Induction Course in Quantitative Methods for Finance

Probability, Discrete Random Variables and Probability Distributions

Important Terms

- Random Experiment - a process leading to an uncertain outcome
- Basic Outcome - a possible outcome of a random experiment
- Sample Space - the collection of all possible outcomes of a random experiment
- Event - any subset of basic outcomes from the sample space

Important Terms

- Intersection of Events - If A and B are two events in a sample space S, then the intersection, $A \cap B$, is the set of all outcomes in S that belong to both A and B

Important Terms

- A and B are Mutually Exclusive Events if they have no basic outcomes in common
- i.e., the set $A \cap B$ is empty

Important Terms

- Union of Events - If A and B are two events in a sample space S, then the union, $A \cup B$, is the set of all outcomes in S that belong to either
A or B

Important Terms

- Events $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \mathrm{E}_{\mathrm{k}}$ are Collectively Exhaustive events if $E_{1} \cup E_{2} \cup \ldots U E_{k}=S$
- i.e., the events completely cover the sample space
- The Complement of an event A is the set of all basic outcomes in the sample space that do not belong to A. The complement is denoted $\overline{\mathrm{A}}$

Examples

Let the Sample Space be the collection of all possible outcomes of rolling one die:

$$
S=[1,2,3,4,5,6]
$$

Let A be the event "Number rolled is even"
Let B be the event "Number rolled is at least 4"
Then

$$
A=[2,4,6] \quad \text { and } \quad B=[4,5,6]
$$

Examples

$$
S=[1,2,3,4,5,6] \quad A=[2,4,6] \quad B=[4,5,6]
$$

Complements:

$$
\overline{\mathrm{A}}=[1,3,5] \quad \overline{\mathrm{B}}=[1,2,3]
$$

Intersections:

$$
A \cap B=[4,6] \quad \bar{A} \cap B=[5]
$$

Unions:

$$
\begin{aligned}
& A \cup B=[2,4,5,6] \\
& A \cup \bar{A}=\left[\begin{array}{c}
\text { K. Drakos, Quantitative Methods } \\
\text { for Finance }
\end{array}\right.
\end{aligned}
$$

Examples

$$
\begin{array}{|l|l|}
\hline S=[1,2,3,4,5,6] & A=[2,4,6]
\end{array} \quad B=[4,5,6]
$$

- Mutually exclusive:
- A and B are not mutually exclusive
- The outcomes 4 and 6 are common to both
- Collectively exhaustive:
- A and B are not collectively exhaustive
- $A \cup B$ does not contain 1 or 3

Probability

- Probability - the chance that an uncertain event will occur (always between 0 and 1)

$$
0 \leq P(A) \leq 1 \quad \text { For any event } A
$$

0 Impossible

Assessing Probability

- There are three approaches to assessing the probability of an uncertain event:

1. classical probability

probability of event $A=\frac{N_{A}}{N}=\frac{\text { number of outcomes that satisfy the event }}{\text { total number of outcomes in the sample space }}$

- Assumes all outcomes in the sample space are equally likely to occur
K. Drakos, Quantitative Methods for Finance

Counting the Possible Outcomes

- Use the Combinations formula to determine the number of combinations of n things taken k at a time

$$
C_{k}^{n}=\frac{n!}{k!(n-k)!}
$$

- where
$-n!=n(n-1)(n-2) \ldots(1)$
$-0!=1$ by definition
K. Drakos, Quantitative Methods for Finance

Assessing Probability

Three approaches (continued)

2. relative frequency probability

probability of event $A=\lim _{n \rightarrow \infty} \frac{n_{A}}{n}=\frac{\text { number of times that the event } A \text { has occured }}{\text { number of times that the experiment is performed }}$

- the limit of the proportion of times that an event A occurs in a large number of trials, n

3. subjective probability

Probability Postulates

1. If A is any event in the sample space S, then

$$
0 \leq P(A) \leq 1
$$

2. Let A be an event in S , and let $\mathrm{O}_{\boldsymbol{i}}$ denote the basic outcomes. Then
(the notation means that the summation is over all the basic outcomes in A)
3.

$$
\mathrm{P}(\mathrm{~A})=\sum_{\mathrm{A}} \mathrm{P}\left(\mathrm{O}_{\mathrm{i}}\right)
$$

K. Drakos, Quantitative Methods for Finance

Probability Rules

- The Complement rule:

$$
P(\bar{A})=1-P(A) \quad \text { i.e., } P(A)+P(\bar{A})=1
$$

- The Addition rule:
- The probability of the union of two events is

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

K. Drakos, Quantitative Methods

A Probability Table

Probabilities and joint probabilities for two events A and B are summarized in this table:

	B	\bar{B}	
A	$P(A \cap B)$	$P(A \cap \bar{B})$	$P(A)$
\bar{A}	$P(\bar{A} \cap B)$	$P(\bar{A} \cap \bar{B})$	$P(\bar{A})$
	$P(B)$	$P(\bar{B})$	$P(S)=1.0$

K. Drakos, Quantitative Methods for Finance

Addition Rule Example

Consider a standard deck of 52 cards, with four suits:

- \&

Let event $\mathrm{A}=$ card is an Ace
Let event $B=$ card is from a red suit

Addition Rule Example

$\mathbf{P}($ Red u Ace $)=\mathbf{P}($ Red $)+\mathbf{P}($ Ace $)-\mathbf{P}($ Red \cap Ace $)$

K. Drakos, Quantitative Methods for Finance

Conditional Probability

- A conditional probability is the probability of one event, given that another event has occurred:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

The conditional probability of A given that B has occurred

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

The conditional probability of B given that A has occurred

Conditional Probability Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.
- What is the probability that a car has a CD player, given that it has AC ?
i.e., we want to find $P(C D \mid A C)$

Conditional Probability Example

Of the cars on a used car lot, 70% have air conditioning (AC) and 40\% have a CD player (CD).
20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$$
\mathrm{P}(\mathrm{CD} \mid \mathrm{AC})=\frac{\mathrm{P}(\mathrm{CD} \cap \mathrm{AC})}{\mathrm{P}(\mathrm{AC})}=\frac{.2}{.7}=.2857
$$

Conditional Probability Example

- Given AC, we only consider the top row (70\% of the cars). Of these, 20% have a CD player. 20% of 70% is 28.57%.

Multiplication Rule

- Multiplication rule for two events A and B:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

- also $P(A \cap B)=P(B \mid A) P(A)$
K. Drakos, Quantitative Methods for Finance

Multiplication Rule Example

$\mathbf{P}($ Red \cap Ace $)=\mathbf{P}($ Red \mid Ace $) \mathbf{P}($ Ace $)$

$$
=\left(\frac{2}{4}\right)\left(\frac{4}{52}\right)=\frac{2}{52}
$$

$$
=\frac{\text { number of cards that are red and ace }}{\text { total number of cards }}=\frac{2}{52}
$$

Type	Color		Total
	Red	Black	
Ace	(2)	2	4
Non-Ace	24	24	48
Total	к. Orake9, ${ }_{\text {a }}$	ative $2 \mathbf{R e q}_{\text {ods }}$	52

Statistical Independence

- Two events are statistically independent if and only if:

$$
P(A \cap B)=P(A) P(B)
$$

- Events A and B are independent when the probability of one event is not affected by the other event
- If A and B are independent, then

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& \begin{array}{c}
\text { K. Drakos, Quantitative Methods } \\
\text { for Finance }
\end{array} \\
& \hline P(B \mid A)=P(B)>0 \\
& \text { if } P(A)>0
\end{aligned}
$$

Statistical Independence Example

- Of the cars on a used car lot, 70% have air conditioning (AC) and 40% have a CD player (CD). 20% of the cars have both.

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

- Are the events AC and CD statistically independent?

K. Drakos, Quantitative Methods for Finance

Statistical Independence Example

(continued)

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

$P(A C \cap C D)=0.2$
$\left.\begin{array}{l}P(A C)=0.7 \\ P(C D)=0.4\end{array}\right\} P(A C) P(C D)=(0.7)(0.4)=0.28$

$$
P(A C \cap C D)=0.2 \neq P(A C) P(C D)=0.28
$$

So the two events are not statistically independent

Bivariate Probabilities

Outcomes for bivariate events:

	B_{1}	B_{2}	\ldots	B_{k}
A_{1}	$P\left(A_{1} \cap B_{1}\right)$	$P\left(A_{1} \cap B_{2}\right)$	\ldots	$P\left(A_{1} \cap B_{k}\right)$
A_{2}	$P\left(A_{2} \cap B_{1}\right)$	$P\left(A_{2} \cap B_{2}\right)$	\ldots	$P\left(A_{2} \cap B_{k}\right)$
\cdot	\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot	\cdot
.	\cdot	\cdot	.	.
A_{h}	$P\left(A_{h} \cap B_{1}\right)$	$P\left(A_{h} \cap B_{2}\right)$	\cdots	$P\left(A_{h} \cap B_{k}\right)$

Joint and Marginal Probabilities

- The probability of a joint event, $A \cap B$:

$$
P(A \cap B)=\frac{\text { number of outcomes satisfying } A \text { and } B}{\text { total number of elementary outcomes }}
$$

- Computing a marginal probability:

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{2}\right)+\cdots+\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{k}}\right)
$$

- Where $B_{1}, B_{2}, \ldots, B_{k}$ are k mutually exclusive and collectively exhaustive events
K. Drakos, Quantitative Methods
for Finance

Marginal Probability Example

P(Ace)

$=P($ Ace \cap Red $)+P($ Ace \cap Black $)=\frac{2}{52}+\frac{2}{52}=\frac{4}{52}$

Type	Color		
	Red	Black	
Ace	2	2	4
Non-Ace	24	24	48
Total	26	26	52

K. Drakos, Quantitative Methods

Using a Tree Diagram

Odds

- The odds in favor of a particular event are given by the ratio of the probability of the event divided by the probability of its complement
- The odds in favor of A are

$$
\text { odds }=\frac{P(A)}{1-P(A)}=\frac{P(A)}{P(\bar{A})}
$$

K. Drakos, Quantitative Methods

Odds: Example

- Calculate the probability of winning if the odds of winning are 3 to 1 :

$$
\text { odds }=\frac{3}{1}=\frac{\mathrm{P}(\mathrm{~A})}{1-\mathrm{P}(\mathrm{~A})}
$$

- Now multiply both sides by $1-\mathrm{P}(\mathrm{A})$ and solve for $P(A)$:

$$
\begin{aligned}
& 3 \times(1-P(A))=P(A) \\
& 3-3 P(A)=P(A) \\
& 3=4 P(A) \\
& P(A)=0.75
\end{aligned}
$$

Overinvolvement Ratio

- The probability of event A_{1} conditional on event B_{1} divided by the probability of A_{1} conditional on activity B_{2} is defined as the overinvolvement ratio:

$$
\frac{\mathrm{P}\left(\mathrm{~A}_{1} \mid \mathrm{B}_{1}\right)}{\mathrm{P}\left(\mathrm{~A}_{1} \mid \mathrm{B}_{2}\right)}
$$

- An overinvolvement ratio greater than 1 implies that event A_{1} increases the conditional odds ration in favor of B_{1} :

$$
\frac{\mathrm{P}\left(\mathrm{~B}_{1} \mid \mathrm{A}_{1}\right)}{\mathrm{P}\left(\mathrm{~B}_{2} \mid \mathrm{A}_{1}\right)}>\frac{\mathrm{P}\left(\mathrm{~B}_{1}\right)}{\mathrm{P}\left(\mathrm{~B}_{2}\right)}
$$

K. Drakos, Quantitative Methods

Bayes' Theorem

$$
\begin{aligned}
P\left(E_{i} \mid A\right) & =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P(A)} \\
& =\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\ldots+P\left(A \mid E_{k}\right) P\left(E_{k}\right)}
\end{aligned}
$$

- where:

$$
\mathrm{E}_{\mathrm{i}}=\mathrm{i}^{\text {th }} \text { event of } k \text { mutually exclusive and }
$$ collectively exhaustive events

$A=$ new event that might impact $P\left(E_{i}\right)$
K. Drakos, Quantitative Methods for Finance

Bayes' Theorem Example

- A drilling company has estimated a 40\% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60% of successful wells have had detailed tests, and 20% of unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Bayes' Theorem Example

- Let $S=$ successful well
U = unsuccessful well
- $\mathrm{P}(\mathrm{S})=.4, \mathrm{P}(\mathrm{U})=.6$ (prior probabilities)
- Define the detailed test event as D
- Conditional probabilities:

$$
P(D \mid S)=.6 \quad P(D \mid U)=.2
$$

- Goal is to find $P(S \mid D)$
K. Drakos, Quantitative Methods for Finance

Bayes' Theorem Example

Apply Bayes' Theorem:

$$
\begin{aligned}
P(S \mid D) & =\frac{P(D \mid S) P(S)}{P(D \mid S) P(S)+P(D \mid U) P(U)} \\
& =\frac{(.6)(.4)}{(.6)(.4)+(.2)(.6)} \\
& =\frac{.24}{.24+.12}=.667
\end{aligned}
$$

So the revised probability of success (from the original estimate of .4), given that this well has been scheduled for a detailed test, is . 667

Discrete Random Variables and Probability Distributions

Introduction to Probability Distributions

- Random Variable
-Represents a possible numerical value from a random experiment Random
Variables

Discrete Random Variables

- Can only take on a countable number of values

Examples:

- Roll a die twice

Let X be the number of times 4 comes up
(then X could be 0,1 , or 2 times)

- Toss a coin 5 times. Let X be the number of heads
(then $X=0,1,2,3,4$, or 5)
K. Drakos, Quantitative Methods for Finance

Discrete Probability Distribution

Experiment: Toss 2 Coins. Let $X=\#$ heads. Show $P(x)$, i.e., $P(X=x)$, for all values of x :

4 possible outcomes

Probability Distribution

Probability Distribution Required Properties

$P(x) \geq 0$ for any value of x

- The individual probabilities sum to 1 ;

$$
\sum_{x} P(x)=1
$$

(The notation indicates summation over all possible x values)

Cumulative Probability Function

- The cumulative probability function, denoted $F\left(x_{0}\right)$, shows the probability that X is less than or equal to x_{0}

$$
\mathrm{F}\left(\mathrm{x}_{0}\right)=\mathrm{P}\left(\mathrm{X} \leq \mathrm{x}_{0}\right)
$$

- In other worc $F\left(x_{0}\right)=\sum_{x \leq x_{0}} P(x)$
K. Drakos, Quantitative Methods for Finance

Expected Value

- Expected Value (or mean) of a discrete distribution (Weighted Average)

$$
\mu=E(x)=\sum_{x} x P(x)
$$

- Example: Toss 2 coins,
x = \# of heads,
compute expected value of x :

$$
\begin{aligned}
E(x) & =(0 \times .25)+(1 \times .50)+(2 \times .25)^{2} \\
& =1.0
\end{aligned}
$$

Variance and Standard Deviation

- Variance of a discrete random variable X

$$
\sigma^{2}=E(X-\mu)^{2}=\sum_{x}(x-\mu)^{2} P(x)
$$

- Standard Deviation of a discrete random variable X

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}
$$

K. Drakos, Quantitative Methods for Finance

Standard Deviation Example

- Example: Toss 2 coins, $X=\#$ heads, compute standard deviation (recall $E(x)$ $=1$)

$$
\sigma=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}
$$

$$
\sigma=\sqrt{(0-1)^{2}(.25)+}(1-1)^{2}(.50)+(2-1)^{2}(.25)=\sqrt{.50}=.707
$$

Functions of Random

Variables

- If $P(x)$ is the probability function of a discrete random variable X, and $g(X)$ is some function of X, then the expected value of function g is

$$
E[g(X)]=\sum_{x} g(x) P(x)
$$

Linear Functions of Random Variables

- Let a and b be any constants.
- a) $\mathrm{E}(\mathrm{a})=\mathrm{a}$ and $\operatorname{Var}(\mathrm{a})=0$
i.e., if a random variable always takes the value a, it will have mean a and variance 0
- b)

$$
E(b X)=b \mu_{x} \quad \text { and } \quad \operatorname{Var}(b X)=b^{2} \sigma_{x}^{2}
$$

i.e., the expected value of $b \cdot X$ is $b \cdot E(x)$

Linear Functions of Random Variables

- Let random variable X have mean μ_{x} and variance $\sigma^{2}{ }_{x}$
- Let a and b be any constants.
- Let $Y=a+b X$
- Then the mean and variance of Y are

$$
\mu_{Y}=E(a+b X)=a+b \mu_{X}
$$

$$
\sigma^{2} y=\operatorname{Var}(a+b X)=b^{2} \sigma^{2} x
$$

- so that the standard deviation of Y is

$$
\sigma_{Y}=|b| \sigma_{X}
$$

Probability Distributions

Probability Distributions

K. Drakos, Quantitative Methods

Bernoulli Distribution

- Consider only two outcomes: "success" or "failure"
- Let P denote the probability of success
- Let $1-P$ be the probability of failure
- Define random variable X :

$$
x=1 \text { if success, } x=0 \text { if failure }
$$

- Then the Bernoulli probability function is

$$
P(0)=(1-P) \quad \text { and } \quad P(1)=P
$$

K. Drakos, Quantitative Methods

Bernoulli Distribution Mean and Variance

- The mean is $\mu=P$

$$
\mu=E(X)=\sum_{x} x P(x)=(0)(1-P)+(1) P=P
$$

- The variance is $\sigma^{2}=P(1-P)$

$$
\begin{aligned}
& \sigma^{2}=E\left[(X-\mu)^{2}\right]=\sum_{X}(x-\mu)^{2} P(x) \\
&=(0-P)^{2}(1-P)+(1-P)^{2} P=P(1-P) \\
& \text { K. Drakos, Quantitative Methods } \\
& \text { for Finance }
\end{aligned}
$$

Sequences of x Successes in n Trials

- The number of sequences with x successes in n independent trials is:

$$
C_{x}^{n}=\frac{n!}{x!(n-x)!}
$$

Where $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 1$ and $0!=1$

- These sequences are mutually exclusive, since no two can occur at the same time K. Drakos, Quantitative Methods

Binomial Probability Distribution

- A fixed number of observations, n
- e.g., 15 tosses of a coin; ten light bulbs taken from a warehouse
- Two mutually exclusive and collectively exhaustive categories
- e.g., head or tail in each toss of a coin; defective or not defective light bulb
- Generally called "success" and "failure"
- Probability of success is P, probability of failure is $1-P$
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
- The outcome of one observation does not affect the outcome of ther. Otherep, Quantitative Methods

Possible Binomial Distribution Settings

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it
K. Drakos, Quantitative Methods

Binomial Distribution Formula

$$
P(x)=\frac{n!}{x!(n-x)!} P^{x}(1-P)^{n-x}
$$

$P(x)=$ probability of x successes in n trials, with probability of success P on each trial
x = number of 'successes' in sample, ($x=0,1,2, \ldots, n$)
$\mathrm{n}=$ sample size (number of trials or observations)
$P=$ probability of "success"

Example: Flip a coin four times, let $x=\#$ heads:

$$
\begin{gathered}
n=4 \\
P=0.5 \\
1-P=(1-0.5)=0.5 \\
x=0,1,2,3,4
\end{gathered}
$$

Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of success is 0.1 ?

$$
x=1, n=5, \text { and } P=0.1
$$

$$
\begin{aligned}
P(x=1) & =\frac{n!}{x!(n-x)!} P^{x}(1-P)^{n-x} \\
& =\frac{5!}{1!(5-1)!}(0.1)^{1}(1-0.1)^{5-1} \\
& =(5)(0.1)(0.9)^{4} \\
& ==32805
\end{aligned}
$$

Binomial Distribution

- The shape of the binomial distribution depends on the values $\beta\left(x_{x}\right) P n=3$ and $\beta=0.1$
- Here, $\mathrm{n}=5$ and $\mathrm{P}=$ 0.1

- Here, $\mathrm{n}=5$ and $\mathrm{P}=$ 0.5

Binomial Distribution Mean and Variance

- Mean

$$
\mu=\mathrm{E}(\mathrm{x})=\mathrm{nP}
$$

- Variance and Standard Deviation

$$
\sigma^{2}=n P(1-P)
$$

$$
\sigma=\sqrt{\mathrm{nP}(1-\mathrm{P})}
$$

Where $\mathrm{n}=$ sample size
$\mathrm{P}=$ probability of success
$(1-\mathrm{P})=$ probability of failure for Finance

Binomial Characteristics

Examples

$$
\begin{aligned}
& \mu=n P=(5)(0.1)=0.5 \\
& \sigma=\sqrt{\mathrm{nP}(1-\mathrm{P})}=\sqrt{(5)(0.1)(1-0.1)} \\
& =0.6708
\end{aligned}
$$

$$
\begin{aligned}
& \mu=n P=(5)(0.5)=2.5 \\
& \sigma=\sqrt{\mathrm{nP}(1-\mathrm{P})}=\sqrt{(5)(0.5)(1-0.5)} \\
& =1.118
\end{aligned}
$$

The Poisson Distribution

- Apply the Poisson Distribution when:
- You wish to count the number of times an event occurs in a given continuous interval
- The probability that an event occurs in one subinterval is very small and is the same for all subintervals
- The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals
- There can be no more than one occurrence in each subinterval
- The average number of events per unit is λ (lambda)

Poisson Distribution Formula

$$
P(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

where:
$x=$ number of successes per unit
$\lambda=$ expected number of successes per unit
$\mathrm{e}=$ base of the natural logarithm system
(2.71828...)

Poisson Distribution Characteristics

- Mean

$$
\mu=E(x)=\lambda
$$

- Variance and Standard Deviation

$$
\begin{gathered}
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\lambda \\
\sigma=\sqrt{\lambda}
\end{gathered}
$$

where $\lambda=$ expected number of successes per unit

Using Poisson Tables

	λ										
\mathbf{x}	0.10	0.20	0.30	0.40	$\mathbf{0 . 5 0}$	0.60	0.70	0.80	0.90		
0	0.904	0.818	0.740	0.670	0.606	0.548	0.496	0.449	0.4066		
1	0.090	0.163	0.222	0.268	0.303	0.329	0.347	0.359	0.3659		
$\mathbf{2}$	0.004	0.016	0.033	0.053	$\mathbf{0 . 0 7 5}$	0.098	0.121	0.143	0.1647		
3	0.000	0.001	0.003	0.007	0.012	0.019	0.028	0.038	0.0494		
4	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.0111		
5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.0020		
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0003		
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000		

Example: Find $\mathrm{P}(\mathrm{X}=2)$ if $\lambda=.50$

$$
P(X=2)=\frac{e^{-\lambda} \lambda^{X}}{X!}=\frac{e^{-0.50}(0.50)^{2}}{2!}=.0758
$$

K. Drakos, Quantitative Methods for Finance

Graph of Poisson Probabilities

Graphically:

$\lambda=.50$
\mathbf{X}
:---:
0
1
2
3
4
5
6
7

K. Drakos, Quantitative Methods for Finance

Poisson Distribution Shape

- The shape of the Poisson Distribution depends on the parameter λ :

K. Drakos, Quantitative Methods for Finance

Joint Probability Functions

- A joint probability function is used to express the probability that X takes the specific value x and simultaneously Y takes the value y , as a function of x and y

$$
P(x, y)=P(X=x \cap Y=y)
$$

- The marginal probabilities are

$$
P(x)=\sum_{y} P(x, y)
$$

$$
P(y)=\sum_{x} P(x, y)
$$

K. Drakos, Quantitative Methods

Conditional Probability Functions

- The conditional probability function of the random variable Y expresses the probability that Y takes the value y when the value x is specified for X .

$$
P(y \mid x)=\frac{P(x, y)}{P(x)}
$$

- Similarly, the conditional probability function of X, given $\mathrm{Y}=\mathrm{y}$ is:

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

K. Drakos, Quantitative Methods for Finance

Independence

- The jointly distributed random variables X and Y are said to be independent if and only if their joint probability function is the product of their marginal probability functions:

$$
P(x, y)=P(x) P(y)
$$

for all possible pairs of values x and y

- A set of k random variables are independent if and only if

$$
\frac{P\left(X_{1}, X_{2}, \cdots, X_{k}\right)=P\left(X_{1}\right) P\left(X_{2}\right) \cdots P\left(X_{k}\right)}{\text { K. Drakos, Quantitative Methods }} \text { for Finance }
$$

Covariance

- Let X and Y be discrete random variables with means μ_{X} and μ_{Y}
- The expected value of $\left(\mathrm{X}-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)$ is called the covariance between X and Y
- For discrete random variables

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{Y}\right)\right]=\sum_{x} \sum_{y}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) P(x, y)
$$

- An equivalent expression is

$$
\operatorname{Cov}(X, Y)=E(X Y)-\mu_{x} \mu_{y}=\sum_{x} \sum_{y} x y P(x, y)-\mu_{x} \mu_{y}
$$

Covariance and Independence

- The covariance measures the strength of the linear relationship between two variables
- If two random variables are statistically independent, the covariance between them is 0
- The converse is not necessarily true

Correlation

- The correlation between X and Y is:

$$
\rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- $\rho=0 \Rightarrow$ no linear relationship between X and Y
- $\rho>0 \Rightarrow$ positive linear relationship between X and Y
» when X is high (low) then Y is likely to be high (low)
» $\rho=+1 \Rightarrow$ perfect positive linear dependency
- $\rho<0 \Rightarrow$ negative linear relationship between X and Y
" $\rho=-1 \Rightarrow$ perfect negative linear dependency
» when X is high (low) then Y is likely to be low (high). Drakos, Quantitative Methods

Portfolio Analysis

- Let random variable X be the price for stock A
- Let random variable Y be the price for stock B
- The market value, W , for the portfolio is given by the linear function

$$
\mathrm{W}=\mathrm{aX}+\mathrm{bY}
$$

(a is the number of shares of stock A, b is the number of shares of stock B)

Portfolio Analysis

- The mean value for W is

$$
\begin{gathered}
\mu_{\mathrm{W}}=\mathrm{E}[\mathrm{~W}]=\mathrm{E}[\mathrm{aX}+\mathrm{bY}] \\
=\mathrm{a} \mu_{\mathrm{X}}+\mathrm{b} \mu_{\mathrm{Y}}
\end{gathered}
$$

- The variance for W is

$$
\sigma_{W}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \operatorname{Cov}(X, Y)
$$

or using the correlation formula

$$
\frac{\sigma_{W}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b O O r(X, Y) \sigma_{X} \sigma_{Y}}{\text { K. Drakos, Quantitative Methods }} \text { for Finance }<c \mid
$$

Example: Investment Returns

Return per $\$ 1,000$ for two types of investments

		Investment	
$\mathbf{P}\left(\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}\right)$	Economic condition	Passive Fund \mathbf{X}	Aggressive Fund \mathbf{Y}
.2	Recession	$-\$ 25$	$-\$ 200$
.5	Stable Economy	+50	+60
.3	Expanding Economy	+100	+350

$$
E(x)=\mu_{x}=(-25)(.2)+(50)(.5)+(100)(.3)=50
$$

$$
E(y)=\mu_{y}=(-200)(.2)+(60)(.5)+(350)(.3)=95
$$

K. Drakos, Quantitative Methods
for Finance

Deviation for Investment Returns

		Investment	
$\mathbf{P}\left(\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}\right)$	Economic condition	Passive Fund X	Aggressive Fund \mathbf{Y}
0.2	Recession	$-\$ 25$	$-\$ 200$
0.5	Stable Economy	+50	+60
0.3	Expanding Economy	+100	+350

$$
\begin{aligned}
\sigma_{x} & =\sqrt{(-25-50)^{2}(0.2)+(50-50)^{2}(0.5)+(100-50)^{2}(0.3)} \\
& =43.30
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{y} & =\sqrt{(-200-95)^{2}(0.2)+(60-95)^{2}(0.5)+(350-95)^{2}(0.3)} \\
& =193.71
\end{aligned}
$$

Covariance for Investment Returns

		Investment	
$\mathbf{P}\left(\mathbf{x}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}\right)$	Economic condition	Passive Fund X	Aggressive Fund \mathbf{Y}
.2	Recession	$-\$ 25$	$-\$ 200$
.5	Stable Economy	+50	+60
.3	Expanding Economy	+100	+350

$$
\begin{aligned}
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})= & (-25-50)(-200-95)(.2)+(50-50)(60-95)(.5) \\
& +(100-50)(350-95)(.3) \\
= & 8250
\end{aligned}
$$

K. Drakos, Quantitative Methods

Portfolio Example

$$
\begin{array}{ccc}
\text { Investment } X: & \mu_{x}=50 & \sigma_{x}=43.30 \\
\text { Investment } Y: & \mu_{y}=95 & \sigma_{y}=193.21 \\
& & \sigma_{x y}=8250
\end{array}
$$

Suppose 40\% of the portfolio (P) is in Investment X and 60% is in Investment Y :

$$
\mathrm{E}(\mathrm{P})=.4(50)+(.6)(95)=77
$$

$$
\begin{aligned}
\sigma_{P} & =\sqrt{(.4)^{2}(43.30)^{2}+(.6)^{2}(193.21)^{2}+2(.4)(.6)(8250)} \\
& =133.04
\end{aligned}
$$

The portfolio return and portfolio variability are between the values for investments X and Y considered individually

K. Drakos, Quantitative Methods for Finance

Interpreting the Results for Investment Returns

- The aggressive fund has a higher expected return, but much more risk

$$
\begin{gathered}
\mu_{y}=95>\mu_{x}=50 \\
\text { but } \\
\sigma_{y}=193.21>\sigma_{x}=43.30
\end{gathered}
$$

- The Covariance of 8250 indicates that the two investments are positively related and will vary in the same direction
K. Drakos, Quantitative Methods for Finance

Continuous Random Variables and Probability Distributions

K. Drakos, Quantitative Methods

for Finance

Continuous Probability Distributions

- A continuous random variable is a variable that can assume any value in an interval
- thickness of an item
- time required to complete a task
- temperature
- height, in inches
- These can potentially take on any value, depending only on the ability to measure accurately.

Cumulative Distribution

Function

- The cumulative distribution function, $F(x)$, for a continuous random variable X expresses the probability that X does not exceed the value of x

$$
F(x)=P(X \leq x)
$$

- Let a and b be two possible values of X , with $\mathrm{a}<\mathrm{b}$. The probability that X lies between a and b is

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

K. Drakos, Quantitative Methods

Probability Density Function

The probability density function, $\mathrm{f}(\mathrm{x})$, of random variable X has the following properties:

1. $f(x)>0$ for all values of x
2. The area under the probability density function $f(x)$ over all values of the random variable X is equal to 1.0
3. The probability that X lies between two values is the area under the density function graph between the two values
4. The cumulative density function $F\left(x_{0}\right)$ is the area under the probability density function $f(x)$ from the minimum x_{m} value up to x_{0}

$$
F\left(x_{0}\right)=\int_{x_{m}}^{x_{0}} f(x) d x
$$

K. Drakos, Quantitative Methods

Probability as an Area

Shaded area under the curve is the probability that X is between a and b

The Uniform Distribution

- The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable

K. Drakos, Quantitative Methods for Finance

Total area under the uniform probability density function is 1.0

The Uniform Distribution

The Continuous Uniform Distribution:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

where
$f(x)=$ value of the density function at any x value
$a=$ minimum value of x
$b=$ maximum value of x
K. Drakos, Quantitative Methods

Properties of the Uniform Distribution

- The mean of a uniform distribution is

- The variance is

$$
\sigma^{2}=\frac{(b-a)^{2}}{12}
$$

K. Drakos, Quantitative Methods for Finance

Uniform Distribution Example

Example: Uniform probability distribution over the range $2 \leq x \leq 6$:

$$
f(x)=\frac{1}{6-2}=.25 \text { for } 2 \leq x \leq 6
$$

$$
\sigma^{2}=\frac{(b-a)^{2}}{12}=\frac{(6-2)^{2}}{12}=1.333
$$

K. Drakos, Quantitative Methods for Finance

Expectations for Continuous Random Variables

- The mean of X, denoted μ_{X}, is defined as the expected value of X

$$
\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})
$$

- The variance of X, denoted $\sigma_{x}{ }^{2}$, is defined as the expectation of the squared deviation, $\left(X-\mu_{\mathrm{X}}\right)^{2}$, of a random variable from its mean

$$
\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]
$$

K. Drakos, Quantitative Methods

Linear Functions of Variables

- Let $\mathrm{W}=\mathrm{a}+\mathrm{bX}$, where X has mean μ_{X} and variance $\sigma_{\mathrm{x}}{ }^{2}$, and a and b are constants
- Then the mean of W is

$$
\mu_{w}=E(a+b X)=a+b \mu_{x}
$$

- the variance is

$$
\sigma_{w}^{2}=\operatorname{Var}(a+b X)=b^{2} \sigma_{X}^{2}
$$

- the standard deviation of W is

$$
\sigma_{\mathrm{w}}=|\mathrm{b}| \sigma_{\mathrm{x}}
$$

K. Drakos, Quantitative Methods for Finance

Linear Functions of Variables

- An important special case of the previous results is the standardized random variable

$$
Z=\frac{X-\mu_{x}}{\sigma_{X}}
$$

- which has a mean 0 and variance 1

The Normal Distribution

- Bell Shaped'
- Symmetrical
- Mean, Median and Mode are Equal
Location is determined by the mean, μ
Spread is determined by the standard deviation, σ

The random variable has an infinite theoretical range:

$+\infty+0-\infty$
K. Drakos, Quantitative Methods for Finance

The Normal Distribution

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant
- The normal probability distribution has led to good business decisions for a number of applications

Many Normal Distributions

By varying the parameters μ and σ, we obtain different normal distributions

K. Drakos, Quantitative Methods

for Finance

The Normal Distribution Shape

Given the mean μ and variance σ we define the normal distribution using the notation

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

The Normal Probability Density Function

- The formula for the normal probability density function is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Where $\mathrm{e}=$ the mathematical constant approximated by 2.71828
$\pi=$ the mathematical constant approximated by 3.14159
$\mu=$ the population mean
$\sigma=$ the population standard deviation
$x=$ any value of the continuous variable, $-\infty<x<\infty$

Cumulative Normal Distribution

- For a normal random variable X with mean μ and variance σ^{2}, i.e., $X \sim N\left(\mu, \sigma^{2}\right)$, the cumulative distribution function is

$$
F\left(x_{0}\right)=P\left(X \leq x_{0}\right)
$$

Finding Normal Probabilities

The probability for a range of values is measured by the area under the curve

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

Finding Normal Probabilities

The Standardized Normal

- Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (Z), with mean 0 and variance 1

$$
Z \sim N(0,1)
$$

- Need to transform X units into \mathcal{Z} units by subtracting the mean of X and dividing by its standard deviation

Example

- If X is distributed normally with mean of 100 and standard deviation of 50 , the Z value for $X=200$ is

- This says that $X=200$ is two standard deviations (2 increments of 50 units) above the mean of 100.
K. Drakos, Quantitative Methods

Comparing X and Z units

Note that the distribution is the same, only the scale has changed. We can express the problem in original units (X) or in standardized units (Z)

K. Drakos, Quantitative Methods

for Finance

Finding Normal Probabilities

K. Drakos, Quantitative Methods

Example

In the Czech Republic in 2002, th unemployment rate of 9.94% with
4.15%. Assume that unemployme distributed. What fraction of regio have an unemployment rate of 5 Here we want to know

$$
\begin{aligned}
& P(5<X<15)=P\left(\frac{5-9.94}{4.15}<Z<\frac{15-9.94}{4.15}\right)=P(-1.19<Z<1.22)= \\
& =F(1.22)-F(-1.19)
\end{aligned}
$$

Example

From the table we have that $F(1.22)=0.888$ and $F(-1.19)=1-F(1.19)=1-0.8830=$ 0.117 .

Thus, $P(5<X<15)=0.888-0.117=0.771$

Probability as Area Under the Curve

The total area under the curve is 1.0 , and the curve is symmetric, so half is above the mean, half is below

The Exponential Distribution

- Used to model the length of time between two occurrences of an event (the time between arrivals)
- Examples:
- Time between trucks arriving at an unloading dock
- Time between transactions at an ATM Machine
- Time between phone calls to the main operator

The Exponential Distribution

- The exponential random variable $\mathrm{T}(\mathrm{t}>0)$ has a probability density function

$$
f(t)=\lambda e^{-\lambda t} \quad \text { for } t>0
$$

- Where
$-\lambda$ is the mean number of occurrences per unit time
$-t$ is the number of time units until the next occurrence
$-\mathrm{e}=2.71828$
- T is said to follow an exponential probability distribution

The Exponential Distribution

- Defined by a single parameter, its mean λ (lambda)
- The cumulative distribution function (the probability that an arrival time is less than some specified time t) is

$$
F(t)=1-e^{-\lambda t}
$$

where $\quad e=$ mathematical constant approximated by 2.71828
$\lambda=$ the population mean number of arrivals
per unit
$t=$ any value of the continuous variable where
$t>0$
K. Drakos, Quantitative Methods

Exponential Distribution Example

Example: Customers arrive at the service counter at the rate of 15 per hour. What is the probability that the arrival time between consecutive customers is less than three minutes?

- The mean number of arrivals per hour is 15 , so $\lambda=15$
- Three minutes is .05 hours
- $\mathrm{P}($ arrival time $<.05)=1-\mathrm{e}^{-\lambda \mathrm{X}}=1-\mathrm{e}^{-(15)(.05)}=0.5276$
- So there is a 52.76% probability that the arrival time between successive customers is less than three minutes

Joint Cumulative Distribution Functions

- Let $X_{1}, X_{2}, \ldots X_{k}$ be continuous random variables
- Their joint cumulative distribution function,

$$
\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{k}}\right)
$$

defines the probability that simultaneously X_{1} is less than x_{1}, X_{2} is less than x_{2}, and so on; that is

$$
F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=P\left(X_{1}<x_{1} \cap X_{2}<x_{2} \cap \cdots X_{k}<x_{k}\right)
$$

Joint Cumulative Distribution Functions

(continued)

- The cumulative distribution functions

$$
F\left(x_{1}\right), F\left(x_{2}\right), \ldots, F\left(x_{k}\right)
$$

of the individual random variables are called their marginal distribution functions

- The random variables are independent if and only if

$$
F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=F\left(x_{1}\right) F\left(x_{2}\right) \cdots F\left(x_{k}\right)
$$

