

Data DNA

- The analyst needs to comprehend the Data DNA before
designing data analysis because: designing data analysis because:
- DNA type **determines** to ^a large extent the choice of appropriate econometric method.
- •**source of variation**
- **format** of measurement
- • As you will see there is ^a wide variety of data types, which means that an analyst must possess in her arsenal many weapons.

source of variation

- **cross-sectional** (atemporal): data represen^t ^a single point in time (or various time points have been artificially collapsed on ^a single point. Essentially ^a snapshot. *Yⁱ, Xⁱ*
- Typical cases:
- •a survey based on a random sample of firms or individuals.
- • Thus, the variation **stems** from differences **between** cross sectional units.

source of variation cont

- **time series:** data are collected sequentially in time (and
most of the time with a fixed periodicity) V \overline{Y} most of the time with a fixed periodicity), Y_t , X_t
- The cross-sectional dimension is unity. Hence, the data track
a single cross sectional unit over time ^a single cross-sectional unit over time.
- For example: ^a firm, a household, a country.
- • Thus, the variation **stems** from differences **within** the cross sectional unit, reflecting the effect of passage of time.

source of variation cont

- **Panel:** data for various cross-sectional units are collected repeatedly in time repeatedly in time.
- For example, follow: a set of firms, or a set of households, or
a set of countries over a number of time periods $\boldsymbol{V} \cdot \boldsymbol{Y}$ a set of countries over a number of time periods. Y_{it} X_{it}
- \bullet Thus, the overall variation **stems** from:
- •(i) differences **between** cross sectional units, and
- • (ii) differences **within** every cross sectional unit, reflecting the effect of passage of time.

format of measurement

- **A: continuous** (roe, ^gdp growth),
- \bullet **B: discrete**
- B1: **dichotomous** (default vs. non-default, export vs. non-
export dividend vs. no dividend) export, dividend vs. no dividend),
- •**B2: ordered** (life satisfaction, loan interest rates down, same, up),
D²
- **B3: categorical** (choice of transportation mode),
- **B4: count** (number of terrorist events per unit of time,
number of defaults per unit of time, number of plants per number of defaults per unit of time, number of ^plants per unit of time)

A few examples

- Data for US commercial banks in ²⁰⁰⁹ (See excel file us_banks_example_1)
- Source of variation: cross-sectional (approx. 8000 banks
across the US in 2009) across the US in 2009).

Variables analyzed

- \bullet **Size1:** *Logarithm of Total Assets*
- 0 *Size2: Logarithm of Number of Employees*
- 0 **Risk1:** *Risk Weighted Assets / Total Assets*
- \bullet *risk2: Provisions for Loan Losses / Total Loans*
- \bullet **(Profitability)**
- 0 *Nim: (Total Interest Income -Total Interest Expense) / Total Assets*
- 0 *Noi: Net Operating Income / Total Assets*
- \bullet *Default*: indicator variable showing if a bank defaulted in that year
- \bullet *Capital Adequacy*
- \bullet Asset Concentration Hierarchy

Asset Concentration Hierarchy (specgrp)

An indicator of an institutions' primary specialization in terms of asset concentration. **(Groups are mutually exclusive):**

1 - International Specialization Institutions with assets greater than \$10 billion and more than 25 percent of total assets in foreign offices.

2 - Agricultural Specialization Banks with agricultural production loans plus real estate loans secured by farmland in excess of 25 percent of total loans and leases.

3 - Credit-card Specialization Institutions with credit-card loans plus securitized receivables in excess of 50 percent of total assets plus securitized receivables.

4 - Commercial Lending Specialization Institutions with commercial and industrial loans, plus real estate construction and development loans, plus loans secured by commercial real estate properties in excess of 25 percent of total assets.

5 - Mortgage Lending Specialization Institutions with residential mortgage loans, plus mortgage-backed securities, in excess of 50 percent of total assets.

6 - Consumer Lending Specialization Institutions with residential mortgage loans, plus credit-card loans, plus other loans to individuals, in excess of 50 percent of total assets.

7 - Other Specialized < \$1 Billion Institutions with assets less than \$1 billion and with loans and leases are less than 40 percent of total assets.

8 - All Other < \$1 Billion Institutions with assets less than \$1 billion that do not meet any of the definitions above, they have significant lending activity with no identified asset concentrations.

9 - All Other > \$1 Billion Institutions with assets greater than \$1 billion that do not meet any of the definitions above, they have significant lending activity with no identified asset concentrations.

0

What about format of measurement? A dichotomous and a categorical variable

. tab default

. tab specgrp

An ordered variable *capitalization*

 $[0,$ if bank *i* is critically undercapitalized in year *t*

1, if bank i is significantly undercapitalized in year *t*

 $CAP_{i,t} = \left\{2, \text{ if bank } i \text{ is undercapitalized in year } t\right\}$

I

l

3, if bank *i* is adequately capitalized in year *t*

4, if bank is well capitalized in year *i ^t*

Cont, and a continuous variable *size*

. sum size1

. sum size1, det

size1

Sample cross-properties: correlation

. pwcorr size1 risk1 cap chargeoffs , sig

Time series

- So far we saw cross-sectional data of different measurement formats
- Now we will see a few times series, focusing on continuous
formats formats
- The data belong to the same dataset and correspon^d to **State Street Bank and Trust Company** covering the period 2001-2009

descriptives

. sum risk1, det

. sum nim3, det

…and cross moments

. pwcorr size1 risk1 nim3, sig

What and Why?

•**What:**

•Panel data are ^a form of longitudinal data, involving regularly repeated observations on the same individuals

•**Individuals** may be people, households, firms, countries, etc

•**Repeat observations** are typically different time periods •**Why**:

•Repeated observations on individuals allow for possibility of isolating effects of unobserved differences between individuals

- We can study dynamics
- •The ability to make causal inference is enhanced by tempora^l ordering

BUT don't expect too much…

- Variation between firms (or people) usually far exceeds variation over time for ^a firm
	- ⇒ ^a pane^l with *T* waves doesn't ^give *T* times the information of ^a cross-section
- Variation over time may not exist for some important variables or may be inflated by measurement error
- We still need very strong assumptions to draw clear inferences from
papels: sequencing in time does not pecessarily reflect causation panels: sequencing in time does *not* necessarily reflect causation

Review of Probability and Statistics

Empirical problem: trading activity and stock volatility

- Research question: What is the effect on monthly stock volatility (or some other frequency) of increasing trading activity by 10 trades or by 100 thousand euros?
- We must use data to find out

The Data Set

Average high-low price range for all stocks listed in ASE (*ⁿ* ⁼426) during January 2008.

Variables:

- Average (based on daily data) high-low price range for each stock (proxy for stock return intraday volatility)
- Number of trades (trading extensive margin)
- Average size of trade = euro volume / number of trades (trading intensive margin)

Review of Statistical Theory

1.**The probability framework for statistical inference**

- 2.Estimation
- 3. Testing
- 4. Confidence Intervals

The probability framework for statistical inference

(a) Population, random variable, and distribution

- (b) Moments of a distribution (mean, variance, standarddeviation, covariance, correlation)
- (c) Conditional distributions and conditional means (d) Distribution of a sample of data drawn randomly from a population: *Y*1,…, *Yn*

(a) Population, random variable, and distribution

Population

- The group or collection of all possible entities of interest (stocks)
- We will think of populations as infinitely large (∞ is an approximation to "very big")

Random variable Y

• Numerical summary of a random outcome (average stock HLR, stock NTRAD)

Population distribution of Y

- The probabilities of different values of *Y* that occur in the population, for ex. Pr[*Y* = 650] (when *Y* is discrete)
- or: The probabilities of sets of these values, for ex. $Pr[640 \le Y \le 660]$ (when *Y* is continuous).

(b) Moments of a population distribution: mean, variance, standard deviation, covariance, correlation

```
mean = expected value (expectation) of Y
```
 $= E(Y)$

 $=\mu_Y$

= long-run average value of *Y* over repeated realizations of *Y*

$$
variance = E(Y - \mu_Y)^2
$$

= 2 $\sigma_{\rm y}$

= measure of the squared spread of the

distribution

standard deviation =
$$
\sqrt{\text{variance}} = \sigma_Y
$$

Quantitative Methods, K. Drakos

Moments, ctd.

$$
skewness = \frac{E\left[\left(Y-\mu_{Y}\right)^{3}\right]}{\sigma_{Y}^{3}}
$$

= measure of asymmetry of a distribution

• *skewness* = 0: distribution is symmetric

• *skewness* > (<) 0: distribution has long right (left) tail

$$
kurtosis = \frac{E\left[\left(Y-\mu_{Y}\right)^{4}\right]}{\sigma_{Y}^{4}}
$$

28

- = measure of mass in tails
- = measure of probability of large values

• *kurtosis* = 3: normal distribution

• kurtosis **B**. B. Brheavy tails ("*leptokurtotic*")

2 random variables: joint distributions and covariance

• Random variables *X* and *Z* have a *joint distribution*

• The *covariance* between *X* and *Z* is $cov(X,Z) = E[(X - \mu_X)(Z - \mu_Z)] = \sigma_{XZ}$

- The covariance is a measure of the linear association between *X* and *Z*; its units are units of *X* \times units of *Z*
- cov(*X*,*Z*) > 0 means a positive relation between *X* and *Z*
- If *X* and *Z* are independently distributed, then $cov(X,Z) = 0$ (but not vice versa!!)
- The covariance of a r.v. with itself is its variance: $cov(X,X) = E[(X - \mu_X)(X - \mu_X)] = E[(X - \mu_X)^2] = \sigma_X^2$ σ*^X*

Quantitative Methods, K. Drakos

The covariance between HLR and NTRAD is positive:

The *correlation coefficient* is defined in terms of the covariance:

$$
corr(X,Z) = \frac{cov(X,Z)}{\sqrt{var(X)var(Z)}} = \frac{\sigma_{XZ}}{\sigma_X \sigma_Z} = r_{XZ}
$$

$$
\bullet -1 \leq \mathrm{corr}(X,Z) \leq 1
$$

- corr $(X,Z) = 1$ means perfect positive linear association
- corr(X , Z) = –1 means perfect negative linear association
- corr $(X,Z) = 0$ means no linear association

The correlation coefficient measures linear association

Linear Regression with One Regressor

Quantitative Methods, K. Drakos

34

Linear Regression with One Regressor

 Linear regression allows us to estimate, and make inferences about, *population* slope coefficients. Ultimately our aim is to estimate the causal effect on *Y* of a unit change in *X* – but for now, just think of the problem of fitting a straight line to data on two variables, *Y* and *X*.

The problems of statistical inference for linear regression are, at a general level, the same as for estimation of the mean or of the differences between two means. Statistical, or econometric, inference about the slope entails:

- \bullet Estimation:
	- How should we draw a line through the data to estimate the (population) slope (answer: ordinary least squares).
	- What are advantages and disadvantages of OLS?
- \bullet Hypothesis testing:
	- How to test if the slope is zero?
- \bullet Confidence intervals:
	- How to construct a confidence interval for the slope?

Linear Regression: Some Notation and Terminology

The *population regression line***:**

 $HLR = \beta_0 + \beta_1 * NTRAD$

 β_1 = slope of population regression line

$$
\Delta(HLR)
$$

= $\Delta \big(\textit{NTRAD} \big)$

37

= change in volatility for a unit change in the number of trades

 \bullet *Why are* β_0 *and* β_1 *"population" parameters?*

• We would like to know the population value of β_1 .

P We don't know β_{Pra}so must estimate it using data. \bigcirc

- In the simple linear regression of y on x, we typically refer to x as the
	- Independent Variable, or
	- Right-Hand Side Variable, or
	- Explanatory Variable, or
	- Regressor, or
	- Covariate, or
	- Control Variables

The Population Linear Regression Model – general notation

 $Y_i = \beta_0 + \beta_1 X_i + u_i, i = 1, ..., n$

- •*X* is the *independent variable* or *regressor*
- •*Y* is the *dependent variable*
- \bullet β_0 = intercept
- \bullet $\beta_1 = slope$
- u_i = the regression *error*
- 39• The regression error consists of omitted factors, or possibly measurement error in the measurement of *Y*. In general, these omitted factors are other factors that influence *Y*, other

The Ordinary Least Squares Estimator

How can we estimate $β_0$ *and* $β_1$ *from data?*

Recall that *Y* was the least squares estimator of μ_Y : *Y* solves,

$$
\min_{m} \sum_{i=1}^{n} (Y_i - m)^2
$$

By analogy, **we will focus on the least squares ("***ordinary least* $squares"$ or " $OLS")$ estimator of the unknown parameters β_0 **and** β_1 , which solves,

$$
\min_{b_0, b_1} \sum_{\substack{i=1 \ \text{ative Methods. K. Drakos}}}^{n} [Y_i - (b_0 + b_1 X_i)]^2
$$

o Quantitative Methods, K. Drakos *i* =

Mechanics of OLS

The population regression line: $HLR = \beta_0 + \beta_1 * NTRAD$

$$
\beta_1 = \frac{\Delta(HLR)}{\Delta(NTRAD)} = ??
$$

41

The OLS estimator solves:

$$
\min_{b_0, b_1} \sum_{i=1}^n [Y_i - (b_0 + b_1 X_i)]^2
$$

- The OLS estimator minimizes the average squared difference between the actual values of *Yi* and the prediction ("predicted value") based on the estimated line.
- This minimization problem can be solved using calculus
- \bullet **• The result is the OLS estimators of** β_0 **and** β_1 **.**

Summary of OLS slope estimate

- The slope estimate is the sample covariance between *x* and *y* divided by the sample variance of *x* the sample variance of x
- 0 If *x* and *y* are positively correlated, the slope will be positive
- If *x* and *y* are negatively correlated, the slope will be negative0
- 0 Only need *x* to vary in our sample
- Intuitively, OLS is fitting a line through the sample points such that the 0 sum of squared residuals is as small as possible, hence the term least squares
- 0 • The residual, \hat{u} , is an estimate of the error term, u, and is the difference between the fitted line (sample regression function) and the sample point

THE OLS ESTIMATOR, PREDICTED VALUES, AND RESIDUALS

The OLS estimators of the slope β_1 and the intercept β_0 are

$$
\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{s_{XY}}{s_X^2}
$$
\n(4.7)

$$
\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}.\tag{4.8}
$$

The OLS predicted values \hat{Y}_i and residuals \hat{u}_i are

44

<mark>quantitative Methods, K. Drakos, K. D</mark>

$$
\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i, \ i = 1, ..., n \tag{4.9}
$$

$$
\hat{u}_i = Y_i - \hat{Y}_i, \, i = 1, \dots, n. \tag{4.10}
$$

The estimated intercept $(\hat{\beta}_0)$, slope $(\hat{\beta}_1)$, and residual (\hat{u}_i) are computed from a sample of *n* observations of X_i and Y_i , $i = 1, ..., n$. These are estimates of the unknown true population intercept (β_0) , slope (β_1) , and error term (u_i) .

Application to the Volatility *– number of trades* data (per 1000 trades)

45 Quantitative Methods, K. Drakos Estimated slope $= \beta_1$ $\hat{\beta}_1 = 0.426$ Estimated intercept = β_0 $\hat{\beta}_0 = 0.117$ Estimated regression line: *HLR* $\widehat{HLR} = 0.117 + 0.426 * \text{NTRAD}$ *Interpretation of the estimated slope and intercept*

HLR $\widehat{HLR} = 0.117 + 0.426*NTRAD$

• Stocks with thousand more trades, on average, have high-low ranges that are 0.426 points higher.

• That is,
$$
\frac{\Delta(HLR)}{\Delta(NTRAD)} = 0.426
$$

- The intercept (taken literally) means that, according to this estimated line, stocks with zero trades would have a (predicted) high-low range of 0.117
- This interpretation of the intercept makes no sense because no trading means no volatility!!! – here, the intercept is not
- ₆ economically meaningful.

46

Predicted values & residuals:

One of the stocks in the data set is $AETEK$, for which $HLR =$ 0.052 and NTRAD = 0.320 predicted value: \hat{Y}_{A} _{EFFK} = 0.117 + 0.426 * 0.320 = 0.2532 residual: $\hat{u}_{\text{AETEK}} = 0.0528$ — $_{\rm AETEK} = 0.0528 - 0.2532 = -0.20052$

OLS regression: STATA output

. reg highlow numtrad if month==1

(we'll discuss the rest of this output later)

48

Measures of Fit

A natural question is how well the regression line "fits" or explains the data. There are two regression statistics that provide complementary measures of the quality of fit:

- The *regression R***²** measures the fraction of the variance of *Y*that is explained by *X*; it is unitless and ranges between zero (no fit) and one (perfect fit)
- Quantitative Methods, K. Drakos • The *standard error of the regression* **(***SER***)** measures the magnitude of a typical regression residual in the units of *Y*.

More terminology

 $y_i = \hat{y}_i + \hat{u}_i$ We then define the following: up of an explained part, and an unexplained part, We can think of each observation as being made $(y_i - \overline{y})^2$ is the total sum of squares (SST) $\sum (\hat{y}_i - \bar{y})^2$ is the explained sum of squares (SSE) Then $SST = SSE + SSR$ \hat{a}_i^2 is the residual sum of squares (SSR) $\sum (y_i - \overline{y})^2$ $\sum \hat{u}_i^2$ i

Proof that SST = SSE + SSR

$$
\sum (y_i - \overline{y})^2 = \sum [(y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})]^2
$$

=
$$
\sum [\hat{u}_i + (\hat{y}_i - \overline{y})]^2
$$

=
$$
\sum \hat{u}_i^2 + 2 \sum \hat{u}_i (\hat{y}_i - \overline{y}) + \sum (\hat{y}_i - \overline{y})^2
$$

=
$$
\text{SSR} + 2 \sum \hat{u}_i (\hat{y}_i - \overline{y}) + \text{SSE}
$$

and we know that
$$
\sum \hat{u}_i (\hat{y}_i - \overline{y}) = 0
$$

Quantitative Methods, K. Drakos

The *regression* \mathbb{R}^2 is the fraction of the sample variance of Y_i "explained" by the regression. $Y_i = \hat{Y}_i$ $Y_i + \hat{u}_i$ = OLS prediction + OLS residual \Rightarrow sample var (Y) = sample var (\hat{Y}) Y_i) + sample var(\hat{u}_i) (*why?*) \Rightarrow total sum of squares = "explained" SS + "residual" SS *Definition of R*²: $R^2 = \frac{ESS}{TSS} =$ 21 $(\hat{Y}_i - \hat{Y})^2$ *n* $\frac{i-1}{n}$ ^{$\frac{i}{n}$} $Y_i - Y_i$ $=1$ and the set of $=$ ∑ $\sum_{i=1}^{\mathcal{M}} \mathbf{U}_i$ 52Definition of R^2 : $R^2 = \frac{25S}{TSS} = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$

• $R^2 = 0$ means $ESS = 0$

• $R^2 = 1$ means $ESS = TSS$

• $0 \le R^2 \le 1$

• For regression with a single X, R^2 = the square of the correlation coefficient bet

The Standard Error of the Regression(*SER*)

The *SER* measures the spread of the distribution of *u*. The *SER*is (almost) the sample standard deviation of the OLS residuals:

$$
SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (\hat{u}_i - \overline{\hat{u}})^2}
$$

$$
=\sqrt{\frac{1}{n-2}\sum_{i=1}^n\hat{u}_i^2}
$$

(the second equality holds because
$$
\overline{\hat{u}} = \frac{1}{n} \sum_{i=1}^{n} \hat{u}_i = 0
$$
).
Quantitative Methods, K. Drakos

Quantitative Methods, K. Drakos

53

$$
SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2}
$$

The *SER*:

- has the units of *^u*, which are the units of *^Y*
- measures the average "size" of the OLS residual (the average "mistake" made by the OLS regression line)
- The *root mean squared error* (*RMSE*) is closely related to the *SER*:

$$
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \hat{u}_i^2}
$$

This measures the same thing as the *SER* – the minor

4 **Quantitative Methods, K. Drakos** difference is division by 1/*n* instead of 1/(*n*–2).

54

Technical note: why divide by *n*–2 instead of *n*–1?

$$
SER = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{u}_i^2}
$$

- Division by *n*–2 is a "degrees of freedom" correction just like division by $n-1$ in s_Y^2 , except that for the *SER*, two parameters have been estimated (β_0 and β_1 , by $\hat{\beta}_0$ $\hat{\beta}_{\raisebox{-0.75pt}{\tiny 0}}$ and $\hat{\beta}_{\raisebox{-0.75pt}{\tiny 1}}$ $\hat{\beta}_1$), whereas in s_Y^2 only one has been estimated $(\mu_Y, \text{ by } Y)$.
- When *n* is large, it makes negligible difference whether *ⁿ*, *ⁿ*–1, or *n*–2 are used – although the conventional formula uses *n*–2 when there is a single regressor.

Example of the *R*² and the *SER*

HLR = 0.117 + 0.426*NTRAD *^R***² = .2585,** *SER* **= 0.2299** $\overbrace{}^{ }$

NTRAD explains only 25% of the variation in high-low ranges. Does this make sense? Does this mean the NTRAD is unimportant for volatility?