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Discreteness

�Inherent discreteness might involve transitions between states
(e.g. dividend/no dividend, investment / no investment)

�Sometimes there are no two-way transitions (e.g. default)

�Observational discreteness is an artefact of the observation
process (e.g. CAP bucket FDIC)

[Note discrete variables are also sometimes called limited dependent
variables]
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Forms of discreteness
�Censoring/corner solutions generate variables which are mixed
discrete/continuous

(e.g. value of investment 0 for no-trigger firms, any positive value for trigger firms)

�Truncation involves discarding part of the population

(e.g. SME targeted samples, Listed firms)

�Count variables are the outcome of some counting process

(e.g. the number of capital types firm invests in, or the number of product types a country exports)

�Binary variables reflect a distinction between two states

(e.g. default / no default, export / no export, dividend / no dividend)

�Ordinal variables are ordered variables, typically taking more than two values
(e.g. CAP 1-4, SME size 1-4)

�Unordered variables reflect outcomes which are discrete but with no natural
ordering (e.g. bank specialization)
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Binary response models 
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Binary models

Dependent variable is 
yit = 0 or 1

This describes:
� situations of choice between 2 alternatives
� Binary outcomes are outcomes with two possible values, commonly 

referred to as success and failure.
� The outcome of interest (success) is commonly scored “1” if it occurs, 

otherwise “0” (failure).
The outcome of interest (success) is commonly scored “1” if it occurs, 
otherwise “0” (failure).

E.g. suppose:
� yi = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1) is an annual panel observation
� 0 indicates no dividend was paid, 1 indicates dividend was paid
Then yi represents a history of 4 years’ of zero dividend pay out followed 
by 3 years’ positive dividend, followed by 1 year’s no dividend then 2 
years’ positive dividend.
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Why are special methods needed ?

Consider the binary variable, yit = 0 or 1

Notice that E(yit) = Pr(yit = 1).(1) + Pr(yit = 0).(0) = Pr(yit = 1)

where Pr(yit = 1) is the probability that yit = 1

This suggests that a simple way to model yit is using a regression 
with  yit on the LHS. Then the RHS will be the conditional 
probability that yit = 1, plus an error term.probability that yit = 1, plus an error term.

This is called a linear probability model:

yit =  α0 + zi α + xit β +  ui +  εit (1)

With panel data methods (e.g. within-group or random-effects), 
linear model implies:

E(yit | zi , xit , ui)  ≡ Pr (yit = 1 | zi , xit , ui) = P(zi , xit , ui)
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Disadvantages of the LPM

� Predicted probabilities don’t necessarily lie within the 0 to 1 range

� We get a very specific form of heteroskedasticity errors for this
model (values are along the continuous OLS line, but Yi values jump
between 0 and 1 - this creates large variation in errors)

� Errors are non-normalErrors are non-normal
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Why nonlinear models are needed
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What to do about this?
�To overcome the disadvantages of the LPM, use non-linear
methods.

�There are two types of similar S-curves used to analyze these
data, logit and probit

The two tend to yield similar results�The two tend to yield similar results

�By fitting a “sigmoidal” or S-shaped, curved line to the data
(see chart on left), we can do a much better job of minimizing
the errors.
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Latent regression models: the binary case

Define a latent (unobservable) continuous counterpart, yit
*

Example from global bilateral investment holdings:

If yit=1 defines positive investment holdings between two countries , then: 

Let yit
* be generated by a linear regression structure:

yit
* =  α0 + zi α + xit β +  ui +  εit

Then invetsment is observed according to:Then invetsment is observed according to:

yit =  1     if and only if   yit
* > 0
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Latent regression models: the binary case cont

⇒ Pr(yit = 1 | zi , xit , ui)  =  Pr(α0 + zi α + xit β +  ui   + εit > 0)

=  Pr(-εit < [α0 + zi α + xit β +  ui ] )

=  F(α0 + zi α + xit β +  ui)

where F(.) is the distribution function of the random variable  -εit

Probit model: assume ε has a normal distributionProbit model: assume εit has a normal distribution

F( . ) = Φ( . )  ⇒ df of the N(0,1) distribution

Logit (logistic regression) model: assume εit has a logistic distribution

F(ε)  =  eε/[ 1+eε ] ⇒ df of the logistic distribution
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Random effects logit/probit

Consider the basic model:

yit
* =  α0 + zi α + xit β +  ui +  εit

yit =  1     if and only if  yit
* > 0

Make standard random effects assumptions (including 
independence of (z , x ) and u ).independence of (zi , xit ) and ui ).

Since the εit are independent, the joint probability of observing (yi1, 
yi1,…, yiTi) conditional on ui  (and zi , xit ) is just the product of the 
conditional probabilities for each time period:

Pr(yi1 , ... , yiT | ui )  =  Pr(yi1 | ui ) × ... × Pr( yiT | ui )

= F(α0+zi α + xi1 β + ui ) × ... × F(α0+zi α + xiT β + ui )



Random effects logit/probit

Make an assumption about the distribution of ui (usually assumed to be N(0, 
σu

2)).

Average out (marginalise with respect to) the unobservable ui to get the 
unconditional probability of the data for individual i :

Pr(yi1 , ... , yiT )  =  E [ Pr(yi1 , ... , yiT | ui ) ]

where “E[ . ]” refers to the expectation or mean with respect to the N(0, σu
2) 

distribution of ui .i

This unconditional probability Pr(yi1 , ... , yiT ) is the likelihood for individual i. 
Repeat this for all individuals in the sample.

We then choose as our ML estimates the parameter values that maximise the 
likelihood over the whole sample. This is implemented in Stata, but computing 
run times are quite long.

This ML method works well only if cov(ui , [zi , xit]) = 0



Example: Gravity setup (sender-host 

countries); paired id 

� Investment holdings depend on: the costs, and the attractiveness of the 
host

� xtprobit inv4 logdist comlang_off laginvtreaty  lagpolrisk lagfinrisk 
legor_uk legor_fr legor_ge legor_sc legor_so lagdomcred 
lagstockturn year1- year7 lagstockturn year1- year7 
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    legor_fr     .3420482   .3037728     1.13   0.260    -.2533356    .9374319

    legor_uk    -.0489695   .3145673    -0.16   0.876    -.6655102    .5675711

  lagfinrisk     .0024246    .010589     0.23   0.819    -.0183294    .0231786

  lagpolrisk     .0735263   .0065495    11.23   0.000     .0606894    .0863631

laginvtreaty     .7187815   .1320455     5.44   0.000      .459977    .9775859

 comlang_off     1.803748   .2380528     7.58   0.000     1.337173    2.270323

     logdist    -1.226304   .0795409   -15.42   0.000    -1.382201   -1.070407

                                                                              

        inv4        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  = -4915.4267                    Prob > chi2        =    0.0000

                                                Wald chi2(15)      =   1512.61

Integration method: mvaghermite                 Integration points =        12

                                                               max =         6

                                                               avg =       4.0

Random effects u_i ~ Gaussian                   Obs per group: min =         1

Group variable: id_pair                         Number of groups   =      3813

Random-effects probit regression                Number of obs      =     15392

Likelihood-ratio test of rho=0: chibar2(01) =  6286.51 Prob >= chibar2 = 0.000

                                                                              

         rho     .9319721   .0039922                       .923718    .9393916

     sigma_u      3.70133   .1165323                      3.479835    3.936923

                                                                              

    /lnsig2u     2.617384   .0629678                       2.49397    2.740799

                                                                              

       _cons     3.693808   .9333702     3.96   0.000     1.864436     5.52318

       year7            0  (omitted)

       year6    -.2834496   .0716033    -3.96   0.000    -.4237895   -.1431097

       year5     -.152654   .0838404    -1.82   0.069    -.3169782    .0116702

       year4    -.6179186    .081747    -7.56   0.000    -.7781397   -.4576974

       year3    -.6708261   .0835393    -8.03   0.000    -.8345601   -.5070921

       year2    -.8390752   .0873498    -9.61   0.000    -1.010278   -.6678727

       year1            0  (omitted)

lagstockturn     .0053198   .0007708     6.90   0.000     .0038091    .0068305

  lagdomcred     .0223361   .0014295    15.63   0.000     .0195344    .0251378

    legor_so            0  (omitted)

    legor_sc            0  (omitted)

    legor_ge     .0454518   .3078679     0.15   0.883    -.5579582    .6488619

    legor_fr     .3420482   .3037728     1.13   0.260    -.2533356    .9374319
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Estimating output 
� In probit and Logit models, interpretation of the parameters is not

straightforward

� Not a linear model, so coefficients are not the slope of a line.

� Therefore, if say β1 is positive (negative), an increase in x would
increase (decrease) the probability that the positive outcomeincrease (decrease) the probability that the positive outcome
would be observed

� Thus, the sign of the estimated parameters tell us if the probability
of a +ve outcome will increase or decrease.

� “by how much” the probability increases or decreases is answered
by computing themarginal effects
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Predicted probabilities and marginal 

effects 

� Calculate the predicted (fitted) probability of positive
investment holdings

� Marginal Effect is the change in Pr(y = 1) corresponding
to a very small (infinitesimal) change in x or z, scaled up to
represent a 1 unit change.represent a 1 unit change.

� This is a popular way to present results, partly because the
effects can be calculated directly using a standard formula.
Can also use Stata command mfx.
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cont
� Scaling up the effect due to an infinitesimal change is fine in linear

models, but not generally in non-linear models if the change you wish to
consider is not small, e.g. change in dummy variable (0 to 1) or increase
of discrete variable (going from 2 to 3 children may not be a small
change!).

� No hard and fast rules about difference between the 2 methods (will also
depend on size of coefficients and baseline probability). But it is safest todepend on size of coefficients and baseline probability). But it is safest to
use the discrete method (difference in probability before and after
change).

� mfx recognises dummy variables and calculates effect due to 0 to 1
change. But mfx calculates marginal effect based on infinitesimal
change for all other variables (including discrete variables with >2
categories).
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legor_fr*    .0800041       .0689    1.16   0.246  -.055029  .215037   .401637

legor_uk*   -.0119438       .0773   -0.15   0.877  -.163458   .13957   .336019

lagfin~k     .0005867      .00256    0.23   0.819  -.004435  .005609   38.4687

lagpol~k     .0177905      .00201    8.84   0.000   .013845  .021736   73.7854

laginv~y*    .1682984      .03051    5.52   0.000   .108494  .228103   .453482

comlan~f*    .2040849      .02099    9.72   0.000   .162938  .245232   .104535

 logdist    -.2967176      .02939  -10.10   0.000   -.35432 -.239115    8.4978

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .84135461

      y  = Pr(inv4=1 assuming u_i=0) (predict, pu0)

Marginal effects after xtprobit

. mfx, predict(pu0)

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

   year6*   -.0744384      .02074   -3.59   0.000  -.115079 -.033798   .195946

   year5*   -.0389437      .02265   -1.72   0.086  -.083341  .005454   .142931

   year4*   -.1792241      .02874   -6.24   0.000  -.235548 -.122901   .161577

   year3*   -.1973371      .03007   -6.56   0.000  -.256273 -.138401   .158134

   year2*   -.2573901      .03337   -7.71   0.000  -.322804 -.191977   .147414

lagsto~n     .0012872      .00021    6.28   0.000   .000885  .001689   60.2506

lagdom~d     .0054045      .00051   10.52   0.000   .004398  .006411    73.905

legor_ge*    .0108461      .07247    0.15   0.881  -.131186  .152878   .196985

legor_fr*    .0800041       .0689    1.16   0.246  -.055029  .215037   .401637
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Presenting results from binary 

response models
� Marginal effects are often evaluated at mean x and z, with

individual effects set to zero. But:
� This represents a synthetic, hybrid person that doesn’t exist.
� Technically, no-one has a zero individual effect (prob is zero)

� A more flexible way to present results is to predict
probabilities for different combinations of x and z,probabilities for different combinations of x and z,
representing different types of person or counterfactual
scenarios.

� Can present raw probabilities or differences between them
(marginal effects). This method can also show the effect of
changing any combination of x and z variables
simultaneously.
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Marginal effects after xtprobit

. mfx if  comlang_off==0, predict(pu0)

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

   year6*    -.005306       .0033   -1.61   0.108  -.011772   .00116   .196395

   year5*   -.0026079      .00216   -1.21   0.228  -.006845  .001629    .14481

   year4*   -.0163806      .00882   -1.86   0.063  -.033658  .000897   .163456

   year3*   -.0189697      .01003   -1.89   0.059   -.03863   .00069   .155376

   year2*   -.0288953      .01448   -2.00   0.046  -.057269 -.000522   .139838

lagsto~n     .0000788      .00005    1.72   0.086  -.000011  .000169   53.3244

lagdom~d     .0003308      .00019    1.76   0.078  -.000037  .000699   79.6789

legor_ge*    .0006388      .00412    0.16   0.877  -.007438  .008715   .048477

legor_fr*    .0045587      .00457    1.00   0.319  -.004399  .013516   .349285

legor_uk*    -.000717      .00456   -0.16   0.875  -.009653  .008219   .594779

lagfin~k     .0000359      .00016    0.23   0.820  -.000274  .000346   38.2101

lagpol~k     .0010889      .00062    1.75   0.081  -.000133  .002311   72.6001

laginv~y*    .0088611      .00525    1.69   0.092  -.001434  .019156   .335612

comlan~f*    .2176608      .02606    8.35   0.000   .166578  .268743         1

 logdist    -.0181612      .01018   -1.78   0.074  -.038118  .001795   8.44694

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =   .9948639

      y  = Pr(inv4=1 assuming u_i=0) (predict, pu0)

Marginal effects after xtprobit

. mfx if  comlang_off==1, predict(pu0)

(*) dy/dx is for discrete change of dummy variable from 0 to 1

                                                                              

   year6*   -.0864335      .02355   -3.67   0.000  -.132595 -.040272   .195893

   year5*   -.0455143      .02618   -1.74   0.082  -.096824  .005795   .142712

   year4*   -.2028822      .03088   -6.57   0.000  -.263415  -.14235   .161358

   year3*   -.2223907      .03203   -6.94   0.000  -.285165 -.159617   .158456

   year2*   -.2859705      .03451   -8.29   0.000  -.353609 -.218332   .148299

lagsto~n     .0015199      .00024    6.43   0.000   .001057  .001983   61.0592

lagdom~d     .0063814      .00056   11.33   0.000   .005278  .007485    73.231

legor_ge*     .012847       .0861    0.15   0.881  -.155908  .181602   .214322

legor_fr*    .0950568      .08215    1.16   0.247  -.065953  .256067   .407749

legor_uk*   -.0140985      .09123   -0.15   0.877  -.192908  .164711   .305812

lagfin~k     .0006927      .00303    0.23   0.819  -.005237  .006622   38.4989

lagpol~k     .0210062      .00225    9.33   0.000   .016595  .025418   73.9237

laginv~y*    .2000934      .03571    5.60   0.000     .1301  .270087   .467242

comlan~f*    .2025304      .02092    9.68   0.000   .161523  .243538         0

 logdist    -.3503514      .03284  -10.67   0.000   -.41472 -.285983   8.50374

                                                                              

variable        dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

                                                                              

         =  .79308494

      y  = Pr(inv4=1 assuming u_i=0) (predict, pu0)

Marginal effects after xtprobit
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Presenting results from binary 

response models cont

� It is also possible to calculate

� average partial effects (APE) which allow for the average effect
of the unobserved individual effects,

� p1-p0

� and� and

� Predicted Probability Ratio: p1 /p0
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Ordered response models
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Ordered response models
� Ordered (or ordinal) variables take discrete values which

have a natural ordering:
� Bank’s Capital Adequacy

� Credit rating (AAA,AA,A, …,CCC)

� Firm access to credit (deteriorated, unchanged, improved)� Firm access to credit (deteriorated, unchanged, improved)

� Variables are ordinal but not (necessarily) cardinal, i.e. the
“distance” between two categories has no meaning in the
model. Only order matters.
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Bank’s Capital Adequacy according to the Federal 

Deposit Insurance Corporation 

� Critically Undercapitalized if CAR<2%

� Significantly Undercapitalized if 2<=CAR<6%

� Undercapitalized if 6<=CAR<8

� Adequately Capitalized if 8<=CAR<10%

� Well Capitalized if CAR>=10% .� Well Capitalized if CAR>=10% .

� Transform CAR as taking the values: 0, 1, 2, 3, 4
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Latent regression (1)
� As in binary response models, assume there is an underlying

latent variable yit
* determined as follows:

yit
* = zi α + xit β + ui + εit

� ui is assumed to be a random effect distributed
independently of (zi ,Xi ) as N(0, σu

2).independently of (zi ,Xi ) as N(0, σu
2).

� Note there is no constant (see later).

� The observed value of yit is {0, 1, …, J}, depending on
where yit

* falls relative to a set of J cutpoints or thresholds, µ1 <
µ2 < … < µJ.
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Latent regression (2)
� The outcome yit is given as:

yit = 0 if yit
* ≤ µ1 

yit = 1 if µ1 < yit
* ≤ µ2 

.

yit = J if µJ < yit
*

� So, if J = 3, there are 2 cutpoints, µ1 and µ2.

� And if J = 2 (binary choice model), there is only one 
cutpoint, µ1.  
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Random effects ordered probit (1)

� Assume εit is normally distributed with unit variance.
Pr(yit = 0 | zi , xit , ui)  =  Pr(yit

* ≤ µ1 | zi , xit , ui) 
= Pr (zi α + xit β +  ui + εit ≤ µ1)
= Φ(µ1 - zi α - xit β - ui)

Pr(yit = 1 | zi , xit , ui)  =  Pr(µ1 < yit
* ≤ µ2 | zi , xit , ui) 

= Pr (µ1 < zi α + xit β +  ui + εit ≤ µ2)
= Φ(µ2 - zi α - xit β - ui) - Φ(µ1 - zi α - xit β - ui)

[which is just Pr (yit
* ≤ µ2) minus Pr (yit

* ≤ µ1)]
Etc…
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Random effects ordered probit (2)

� Finally:

Pr(yit = J | zi , xit , ui)  =  Pr(µJ < yit
* | zi , xit , ui) 

= 1 - Pr(yit
* ≤ µJ | zi , xit , ui) 

= 1- Φ(µJ - zi α - xit β - ui)J i it i

� Check that these probabilities sum to one!

� Predicting probabilities and calculating marginal effects is 
done analogously to the binary RE probit.
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Random effects ordered probit 

estimation example (xtoprobit) 

                                                Wald chi2(3)       =   1000.87

Integration method: mvaghermite                 Integration points =        12

                                                               max =         8

                                                               avg =       6.7

Random effects u_i ~ Gaussian                   Obs per group: min =         1

Group variable: id                              Number of groups   =     10131

Random-effects ordered probit regression        Number of obs      =     68125

LR test vs. oprobit regression:  chibar2(01) =   620.84 Prob>=chibar2 = 0.0000

                                                                              

   /sigma2_u     .9987348     .10055                      .8198859    1.216598

                                                                              

       /cut4    -5.726291   .2447736   -23.39   0.000    -6.206039   -5.246544

       /cut3    -6.530671   .2533777   -25.77   0.000    -7.027283    -6.03406

       /cut2    -7.009726   .2600338   -26.96   0.000    -7.519383   -6.500069

       /cut1    -7.832985   .2770601   -28.27   0.000    -8.376013   -7.289957

                                                                              

       size1    -.1494287    .016144    -9.26   0.000    -.1810703   -.1177872

       risk1    -.0134609   .0009823   -13.70   0.000    -.0153862   -.0115356

         noi      .277461   .0091586    30.30   0.000     .2595104    .2954115

                                                                              

         cap        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  = -5725.3604                    Prob > chi2        =    0.0000

                                                Wald chi2(3)       =   1000.87
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Obtain predicted probabilities: predict 

prob*, pu0

       prob3       68125    .0005367    .0062296          0   .1889938

       prob2       68125    .0003956    .0078075          0   .3193535

       prob1       68125    .0004656    .0176663          0          1

                                                                      

    Variable         Obs        Mean    Std. Dev.       Min        Max

. sum prob1 prob2 prob3 prob4 prob5

       prob5       68125    .9956704    .0362212          0          1

       prob4       68125    .0029317    .0157829          0   .3124515

       prob3       68125    .0005367    .0062296          0   .1889938
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