## DISCRETE RANDOM VARIABLES



Quantitative Methods, K. Drakos

### Discreteness

•*Inherent discreteness* might involve transitions between states (*e.g.* dividend/no dividend, investment / no investment)

•Sometimes there are no two-way transitions (e.g. default)

•*Observational discreteness* is an artefact of the observation process (*e.g.* CAP bucket FDIC)

[Note discrete variables are also sometimes called limited dependent variables]

### Forms of discreteness

•*Censoring/corner solutions* generate variables which are mixed discrete/continuous

(*e.g.* value of investment 0 for no-trigger firms, any positive value for trigger firms)

• *Truncation* involves discarding part of the population

(e.g. SME targeted samples, Listed firms)

• Count variables are the outcome of some counting process

(*e.g.* the number of capital types firm invests in, or the number of product types a country exports)

• Binary variables reflect a distinction between two states

(e.g. default / no default, export / no export, dividend / no dividend)

•*Ordinal variables* are ordered variables, typically taking more than two values (*e.g.* CAP 1-4, SME size 1-4)

• Unordered variables reflect outcomes which are discrete but with no natural ordering (e.g. bank specialization)



## **Binary models**

Dependent variable is

$$y_{it} = 0 \text{ or } 1$$

This describes:

- situations of choice between 2 alternatives
- Binary outcomes are outcomes with two possible values, commonly referred to as *success* and *failure*.
- The outcome of interest (success) is commonly scored "1" if it occurs, otherwise "0" (failure).

*E.g.* suppose:

•  $\mathbf{y}_i = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1)$  is an annual panel observation

• 0 indicates no dividend was paid, 1 indicates dividend was paid

Then  $\mathbf{y}_i$  represents a history of 4 years' of zero dividend pay out followed by 3 years' positive dividend, followed by 1 year's no dividend then 2 years' positive dividend.

### Why are special methods needed?

Consider the binary variable,  $y_{it} = 0$  or 1 Notice that  $E(y_{it}) = \Pr(y_{it} = 1) \cdot (1) + \Pr(y_{it} = 0) \cdot (0) = \Pr(y_{it} = 1)$ where  $\Pr(y_{it} = 1)$  is the probability that  $y_{it} = 1$ 

This suggests that a simple way to model  $y_{it}$  is using a regression with  $y_{it}$  on the LHS. Then the RHS will be the conditional probability that  $y_{it} = 1$ , plus an error term.

This is called a linear probability model:

$$y_{it} = \boldsymbol{\alpha}_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \boldsymbol{\mathcal{E}}_{it}$$
(1)

With panel data methods (*e.g.* within-group or random-effects), linear model implies:

$$E(y_{it} \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) \equiv \Pr(y_{it} = 1 \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) = P(\mathbf{z}_i, \mathbf{x}_{it}, u_i)$$

### Disadvantages of the LPM

- Predicted probabilities don't necessarily lie within the 0 to 1 range
- We get a very specific form of heteroskedasticity errors for this model (values are along the continuous OLS line, but Y<sub>i</sub> values jump between 0 and 1 this creates large variation in errors)
- Errors are non-normal



## What to do about this?

- •To overcome the disadvantages of the LPM, use non-linear methods.
- •There are two types of similar S-curves used to analyze these data, *logit* and *probit*
- •The two tend to yield similar results
- •By fitting a "sigmoidal" or S-shaped, curved line to the data (see chart on left), we can do a much better job of minimizing the errors.

Latent regression models: the binary case

Define a latent (unobservable) continuous counterpart,  $y_{it}^{*}$ 

#### Example from global bilateral investment holdings:

If  $y_{it}$ =1 defines positive investment holdings between two countries , then: Let  $y_{it}^*$  be generated by a linear regression structure:

$$y_{it}^* = \alpha_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_i + \boldsymbol{\varepsilon}_{it}$$

Then invetsment is observed according to:

$$y_{it} = 1$$
 if and only if  $y_{it}^* > 0$ 

Latent regression models: the binary case cont

$$\Rightarrow \operatorname{Pr}(y_{it} = 1 \mid \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i}) = \operatorname{Pr}(\boldsymbol{\alpha}_{0} + \mathbf{z}_{i}\boldsymbol{\alpha} + \mathbf{x}_{it}\boldsymbol{\beta} + u_{i} + \boldsymbol{\mathcal{E}}_{it} > 0)$$
$$= \operatorname{Pr}(-\boldsymbol{\mathcal{E}}_{it} < [\boldsymbol{\alpha}_{0} + \mathbf{z}_{i}\boldsymbol{\alpha} + \mathbf{x}_{it}\boldsymbol{\beta} + u_{i}])$$
$$= F(\boldsymbol{\alpha}_{0} + \mathbf{z}_{i}\boldsymbol{\alpha} + \mathbf{x}_{it}\boldsymbol{\beta} + u_{i})$$

where F(.) is the distribution function of the random variable  $-\mathcal{E}_{it}$ 

**Probit model:** assume  $\mathcal{E}_{it}$  has a normal distribution

 $F(.) = \Phi(.) \Rightarrow df of the N(0,1) distribution$ 

Logit (logistic regression) model: assume  $\mathcal{E}_{it}$  has a logistic distribution  $F(\mathcal{E}) = e^{\mathcal{E}} / [1 + e^{\mathcal{E}}] \Rightarrow df of the logistic distribution$ 

11

Random effects logit/probit

Consider the basic model:

$$y_{it}^{*} = \boldsymbol{\alpha}_{0} + \mathbf{z}_{i} \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_{i} + \boldsymbol{\mathcal{E}}_{it}$$
$$y_{it} = 1 \quad \text{if and only if } y_{it}^{*} > 0$$

Make standard random effects assumptions (including independence of  $(\mathbf{z}_i, \mathbf{x}_{it})$  and  $u_i$ ).

Since the  $\mathcal{E}_{it}$  are independent, the joint probability of observing  $(y_{i1}, y_{i1}, \ldots, y_{iTi})$  conditional on  $u_i$  (and  $\mathbf{z}_i, \mathbf{x}_{it}$ ) is just the product of the conditional probabilities for each time period:

$$\Pr(y_{i1}, \dots, y_{iT} \mid u_i) = \Pr(y_{i1} \mid u_i) \times \dots \times \Pr(y_{iT} \mid u_i)$$
$$= F(\boldsymbol{\alpha}_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{i1} \boldsymbol{\beta} + u_i) \times \dots \times F(\boldsymbol{\alpha}_0 + \mathbf{z}_i \boldsymbol{\alpha} + \mathbf{x}_{iT} \boldsymbol{\beta} + u_i)$$

#### Random effects logit/probit

Make an assumption about the distribution of  $u_i$  (usually assumed to be N(0,  $\sigma_u^2$ )).

Average out (marginalise with respect to) the unobservable  $u_i$  to get the unconditional probability of the data for individual i:

 $\Pr(y_{i1}, ..., y_{iT}) = E[\Pr(y_{i1}, ..., y_{iT} | u_i)]$ 

where "E[ . ]" refers to the expectation or mean with respect to the N(0,  $\sigma_u^2$ ) distribution of  $u_i$ .

This unconditional probability  $Pr(y_{i1}, \ldots, y_{iT})$  is the likelihood for individual *i*. Repeat this for all individuals in the sample.

We then choose as our ML estimates the parameter values that maximise the likelihood over the whole sample. This is implemented in Stata, but computing run times are quite long.

This ML method works well only if  $cov(u_i, [\mathbf{z}_i, \mathbf{x}_{it}]) = 0$ 

# Example: Gravity setup (sender-host countries); paired id

- Investment holdings depend on: the costs, and the attractiveness of the host
- xtprobit inv4 logdist comlang\_off laginvtreaty lagpolrisk lagfinrisk legor\_uk legor\_fr legor\_ge legor\_sc legor\_so lagdomcred lagstockturn year1- year7

| Random-effects probit regression<br>Group variable: id_pair | Number of obs =<br>Number of groups =  | 15392<br>3813     |
|-------------------------------------------------------------|----------------------------------------|-------------------|
| Random effects u_i ~ Gaussian                               | Obs per group: min =<br>avg =<br>max = | 1<br>4.0<br>6     |
| Integration method: mvaghermite                             | <pre>Integration points =</pre>        | 12                |
| Log likelihood = -4915.4267                                 | Wald chi2(15) = 1<br>Prob > chi2 =     | .512.61<br>0.0000 |

| inv4         | Coef.     | Std. Err. | Z      | P> z  | [95% Conf. | Interval] |
|--------------|-----------|-----------|--------|-------|------------|-----------|
| logdist      | -1.226304 | .0795409  | -15.42 | 0.000 | -1.382201  | -1.070407 |
| comlang_off  | 1.803748  | .2380528  | 7.58   | 0.000 | 1.337173   | 2.270323  |
| laginvtreaty | .7187815  | .1320455  | 5.44   | 0.000 | .459977    | .9775859  |
| lagpolrisk   | .0735263  | .0065495  | 11.23  | 0.000 | .0606894   | .0863631  |
| lagfinrisk   | .0024246  | .010589   | 0.23   | 0.819 | 0183294    | .0231786  |
| legor_uk     | 0489695   | .3145673  | -0.16  | 0.876 | 6655102    | .5675711  |
| legor_fr     | .3420482  | .3037728  | 1.13   | 0.260 | 2533356    | .9374319  |
| legor_ge     | .0454518  | .3078679  | 0.15   | 0.883 | 5579582    | .6488619  |
| legor_sc     | 0         | (omitted) |        |       |            |           |
| legor_so     | 0         | (omitted) |        |       |            |           |
| lagdomcred   | .0223361  | .0014295  | 15.63  | 0.000 | .0195344   | .0251378  |
| lagstockturn | .0053198  | .0007708  | 6.90   | 0.000 | .0038091   | .0068305  |
| year1        | 0         | (omitted) |        |       |            |           |
| year2        | 8390752   | .0873498  | -9.61  | 0.000 | -1.010278  | 6678727   |
| year3        | 6708261   | .0835393  | -8.03  | 0.000 | 8345601    | 5070921   |
| year4        | 6179186   | .081747   | -7.56  | 0.000 | 7781397    | 4576974   |
| year5        | 152654    | .0838404  | -1.82  | 0.069 | 3169782    | .0116702  |
| year6        | 2834496   | .0716033  | -3.96  | 0.000 | 4237895    | 1431097   |
| year7        | 0         | (omitted) |        |       |            |           |
| _cons        | 3.693808  | .9333702  | 3.96   | 0.000 | 1.864436   | 5.52318   |
| /lnsig2u     | 2.617384  | .0629678  |        |       | 2.49397    | 2.740799  |
| sigma_u      | 3.70133   | .1165323  |        |       | 3.479835   | 3.936923  |
| rho          | .9319721  | .0039922  |        |       | .923718    | .9393916  |

Likelihood-ratio test of rho=0: chibar2(01) = 6286.51 Prob >= chibar2 = 0.000

Quantitative Methods, K. Drakos

## Estimating output

- In probit and Logit models, interpretation of the parameters is not straightforward
- Not a linear model, so coefficients are not the slope of a line.
- Therefore, if say  $\beta_1$  is positive (negative), an increase in x would increase (decrease) the probability that the positive outcome would be observed
- Thus, the sign of the estimated parameters tell us if the probability of a +ve outcome will increase or decrease.
- "by how much" the probability increases or decreases is answered by computing the **marginal effects**

## Predicted probabilities and marginal effects

- Calculate the predicted (fitted) probability of positive investment holdings
- Marginal Effect is the change in Pr(y = 1) corresponding to a very small (infinitesimal) change in x or z, scaled up to represent a 1 unit change.
- This is a popular way to present results, partly because the effects can be calculated directly using a standard formula. Can also use Stata command mfx.

#### cont

- Scaling up the effect due to an infinitesimal change is fine in linear models, but <u>not</u> generally in non-linear models if the change you wish to consider is not small, e.g. change in dummy variable (0 to 1) or increase of discrete variable (going from 2 to 3 children may not be a small change!).
- No hard and fast rules about difference between the 2 methods (will also depend on size of coefficients and baseline probability). But it is safest to use the discrete method (difference in probability before and after change).
- mfx recognises dummy variables and calculates effect due to 0 to 1 change. But mfx calculates marginal effect based on infinitesimal change for all other variables (including discrete variables with >2 categories).

#### . mfx, predict(pu0)

Marginal effects after xtprobit

y = Pr(inv4=1 assuming u\_i=0) (predict, pu0)

- .84135461

| variable  | dy/dx    | Std. Err. | Z      | P> z  | [ 95%   | C.I. ]  | Х       |
|-----------|----------|-----------|--------|-------|---------|---------|---------|
| logdist   | 2967176  | .02939    | -10.10 | 0.000 | 35432   | 239115  | 8.4978  |
| comlan~f* | .2040849 | .02099    | 9.72   | 0.000 | .162938 | .245232 | .104535 |
| laginv~y* | .1682984 | .03051    | 5.52   | 0.000 | .108494 | .228103 | .453482 |
| lagpol~k  | .0177905 | .00201    | 8.84   | 0.000 | .013845 | .021736 | 73.7854 |
| lagfin~k  | .0005867 | .00256    | 0.23   | 0.819 | 004435  | .005609 | 38.4687 |
| legor_uk* | 0119438  | .0773     | -0.15  | 0.877 | 163458  | .13957  | .336019 |
| legor_fr* | .0800041 | .0689     | 1.16   | 0.246 | 055029  | .215037 | .401637 |
| legor_ge* | .0108461 | .07247    | 0.15   | 0.881 | 131186  | .152878 | .196985 |
| lagdom~d  | .0054045 | .00051    | 10.52  | 0.000 | .004398 | .006411 | 73.905  |
| lagsto~n  | .0012872 | .00021    | 6.28   | 0.000 | .000885 | .001689 | 60.2506 |
| year2*    | 2573901  | .03337    | -7.71  | 0.000 | 322804  | 191977  | .147414 |
| year3*    | 1973371  | .03007    | -6.56  | 0.000 | 256273  | 138401  | .158134 |
| year4*    | 1792241  | .02874    | -6.24  | 0.000 | 235548  | 122901  | .161577 |
| year5*    | 0389437  | .02265    | -1.72  | 0.086 | 083341  | .005454 | .142931 |
| year6*    | 0744384  | .02074    | -3.59  | 0.000 | 115079  | 033798  | .195946 |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1

Presenting results from binary response models

- Marginal effects are often evaluated at mean **x** and **z**, with individual effects set to zero. But:
  - This represents a synthetic, hybrid person that doesn't exist.
  - Technically, no-one has a zero individual effect (prob is zero)
- A more flexible way to present results is to predict probabilities for different combinations of **x** and **z**, representing different types of person or counterfactual scenarios.
- Can present raw probabilities or differences between them (marginal effects). This method can also show the effect of changing any combination of x and z variables simultaneously.

. mfx if comlang\_off==1, predict(pu0)

Marginal effects after xtprobit

y = Pr(inv4=1 assuming u\_i=0) (predict, pu0)

= .9948639

| variable  | dy/dx    | Std. Err. | Z     | P> z  | [ 95%   | C.I. ]  | Х       |
|-----------|----------|-----------|-------|-------|---------|---------|---------|
| logdist   | 0181612  | .01018    | -1.78 | 0.074 | 038118  | .001795 | 8.44694 |
| comlan~f* | .2176608 | .02606    | 8.35  | 0.000 | .166578 | .268743 | 1       |
| laginv~y* | .0088611 | .00525    | 1.69  | 0.092 | 001434  | .019156 | .335612 |
| lagpol~k  | .0010889 | .00062    | 1.75  | 0.081 | 000133  | .002311 | 72.6001 |
| lagfin~k  | .0000359 | .00016    | 0.23  | 0.820 | 000274  | .000346 | 38.2101 |
| legor_uk* | 000717   | .00456    | -0.16 | 0.875 | 009653  | .008219 | .594779 |
| legor_fr* | .0045587 | .00457    | 1.00  | 0.319 | 004399  | .013516 | .349285 |
| legor_ge* | .0006388 | .00412    | 0.16  | 0.877 | 007438  | .008715 | .048477 |
| lagdom~d  | .0003308 | .00019    | 1.76  | 0.078 | 000037  | .000699 | 79.6789 |
| lagsto~n  | .0000788 | .00005    | 1.72  | 0.086 | 000011  | .000169 | 53.3244 |
| year2*    | 0288953  | .01448    | -2.00 | 0.046 | 057269  | 000522  | .139838 |
| year3*    | 0189697  | .01003    | -1.89 | 0.059 | 03863   | .00069  | .155376 |
| year4*    | 0163806  | .00882    | -1.86 | 0.063 | 033658  | .000897 | .163456 |
| year5*    | 0026079  | .00216    | -1.21 | 0.228 | 006845  | .001629 | .14481  |
| year6*    | 005306   | .0033     | -1.61 | 0.108 | 011772  | .00116  | .196395 |
|           |          |           |       |       |         |         |         |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1  $\,$ 

. mfx if comlang\_off==0, predict(pu0)

Marginal effects after xtprobit

y = Pr(inv4=1 assuming u\_i=0) (predict, pu0)

= .79308494

| variable  | dy/dx    | Std. Err. | Z      | ₽> z  | [ 95%   | C.I. ]  | Х       |
|-----------|----------|-----------|--------|-------|---------|---------|---------|
| logdist   | 3503514  | .03284    | -10.67 | 0.000 | 41472   | 285983  | 8.50374 |
| comlan~f* | .2025304 | .02092    | 9.68   | 0.000 | .161523 | .243538 | 0       |
| laginv~y* | .2000934 | .03571    | 5.60   | 0.000 | .1301   | .270087 | .467242 |
| lagpol~k  | .0210062 | .00225    | 9.33   | 0.000 | .016595 | .025418 | 73.9237 |
| lagfin~k  | .0006927 | .00303    | 0.23   | 0.819 | 005237  | .006622 | 38.4989 |
| legor_uk* | 0140985  | .09123    | -0.15  | 0.877 | 192908  | .164711 | .305812 |
| legor_fr* | .0950568 | .08215    | 1.16   | 0.247 | 065953  | .256067 | .407749 |
| legor_ge* | .012847  | .0861     | 0.15   | 0.881 | 155908  | .181602 | .214322 |
| lagdom~d  | .0063814 | .00056    | 11.33  | 0.000 | .005278 | .007485 | 73.231  |
| lagsto~n  | .0015199 | .00024    | 6.43   | 0.000 | .001057 | .001983 | 61.0592 |
| year2*    | 2859705  | .03451    | -8.29  | 0.000 | 353609  | 218332  | .148299 |
| year3*    | 2223907  | .03203    | -6.94  | 0.000 | 285165  | 159617  | .158456 |
| year4*    | 2028822  | .03088    | -6.57  | 0.000 | 263415  | 14235   | .161358 |
| year5*    | 0455143  | .02618    | -1.74  | 0.082 | 096824  | .005795 | .142712 |
| year6*    | 0864335  | .02355    | -3.67  | 0.000 | 132595  | 040272  | .195893 |

(\*) dy/dx is for discrete change of dummy variable from 0 to 1

Presenting results from binary response models cont

- It is also possible to calculate
- *average partial effects* (APE) which allow for the average effect of the unobserved individual effects,
- p<sub>1</sub>-p<sub>0</sub>
- and
- Predicted Probability Ratio:  $p_1 / p_0$



## Ordered response models

- Ordered (or ordinal) variables take discrete values which have a natural ordering:
  - Bank's Capital Adequacy
  - Credit rating (AAA, AA, A, ..., CCC)
  - Firm access to credit (deteriorated, unchanged, improved)
- Variables are ordinal but not (necessarily) cardinal, i.e. the "distance" between two categories has no meaning in the model. Only order matters.

Bank's Capital Adequacy according to the Federal Deposit Insurance Corporation

- Critically Undercapitalized if CAR<2%
- Significantly Undercapitalized if 2<=CAR<6%
- Undercapitalized if 6<=CAR<8</li>
- Adequately Capitalized if 8<=CAR<10%</li>
- Well Capitalized if CAR>=10%.
- Transform CAR as taking the values: 0, 1, 2, 3, 4

## Latent regression (1)

• As in binary response models, assume there is an underlying latent variable  $y_{it}^*$  determined as follows:

$$y_{it}^{*} = \mathbf{z}_{i} \boldsymbol{\alpha} + \mathbf{x}_{it} \boldsymbol{\beta} + u_{i} + \boldsymbol{\mathcal{E}}_{it}$$

- $u_i$  is assumed to be a random effect distributed independently of  $(\mathbf{z}_i, \mathbf{X}_i)$  as N(0,  $\sigma_u^2$ ).
- Note there is no constant (see later).
- The observed value of  $y_{it}$  is  $\{0, 1, ..., J\}$ , depending on where  $y_{it}^*$  falls relative to a set of *J* cutpoints or thresholds,  $\mu_1 < \mu_2 < ... < \mu_J$ .

## • The outcome $y_{it}$ is given as: $y_{it} = 0$ if $y_{it}^* \le \mu_1$ $y_{it} = 1$ if $\mu_1 < y_{it}^* \le \mu_2$ . $y_{it} = J$ if $\mu_1 < y_{it}^*$

• So, if J = 3, there are 2 cutpoints,  $\mu_1$  and  $\mu_2$ 

• And if J = 2 (binary choice model), there is only one cutpoint,  $\mu_1$ .

## Random effects ordered probit (1)

• Assume  $\mathcal{E}_{it}$  is normally distributed with unit variance.

$$\Pr(y_{it} = 0 | \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i}) = \Pr(y_{it}^{*} \leq \boldsymbol{\mu}_{1} | \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i})$$
$$= \Pr(\mathbf{z}_{i}\boldsymbol{\alpha} + \mathbf{x}_{it}\boldsymbol{\beta} + u_{i} + \boldsymbol{\mathcal{E}}_{it} \leq \boldsymbol{\mu}_{1})$$
$$= \Phi(\boldsymbol{\mu}_{1} - \mathbf{z}_{i}\boldsymbol{\alpha} - \mathbf{x}_{it}\boldsymbol{\beta} - u_{i})$$

$$\Pr(y_{it} = 1 | \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i}) = \Pr(\boldsymbol{\mu}_{1} < y_{it}^{*} \leq \boldsymbol{\mu}_{2} | \mathbf{z}_{i}, \mathbf{x}_{it}, u_{i})$$

$$= \Pr(\boldsymbol{\mu}_{1} < \mathbf{z}_{i}\boldsymbol{\alpha} + \mathbf{x}_{it}\boldsymbol{\beta} + u_{i} + \boldsymbol{\varepsilon}_{it} \leq \boldsymbol{\mu}_{2})$$

$$= \Phi(\boldsymbol{\mu}_{2} - \mathbf{z}_{i}\boldsymbol{\alpha} - \mathbf{x}_{it}\boldsymbol{\beta} - u_{i}) - \Phi(\boldsymbol{\mu}_{1} - \mathbf{z}_{i}\boldsymbol{\alpha} - \mathbf{x}_{it}\boldsymbol{\beta} - u_{i})$$
[which is just  $\Pr(y_{it}^{*} \leq \boldsymbol{\mu}_{2})$  minus  $\Pr(y_{it}^{*} \leq \boldsymbol{\mu}_{1})$ ]  
Etc...

## Random effects ordered probit (2)

• Finally:

$$\Pr(y_{it} = J \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i) = \Pr(\boldsymbol{\mu}_J < y_{it}^* \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i)$$
$$= 1 - \Pr(y_{it}^* \leq \boldsymbol{\mu}_J \mid \mathbf{z}_i, \mathbf{x}_{it}, u_i)$$
$$= 1 - \Phi(\boldsymbol{\mu}_J - \mathbf{z}_i \boldsymbol{\alpha} - \mathbf{x}_{it} \boldsymbol{\beta} - u_i)$$

- Check that these probabilities sum to one!
- Predicting probabilities and calculating marginal effects is done analogously to the binary RE probit.

# Random effects ordered probit estimation example (xtoprobit)

| Random-effects ordered probit regression |                                     |           |                  |         | of obs                 | = 68125               |
|------------------------------------------|-------------------------------------|-----------|------------------|---------|------------------------|-----------------------|
| Group variable: id                       |                                     |           |                  |         | of groups              | = 10131               |
| andom effect                             | s u_i ~ Gauss                       | ian       |                  | Obs per | group: min             | = 1                   |
|                                          |                                     |           |                  |         | avg                    | = 6.7                 |
|                                          |                                     |           |                  |         | max                    | = 8                   |
| ntegration m                             | ethod: mvaghe                       | rmite     |                  | Integra | tion points            | = 12                  |
|                                          |                                     |           |                  | Wald ch | i2(3)                  | = 1000.87             |
| og likelihoo                             | d = -5725.36                        | 04        |                  | Prob >  | chi2                   | = 0.0000              |
|                                          |                                     |           |                  |         |                        |                       |
| cap                                      | Coef.                               | Std. Err. | Z                | ₽> z    | [95% Conf              | . Interval]           |
| noi                                      | .277461                             | .0091586  | 30.30            | 0.000   | .2595104               | .2954115              |
| risk1                                    | 0134609                             | .0009823  | -13.70           | 0.000   | 0153862                | 0115356               |
| sizel                                    | 1494287                             | .016144   | -9.26            | 0.000   | 1810703                | 1177872               |
| /cut1                                    | -7.832985                           | .2770601  | -28.27           | 0.000   | -8.376013              | -7.289957             |
|                                          |                                     | 2600338   | -26.96           | 0.000   | -7.519383              | -6.500069             |
| /cut2                                    | -7.009726                           | .2000550  |                  |         |                        |                       |
| /cut2<br>/cut3                           | -7.009726                           | .2533777  | -25.77           | 0.000   | -7.027283              | -6.03406              |
| /cut2<br>/cut3<br>/cut4                  | -7.009726<br>-6.530671<br>-5.726291 | .2533777  | -25.77<br>-23.39 | 0.000   | -7.027283<br>-6.206039 | -6.03406<br>-5.246544 |

# Obtain predicted probabilities: predict prob\*, pu0

. sum prob1 prob2 prob3 prob4 prob5

| Va | riable | Obs   | Mean     | Std. Dev. | Min | Max      |
|----|--------|-------|----------|-----------|-----|----------|
|    | prob1  | 68125 | .0004656 | .0176663  | 0   | 1        |
|    | prob2  | 68125 | .0003956 | .0078075  | 0   | .3193535 |
|    | prob3  | 68125 | .0005367 | .0062296  | 0   | .1889938 |
|    | prob4  | 68125 | .0029317 | .0157829  | 0   | .3124515 |
|    | prob5  | 68125 | .9956704 | .0362212  | 0   | 1        |