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The Population Multiple Regression 

Model  

Consider the case of two regressors: 

Yi = β0 + β1X1i + β2X2i + ui,  i = 1,…,n 

 

• Y is the dependent variable 
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• Y is the dependent variable 

• X1, X2 are the two independent variables (regressors) 

• (Yi, X1i, X2i) denote the i
th

 observation on Y, X1, and X2. 

• β0 = unknown population intercept 

• β1 = effect on Y of a change in X1, holding X2 constant 

• β2 = effect on Y of a change in X2, holding X1 constant 

• ui = the regression error (omitted factors) 
 



Interpretation of coefficients in 

multiple regression 

Yi = β0 + β1X1i + β2X2i + ui,  i = 1,…,n 

 

Consider changing X1 by ∆X1 while holding X2 constant: 

Population regression line before the change: 
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Population regression line before the change: 

 

Y = β0 + β1X1 + β2X2 

 

Population regression line, after the change: 

 

Y + ∆Y = β0 + β1(X1 + ∆X1) + β2X2  
 



Before:        Y = β0 + β1(X1 + ∆X1) + β2X2  

 

After:    Y + ∆Y = β0 + β1(X1 + ∆X1) + β2X2 

 

Difference:   ∆Y = β1∆X1 

So: 

    β  = 
Y∆

, holding X  constant          
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    β1 = 
1

Y

X

∆

∆
, holding X2 constant          

 

    β2 = 
2

Y

X

∆

∆
, holding X1 constant 

 

         β0 = predicted value of Y when X1 = X2 = 0. 
 



The OLS Estimator in Multiple 

Regression

With two regressors, the OLS estimator solves: 

 

0 1 2

2

, , 0 1 1 2 2

1

min [ ( )]
n

b b b i i i

i

Y b b X b X
=

− + +∑  
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• The OLS estimator minimizes the average squared difference 

between the actual values of Yi and the prediction (predicted 

value) based on the estimated line. 

• This minimization problem is solved using calculus 

• This yields the OLS estimators of β0 and β1. 
 



Example:  the California test score data 

Regression of HLR against NTRAD: 

 

�HLR  = 0.117 + 0.246*NTRAD 
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Now include the size of average trade (ATS): 

 

�HLR  = 0.608 + 0.442 *NTRAD – 0.077*ATS 

 

• What happens to the coefficient on NTRAD? 

• Why? (Note: corr(STR, PctEL) = +++) 
 



Multiple regression in STATA 

         ats    -.0770767   .0108854    -7.08   0.000    -.0984729   -.0556805
     numtrad     .4422475   .0473049     9.35   0.000     .3492657    .5352294
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .21106
                                                       R-squared     =  0.3797
                                                       Prob > F      =  0.0000
                                                       F(  2,   423) =   67.06
Linear regression                                      Number of obs =     426

. reg highlow numtrad  ats if month==1, r
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       _cons     .6085741   .0768587     7.92   0.000     .4575016    .7596466
         ats    -.0770767   .0108854    -7.08   0.000    -.0984729   -.0556805

 

 

More on this printout later… 
 



Measures of Fit for Multiple Regression

Actual = predicted + residual:   Yi = ˆ
iY  + ˆ

iu  

 

SER = std. deviation of ˆ
iu  (with d.f. correction) 
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RMSE = std. deviation of ˆ
i

u  (without d.f. correction) 

 

R
2
 = fraction of variance of Y explained by X 

 
2

R  = “adjusted R
2
” = R

2
 with a degrees-of-freedom correction 

that adjusts for estimation uncertainty; 2
R  < R

2
 

 



SER and RMSE

As in regression with a single regressor, the SER and the RMSE 

are measures of the spread of the Y’s around the regression line: 

 

SER = 21
ˆ

n

u∑  
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SER = 2

1

1
ˆ

1
i

i

u
n k =− −

∑  

 

RMSE = 2

1

1
ˆ

n

i

i

u
n =

∑  

 



R2 and 2
R

The R
2
 is the fraction of the variance explained – same definition 

as in regression with a single regressor: 

 

R
2
 = 

ESS
 = 1

SSR
− , 
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R  = 
TSS

 = 1
TSS

− , 

 

where ESS = 2

1

ˆ ˆ( )
n

i

i

Y Y
=

−∑ , SSR = 2

1

ˆ
n

i

i

u
=

∑ ,  TSS = 2

1

( )
n

i

i

Y Y
=

−∑ . 

• The R
2
 always increases when you add another regressor 

(why?) – a bit of a problem for a measure of “fit” 
 



R2and , ctd.

The 2R  (the “adjusted R
2
”) corrects this problem by “penalizing” 

you for including another regressor – the 2
R  does not necessarily 

increase when you add another regressor. 

 

2
R

Quantitative Methods, K. Drakos11

Adjusted R
2
:  2R  = 

1
1

1

n SSR

n k TSS

− 
−  

− − 
    

 

Note that 2R  < R
2
, however if n is large the two will be very 

close. 
 



Measures of fit, ctd.
 

 

(1)  
�HLR  = 0.117 + 0.426*NTRAD, 

R
2
 = .2585 
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(2)  
�HLR  = 0.608 + 0.442*NTRAD – 0.077*ATS, 

R
2
 = .3797, 2

R  = .3768 

 

• What – precisely – does this tell you about the fit of regression 

(2) compared with regression (1)? 

• Why are the R
2
 and the 2

R so close in (2)? 
 



Hypothesis Tests and Confidence 

Intervals
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Object of interest: β1 in, 
    Yi = β0 + β1Xi +β2Zi  ui, i = 1,…, n 

β1 = ∆Y/∆X, for an autonomous change in X (causal effect) 
 

The Least Squares Assumptions: 

1. E(u|X = x) = 0. 

2. (X ,Y ), i =1,…,n, are i.i.d. 
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2. (Xi,Yi), i =1,…,n, are i.i.d. 

3. Large outliers are rare (E(X
4
) < ∞, E(Y

4
) < ∞. 

 

The Sampling Distribution of 1β̂  : 

Under the LSA’s, for n large, 1β̂  is approximately distributed, 

 1β̂   ~ 
2

1 4
, v

X

N
n

σ
β

σ

 
 
 

, where vi = (Xi – µX)ui  

 



Hypothesis Testing and the Standard Error of

The objective is to test a hypothesis, like β1 = 0, using data – to 

reach a tentative conclusion whether the (null) hypothesis is 

correct or incorrect. 

General setup 

Null hypothesis and two-sided alternative: 

1β̂
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Null hypothesis and two-sided alternative: 

H0:  β1 = β1,0  vs. H1:  β1 ≠ β1,0 

where β1,0 is the hypothesized value under the null. 

 

Null hypothesis and one-sided alternative: 

H0:  β1 = β1,0  vs. H1:  β1 < β1,0 
 



General approach: construct t-statistic, and compute p-value (or 

compare to N(0,1) critical value) 

 

• In general:    t = 
estimate - hypothesized value

standard error of the estimate
   

 

where the SE of the estimate is the square root of the variance 

of the estimate. 
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of the estimate. 

• For testing the mean of Y:   t = 
,0

/

Y

Y

Y

s n

µ−
 

• For testing β1,         t = 
1 1,0

1

ˆ

ˆ( )SE

β β

β

−
  ,  

where SE( 1β̂ ) = the square root of an estimate of the variance 

of the sampling distribution of 1β̂  
 



Formula for SE(   ) 1β̂
Recall the expression for the variance of 1β̂  (large n): 

var( 1β̂ ) = 
2 2

var[( ) ]

( )

i x i

X

X u

n

µ

σ

−
 = 

2

4

v

Xn

σ

σ
, where vi = (Xi – µX)ui.   

The estimator of the variance of 1β̂  replaces the unknown 

population values of 2σ  and 4σ  by estimators constructed from 
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population values of 2

νσ  and 4

X
σ  by estimators constructed from 

the data: 

1

2

ˆˆ
β

σ  = 
2

2 2

1 estimator of 

(estimator of )

v

Xn

σ

σ
×  = 

2

1

2

2

1

1
ˆ

1 2

1
( )

n

i

i

n

i

i

v
n

n
X X

n

=

=

−
×
 

− 
 

∑

∑
 

where ˆ
iv  = ˆ( )

i i
X X u− . 

 



1

2

ˆˆ
β

σ  =   

2

1

2

2

1

1
ˆ

1 2

1
( )

n

i

i

n

i

i

v
n

n
X X

n

=

=

−
×
 

− 
 

∑

∑
, where ˆ

iv  = ˆ( )i iX X u− . 

SE( 1β̂ ) = 
1

2

ˆˆ
β

σ  = the standard error of 1β̂  

 

OK, this is a bit nasty, but: 
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OK, this is a bit nasty, but: 

• It is less complicated than it seems.  The numerator estimates 

var(v), the denominator estimates var(X). 

• Why the degrees-of-freedom adjustment n – 2?  Because two 

coefficients have been estimated (β0 and β1). 

• SE( 1β̂ ) is computed by regression software 



Summary:  To test H0: β1 = β1,0 v.  H1: 
β1 ≠ β1,0, 

• Construct the t-statistic 

t = 
1 1,0

1

ˆ

ˆ( )SE

β β

β

−
 = 

1

1 1,0

2

ˆ

ˆ

ˆ
β

β β

σ

−
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• Reject at 5% significance level if |t| > 1.96 

• The p-value is p = Pr[|t| > |t
act

|] = probability in tails of 

normal outside |t
act

|; you reject at the 5% significance level if 

the p-value is < 5%. 

• This procedure relies on the large-n approximation; typically 

n = 50 is large enough for the approximation to be excellent. 
 



Example:  Stock volatility and number 

of trades data 

Estimated regression line:  �HLR  = 0.117 + 0.426*NTRAD 

Regression software reports the standard errors: 

 

SE( 0β̂ ) = 0.0119   SE( 1β̂ ) = 0.035 

Quantitative Methods, K. Drakos20

0 1

 

t-statistic testing β1,0 = 0 = 
1 1,0

1

ˆ

ˆ( )SE

β β

β

−
 = 

0.426 0

0.035

−
 = 12.17 

• The 1% 2-sided significance level is 2.58, so we reject the null 

at the 1% significance level. 

• Alternatively, we can compute the p-value… 
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The p-value based on the large-n standard normal approximation 

to the t-statistic is 0.00001 (10
–5

) 
 



Confidence Intervals for β1

Recall that a 95% confidence is, equivalently: 

• The set of points that cannot be rejected at the 5% 

significance level; 

• A set-valued function of the data (an interval that is a 

function of the data) that contains the true parameter value 
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function of the data) that contains the true parameter value 

95% of the time in repeated samples. 

 

Because the t-statistic for β1 is N(0,1) in large samples, 

construction of a 95% confidence for β1 is just like the case of 

the sample mean:  

      95% confidence interval for β1 = { 1β̂  ± 1.96×SE( 1β̂ )} 

 



Confidence interval example:  HLR and NTRAD 

Estimated regression line:  �HLR  = 0.117 + 0.426*NTRAD 

 

SE( 0β̂ ) = 0.0119  SE( 1β̂ ) = 0.035 

 

95% confidence interval for 1β̂ : 
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{ 1β̂  ± 1.96×SE( 1β̂ )} = {0.426 ± 1.96×0.035} 

        = (0.357 , 0.495) 

 

The following two statements are equivalent (why?) 

• The 95% confidence interval does not include zero; 

• The hypothesis β1 = 0 is rejected at the 5% level 
 



A concise (and conventional) way to 

report regressions: 
Put standard errors in parentheses below the estimated 

coefficients to which they apply. 

�HLR  = 0.117 + 0.426 * NTRAD, R
2
 = .2585, SER = 0.2299 

                 (0.011)     (0.035) 

This expression gives a lot of information 
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This expression gives a lot of information 

• The estimated regression line is   

            �HLR  = 0.117 + 0.426 * NTRAD  

• The standard error of 0β̂  is 0.011 

• The standard error of 1β̂  is 0.035 

• The R
2
 is .2585; the standard error of the regression is 0.2299 

 



OLS regression:  reading STATA output 

                                                                              
       _cons     .1173006   .0105374    11.13   0.000     .0965886    .1380126
     numtrad       .42659   .0471464     9.05   0.000     .3339202    .5192597
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .23049
                                                       R-squared     =  0.2585
                                                       Prob > F      =  0.0000
                                                       F(  1,   424) =   81.87
Linear regression                                      Number of obs =     426

. reg highlow  numtrad if month==1, r
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so: 

  t (β1 = 0) = 9.05,    p-value = 0.000 (2-sided) 

95% 2-sided conf. interval for β1 is (0.333, 0.519) 
 



Testing Exclusion Restrictions
� Now the null hypothesis might be something like H0: βk-q+1

= 0, ... , βk = 0
� The alternative is just H1: H0 is not true
� Can’t just check each t statistic separately, because we want 

to know if the q parameters are jointly significant at a given 
level – it is possible for none to be individually significant at 
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level – it is possible for none to be individually significant at 
that level



Exclusion Restrictions (cont)

• To do the test we need to estimate the “restricted model” 
without xk-q+1,, …, xk included, as well as the 
“unrestricted model” with all x’s included

• Intuitively, we want to know if the change in SSR is big • Intuitively, we want to know if the change in SSR is big 
enough to warrant inclusion of xk-q+1,, …, xk
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( )
( )

edunrestrict isur  and restricted isr 

 where,
1−−

−
≡

knSSR

qSSRSSR
F

ur

urr



The F statistic
� The F statistic is always positive, since the SSR from the 

restricted model can’t be less than the SSR from the 
unrestricted

� Essentially the F statistic is measuring the relative increase in 
SSR when moving from the unrestricted to restricted model
q = number of restrictions, or df – df
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� q = number of restrictions, or dfr – dfur

� n – k – 1 =  dfur



The F statistic (cont)
� To decide if the increase in SSR when we move to a 

restricted model is “big enough” to reject the exclusions, we 
need to know about the sampling distribution of our F stat

� Not surprisingly, F ~ Fq,n-k-1, where q is referred to as the 
numerator degrees of freedom and n – k – 1 as the 
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numerator degrees of freedom and n – k – 1 as the 
denominator degrees of freedom 



f(F)

The F statistic (cont)

fail to reject

Reject H0 at α
significance 

level
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0 c

α(1 − α)

F

reject

level

if F > c



The R2 form of the F statistic

� Because the SSR’s may be large and unwieldy, an 
alternative form of the formula is useful

� We use the fact that SSR = SST(1 – R2) for any 
regression, so can substitute in for SSR and SSRregression, so can substitute in for SSRu and SSRur

( )
( ) ( )

edunrestrict isur  and restricted isr  

again   where,
11 2

22

−−−

−
≡

knR

qRR
F

ur

rur
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Overall Significance

� A special case of exclusion restrictions is to test H0: β1

=  β2 =…=  βk = 0

� Since the R2 from a model with only an intercept will be 
zero, the F statistic is simplyzero, the F statistic is simply

( ) ( )11 2

2

−−−
=

knR

kR
F
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Nonlinear Regression Functions
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Nonlinear Regression Functions

• Everything so far has been linear in the X’s 

• But the linear approximation is not always a good one 

• The multiple regression framework can be extended to handle 

regression functions that are nonlinear in one or more X. 
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regression functions that are nonlinear in one or more X. 

 

Outline 

1. Nonlinear regression functions – general comments 

2. Nonlinear functions of one variable 

3. Nonlinear functions of two variables: interactions 
 



Does the volatility – trades relation 

look linear (probably not)…

2
3

(m
e

a
n

) 
h

ig
h
lo

w

Quantitative Methods, K. Drakos35

0
1

(m
e

a
n

) 
h

ig
h
lo

w

0 2 4 6 8
numtrad



Nonlinear Regression Population 

Regression Functions – General Ideas 

If a relation between Y and X is nonlinear: 

 

• The effect on Y of a change in X depends on the value of X – 

that is, the marginal effect of X is not constant 
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• A linear regression is mis-specified – the functional form is 

wrong 

• The estimator of the effect on Y of X is biased – it needn’t 

even be right on average. 

• The solution to this is to estimate a regression function that is 

nonlinear in X 
 



The general nonlinear population 

regression function

Yi = f(X1i, X2i,…, Xki) + ui, i = 1,…, n 

 

Assumptions 

1. E(ui| X1i,X2i,…,Xki) = 0  (same); implies that f is the 
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conditional expectation of Y given the X’s. 

2. (X1i,…,Xki,Yi) are i.i.d. (same). 

3. Big outliers are rare (same idea; the precise mathematical 

condition depends on the specific f). 

4. No perfect multicollinearity (same idea; the precise statement 

depends on the specific f). 
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Nonlinear Functions of a Single 

Independent Variable 

We’ll look at two complementary approaches: 

 

1.  Polynomials in X 

The population regression function is approximated by a 
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quadratic, cubic, or higher-degree polynomial 

 

2.  Logarithmic transformations 

• Y and/or X is transformed by taking its logarithm 

• this gives a “percentages” interpretation that makes sense 

in many applications 
 



1.  Polynomials in X

Approximate the population regression function by a polynomial: 

 

Yi = β0 + β1Xi + β2
2

i
X  +…+ βr

r

i
X  + ui 
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• This is just the linear multiple regression model – except that 

the regressors are powers of X! 

• Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 

• The coefficients are difficult to interpret, but the regression 

function itself is interpretable 
 



Quadratic specification: 

 

HLRi = β0 + β1*NTRADi + β2(NTRADi)
2
 + ui 

 

Cubic specification: 
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Cubic specification: 

 

HLRi = β0 + β1*NTRADi + β2(NTRADi)
2
  

+ β3(NTRADi)
3
 + ui 

 



Estimation of a cubic specification in 

STATA

     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                             Robust
                                                                              

                                                       Root MSE      =  .21979
                                                       R-squared     =  0.3289
                                                       Prob > F      =       .
                                                       F(  2,   422) =       .
Linear regression                                      Number of obs =     426

. reg highlow numtrad  numtradessq numtradescub if month==1, r
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       _cons      .074214   .0100204     7.41   0.000      .054518      .09391
numtradescub     2.07e-10   5.19e-11     3.98   0.000     1.05e-10    3.09e-10
 numtradessq    -9.27e-07   2.16e-07    -4.29   0.000    -1.35e-06   -5.03e-07
     numtrad     1.289911   .1977067     6.52   0.000     .9012987    1.678524
                                                                              
     highlow        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]



Summary: polynomial regression functions 
Yi = β0 + β1Xi + β2 

2

i
X  +…+ βr

r

i
X  + ui 

• Estimation: by OLS after defining new regressors 

• Coefficients have complicated interpretations 

• To interpret the estimated regression function: 

• plot predicted values as a function of x 
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• plot predicted values as a function of x 

• compute predicted ∆Y/∆X at different values of x 

• Hypotheses concerning degree r can be tested by t- and F-

tests on the appropriate (blocks of) variable(s). 

• Choice of degree r 

• plot the data; t- and F-tests, check sensitivity of estimated 

effects; judgment. 

• Or use model selection criteria (later) 
 



2.  Logarithmic functions of Y and/or X
• ln(X) = the natural logarithm of X 

• Logarithmic transforms permit modeling relations in 

“percentage” terms (like elasticities), rather than linearly. 

 

Here’s why:  ln(x+∆x) – ln(x) = ln 1
x∆ 

+  ≅ 
x∆
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Here’s why:  ln(x+∆x) – ln(x) = ln 1
x

x

∆ 
+ 

 
 ≅ 

x

x

∆
 

(calculus: 
ln( ) 1d x

dx x
= ) 

Numerically: 

      ln(1.01) = .00995 ≅ .01;  

ln(1.10) = .0953 ≅ .10 (sort of) 



The three log regression specifications:

 

Case Population regression function 

I.    linear-log Yi = β0 + β1ln(Xi) + ui 

II.   log-linear ln(Yi) = β0 + β1Xi + ui 

Quantitative Methods, K. Drakos45

ln(Yi) = β0 + β1Xi + ui 

III.  log-log ln(Yi) = β0 + β1ln(Xi) + ui 

 

• The interpretation of the slope coefficient differs in each case. 

• The interpretation is found by applying the general “before 

and after” rule: “figure out the change in Y for a given change 

in X.” 
 



I. Linear-log population regression 

function 

Y = β0 + β1ln(X)            (b) 

 

Now change X:  Y + ∆Y = β0 + β1ln(X + ∆X)     (a) 
 

Subtract (a) – (b):    ∆Y = β1[ln(X + ∆X) – ln(X)] 
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Subtract (a) – (b):    ∆Y = β1[ln(X + ∆X) – ln(X)] 

 

now    ln(X + ∆X) – ln(X) ≅ 
X

X

∆
, 

so       ∆Y ≅ β1

X

X

∆
 

or      β1 ≅ 
/

Y

X X

∆

∆
  (small ∆X) 

 



Linear-log case, continued
Yi = β0 + β1ln(Xi) + ui 

 

for small ∆X, 

β1 ≅ 
/

Y

X X

∆

∆
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/X X∆

 

Now 100×
X

X

∆
 = percentage change in X, so a 1% increase in X 

(multiplying X by 1.01) is associated with a .01β1 change in Y. 

(1% increase in X ⇒ .01 increase in ln(X)  

  ⇒ .01β1 increase in Y) 
 



Example:  HLR vs. ln(NTRAD)
• First defining the new regressor, LNTRAD=ln(NTRAD+1) 

• The model is now linear in ln(NTRAD), so the linear-log 

model can be estimated by OLS: 

 

�HLR  = 0.097  +  0.779*ln(NTRADi) 
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�HLR  = 0.097  +  0.779*ln(NTRADi) 

            (0.010)    (0.083)  

 

so a 1% increase in NTRAD is associated with an increase in 

HLR of 0.77 points in volatility  

• Standard errors, confidence intervals, R
2
 – all the usual tools of 

regression apply here. 

• How does this compare to the cubic model? 
 



II. Log-linear population regression 

function 

ln(Y) = β0 + β1X    (b) 

 

Now change X:   ln(Y + ∆Y) = β0 + β1(X + ∆X)   (a) 
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Subtract (a) – (b):     ln(Y + ∆Y) – ln(Y) = β1∆X 

 

so     
Y

Y

∆
 ≅ β1∆X  

or      β1 ≅ 
/Y Y

X

∆

∆
 (small ∆X) 

 



Log-linear case, continued
ln(Yi) = β0 + β1Xi + ui 

 

for small ∆X,  β1 ≅ 
/Y Y

X

∆

∆
 

• Now 100×
Y

Y

∆
 = percentage change in Y, so a change in X by 
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Y

one unit (∆X = 1) is associated with a 100β1% change in Y. 

• 1 unit increase in X ⇒ β1 increase in ln(Y)  

  ⇒ 100β1% increase in Y 

• Note:  What are the units of ui and the SER?  

• fractional (proportional) deviations 

• for example, SER = .2 means… 
 



III. Log-log population regression 

function 

ln(Yi) = β0 + β1ln(Xi) + ui   (b) 

 

Now change X:  ln(Y + ∆Y) = β0 + β1ln(X + ∆X)  (a) 
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Subtract:  ln(Y + ∆Y) – ln(Y) = β1[ln(X + ∆X) – ln(X)] 

 

so     
Y

Y

∆
 ≅ β1

X

X

∆
  

or      β1 ≅ 
/

/

Y Y

X X

∆

∆
 (small ∆X) 

 



Log-log case, continued
ln(Yi) = β0 + β1ln(Xi) + ui 

 

for small ∆X, 

β1 ≅ 
/

/

Y Y

X X

∆

∆
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/X X∆

Now 100×
Y

Y

∆
 = percentage change in Y, and 100×

X

X

∆
 = 

percentage change in X, so a 1% change in X is associated with 

a β1% change in Y. 

• In the log-log specification, β1 has the interpretation of an 

elasticity. 
 



Example: ln(HLR) vs. ln(NTRAD)

• First defining a new dependent variable, ln(HLR+1), and the 

new regressor, ln(NTRAD) 

• The model is now a linear regression of ln(HLR) against 

ln(NTRAD), which can be estimated by OLS: 
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�ln( )HLR  = 0.086 + 0.550×ln(NTRADi) 

                (0.007)    (0.052)  

 

An 1% increase in NTRAD is associated with an increase of 

.55% in HLR.  
 



Summary:  Logarithmic 

transformations 

• Three cases, differing in whether Y and/or X is transformed 

by taking logarithms. 

• The regression is linear in the new variable(s) ln(Y) and/or 

ln(X), and the coefficients can be estimated by OLS. 
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ln(X), and the coefficients can be estimated by OLS. 

• Hypothesis tests and confidence intervals are now 

implemented and interpreted “as usual.” 

• The interpretation of β1 differs from case to case. 

• Choice of specification should be guided by judgment (which 

interpretation makes the most sense in your application?), 

tests, and plotting predicted values 
 



Interactions Between Independent 

Variables

• Perhaps more trading has different impact on volatility 

depending on trade size 

• That is, 
( )

( )
HLR

NTRAD

∆

∆
  might depend on ATS 
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( )

• More generally, 
1

Y

X

∆

∆
 might depend on X2 

• How to model such “interactions” between X1 and X2? 

• We first consider binary X’s, then continuous X’s 
 



(a) Interactions between two binary 

variables 

Yi = β0 + β1D1i + β2D2i + ui 

 

• D1i, D2i are binary 

• β1 is the effect of changing D1=0 to D1=1.  In this specification, 
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• β1 is the effect of changing D1=0 to D1=1.  In this specification, 

this effect doesn’t depend on the value of D2. 

• To allow the effect of changing D1 to depend on D2, include the 

“interaction term” D1i×D2i as a regressor: 

 

Yi = β0 + β1D1i + β2D2i + β3(D1i×D2i) + ui 

 



Interpreting the coefficients
Yi = β0 + β1D1i + β2D2i + β3(D1i×D2i) +  ui 

 

General rule:  compare the various cases 

E(Yi|D1i=0, D2i=d2) = β0 + β2d2      (b)

E(Y |D =1, D =d ) = β  + β  + β d  + β d   (a)
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E(Yi|D1i=1, D2i=d2) = β0 + β1 + β2d2 + β3d2  (a)

 

subtract (a) – (b): 

E(Yi|D1i=1, D2i=d2) – E(Yi|D1i=0, D2i=d2) = β1 + β3d2 

 

• The effect of D1 depends on d2 (what we wanted)  

• β3 = increment to the effect of D1, when D2 = 1 
 



Let 

HTRADE = 
1 if NTRAD 25

0 if NTRAD 25

≥


<
   and   HATS = 

1 if ATS 6.4

0 if ATS 6.4

≥


<
 

 
�HLR  = 0.120 + 0.199*HTRAD – 0.108*HATS  - 0.016*(HTRAD*HATS) 

       (0.016)   (0.033)            (0.016)   (0.045) 
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       (0.016)   (0.033)            (0.016)   (0.045) 

 

• “Effect” of HTRAD when HATS = 0 is 0.199 

• “Effect” of HTRAD when HATS = 1 is 0.199 – 0.016 = 

• But note that this interaction isn’t statistically significant: t = -

0.016/0.045 
 



(b) Interactions between continuous 

and binary variables 

Yi = β0 + β1Di + β2Xi + ui 

 

• Di is binary, X is continuous 

• As specified above, the effect on Y of X (holding constant D) = 
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• As specified above, the effect on Y of X (holding constant D) = 

β2, which does not depend on D  

• To allow the effect of X to depend on D, include the 

“interaction term” Di×Xi as a regressor: 

 

Yi = β0 + β1Di + β2Xi + β3(Di×Xi) + ui 

 



Binary-continuous interactions: the two 

regression lines

Yi = β0 + β1Di + β2Xi + β3(Di×Xi) + ui 

 

Observations with Di= 0 (the “D = 0” group): 
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Yi = β0 + β2Xi + ui  The D=0 regression line 

 

Observations with Di= 1 (the “D = 1” group): 

 

Yi = β0 + β1 + β2Xi + β3Xi + ui 

    = (β0+β1) + (β2+β3)Xi + ui   The D=1 regression line 
 



Binary-continuous interactions, ctd.
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Interpreting the coefficients
Yi = β0 + β1Di + β2Xi + β3(Di×Xi) +  ui 

 

General rule:  compare the various cases 

Y = β0 + β1D + β2X + β3(D×X)      (b)

Now change X: 

Quantitative Methods, K. Drakos62

Now change X: 

Y + ∆Y = β0 + β1D + β2(X+∆X) + β3[D×(X+∆X)] (a)

subtract (a) – (b): 

∆Y = β2∆X + β3D∆X  or 
Y

X

∆

∆
 = β2 + β3D 

• The effect of X depends on D (what we wanted)  

• β3 = increment to the effect of X, when D = 1 
 



(c) Interactions between two 

continuous variables 

Yi = β0 + β1X1i + β2X2i + ui 

 

• X1, X2 are continuous 

• As specified, the effect of X1 doesn’t depend on X2 
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• As specified, the effect of X1 doesn’t depend on X2 

• As specified, the effect of X2 doesn’t depend on X1 

• To allow the effect of X1 to depend on X2, include the 

“interaction term” X1i×X2i as a regressor: 

 

Yi = β0 + β1X1i + β2X2i + β3(X1i×X2i) + ui 

 



Interpreting the coefficients:

Yi = β0 + β1X1i + β2X2i + β3(X1i×X2i) + ui 

 

General rule:  compare the various cases 

Y = β0 + β1X1 + β2X2 + β3(X1×X2)            (b) 

Now change X : 
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Now change X1: 

  Y+ ∆Y = β0 + β1(X1+∆X1) + β2X2 + β3[(X1+∆X1)×X2]   (a) 

subtract (a) – (b): 

∆Y = β1∆X1 + β3X2∆X1  or 
1

Y

X

∆

∆
 = β1 + β3X2 

• The effect of X1 depends on X2 (what we wanted)  

• β3 = increment to the effect of X1 from a unit change in X2 
 



Summary:  Nonlinear Regression 

Functions 

• Using functions of the independent variables such as ln(X) 

or X1×X2, allows recasting a large family of nonlinear 

regression functions as multiple regression. 

• Estimation and inference proceed in the same way as in 

the linear multiple regression model. 
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the linear multiple regression model. 

• Interpretation of the coefficients is model-specific, but the 

general rule is to compute effects by comparing different 

cases (different value of the original X’s) 

• Many nonlinear specifications are possible, so you must 

use judgment: 

• What nonlinear effect you want to analyze?  

• What makes sense in your application? 
 


