

The Population Multiple Regression Model

Consider the case of two regressors:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \ i = 1, \dots, n$$

- *Y* is the *dependent variable*
- *X*₁, *X*₂ are the two *independent variables (regressors)*
- (Y_i, X_{1i}, X_{2i}) denote the i^{th} observation on Y, X_1 , and X_2 .
- β_0 = unknown population intercept
- β_1 = effect on *Y* of a change in *X*₁, holding *X*₂ constant
- β_2 = effect on *Y* of a change in *X*₂, holding *X*₁ constant
- $u_i =$ the regression error (omitted factors)

Interpretation of coefficients in multiple regression

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i, \ i = 1, \dots, n$$

Consider changing X_1 by ΔX_1 while holding X_2 constant: Population regression line *before* the change:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Population regression line, *after* the change:

 $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$ Quantitative Methods, K. Drakos

Before:

$$Y = \beta_0 + \beta_1(X_1 + \Delta X_1) + \beta_2 X_2$$
After:

$$Y + \Delta Y = \beta_0 + \beta_1(X_1 + \Delta X_1) + \beta_2 X_2$$
Difference:

$$\Delta Y = \beta_1 \Delta X_1$$
So:

$$\beta_1 = \frac{\Delta Y}{\Delta X_1}, \text{ holding } X_2 \text{ constant}$$

$$\beta_2 = \frac{\Delta Y}{\Delta X_2}, \text{ holding } X_1 \text{ constant}$$

$$\beta_0 = \text{predicted value of } Y \text{ when } X_1 = X_2 = 0.$$

The OLS Estimator in Multiple Regression

With two regressors, the OLS estimator solves:

$$\min_{b_0, b_1, b_2} \sum_{i=1}^{n} [Y_i - (b_0 + b_1 X_{1i} + b_2 X_{2i})]^2$$

- The OLS estimator minimizes the average squared difference between the actual values of *Y_i* and the prediction (predicted value) based on the estimated line.
- This minimization problem is solved using calculus
- This yields the OLS estimators of β_0 and β_1 .
 - Quantitative Methods, K. Drakos

5

 $\widehat{HLR} = 0.117 + 0.246*NTRAD$

Now include the size of average trade (ATS):

 $\widehat{HLR} = 0.608 + 0.442$ *NTRAD – 0.077*ATS

• What happens to the coefficient on NTRAD?

Why? (*Note*: corr(*STR*, *PctEL*) = +++) Quantitative Methods, K. Drakos

Multiple regression in STATA

. reg highlow numtrad ats if month==1, r

Linear regression

Number of obs	=	426
F(2, 423)	=	67.06
Prob > F	=	0.0000
R-squared	=	0.3797
Root MSE	=	.21106

highlow	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
numtrad	.4422475	.0473049	9.35	0.000	.3492657	.5352294
ats	0770767	.0108854	-7.08	0.000	0984729	0556805
_cons	.6085741	.0768587	7.92	0.000	.4575016	.7596466

More on this printout later...

Measures of Fit for Multiple Regression Actual = predicted + residual: $Y_i = \hat{Y}_i + \hat{u}_i$

SER = std. deviation of \hat{u}_i (with d.f. correction)

RMSE = std. deviation of \hat{u}_i (without d.f. correction)

 R^2 = fraction of variance of *Y* explained by *X*

 \overline{R}^2 = "adjusted R^2 " = R^2 with a degrees-of-freedom correction that adjusts for estimation uncertainty; $\overline{R}^2 < R^2$

SER and RMSE

As in regression with a single regressor, the *SER* and the *RMSE* are measures of the spread of the *Y*'s around the regression line:

$$SER = \sqrt{\frac{1}{n-k-1} \sum_{i=1}^{n} \hat{u}_{i}^{2}}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2}$$

$$R_2$$
 and \bar{R}^2

The R^2 is the fraction of the variance explained – same definition as in regression with a single regressor:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS},$$

where
$$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \overline{\hat{Y}})^2$$
, $SSR = \sum_{i=1}^{n} \hat{u}_i^2$, $TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$.

The R² always increases when you add another regressor (*why*?) – a bit of a problem for a measure of "fit"

Quantitative Methods, K. Drakos

 R^2 and \overline{R}^2 , ctd.

The \overline{R}^2 (the "adjusted R^2 ") corrects this problem by "penalizing" you for including another regressor – the \overline{R}^2 does not necessarily increase when you add another regressor.

Adjusted
$$R^2$$
: $\overline{R}^2 = 1 - \left(\frac{n-1}{n-k-1}\right) \frac{SSR}{TSS}$

Note that $\overline{R}^2 < R^2$, however if *n* is large the two will be very close.

(1)
$$\widehat{HLR} = 0.117 + 0.426*NTRAD,$$

 $R^2 = .2585$
(2) $\widehat{HLR} = 0.608 + 0.442*NTRAD - 0.077*ATS,$
 $R^2 = .3797, \overline{R}^2 = .3768$

• What – precisely – does this tell you about the fit of regression (2) compared with regression (1)? 12 Why care the \mathbb{R}^2 and the $\overline{\mathbb{R}}^2$ so close in (2)?

Hypothesis Tests and Confidence Intervals

Quantitative Methods, K. Drakos

Object of interest: β_1 in, $Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i \ u_i, i = 1,..., n$ $\beta_1 = \Delta Y / \Delta X$, for an autonomous change in *X* (*causal effect*)

The Least Squares Assumptions:

1.
$$E(u|X = x) = 0$$
.

- 2. $(X_i, Y_i), i = 1, ..., n$, are i.i.d.
- 3. Large outliers are rare $(E(X^4) < \infty, E(Y^4) < \infty)$.

The Sampling Distribution of $\hat{\beta}_1$:

Under the LSA's, for *n* large, $\hat{\beta}_1$ is approximately distributed,

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma_v^2}{n\sigma_X^4}\right)$$
, where $v_i = (X_i - \mu_X)u_i$

Hypothesis Testing and the Standard Error of

The objective is to test a hypothesis, like $\beta_1 = 0$, using data – to reach a tentative conclusion whether the (null) hypothesis is correct or incorrect.

General setup

Null hypothesis and two-sided alternative:

$$H_0: \beta_1 = \beta_{1,0}$$
 vs. $H_1: \beta_1 \neq \beta_{1,0}$

where $\beta_{1,0}$ is the hypothesized value under the null.

Null hypothesis and **one-sided** alternative:

Quantitative Method H_6 : Dr $\beta_{1,0}$ VS. H_1 : $\beta_1 < \beta_{1,0}$

General approach: construct *t*-statistic, and compute *p*-value (or compare to N(0,1) critical value)

• In general:

 $t = \frac{\text{estimate - hypothesized value}}{\text{standard error of the estimate}}$

where the *SE* of the estimate is the square root of the variance of the estimate.

• For testing the mean of Y: $t = \frac{Y - \mu_{Y,0}}{s_Y / \sqrt{n}}$ • For testing β_I , $t = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)}$

where $SE(\hat{\beta}_1)$ = the square root of an estimate of the variance of the sampling distribution of $\hat{\beta}_1$

Formula for SE()
$$\hat{\beta}_1$$

Recall the expression for the variance of $\hat{\beta}_1$ (large *n*):
 $\operatorname{var}(\hat{\beta}_1) = \frac{\operatorname{var}[(X_i - \mu_x)u_i]}{n(\sigma_x^2)^2} = \frac{\sigma_v^2}{n\sigma_x^4}$, where $v_i = (X_i - \mu_x)u_i$.
The estimator of the variance of $\hat{\beta}_1$ replaces the unknown
population values of σ_v^2 and σ_x^4 by estimators constructed from
the data:
 $\hat{\sigma}_{\hat{\beta}_1}^2 = \frac{1}{n} \times \frac{\operatorname{estimator of } \sigma_v^2}{(\operatorname{estimator of } \sigma_x^2)^2} = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{v}_i^2}{\left[\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2\right]^2}$

Quanta remetrication \hat{X}) \hat{u}_i .

17

$$\hat{\sigma}_{\hat{\beta}_{1}}^{2} = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^{n} \hat{v}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}\right]^{2}}, \text{ where } \hat{v}_{i} = (X_{i} - \overline{X}) \hat{u}_{i}.$$
$$SE(\hat{\beta}_{1}) = \sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}} = \text{the standard error of } \hat{\beta}_{1}$$

OK, this is a bit nasty, but:

- It is less complicated than it seems. The numerator estimates var(*v*), the denominator estimates var(*X*).
- Why the degrees-of-freedom adjustment n 2? Because two coefficients have been estimated (β_0 and β_1).
- $SE(\hat{\beta}_1)$ is computed by regression software

Summary: To test H_0 : $\beta_1 = \beta_{1,0}$ v. H_1 : $\beta_1 \neq \beta_{1,0}$,

• Construct the *t*-statistic

$$t = \frac{\hat{\beta}_{1} - \beta_{1,0}}{SE(\hat{\beta}_{1})} = \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\hat{\sigma}_{\hat{\beta}_{1}}^{2}}}$$

- Reject at 5% significance level if |t| > 1.96
- The *p*-value is $p = \Pr[|t| > |t^{act}|] = \text{probability in tails of}$ normal outside $|t^{act}|$; you reject at the 5% significance level if the *p*-value is < 5%.
- This procedure relies on the large-*n* approximation; typically n = 50 is large enough for the approximation to be excellent. Quantitative Methods, K. Drakos

Example: Stock volatility and number of trades data

Estimated regression line: $\widehat{HLR} = 0.117 + 0.426$ *NTRAD Regression software reports the standard errors:

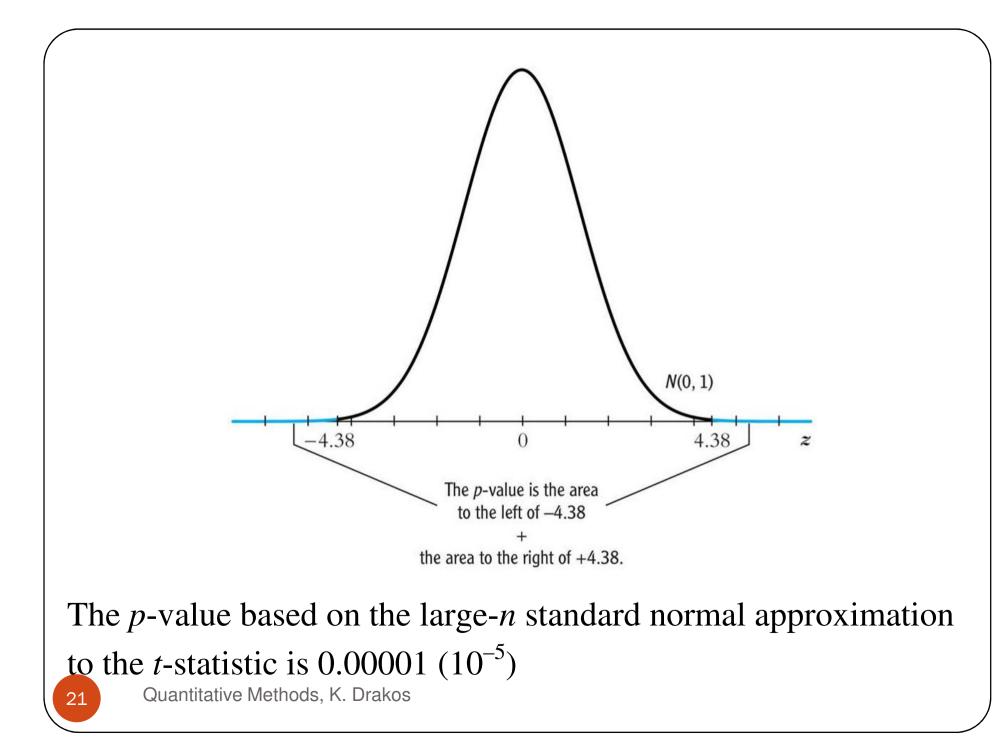
$$SE(\hat{\beta}_0) = 0.0119$$
 $SE(\hat{\beta}_1) = 0.035$

t-statistic testing
$$\beta_{1,0} = 0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{SE(\hat{\beta}_1)} = \frac{0.426 - 0}{0.035} = 12.17$$

• The 1% 2-sided significance level is 2.58, so we reject the null at the 1% significance level.

Alternatively, we can compute the *p*-value...

20



Confidence Intervals for β_1

Recall that a 95% confidence is, equivalently:

- The set of points that cannot be rejected at the 5% significance level;
- A set-valued function of the data (an interval that is a function of the data) that contains the true parameter value 95% of the time in repeated samples.

Because the *t*-statistic for β_1 is N(0,1) in large samples, construction of a 95% confidence for β_1 is just like the case of the sample mean:

95% confidence interval for $\beta_1 = \{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\}$

Confidence interval example: HLR and NTRAD Estimated regression line: $\widehat{HLR} = 0.117 + 0.426$ *NTRAD

$$SE(\hat{\beta}_0) = 0.0119$$
 $SE(\hat{\beta}_1) = 0.035$

95% confidence interval for $\hat{\beta}_1$:

$$\{\hat{\beta}_1 \pm 1.96 \times SE(\hat{\beta}_1)\} = \{0.426 \pm 1.96 \times 0.035\} = (0.357, 0.495)$$

The following two statements are equivalent (why?)
The 95% confidence interval does not include zero;
The hypothesis B_{takos}0 is rejected at the 5% level

A concise (and conventional) way to report regressions:

Put standard errors in parentheses below the estimated coefficients to which they apply.

 $HLR = 0.117 + 0.426 * NTRAD, R^2 = .2585, SER = 0.2299$ (0.011) (0.035)

This expression gives a lot of information

• The estimated regression line is HLR = 0.117 + 0.426 * NTRAD

- The standard error of $\hat{\beta}_0$ is 0.011
- The standard error of $\hat{\beta}_1$ is 0.035

• The R^2 is .2585; the standard error of the regression is 0.2299 Quantitative Methods, K. Drakos

OLS regression: reading STATA output

. reg highlow numtrad if month==1, r

Linear regres:	sion				Number of obs F(1, 424) Prob > F R-squared Root MSE	
highlow	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
numtrad _cons	.42659 .1173006	.0471464 .0105374	9.05 11.13	0.000 0.000	.3339202 .0965886	.5192597 .1380126

so:

 $t (\beta_1 = 0) = 9.05$, *p*-value = 0.000 (2-sided) 95% 2-sided conf. interval for β_1 is (0.333, 0.519)

Testing Exclusion Restrictions

- Now the null hypothesis might be something like $H_0: \beta_{k-q+1} = 0, \dots, \beta_k = 0$
- The alternative is just $H_1: H_0$ is not true
- Can't just check each *t* statistic separately, because we want to know if the *q* parameters are jointly significant at a given level it is possible for none to be individually significant at that level

Exclusion Restrictions (cont)

- To do the test we need to estimate the "restricted model" without x_{k-q+1}, ..., x_k included, as well as the "unrestricted model" with all x's included
- Intuitively, we want to know if the change in SSR is big enough to warrant inclusion of x_{k-q+1}, \ldots, x_k

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}, \text{ where}$$

r is restricted and ur is unrestricted

Quantitative Methods, K. Drakos

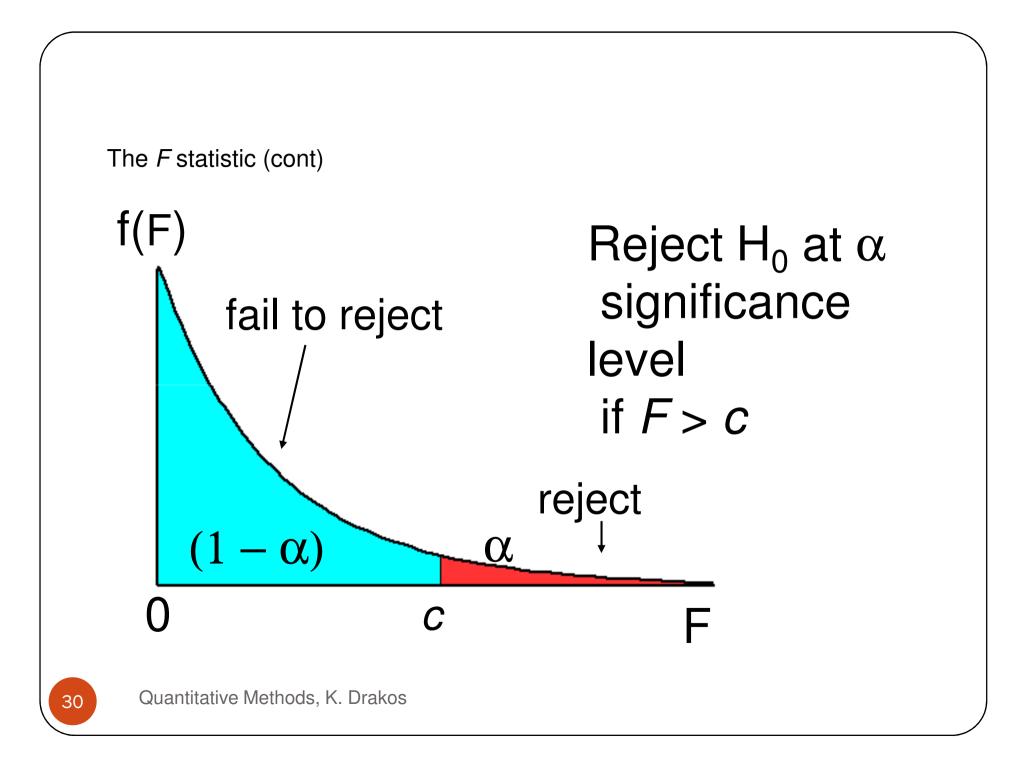
The F statistic

- The *F* statistic is always positive, since the SSR from the restricted model can't be less than the SSR from the unrestricted
- Essentially the *F* statistic is measuring the relative increase in SSR when moving from the unrestricted to restricted model
- q = number of restrictions, or $df_r df_{ur}$

•
$$n-k-1 = df_{ur}$$

The *F* statistic (cont)

- To decide if the increase in SSR when we move to a restricted model is "big enough" to reject the exclusions, we need to know about the sampling distribution of our *F* stat
- Not surprisingly, $F \sim F_{q,n-k-1}$, where *q* is referred to as the numerator degrees of freedom and n k 1 as the denominator degrees of freedom



The *R*² form of the *F* statistic

- Because the SSR's may be large and unwieldy, an alternative form of the formula is useful
- We use the fact that $SSR = SST(1 R^2)$ for any regression, so can substitute in for SSR_u and SSR_{ur}

$$F \equiv \frac{\left(R_{ur}^2 - R_r^2\right)/q}{\left(1 - R_{ur}^2\right)/(n - k - 1)}, \text{ where again}$$

r is restricted and ur is unrestricted

Quantitative Methods, K. Drakos

Overall Significance

- A special case of exclusion restrictions is to test $H_0: \beta_1$ = $\beta_2 = ... = \beta_k = 0$
- Since the R² from a model with only an intercept will be zero, the *F* statistic is simply

$$F = \frac{R^2/k}{(1-R^2)/(n-k-1)}$$

Quantitative Methods, K. Drakos

Nonlinear Regression Functions Quantitative Methods, K. Drakos 33

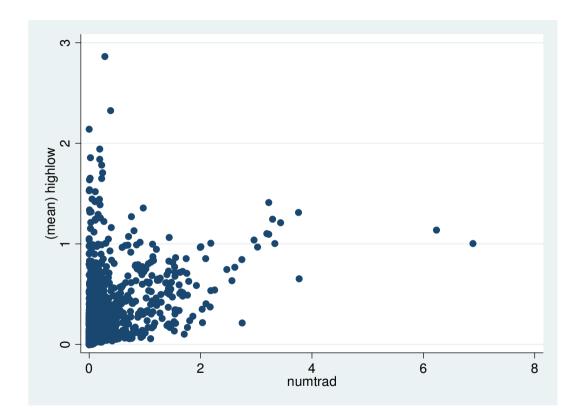
Nonlinear Regression Functions

- Everything so far has been linear in the *X*'s
- But the linear approximation is not always a good one
- The multiple regression framework can be extended to handle regression functions that are nonlinear in one or more *X*.

<u>Outline</u>

- 1. Nonlinear regression functions general comments
- 2. Nonlinear functions of one variable
- 3. Nonlinear functions of two variables: interactions

Does the volatility – trades relation look linear (probably not)...



35

Nonlinear Regression Population Regression Functions – General Ideas

If a relation between *Y* and *X* is **nonlinear**:

- The effect on *Y* of a change in *X* depends on the value of *X* that is, the marginal effect of *X* is not constant
- A linear regression is mis-specified the functional form is wrong
- The estimator of the effect on *Y* of *X* is biased it needn't even be right on average.
- The solution to this is to estimate a regression function that is nonlinear in *X*

Quantitative Methods, K. Drakos

The general nonlinear population regression function

$$Y_i = f(X_{1i}, X_{2i}, \dots, X_{ki}) + u_i, i = 1, \dots, n$$

Assumptions

- 1. $E(u_i | X_{1i}, X_{2i}, ..., X_{ki}) = 0$ (same); implies that *f* is the conditional expectation of *Y* given the *X*'s.
- 2. $(X_{1i}, ..., X_{ki}, Y_i)$ are i.i.d. (same).
- 3. Big outliers are rare (same idea; the precise mathematical condition depends on the specific f).
- 4. No perfect multicollinearity (same idea; the precise statement depends on the specific *f*).

Quantitative Methods, K. Drakos

The Expected Effect on Y of a Change in X_1 in the Nonlinear Regression Model (8.3)

The expected change in Y, ΔY , associated with the change in X_1 , ΔX_1 , holding X_2 , ..., X_k constant, is the difference between the value of the population regression function before and after changing X_1 , holding X_2 , ..., X_k constant. That is, the expected change in Y is the difference:

$$\Delta Y = f(X_1 + \Delta X_1, X_2, \dots, X_k) - f(X_1, X_2, \dots, X_k).$$
(8.4)

The estimator of this unknown population difference is the difference between the predicted values for these two cases. Let $\hat{f}(X_1, X_2, \ldots, X_k)$ be the predicted value of Y based on the estimator \hat{f} of the population regression function. Then the predicted change in Y is

$$\Delta \hat{Y} = \hat{f}(X_1 + \Delta X_1, X_2, \dots, X_k) - \hat{f}(X_1, X_2, \dots, X_k).$$
(8.5)

Nonlinear Functions of a Single Independent Variable

We'll look at two complementary approaches:

1. Polynomials in *X*

The population regression function is approximated by a quadratic, cubic, or higher-degree polynomial

- 2. Logarithmic transformations
 - Y and/or X is transformed by taking its logarithm
 - this gives a "percentages" interpretation that makes sense in many applications

Quantitative Methods, K. Drakos

1. Polynomials in *X*

Approximate the population regression function by a polynomial:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}X_{i}^{2} + \ldots + \beta_{r}X_{i}^{r} + u_{i}$$

- This is just the linear multiple regression model except that the regressors are powers of *X*!
- Estimation, hypothesis testing, etc. proceeds as in the multiple regression model using OLS
- The coefficients are difficult to interpret, but the regression

function itself is interpretable Quantitative Methods, K. Drakos Quadratic specification:

$$HLR_i = \beta_0 + \beta_1 * NTRAD_i + \beta_2 (NTRAD_i)^2 + u_i$$

Cubic specification:

 $HLR_{i} = \beta_{0} + \beta_{1} * NTRAD_{i} + \beta_{2} (NTRAD_{i})^{2} + \beta_{3} (NTRAD_{i})^{3} + u_{i}$

41

Estimation of a cubic specification in STATA

. reg highlow numtrad numtradessq numtradescub if month==1, r

Linear regression

Number of obs =		426
<u>F(2, 422) =</u>	=	•
Prob > F =	=	
R-squared =	=	0.3289
ROOT MSE =	=	.21979

highlow	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
numtrad	1.289911	.1977067	6.52	0.000	.9012987	1.678524
numtradessq	-9.27e-07	2.16e-07	-4.29	0.000	-1.35e-06	-5.03e-07
numtradescub	2.07e-10	5.19e-11	3.98	0.000	1.05e-10	3.09e-10
_cons	.074214	.0100204	7.41	0.000	.054518	.09391

Summary: polynomial regression functions $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_r X_i^r + u_i$

- Estimation: by OLS after defining new regressors
- Coefficients have complicated interpretations
- To interpret the estimated regression function:
 - plot predicted values as a function of *x*
 - compute predicted $\Delta Y / \Delta X$ at different values of x
- Hypotheses concerning degree *r* can be tested by *t* and *F* tests on the appropriate (blocks of) variable(s).
- Choice of degree r
 - plot the data; *t* and *F*-tests, check sensitivity of estimated effects; judgment.
 - Quantitative Methods, K. Drakos Or USE model selection criteria (later)

2. Logarithmic functions of *Y* and/or *X*

• $\ln(X)$ = the natural logarithm of *X*

• Logarithmic transforms permit modeling relations in "percentage" terms (like elasticities), rather than linearly.

Here's why:
$$\ln(x+\Delta x) - \ln(x) = \ln\left(1+\frac{\Delta x}{x}\right) \cong \frac{\Delta x}{x}$$

(calculus: $\frac{d\ln(x)}{dx} = \frac{1}{x}$)

Numerically:

$$\ln(1.01) = .00995 \cong .01;$$

Quantitative Methods, $100^{\text{rakos}} = .0953 \cong .10 \text{ (sort of)}$

The three log regression specifications:

Case	Population regression function
I. linear-log	$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$
II. log-linear	$\ln(Y_i) = \beta_0 + \beta_1 X_i + u_i$
III. log-log	$\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$

- The interpretation of the slope coefficient differs in each case.
- The interpretation is found by applying the general "before and after" rule: "figure out the change in *Y* for a given change in *X*."

I. Linear-log population regression function

$$Y = \beta_0 + \beta_1 \ln(X) \tag{b}$$

Now change X:
$$Y + \Delta Y = \beta_0 + \beta_1 \ln(X + \Delta X)$$
 (a)
Subtract (a) – (b): $\Delta Y = \beta_1 [\ln(X + \Delta X) - \ln(X)]$

now
$$\ln(X + \Delta X) - \ln(X) \cong \frac{\Delta X}{X}$$
,

SO

Quantitative Methods, K.
$$\beta_{\rm lak} \approx \frac{\Delta Y}{\Delta X / X}$$
 (small ΔX)

 $\Delta Y \cong \beta_1 \frac{\Delta X}{X}$

Linear-log case, continued

$$Y_i = \beta_0 + \beta_1 \ln(X_i) + u_i$$

for small ΔX ,

$$eta_1 \cong rac{\Delta Y}{\Delta X \, / \, X}$$

Now $100 \times \frac{\Delta X}{X}$ = percentage change in *X*, so *a* 1% *increase in X*

(multiplying X by 1.01) is associated with a .01 β_1 change in Y. (1% increase in $X \Rightarrow .01$ increase in $\ln(X)$

Quantitative Methods, K. Drakos $\Rightarrow .01 eta_1$ increase in Y)

Example: HLR vs. In(NTRAD)

- First defining the new regressor, LNTRAD=ln(NTRAD+1)
- The model is now linear in ln(NTRAD), so the linear-log model can be estimated by OLS:

 $\widehat{HLR} = 0.097 + 0.779*\ln(\text{NTRAD}_i)$ (0.010) (0.083)

so a 1% increase in NTRAD is associated with an increase in HLR of 0.77 points in volatility

• Standard errors, confidence intervals, R^2 – all the usual tools of regression apply here.

How does this compare to the cubic model?

II. Log-linear population regression function

$$\ln(Y) = \beta_0 + \beta_1 X \qquad (b)$$

Now change X:
$$\ln(Y + \Delta Y) = \beta_0 + \beta_1(X + \Delta X)$$
 (a)

Subtract (a) – (b):
$$\ln(Y + \Delta Y) - \ln(Y) = \beta_1 \Delta X$$

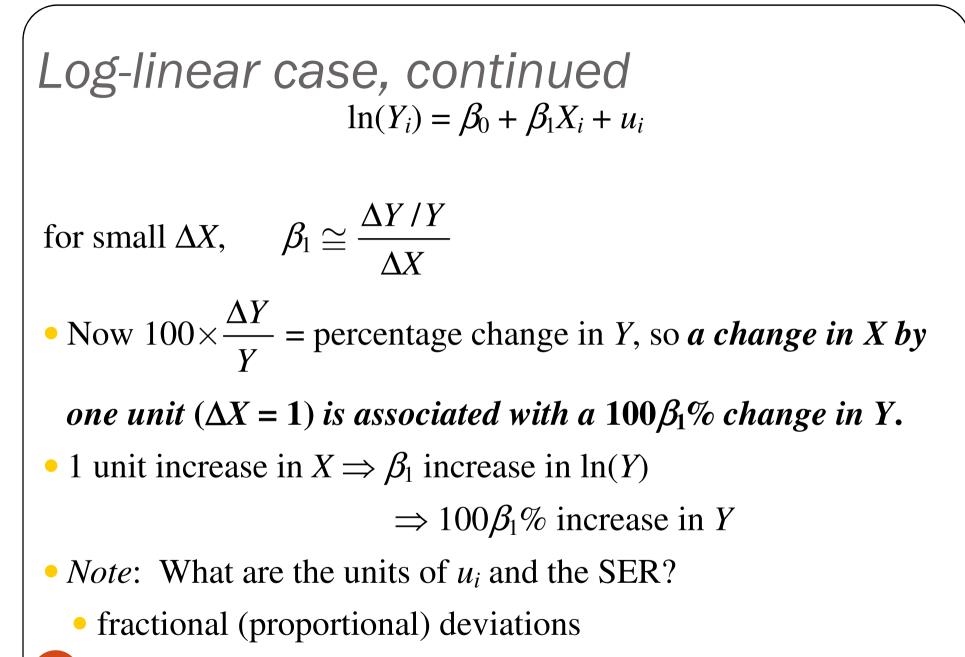
SO

$$\frac{\Delta Y}{Y} \cong \beta_1 \Delta X$$
$$\beta_1 \cong \frac{\Delta Y / Y}{\Delta X} \text{ (small } \Delta X\text{)}$$

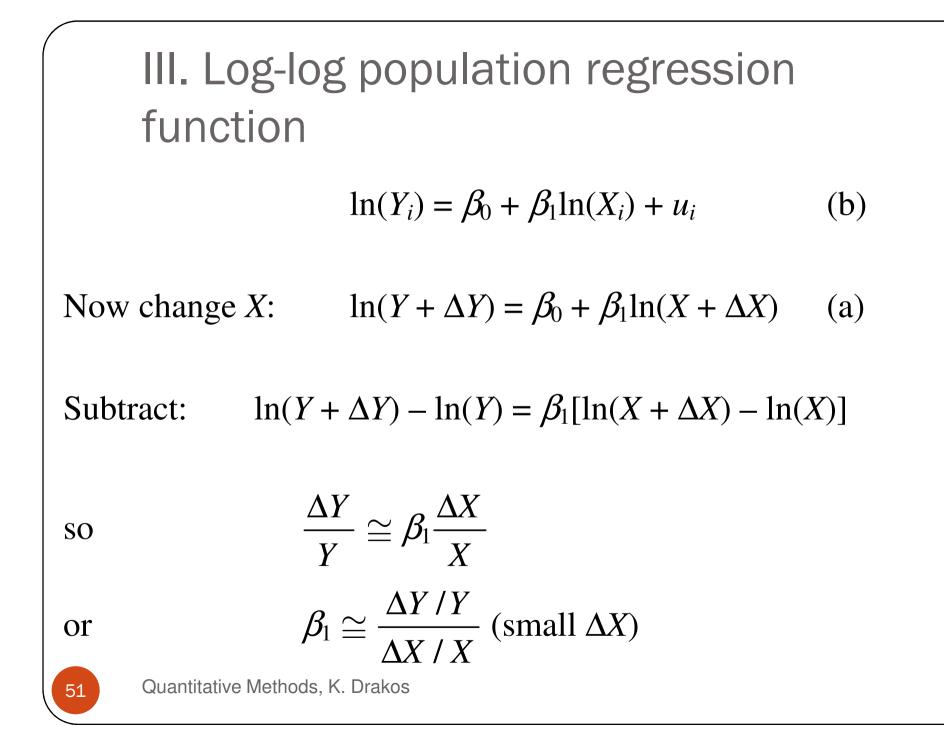
or

49

Quantitative Methods, K. Drakos



50 for exitating the SER = 2 means...



Log-log case, continued

$$\ln(Y_i) = \beta_0 + \beta_1 \ln(X_i) + u_i$$

for small ΔX ,

$$\beta_1 \cong \frac{\Delta Y / Y}{\Delta X / X}$$

Now $100 \times \frac{\Delta Y}{Y}$ = percentage change in *Y*, and $100 \times \frac{\Delta X}{X}$ =

percentage change in X, so a 1% change in X is associated with a β_1 % change in Y.

• In the log-log specification, β_1 has the interpretation of an

elasticity. Quantitative Methods, K. Drakos

Example: In(HLR) vs. In(NTRAD)

- First defining a new dependent variable, ln(HLR+1), *and* the new regressor, ln(NTRAD)
- The model is now a linear regression of ln(HLR) against ln(NTRAD), which can be estimated by OLS:

 $\widehat{\ln(HLR)} = 0.086 + 0.550 \times \ln(NTRAD_i)$ (0.007) (0.052)

An 1% increase in NTRAD is associated with an increase of .55% in HLR.

Quantitative Methods, K. Drakos

Summary: Logarithmic transformations

- Three cases, differing in whether *Y* and/or *X* is transformed by taking logarithms.
- The regression is linear in the new variable(s) ln(*Y*) and/or ln(*X*), and the coefficients can be estimated by OLS.
- Hypothesis tests and confidence intervals are now implemented and interpreted "as usual."
- The interpretation of β_1 differs from case to case.
- Choice of specification should be guided by judgment (which interpretation makes the most sense in your application?),
 tests, and plotting predicted values

Interactions Between Independent Variables

• Perhaps more trading has different impact on volatility depending on trade size

• That is, $\frac{\Delta(HLR)}{\Delta(NTRAD)}$ might depend on ATS

• More generally,
$$\frac{\Delta Y}{\Delta X_1}$$
 might depend on X_2

• How to model such "interactions" between X_1 and X_2 ?

• We first consider binary X's, then continuous X's

(a) Interactions between two binary variables

 $Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + u_i$

- D_{1i} , D_{2i} are binary
- β₁ is the effect of changing D₁=0 to D₁=1. In this specification,
 *this effect doesn't depend on the value of D*₂.
- To allow the effect of changing D_1 to depend on D_2 , include the "interaction term" $D_{1i} \times D_{2i}$ as a regressor:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$$

Interpreting the coefficients $Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i}) + u_i$

General rule: compare the various cases

$$E(Y_i | D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_2 d_2$$
 (b)

$$E(Y_i|D_{1i}=1, D_{2i}=d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2 \qquad (a)$$

subtract (a) – (b): $E(Y_i|D_{1i}=1, D_{2i}=d_2) - E(Y_i|D_{1i}=0, D_{2i}=d_2) = \beta_1 + \beta_3 d_2$

• The effect of D_1 depends on d_2 (what we wanted) $\beta_3 \stackrel{\text{Quantitative Methods, K}}{=}$ increment to the effect of D_1 , when $D_2 = 1$ Let

```
HTRADE = \begin{cases} 1 \text{ if } NTRAD \ge 25\\ 0 \text{ if } NTRAD < 25 \end{cases} \text{ and } HATS = \\ \begin{cases} 1 \text{ if } ATS \ge 6.4\\ 0 \text{ if } ATS < 6.4 \end{cases}
```

 $\begin{array}{ll} HLR = 0.120 + 0.199 * \text{HTRAD} - 0.108 * \text{HATS} & -0.016 * (\text{HTRAD} * HATS) \\ (0.016) & (0.033) & (0.016) & (0.045) \end{array}$

- "Effect" of HTRAD when HATS = 0 is 0.199
- "Effect" of HTRAD when HATS = 1 is 0.199 0.016 =
- But note that this interaction isn't statistically significant: t = -0.016/0.045

(b) Interactions between continuous and binary variables

 $Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + u_i$

- D_i is binary, X is continuous
- As specified above, the effect on *Y* of *X* (holding constant *D*) = β_2 , which does not depend on *D*
- To allow the effect of *X* to depend on *D*, include the

"interaction term" $D_i \times X_i$ as a regressor:

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

Quantitative Methods, K. Drakos

Binary-continuous interactions: the two regression lines

 $Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$

Observations with $D_i = 0$ (the "D = 0" group):

 $Y_i = \beta_0 + \beta_2 X_i + u_i$ The D=0 regression line

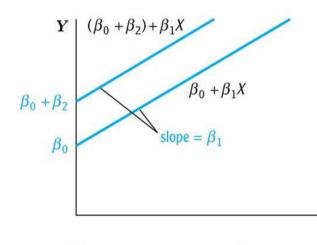
Observations with $D_i = 1$ (the "D = 1" group):

$$Y_{i} = \beta_{0} + \beta_{1} + \beta_{2}X_{i} + \beta_{3}X_{i} + u_{i}$$
Quantitati(β_{0} at β_{1}) At $D(\beta_{2}$ + $\beta_{3})X_{i} + u_{i}$ The D=1 regression line

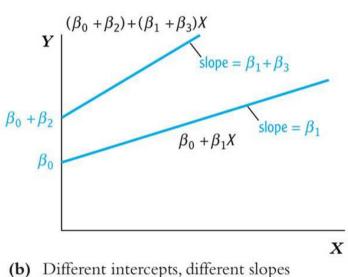
60

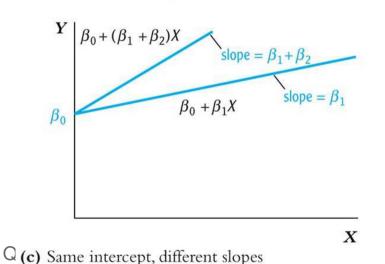
Binary-continuous interactions, ctd.

X



(a) Different intercepts, same slope





61

Interpreting the coefficients

$$Y_i = \beta_0 + \beta_1 D_i + \beta_2 X_i + \beta_3 (D_i \times X_i) + u_i$$

General rule: compare the various cases

$$Y = \beta_0 + \beta_1 D + \beta_2 X + \beta_3 (D \times X) \tag{b}$$

$$Y + \Delta Y = \beta_0 + \beta_1 D + \beta_2 (X + \Delta X) + \beta_3 [D \times (X + \Delta X)] \quad (a)$$

subtract (a) - (b):

$$\Delta Y = \beta_2 \Delta X + \beta_3 D \Delta X$$
 or $\frac{\Delta Y}{\Delta X} = \beta_2 + \beta_3 D$

• The effect of *X* depends on *D* (what we wanted) ⁶² $\beta_3 \stackrel{\text{Quantitative Methods, K}}{=}$ Increment to the effect of *X*, when *D* = 1 (c) Interactions between two continuous variables

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$

- X_1, X_2 are continuous
- As specified, the effect of X_1 doesn't depend on X_2
- As specified, the effect of X_2 doesn't depend on X_1
- To allow the effect of X_1 to depend on X_2 , include the

"interaction term" $X_{1i} \times X_{2i}$ as a regressor:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

Interpreting the coefficients:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i}) + u_i$$

General rule: compare the various cases

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 \times X_2)$$
 (b)

Now change *X*₁:

 $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2 + \beta_3 [(X_1 + \Delta X_1) \times X_2]$ (a) subtract (a) – (b):

$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 X_2 \Delta X_1$$
 or $\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$

• The effect of X_1 depends on X_2 (what we wanted) • $\beta_3 =$ increment to the effect of X_1 from a unit change in X_2 _{Quantitative Methods, K. Drakos}

Summary: Nonlinear Regression Functions

- Using functions of the independent variables such as ln(X) or X₁×X₂, allows recasting a large family of nonlinear regression functions as multiple regression.
- Estimation and inference proceed in the same way as in the linear multiple regression model.
- Interpretation of the coefficients is model-specific, but the general rule is to compute effects by comparing different cases (different value of the original *X*'s)
- Many nonlinear specifications are possible, so you must use judgment:
 - What nonlinear effect you want to analyze?
 - What makes sense in your application?