246597 -2.313879 2.189767

Without Dummies

EViews - [Equation: UNTITLED Workfile: EMPIRICAL _EXAMPLE_8::Untitled\]

File Edit Object View Proc Quick Options Window Help

View Proc Object | Print Name Freeze | Estimate Forecast Stats Resids

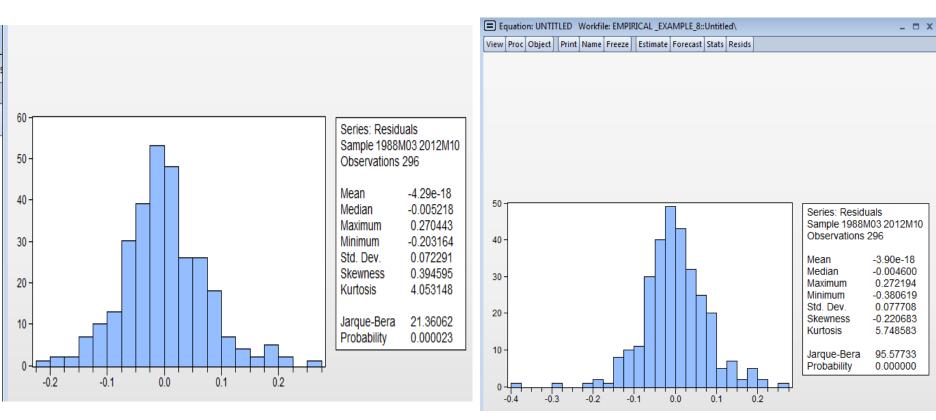
Dependent Variable: E_RMICROSOFT

Method: Least Squares Date: 12/11/12 Time: 11:52

Sample (adjusted): 1988M03 2012M10 Included observations: 296 after adjustments

White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C E_RSP500 D_PROD D_MONEY D_INFLATION D_TSPREAD D_DSPREAD	0.001971 0.975071 -0.011979 -5.39E-05 0.724955 0.012613 0.003827	0.007809 0.024800 0.007049 0.000316 1.739924 0.016980 0.030278	0.252455 39.31758 -1.699421 -0.170570 0.416659 0.742777 0.126397	0.8009 0.0000 0.0903 0.8647 0.6772 0.4582 0.8995
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.867287 0.864532 0.079297 1.817223 333.7656 314.7720 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.295552 0.215445 -2.207876 -2.120604 -2.172934 2.230610


We observe a change in coefficient values as well as in t-stats and p-values

What about the normality of residuals??

With Dummies

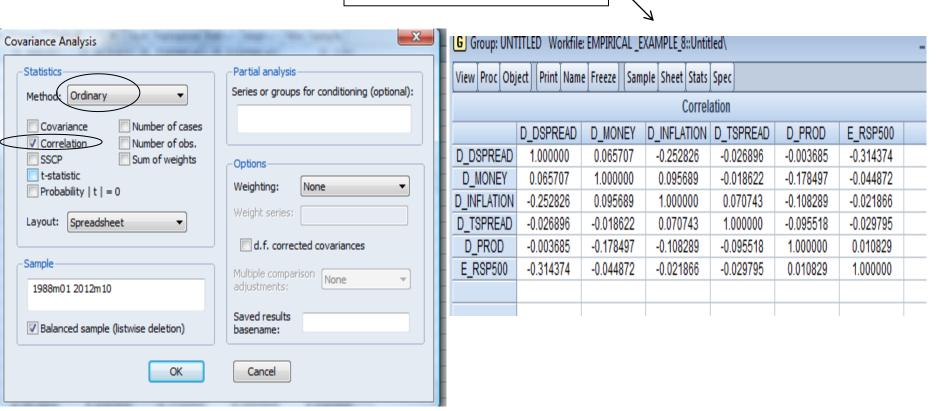
Without Dummies

Skewness and kurtosis are slightly closer to the values that would take under normality JB value is significantly lower

A long way for residuals to follow a normal distribution...

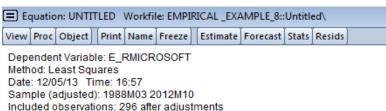
Views Workshop, 2021

Implicit assumption: explanatory variables not correlated/orthogonal with one another.


How detect multicollinearity?? Two easy ways:

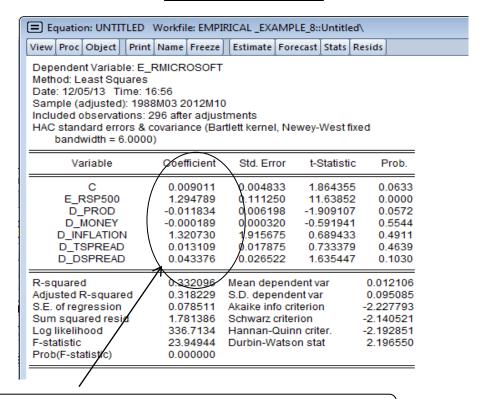
1. Use the correlation matrix of the explanatory variables

Correlation Matrix


No problem of multicollinearity, since the correlation among the explanatory variables is relatively small

2. Add/Remove an explanatory variables, identifying a big change in the coefficient values

Drop <u>d</u> <u>dspread</u> from our regression equation


Without d_dspread

HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 6.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C E_RSP500 D_PROD D_MONEY D_INFLATION D_TSPREAD	0.009018 1.254566 -0.012005 -0.000161 0.812608 0.012783	0.004850 0.111124 0.006233 0.000317 1.985283 0.017931	1.859321 11.28984 -1.926016 -0.507025 0.409316 0.712904	0.0640 0.0000 0.0551 0.6125 0.6826 0.4765
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.329369 0.317807 0.078535 1.788658 336.1105 28.48573 0.000000	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	0.012106 0.095085 -2.230476 -2.155672 -2.200526 2.188938

With d_dspread

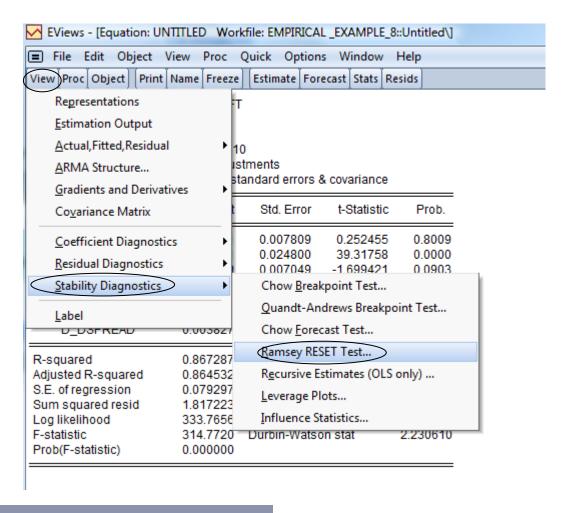
No big changes in coeff. values, thus no present of multicollinearity

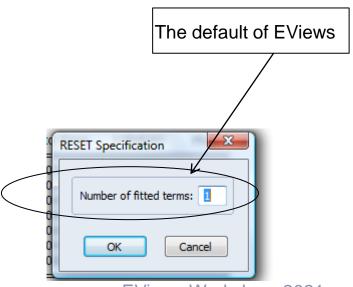
- Problems if near Multicollinearity is present but ignored
- 1. R-squared will be high, but the individual coeff. will have high standard errors, so that regression "looks good" as a whole, but the individual variables are not significant.

Remark: Multicollinearity does **not** affect the value of R-squared in the regression.

- 2. Regression becomes very sensitive to small changes in the specification; add/remove an independent variable leads to large changes in the coeff. values or significances of other variables.
- **3.** Wide confidence intervals for the parameters; inappropriate results for significance tests.

- Solutions to the problem of multicollinearity
- 1. Use of ridge Regressions
- Use of Principal Component Analysis.
- 3. Ignorance of multicollinearity if the model is statistically appropriate.
- **4. Drop** one of the collinear variables
- 5. Transform the highly correlated variables into a ratio and include the ratio and not the individual explanatory variables.
- 6. A sufficient history of data: longer run of data/ higher frequent data/pooled data.


Testing for linear relationship between Y and X



Testing for linear relationship between Y and X

Linearity or not???

Ramsey RESET test : View → Stability Diagnostics → Ramsey RESET Test

Testing for linear relationship between Y and X

	Value	df	Probability
t-statistic	1.125077	288	0.2615
F-statistic	1.265799	(1, 288)	0.2615
Likelihood ratio	1.298109	1	0.2546

F-test summary: Mean Squares Sum of Sq. 0.007795 0.007795 Test SSR Restricted SSR 0.006164 1.781386 289 Unrestricted SSR 1.773591 288 0.006158 0.006158 Unrestricted SSR 1.773591 288

LR test summary:
Restricted LogL

Unrestricted LogL

Value df 336.7134 289 337.3625 288

Unrestricted Test Equation:

Dependent Variable: E_RMICROSOFT

Method: Least Squares Date: 12/05/13 Time: 16:59 Sample: 1988M03 2012M10 Included observations: 296

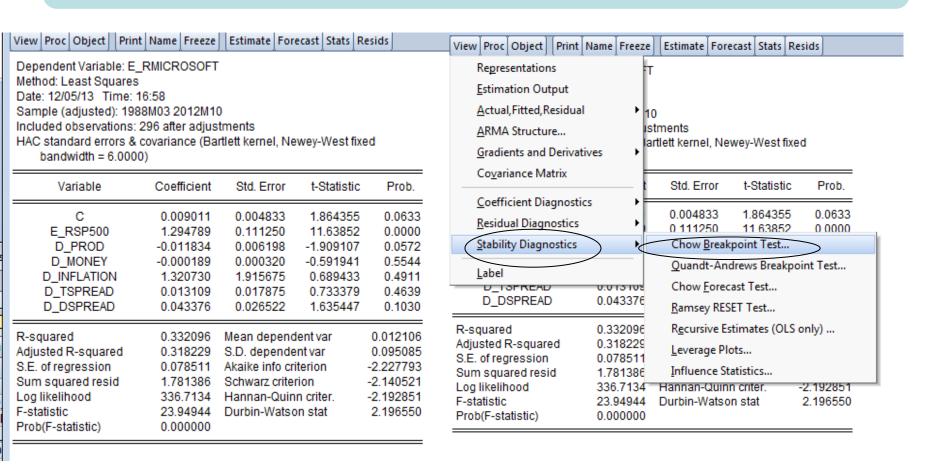
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed

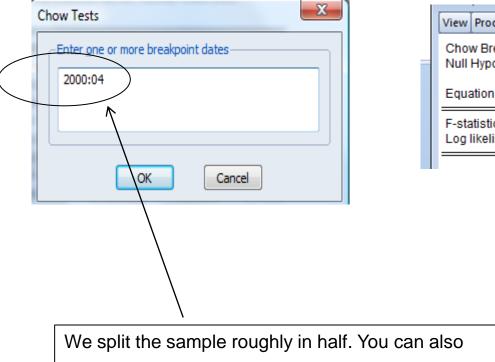
bandwidth = 6.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005799	0.005455	1.062927	0.2887
E_RSP500	1.298691	0.110054	11.80051	0.0000
D_PROD	-0.011925	0.006576	-1.813385	0.0708
D_MONEY	-0.000199	0.000317	-0.627211	0.5310
D_INFLATION	1.389351	1.928037	0.720604	0.4717
D_TSPREAD	0.011931	0.017602	0.677800	0.4984
D_DSPREAD	0.032900	0.026370	1.247624	0.2132
FITTED^2	1.035949	0.683401	1.515874	0.1306
R-squared	0.335018	Mean depen	dent var	0.012106
Adjusted R-squared	0.318856	S.D. depend	ent var	0.095085
S.E. of regression	0.078475	Akaike info c	riterion	-2.225422
Sum squared resid	1.773591	Schwarz crite	erion	-2.125683
Log likelihood	337.3625	Hannan-Qui	nn criter.	-2.185488
F-statistic	20.72780	Durbin-Wats	on stat	2.197602
Prob(F-statistic)	0.000000			

 H_0 : Linearity

 $H_A: Non-Linearity$


Both **F and chi-squared versions**of the test show that there is **no**apparent **non-linearity equation**; the relationship between the Microsoft excess returns and the explanatory variables is linear. The linear Model for the Microsoft returns is appropriate.



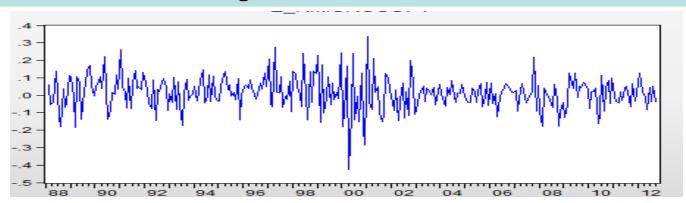
Stability or not???

Chow Tests: View → Stability Diagnostics → Chow Breakpoint Test

View Proc Object | Print Name Freeze | Estimate Forecast Stats Resids Chow Breakpoint Test: 2000M04 Null Hypothesis: No breaks at specified breakpoints Equation Sample: 1988M03 2012M10 Prob. F(7,282) F-statistic 1.108545 0.3577 Log likelihood ratio 8.035007 Prob. Chi-Square(7)

select a date of i.e. stock market crash etc...

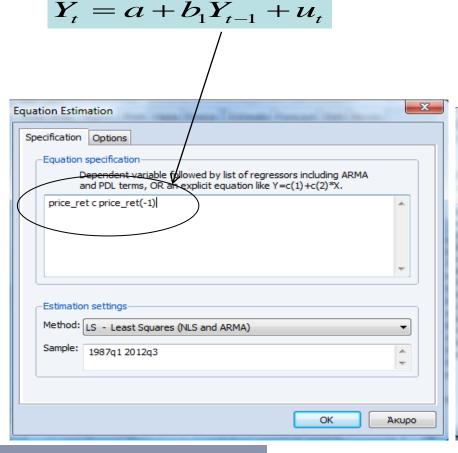
P-values are in excess of 0.05 We cannot reject the Null- Hypothesis: thus parameters are stable across the two sub-samples


 H_0 : parameters are stable across the two sub-samples

 H_A : parameters are not stable across the two sub-samples

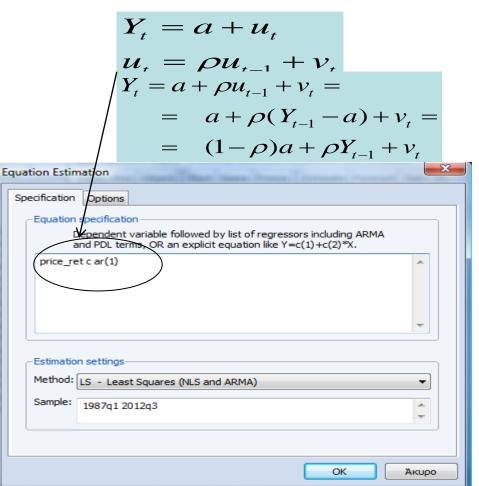
How can the appropriate sub-samples to use be decided?

1. Plot the dependent variable over time and split the data accordingly to any obvious structural changes in the series.

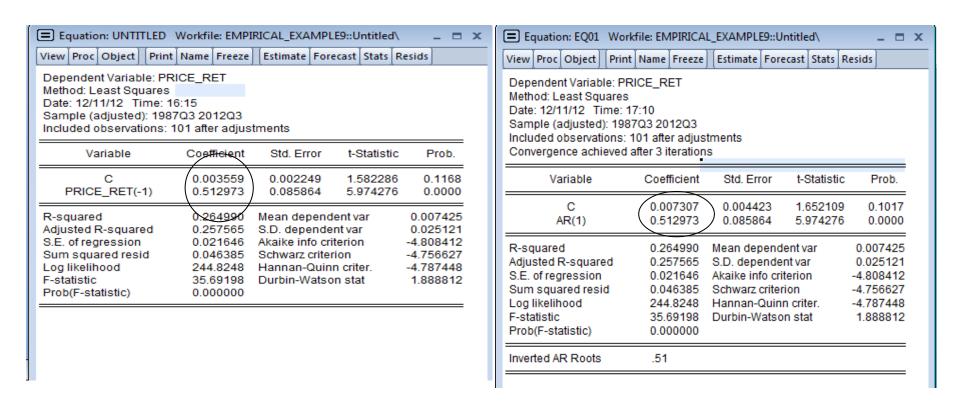


2. Split the data accordingly to any known important historical event (stock market crash, market microstructure change, new government elected)

You can also use **the last few observations** and perform **a forwards predictive failure test** or the *first few observations* for a *backwards predictive failure test*.



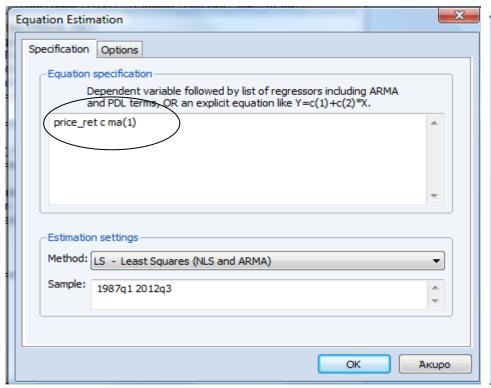
Autoregressive process AR(1)

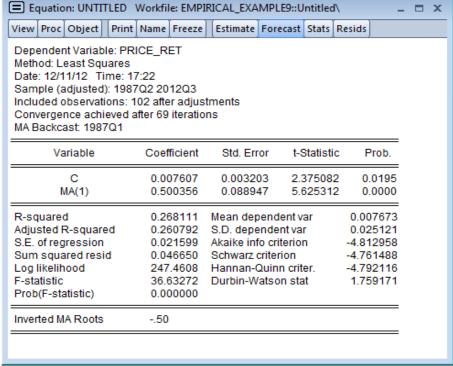


Univariate Time Series Modeling

When you are estimating an AR equation, you do not say that Y follows an AR process, but you say that the error terms follow an AR process.

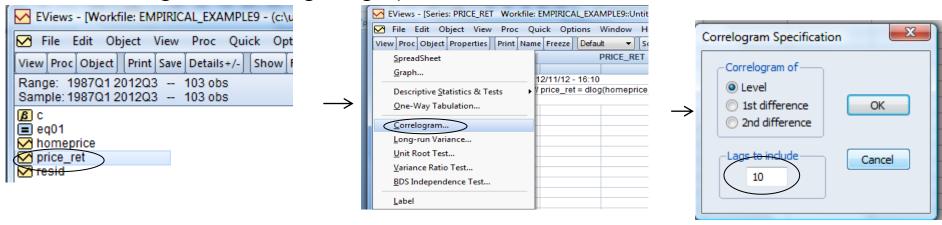
Estimation Outputs

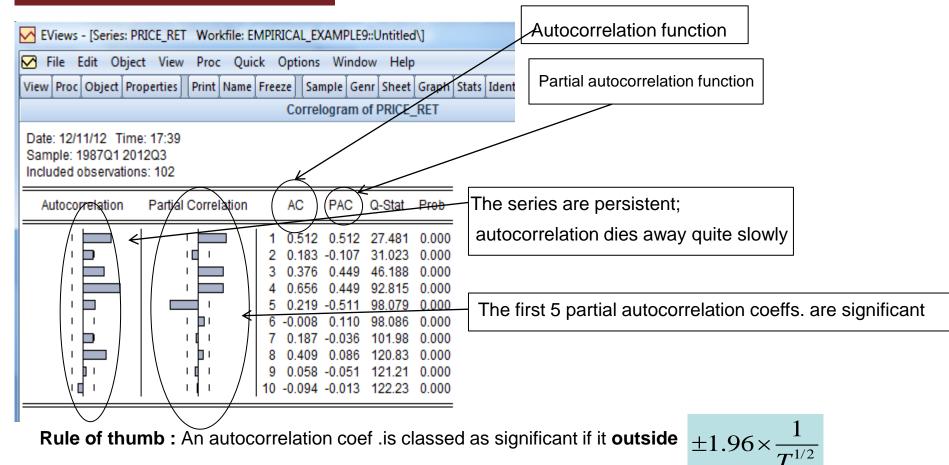



Identical slope coefficients; different constant terms

Moving Average Process MA(1)

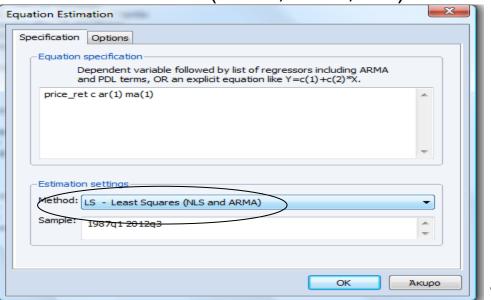
$$Y_{t} = a + u_{t}$$
$$u_{t} = v_{t} + \theta v_{t-1}$$

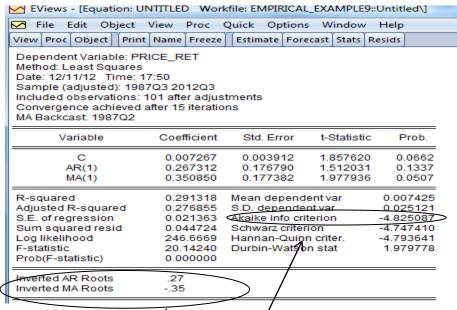



ARMA model: Combination of autoregressive and moving average processes

How to build an ARMA model ??

 Identification (autocorrelation function (ACF), the partial autocorrelation function (PACF), and the resulting correlograms (plots of ACFs and PACFs against the lag length).


Here <u>±0.19</u>


Since the first acf is highly significant, Ljung –Box joint test statistic reject the Null hypothesis of no autocorrelation for all numbers of lags considered

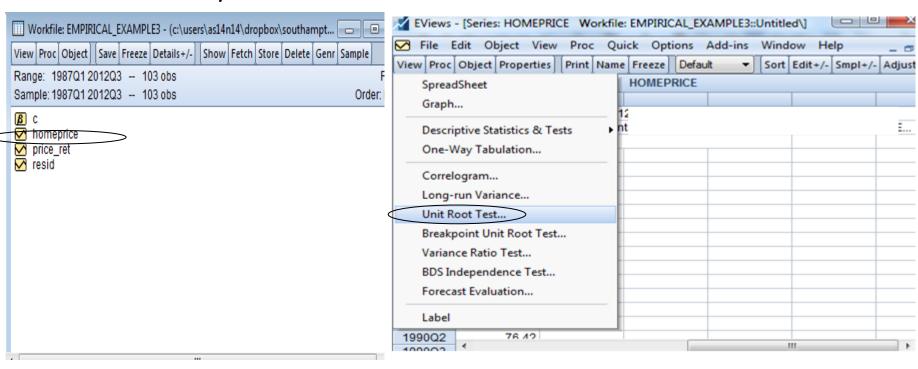
Maybe an ARMA model is appropriate...

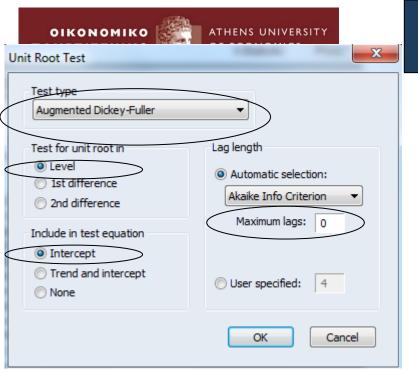
b. Estimation (OLS, MLE, etc)

How to define the order??

Answer: Choose the model that minimizes the value of Information Criteria (IC): We use Akaike Information Criterion

c. Diagnostic Checking (Overfitting and residual diagnostics)


Overfitting: If the model you specified at step 1 is adequate any extra terms added to the ARMA model will be insignificant


Residual Diagnostics: If residuals are free from autocorrelation the model you specified at step 1 is adequate

Stationarity

- Open Example 9.wf1
- Click on homeprice → View → Unit Root Test

Null hypothesis: Unit Root

Alt hypothesis: Not unit Root

P-value = 0.7124> 0.05

Do not reject the Null Hypothesis, hence HOMEPRICE is non-stationary

Stationarity – case 1

Null Hypothesis: HOMEPRICE has a unit root

Sample (adjusted): 1887Q2 2012Q3

Included observations: 102 after adjustments

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=0)

Lag Length. 0 (Automatic - based on Sic, maxag=0)						
		t-Statistic	Prob.*			
Augmented Dickey-Full	ler test statistic	-1.103222	0.7124			
Test critical values:	1% level	-3.495677	7			
	5% level	-2.890037				
	10% level	-2.582041				
*MacKinnon (1996) one-sided p-values.						
Augmented Dickey-Fuller Test Equation						
Dependent Variable: D						
Method: Least Squares						
Date: 12/02/17 Time:	10:43					

Variable	Coefficient	Std. Error	t-Statistic	Prob.
HOMEPRICE(-1) C	-0.010030 1.825857	0.009092 1.057967	-1.103222 1.725816	0.2726 0.0875
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.012025 0.002145 3.470374 1204.349 -270.6366 1.217100 0.272578	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.721961 3.474102 5.345815 5.397265 5.366657 8.830034

$$\Delta y_t = \mu + y_{t-1} + u_t$$
Eviews Workshop, 2021

OIKONOMIKO ATHENS UNIVERSITY X Unit Root Test Test type Augmented Dickey-Fuller Lag length Test for unit root in Level Automatic selection: 1st difference Akaike Info Criterion 2nd difference Maximum lags: 0 Include in test equation Intercept Trend and intercept O User specified: OK Cancel

Null hypothesis: Unit Root

Alt hypothesis: Not unit Root

P-value = 0.9908> 0.05

Do not reject the Null Hypothesis, hence HOMEPRICE is non-stationary

Stationarity – case 2

Null Hypothesis: HOMEPRICE has a unit root

Exogenous: Constant, Linear Trend

Log likelihood

Prob(F-statistic

F-statistic

Lag Length: 0 (Automatic					
			t-Statistic	Prob.*	
Augmented Dickey-Fulle Test critical values:	r test statistic 1% level 5% level 10% level		-0.262997 -4.050509 -3.454471 -3.152909	0.9908	
*MacKinnon (1996) one- Augmented Dickey-Fulle Dependent Variable: D(H Method: Least Squares Date: 12/02/17 Time: 10 Sample (adjusted): 1987 Included observations: 1	r Test Equation HOMEPRICE) 1942 1922 2012 Q3				\
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
HOMEPRICE(-1) C @TREND("1987Q1")	-0.004409 1.649642 -0.008591	0.016823 1.151084 0.021594	-0.262097 1.433120 -0.397828	0.7938 0.1550 0.6916	
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.013602 -0.006326 3.485072 1202.427	Mean depende S.D. depende Akaike info cri Schwarz crite	ent var iterion	0.721961 3.474102 5.363825 5.441030	/

 $\Delta y_t = \mu + y_{t-1} + \beta t + u_t$ Workshop, 2021

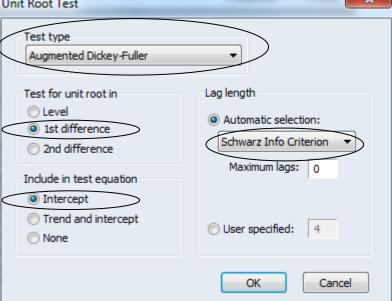
-270.5551

0.682561

0.507683

Hannan-Quinn criter.

Durbin-Watson stat


Question: How might you transform the series to remove any unit root?

Answer: Variables can usually be made stationary by transforming them into their differences or by constructing percentage changes of them. It is common price indices to be converted to returns by calculating the logarithmic differences.

Example:

Click on *homeprice* — View — Unit Root and the select 1st difference

Null hypothesis: Unit Root

Alt hypothesis: Not unit Root

P-value = 0.000<0.05

Reject the Null Hypothesis, hence D(HOMEPRICE) is stationary

Stationarity

Null Hypothesis: D(HOMEPRICE) has a unit root

F-statistic

Prob(F-statistic)

Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=0)					
	t-Statistic				Prob.*
			-5.078693<	0.0000	
	Test critical values:	1% level		-3.496346	7
		5% level 10% level		-2.890327 -2.582196	
		10 /0 16 /61		-2.302137	
	*MacKinnon (1996) one-	sided p-value	S.		
ı					
	Augmented Dickey-Fuller Test Equation Dependent Variable: D(HOMEPRICE 2) Method: Least Squares Date: 12/02/17 Time: 10:53 Sample (adjusted): 1987Q3 2012Q3 Included observations: 101 after adjustments				
	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	D(HOMEPRICE(-1))	-0.414527	0.081621	-5.078693	0.0000
	c	0.298418	0.288744	1.033505	0.3039
	R-squared	0.206687	Mean depend	dent var	0.007921
ı	Adjusted R-squared	0.198674	S.D. depende		3.177428
	S.E. of regression	2.844332	Akaike info cr		4.948137
	Sum squared resid	800.9325	Schwarz crite		4.999922
	Log likelihood	-247.8809	Hannan-Quir	in criter.	4.969101

25.79312

0.000002

1.895662

Durbin-Watson stat

The end