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0. Basic Time Series Concepts 

0.1 Introduction 

 A time series is a collection of observations made sequentially in time. 

Usually, these observations are taken at equally spaced intervals over time. An 

intrinsic feature of a time series is that, typically, adjacent observations are 

dependent. The nature of this dependence among observations of a time series is of 

considerable practical interest. Time Series Analysis is concerned with techniques for 

the analysis of this dependence.   

0.2 Terminology 

A time series is said to be continuous when observations are made 

continuously in time. Examples include the temperature at a given location, the price 

of a commodity, or the position of a projectile. A time series is said to be discrete 

when observations are taken only in specific times. Examples include the annual crop 

yields of harvest, monthly salaries or the majority of a political party at a general 

election. In this course we are exclusively concerned with discrete time series where 

the observations are taken at equal intervals. (i.e. monthly, quarterly, annually etc) 

Much statistical theory is concerned with random samples of independent 

observations. The special feature of time series analysis is the fact that successive 

observations are usually not independent and that the analysis must take into account 

the time order of observations. When successive observations are dependent, future 

values may be predicted from past observations. If a time series can be predicted 

exactly, it is said to be deterministic. But most time series are stochastic in that 

future is only partly determined by past values, so that exact predictions are 

impossible and must be replaced by the idea that future values have a probability 

distribution, which is conditioned by knowledge of past values.  
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0.3 Stationary stochastic processes and their properties in the 
time domain 

A statistical phenomenon that evolves in time according to probabilistic laws 

is called a stochastic process. The time series to be analysed may then be thought as 

a particular realisation, produced by the underlying probability mechanism of the 

system under study. In other words, in analysing a time series we regard it as a 

realisation of a stochastic process. To put more formally, a stochastic process is a 

family of random variables, defined in a probability space: {Xt} , t = …-1, 0, +1, …        

Now, time series is a sample path or realisation of a stochastic process, whose 

parameter (index) denotes time. In other words, it is an observation taken from a 

multivariate probability distribution.      

A very special class of stochastic processes, called stationary processes, is 

based on the assumption that the process is in a particular state of statistical 

equilibrium. A stochastic process is said to be strictly stationary if its properties are 

unaffected by a change of time origin, that is, if the joint probability distribution 

associated with m observations zt, zt+1, zt+2, …made at any set of times t, t+1, t+2,..., 

is the same as that associated with m observations zt+k, zt+1+k, zt+2+k, …made at times 

t+k, t+1+k, t+2+k,... 

Thus, for a discrete process to be strictly stationary, the joint probability 

distribution of any set of observations must be unaffected by shifting all the times of 

observation forward or backward by any integer amount k. However, the notion of 

strict stationarity is very strong and is rarely satisfied by times series encountered in 

social sciences. A rather weaker notion related is the so-called weak or second order 

stationarity or wide sense stationarity. A time series is called weakly stationary if: 

• E(Xt) = μ for every t (meaning independent of time) 
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• Cov(Xt, Xt+k) = E[(Xt - μ) (Xt+k - μ)] = γk  for every t (meaning independent of time 

and only a function of the time lag. (depends only on k, the length of time 

separating the observations, and not t, the date of observation)  

No assumptions are made about higher order moments than those of second order. 

By letting k = 0, we note that the above assumption about the covariance function 

implies that the variance, as well as the mean, is constant.  

A few remarks:  

• A strictly stationary process is weakly stationary 

• If the process is Gaussian, then weak stationarity implies strict stationarity 

• By symmetry γk = γ-k 

• So, the graph of a stationary series will vary randomly around a constant (stable) 

mean value and also its variance will be constant through time.  

0.4 Autocovariance 

For a time series {Xt} we define as autocovariance (ACV) of k-order the 

quantity: Cov(Xt, Xt+k) = E[(Xt - μ) (Xt+k - μ)] = γk , k =  ±1, ±2 

The term "auto" is prefixed because the members of the series are generated 

from the same stochastic process. The ACV function is an even function of k. that is 

because: Cov(Xt, Xt+k) = Cov(Xt+k, Xt) = Cov(Xt, Xt-k) = γ-k 

Obviously, γ0 = Cov(Xt, Xt) = Var(Xt) 

Remark: 

Positive first-order autocovariance means that there is a tendency for the next 

observation to be towards the same side (sign) as the previous one with respect to the 

mean.  For the above time series, the matrix: 
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, is called the autocovariance matrix. 

Obviously, this matrix is symmetric and positive-definite inheriting these properties 

form the autocovariance function as discussed above.   

0.5 Autocorrelation 

For a time series {Xt} we define as autocorrelation (ACR) of k-order the 

quantity:
00 0

t t k k k
k

t t k

Cov(X ,X ) γ γ
ρ

γV(X )V(X ) γ γ

+

+

= = = .  The graph of ρk is called correlogram, 

and will be shown later, provides vital information for the time series.  

A few remarks:   

• Because γk = γ-k  it can be shown that ρk = ρ-k 

• Obviously the ACR function has the same properties with the ACV function, and 

furthermore satisfies the condition ρ0 =1 

• Also, 1 1k−    

• Note that the autocorrelation function is dimensionless, that is, independent of the 

scale of measurement of the time series.  

• The correlogram of a stationary series will die out very fast, after the first k-lags, 

whereas in the case of a non-stationary series it will be very persistent, and die out 

very slowly.   

 For the above time series, the matrix: 
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, is called the autocorrelation matrix.  

0.6 Partial Autocorrelation  

If X1, X2, X3 are random variables, then we define as partial correlation the 

correlation between X1 and X2 when the linear effect of X3 is subtracted.  If ρ12, ρ13, ρ23 

are the correlation coefficients between the variables, taken pairwise, then it can be 

shown that the partial correlation coefficient between X1 and X2, when X3 is kept 

fixed, is: 12 13 23
12.3

2 2

13 23(1 )(1 )

  


 

− −
=

− −
.  

Similarly, for the case of a time series we define the partial autocorrelation 

of order k the partial autocorrelation between Xt, and Xt+k, when Xt+1, Xt+2, …, Xt+k-1 

are kept fixed. Loosely, it is: ρk. = Corr(Xt, Xt+k/ Xt+1, Xt+2, …, Xt+k-1 fixed). We denote 

partial autocorrelations as: ρk. = φkk.  

0.7 White noise as a time series generator 

  A discrete time process is called a purely random process if it consists of a 

sequence of random variables {εt}, which are mutually independent and identically 

distributed (iid). From the definition it follows that the process has constant mean and 

variance and that: ( ) ( ) 0,  for  integert t kk Cov k   += = . Obviously, this process is 

weakly stationary and is better known as white noise. Typically, it is assumed 

that: ( ) 0tE  = , 
2 , 0

     0, 0

k k

k

 = =

= 
, and  

1, 0

               0, 0

k kk k

k

 = = =

= 
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0.8 The Wold decomposition Theorem 

H. Wold (1938) proved a very important theorem illuminating the 

decomposition of a time series into a deterministic and an indeterministic part, which 

if put simply states that: Every discrete stationary time series can be expressed as the 

sum of two uncorrelated series, a purely deterministic and a purely indeterministic. 

All the processes that will be considered in this course will fall to the category of 

purely indeterministic.  
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1. Review of Ordinary Least Squares 

1.1 The Least Squares Principle and Assumptions 

Model equation: 
1 2 2, ,...t t j j t tY X X u  = + + + +  

The model expresses the value of a predictand variable as a linear function of 

one or more predictor variables and an error term, where: tY  is the predictand in year 

t , 
,j tX  is the predictor j  in year t ,   is the vector of unknown but estimable 

coefficients, tu  is the error term in year t .    

Prediction/Fitted equation  

1 2 2, ,
ˆ ˆ ˆˆ ...t t j j tY X X  = + + +  

the model as it merges after applying Ordinary Least Squares, which yields parameter 

estimates such that the sum of squared errors is minimised.  

Residuals 

The error term is unobserved because the true (population) model is unknown. 

Once the model has been estimated, the regression residuals are defined as  

ˆˆ
t t tu Y Y= − . The residuals measure the closeness of fit of the predicted values and 

actual predictand values in the estimation period.  

Note the differences between the two sets ( ),u   and  ( )ˆˆ,u  . 

• Error/ disturbance versus residual 

• Unknown parameters versus estimated coefficient 

Define the residual sum of squares as: ( ) 2ˆ ˆ
tS S u= =  , which is really the 

following: 
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the OLS method consists of finding the values of the vector b that minimize the sum 

of squared residuals: 2ˆ ˆargminOLS tu  =     

Assumptions of OLS 

The OLS model is based on several assumptions and when these are satisfied 

then the regression estimators are optimal in the sense that they are unbiased (the 

expected value of the estimator is equal to the true value of the parameter), efficient 

(the estimator has the smallest variance compared to any other linear estimator) and 

consistent (the bias and variance of the estimator approach zero as the sample size 

approaches infinity). The basic assumptions are the following: 

A1) ( ) 0tE u = , A2) ( ) 2

tVar u = , A3) ( ) ( ), , 0,  t s t sE u u Cov u u s t =   , A4) 

( ) ( )tu N • , A5) X  “fixed”. 

Coefficient of determination 

The explanatory power of the regression is summarized by its “R-squared” 

value, also called the coefficient of determination, and is often described as the 

proportion of variance “accounted for”, “explained”, or “described” by the regression. 

It is important to keep in mind that a high 
2R  does not imply causation. The relative 

sizes of the sums-of-squares terms indicate how “good” the regression is in terms of 

fitting the calibration data. If the regression is “perfect”, all residuals are zero, and 

2R is 1. If the regression is a total failure, the sum-of-squares of residuals equals the 

total sum-of-squares; no variance is accounted for by regression, and 
2R is zero. 
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A primer on residual analysis 

Analysis of residuals consists of examining graphs and statistics of the 

regression residuals to check that model assumptions are satisfied. Some frequently 

used residuals tests are listed below. 

• Time series plot of residuals. The time series plot of residuals can indicate such 

problems as non-constant variance of residuals, and trend or autocorrelation in 

residuals. A time-dependent variance might show, say, as an increasing scatter of 

the residuals about the zero line with time. 

• The slope of the scatter plot of residuals on time can be tested for significance to 

identify trend in residuals. 

• Scatterplot of residuals against predicted values. The residuals are assumed to 

be uncorrelated with the predicted values of the predictand. Violation is indicated 

by some noticeable pattern of dependence in the scatterplots. For example, the 

residual might flare out (increased scatter) with increasing value of the predictand; 

the remedy might be a transformation (e.g., log transform) of the predictand. 

• Scatterplots of residuals against individual predictors. The residuals are 

assumed to be uncorrelated with the individual predictors. Violation of these 

assumptions would be indicated by some noticeable pattern of dependence in the 

scatterplots, and might suggest transformation of the predictors. 

• Histogram of residuals. The residuals are assumed to be normally distributed. 

Accordingly, the histogram of residuals should resemble a normal pdf. But keep in 

mind that a random sample from a normal distribution will be only approximately 

normal, and so some departures from normality in the appearance of the histogram 

are expected – especially for small sample size. 
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• Acf of residuals. The residuals are assumed to be non-autocorrelated. If the 

assumption is satisfied, the acf of residuals should not be large at any non-zero 

lag. Special interest should be attached to the lowest lags, since physical systems 

are characterized by persistence from year to year. 

• Lag-1 scatterplot of residuals. This plot also deals with the assumption of 

independence of residuals. The residuals at time t should be independent of the 

residuals at time t-1. The scatterplot should therefore resemble a formless cluster 

of points. Alignment in some direction might be evidence of autocorrelation of 

residuals at lag 1. 

1.2 Hypothesis Testing and Types of Tests: Wald, Likelihood 
Ratio, Lagrange Multiplier 

Once we have estimated a regression model we are usually interested in the 

significance and the values of the obtained coefficients. We use our theory as a guide 

as to whether the coefficient of a particular explanatory variable should be significant 

and/or what value it should attain. Furthermore, our theory may have something to 

say regarding a set of coefficients (how they should jointly behave). In order to test 

the validity of our theory, we first have to derive a set of testable implications which 

then will be confronted with the data. Based on our sample, rejecting these hypotheses 

would cast doubt on the validity of the underlying theory. In contrast, if these 

hypotheses are not rejected (i.e. the theory is consistent with the data) the theory has 

‘survived’ (passed) the tests (Popperian principle). 

Say we have a theoretical model that attempts to capture the production 

function of an economy: ( ),Q f K L= , typically economic theory assumes the 

following: ( )0 0, 0, 0i iiQ Q Q=   . Let’s use a log-linear model of the form: 

q k l u  = + + +  
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What testable implications can be derived from the theory?  

•  ,   >0 

• Additionally, the theory highlights certain combinations of these parameters 

that lead to major conclusions regarding the properties of the production 

function, known as returns-to-scale. For instance if 1 + =  then the 

production function exhibits Constant-Returns-to-Scale (CRS).  

• If 1 +    then the production function exhibits Decreasing-Returns-to-

Scale 

• If 1 +    then the production function exhibits Increasing-Returns-to-

Scale  

Note that the log-linearity is handy since the estimated coefficients are equivalent 

to the respective elasticities: 
ln

ln
QL

d Q

d L
 = = . Suppose we want to test whether CRS 

is a valid assumption. Then we test the null hypothesis: 0 : 1H  + = .  

Likelihood Ratio Test 

• Estimate the unrestricted model and obtain the maximised log-likelihood ( )ˆL  . 

• Estimate the restricted model and obtain the maximised log-likelihood ( )L  . 

• So, LR tests require the estimation both of the unrestricted and restricted models.  

Note that it always be the case that ( ) ( )ˆL L  . The question is whether their 

difference is statistically ‘large enough’ to justify rejection of the null hypothesis.  

The LR test is performed by calculating the following statistic: 

( ) ( ) ( ) 2ˆ2 kLR k L L   = −
 

.  
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Wald test 

• Calculate set of restrictions, say ( )ˆ 0r  = , i.e. 1 0 + − =   

• and test whether ( )ˆr   is ‘close’ to zero.  

• Thus Wald-type tests require estimation only of the unrestricted model.    

LM test 

• The aim is to maximize ( )L   subject to the restrictions ( ) 0r  = . 

• Thus we seek to maximize ( ) ( ) 0L r  − =  

• If restrictions are valid then  , the Lagrange Multiplier, should be zero 

• LM tests often based on the unrestricted equation, followed by an auxiliary 

equation relaxing the restriction.   

1.3 Diagnostic Tests 

• ‘Diagnostic’ as in medicine, where clues to illness would in our case indicate 

violation of assumptions. Failure of tests would suggest: 

• Misspecification 

• Estimates misleading 

• Un-modelled information 

1.3.1 Types of Tests 

• F, t-tests of restrictions that will lead us to exclude sets of variables and ultimately 

deal with a less complex model that will enhance estimation accuracy (increase of 

degrees of freedom).  

• Tests for the sphericity of residuals: autocorrelation tests (DW, LM); 

heteroscedasticty tests (LM).  

• Normality of residuals: Jarque-Berra test 

• Parameter Stability tests: Chow test, Predictive Failure test, CUSUM. 
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2. Deviations from OLS assumptions I: 
Autocorrelation  

Multiple Regression was originally developed for cross-sectional data but 

Statisticians/Economists have been applying it (mostly incorrectly) to chronological 

or longitudinal data with little regard for the Gaussian assumptions. Recall that Time 

series = a sequence of observations taken on a variable or multiple variables at 

successive points in time. The objectives of time series analysis are to (i) understand 

the structure of the time series (how it depends on time, itself, and other time series 

variables) and (ii) forecast/predict future values of the time series. What is wrong then 

with using regression for modeling time series? Perhaps nothing, if the residuals 

satisfy the regression assumptions (linearity, Homoscedasticity, independence, and (if 

necessary) normality). So it is important to apply a battery of tests for Pulses or one-

time unusual values and to either adjust the data or to incorporate a Pulse Intervention 

variable to account for the identified anomaly. Unusual values can often arise due to 

Seasonality, thus one has to identify and incorporate Seasonal Intervention variables. 

Unusual values can also often arise at successive points in time earmarking the need 

for either, a Level Shift Intervention to deal with the proven mean shift in the 

residuals. Additionally, time series analyzed by regression suffer from autocorrelated 

residuals. In practice, positive autocorrelation seems to occur much more frequently 

than negative. Positively autocorrelated residuals make regression tests more 

significant than they should be and confidence intervals too narrow; negatively 

autocorrelated residuals do the reverse. In some time series regression models, 

autocorrelation makes biased estimates, where the bias cannot be fixed no matter how 

many data points or observations that you have. As a rule before you use regression 

methods on time series data, first plot the data over time and study the plot for 

evidence of trend and seasonality. Use numerical tests for autocorrelation, if not 
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apparent from the plot. Deterministic trend can be dealt with by using functions of 

time as predictors. Seasonality can be dealt with by using seasonal indicators 

(Seasonal Pulses) as predictors or by allowing specific auto-dependence or auto-

projection such that the historical values ( Y(t-s) ) are used to predict Y(t). 

Autocorrelation can be dealt with by using lags of the response variable Y as 

predictors. In general, run the regression and diagnose how well the regression 

assumptions are met. In particular, the residuals should have approximately the same 

variance (homoscedasticity) otherwise some form of "weighted" analysis might be 

needed. Furthermore, the model form/parameters should be invariant i.e. unchanging 

over time. If not, then we perhaps have too much data and need to determine at what 

points in time the model form or parameters changed. In whatr follows we will 

discuss most of these issues in some more detail.   

  When the data are of the particular type of time series then autocorrelation is 

most likely to occur and the error from one period can affect the error in other time 

periods. In other words, the third assumption of the typical OLS is violated. This 

violation requires the modification, not the abandonment, of the framework of 

ordinary least squares estimation.    

The violation of the non-autocorrelation assumption thus alters the effect of 

errors. An error that occurs in one time period does not exert its entire impact in that 

period; instead its influence carries forward to other time periods. As a result, the 

errors associated with the regression will be correlated. In other words, false 

predictions in one point in time will result in false predictions for the next point(s) in 

time. If autocorrelation is present, then it is misleading to think of the consecutive 

time points as independent observations. Autocorrelation implies that the number of 

independent observations is smaller than the number of time points.       
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 The absence of autocorrelation requires that Cov(εt,εt-j) = 0, so that errors j 

periods apart are totally uncorrelated. Autocorrelation therefore, is defined as a 

nonzero error covariance (and consequently autocorrelation).  Autocorrelation can 

either be positive or negative although positive autocorrelation occurs more frequently 

with economic data. When positive autocorrelation exists, so that the covariance 

between errors is positive, an above the average error in time t will tend to be 

associated with an above the average error in time period t-j. Since the average error 

is zero, this implies that the positive errors will tend to follow positive errors, while 

negative errors will tend to follow negative errors. For positive autocorrelation, the 

non-random pattern of errors thus manifests itself through strings of positive and 

negative errors. In general, the number of sign changes will be smaller than the 

number that would occur if autocorrelation were absent. Negative autocorrelation 

implies that above the average errors will tend to follow below average errors, so that 

negative errors will often follow positive errors, and the number of sign changes in 

the equation error will exceed the number that would exist without autocorrelation.  

 Besides these differences in the sign of autocorrelation, a distinction also 

exists in the potential types of autocorrelation. Quasi-autocorrelation is the error 

correlation that occurs in a misspecified equation. The specification error that causes 

quasi-autocorrelation can result from either omitting an influential variable or the use 

of an incorrect functional form. 

In a correctly specified regression, such temporal dependence of the errors is 

called Pure autocorrelation. When the correct specification is utilised, all the 

variables whose influence on the dependent variable is of secondary importance are 

omitted, and their joint influence is felt in the equation error. Pure positive 

autocorrelation can therefore arise as the result of positive temporal correlation among 
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the set of omitted but non-influential variables. Measurement error in both the 

included and excluded variables can also cause autocorrelation. The frequency of the 

data is often reduced so that quarterly instead of monthly equations can be estimated. 

The method of converting monthly into quarterly data typically involves simple 

averaging, which results in estimating quarterly values with substantially less 

fluctuation than the monthly values upon which these are based. The use of this 

'dampened' set of observations can itself cause pure autocorrelation in the equation 

errors.  

2.1 Effects of Autocorrelation on OLS 

The presence of autocorrelation has several consequences for least squares 

estimation. The OLS remain unbiased and consistent, but these are no longer best 

linear unbiased estimators, since they are not efficient. Furthermore, estimates of the 

residual sum of squares and coefficient variances obtained based on the assumption of 

white noise errors are biased. As a result statistical inference based on these values are 

invalid. In other words, carrying out hypotheses tests and/or constructing confidence 

intervals are likely to lead to incorrect inferences. According to Ostrom (1990, p. 26)  

"It should be noted that in most political and economic data the serial correlation is 

likely to be positive because the same random factors tend to operate on at least two 

successive periods' errors (and likely on more). Hence, we should be wary of the 

possibility of positive serial correlation in both the error terms and the independent 

variables." 

The actual error term in a regression equation is unobserved. Residuals from 

the estimated equation must therefore serve as the basis for both the detection and 

correction of autocorrelation. The simplest method, and least foolproof, method for 

detecting autocorrelation among the residuals of an equation consists of visually 
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inspecting them. Autocorrelation manifests itself through a non-random residual 

pattern, so any obvious pattern in a time plot of residuals is a signal that a potential 

problem exists. For positive autocorrelation, this plot will tend to show fairly 

infrequent sign changes, where a series of residuals with one sign will follow a series 

with the opposite sign. In contrast, negatively autocorrelated residuals will tend to 

display an inordinately large number of sign changes.  

2.1.1 The Durbin-Watson test 

The most frequently utilised statistical test for the presence of autocorrelation 

is the Durbin-Watson test (DW hereafter). This test is valid when the following 

conditions are met: 

• The equation includes an intercept term 

• The error process is first-order autoregressive 

• The equation excludes a lagged dependent variable, and 

• None of the explanatory variables are stochastic 

 Assuming the AR(1) process for the error term in mathematical form is: 

1t t tu  −= + . The DW test utilises the residuals from an estimated model to test the 

null hypothesis: 0 : 0H  = . Against either a one-tailed or two-tailed alternative 

hypothesis. The test statistic for this test is given by:  

2

1

2

2

1

ˆ ˆ( )

ˆ( )

n

t t

t

n

t

t

DW

 



−

=

=

−

=



.  

Note that the summation in the numerator starts with the second observation, 

since the use of the lagged residual results in the loss of one observation.  The validity 

of the DW statistic for testing first-order autocorrelation can be seen from an 

approximation derived from the above equation. Starting with the numerator we have: 
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2 2

1 1
ˆ ˆ ˆ ˆ2t t t t   − −+ −   .  Since the sums with squared residuals differ by only one 

term, then we use the approximation: 2 2

1
ˆ ˆ
t t  −  . The numerator can therefore be 

written: 2 2

1 1
ˆ ˆ ˆ ˆ ˆ ˆ2 2 2t t t t t t     − −

 − = −     . Adding the denominator to this 

becomes: 

2

1

2

ˆ ˆ ˆ2

ˆ

t t t

t

DW
  



−
 − 
 


.  Since the summations of the squared residuals 

differ only by one term, these terms are approximately equal. Dividing each term in 

the numerator by the denominator, the approximation for the DW 

becomes:
1

2

ˆ ˆ
2 1

ˆ

t t

t

DW
 



−
     −
 
 




. The ratio of the summation terms is the estimated 

autocorrelation coefficient that is obtained by regressing the current period residuals 

on the lagged residuals. No wonder, this coefficient is equal to ρ appearing in the 

AR(1) error process. Utilising this information the operational form of the DW 

statistic is: ( )ˆ2 1DW = − . Where ̂  is the least squares estimate of ρ. Thus, the 

above equation links the DW statistic to the estimated coefficient of first-order 

autocorrelation. We can obtain values of the DW statistic for the different 

autocorrelation possibilities, since ρ takes values between -1 and +1. So a mapping of 

these possibilities would be: 

• When ρ = 0 (absence of autocorrelation), then DW = 2 

• When ρ = 1 (perfect positive autocorrelation), then DW = 0 

• When ρ = -1 (perfect negative autocorrelation), then DW = 4 

Therefore, because of this one-to-one mapping between ρ and DW, since ρ has 

an upper and a lower bound, the DW is bounded as well. The upper bound is given by 

4 and the lower bound is given by 0. So, values of DW close to 2 constitute evidence 
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supporting the absence of autocorrelation, in fact this value is a 'rule of thumb' for 

many researchers.  

However, there is a more formal way of testing the significance of the DW 

statistic, which is slightly different than the standard t and F tests because in the case 

of the DW one has to use a critical range (given by an upper critical value and a lower 

one) instead that of a critical value. Furthermore, apart from the number of 

observations used in the estimation stage one has also to take into account the number 

of regressors used. The way to use the statistic in order to test for the presence of 

serial correlation is the following: 

• Estimate the original equation with least squares 

• Obtain the value of the DW (all econometric packages report it in their standard 

estimation output) 

• Consult the table for the critical values, based on the number of observations, the 

number of explanatory variables and the desired level of significance 

Then follow these decision rules:  

In the case of positive autocorrelation;  

• If DW <dL, reject the null of no autocorrelation 

• If DW >dU, do not reject the null of no autocorrelation 

• If DW belongs to [dL , dU], then the test is inconclusive  

In the case of negative autocorrelation;  

• If DW > 4-dL, reject the null of no autocorrelation 

• If DW < 4-dU, do not reject the null of no autocorrelation 

• If DW belongs to [4-dU , 4-dL], then the test is inconclusive  

In conclusion, the DW test is a very useful tool but it has a number of 

limitations: it cannot be used when the model does not include an intercept, it is not 
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valid if the endogenous variable is lagged (later we will show that one can overcome 

this limitation), it is not robust to alternative processes for the error term (apart from 

the AR(1) process) and finally in some cases it fails to produce inference 

(inconclusiveness).  

2.1.2 The Breusch-Godfrey test 

  As discussed above, the DW test can be applied only when one tests for an 

AR(1) error term process. This is obviously somewhat restrictive since the 

autocorrelation present could still be an AR process but of higher order. Breusch and 

Godfrey (BG hereafter) proposed a more general test for autocorrelation that can be 

employed when the order of the error's autoregressive dependence extends beyond the 

first order. The BG test is essentially a statistical test for the joint significance of a set 

of autocorrelation coefficients.  

If the error process is assumed to be of the k-th order 

autoregressive: 1 1 2 2 ...t t t k t k tu      − − −= + + + + . The BG test ascertains whether the 

set of coefficients ρ1 to ρk are significantly different form zero. The null hypothesis is 

then: 0 1 2: ... 0kH   = = = = .  The basis for conducting this test is the likely 

correlation of the current residual with its own lags when the error process is serially 

correlated. The way to use the statistic in order to test for the presence of serial 

correlation is the following: 

• Estimate the original equation with least squares 

• Obtain the residuals and calculate the set of lagged residuals that correspond to the 

order of autoregressive process postulated in the null hypothesis.  

• Regress the current residual on the set of explanatory variables included in the 

original equation plus the lagged residuals. 
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The test statistic is given by (n-k) R2 and follows a chi-square distribution with 

k degrees of freedom and n-k is the number observations used to estimate this 

equation. If the value of the statistic exceeds the critical chi-square value for the 

selected level of significance, then reject the null of no serial correlation.  

There are two potential difficulties with the use of this test. First, the order of 

the AR process is unknown and therefore the researcher must decide on an 

appropriate value for k. Second, when the original model contains a large number of 

explanatory variables, the degrees of freedom used to estimate the second (auxiliary) 

equation will be small and even negative. As the frequency of the data increases the 

BG (say from monthly to annual), this becomes less important. In spite of these 

difficulties, a major strength of the test is that it does not have an inconclusive region, 

and therefore can be employed when the DW is inconclusive.          

2.1.3 The Ljung-Box test 

A method originating from the Box-Jenkins methodology for testing the 

presence of autocorrelation also exists and constitutes of a visual inspection of 

information obtainable from the residuals and a statistical test of the null hypothesis 

of no autocorrelation. Essentially, what one does is to inspect the sample 

autocorrelation function and the sample partial autocorrelation function of the 

residuals in the search for clues about the specific type of process that might have 

generated the error term. The null hypothesis for the Ljung-Box (LB hereafter) is: 

0 1 2: ... 0kH   = = = = . The suggested lag length is n/4 and the statistic is: 

2

( 2) iLB n n
n k


= +

−
 . Where the summation runs from 1 to k. The statistic follows a 

chi-square distribution with k degrees of freedom under the null hypothesis. 
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Therefore, the null of no autocorrelation is rejected when the statistic exceeds the chi-

square critical value for the chosen significance level.  

2.2 Modelling with autocorrelation 

In the previous topic we discussed the consequences of autocorrelated errors 

and also a number of methods that can be used in order to test whether errors are 

indeed autocorrelated.  However, after detecting the problem the challenge is to cope 

with it; that is how one can proceed with the estimation of the underlying model by 

surpassing the 'problem' of autocorrelation.  

2.2.1  Incorporation of the data generation process characteristics 

Suppose that a researcher is dealing with the simplest possible model of the 

form: 

1

     (6.1)

       (6.2)

1 1,    ~ white  noise

t t t

t t t

Y X

u

u

  

 



−

= + +

= +

−  

 

For the time being assume that   is known. Take the lagged form of the 

above model and multiply through by  , which produces: 

1 1 1     (6.3)t t tY X   − − −= + + . Now, subtract the lagged model from the initial 

model: 1 1 1( ) ( ) ( ) ( )      (6.4)t t t t t tY Y X X      − − −− = − + − + − . Given (6.2), 

(6.4) can be written as: 1 1( ) ( ) ( )       (6.5)t t t t tY Y X X u    − −− = − + − +  or 

* * *     (6.6)t t tY X u = + + . Where, the variables with asterisks correspond to the 

following: *

1t t tY Y Y − − , *

1t t tX X X −= − , and 
* (1 )  = − .  

Model (6.6) is also known as generalised difference equation. Notice that the 

'new' model, after the transformation has similar characteristics with the initial model 
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but also has a significant difference. The transformed model is associated with a new 

error term (u), which is autocorrelation-free, since by its construction it is a white 

noise process. In fact, that was the goal of the whole transformation; we wanted a 

'new' model whose error term would be 'well-behaved'. This type of transformation is 

known in the literature as the Cohrane-Orcutt transformation. However, the new 

model has a serious drawback. In the differencing procedure we lose one observation 

because the first sample observation has no antecedent. To avoid the loss of one 

observation, which might be costly in relatively small samples, the first observation of 

Y and X are transformed as follows: * 2

1 11 ( )Y Y= −  and * 2

1 11 ( )X X= − .  

        The above transformation is known as the Prais-Winsten transformation. In 

practice, if the sample size is large enough this transformation is not generally applied 

and one simply uses n-1 observations.  Now, if model (6.6) is treated as time series 

regression and its parameters estimated by OLS, then the procedure is called 

Generalised Least Squares (GLS). However, it should be noted that GLS assumes 

that both the process generating the error term and the parameters of this process are 

known. In our context, requires the knowledge of the particular generation mechanism 

[for instance AR(1) ] and also the value of   (for example   = 0.7). Therefore, if 

this information is available then GLS can be applied in order to obtain consistent 

estimates of the parameters. 

As you suspect it is usually the case that not only we do not know the 

parameters of the generating model but also, which is even worse, we are agnostic for 

the model itself. So before applying the transformation one has to obtain information 

for the model and its parameters that govern the time series behaviour of the error 

term. As far as the model is concerned one can employ the Box-Jenkins methodology 
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in order to assess the time series properties of the residuals obtained from the original 

model (that is 6.1), and then somehow estimate the involved parameters.  

2.2.2 How to estimate   

This section will discuss the case where the error term is generated from an 

AR(1) process. So suppose that we applied the BJ methodology on the residuals and 

decided that the appropriate model for the error term is that of an AR(1). How can we 

obtain a reliable estimate for the parameter  ?   

There are two ways to achieve that. The first is by using the DW statistic. 

Recall that the following relationship between the DW statistic and the 

autocorrelation coefficient is true: ( )ˆ ˆ2 1 1
2

dw
dw   −   − . The other way is 

simply to run a regression of the residual on its lag in order to obtain a point estimate 

of  . That is run the regression: 1
ˆ ˆ

t t tv  −= +  .  

However, although these are relatively simple and intuitive ways of estimating 

the autocorrelation coefficient, other methods are employed which appear in 

econometric software as standard routines. Here is a list of these methods1: 

• Cohrane-Orcutt iterative procedure 

• Cohrane-Orcutt two-step method 

• Durbin two-step method 

• Hildreth-Lu search procedure 

• Maximum Likelihood method 

 
1 Detailed exposition of the methods is beyond the scope of the course. However, their use will be 

demonstrated in the lab session.   
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Appendix-2 

A2.1 Autoregressive Models 

Consider the time series {Xt}, which behaves according to the following 

model: 

Xt = c + φ1Xt-1+ φ2Xt-2 + …+ φpXt-p + εt    (3.1) 

Where c is a constant (independent of time) and εt a white noise process.  

This process is called an Autoregressive model of order p, or more succinctly 

AR(p). Autoregressive models have always been popular, partly because they are very 

intuitive, and partly because they are easier to estimate (as will be shown later). So, 

the idea is that an AR(p) model is generated by a weighted average of past 

observations going back p periods, together with a random disturbance in the current 

period.  Equation (3.1) can be written as:
1 1 2 2 ...   t t t p t p tX X X X c   − − −− − − − = + or 

2

1 2 ... p

t t t p t tX BX B X B X c   − − − − = +  or 

2

1 2(1 ... )  p

p t tB B B X c   − − − − = + or 
p( )  t tB X c = + , where 

2

p 1 2( ) (1 ... )p

pB B B B   = − − − −  is the linear filter and Bj is the backward 

operator. In this case the linear filter is a polynomial of pth order. It can be shown that 

a necessary and sufficient condition for the stationarity of series Xt  is that the roots of 

the above polynomial must lie outside the unit circle.  

A2.1.1 First-order Autoregressive (Markov) Process 

 

For p = 1 model (3.1) becomes: Xt  = c + φ1Xt-1  + εt   (3.1.1) According to the 

above discussion, necessary and sufficient condition for the stationarity of the model 

is that the root of the polynomial φ1(B) = 1 - φ1B, must lie outside the unit circle. So, 



 27 

1 1

1

1
( ) 0 1 0B B B 


=  − =  = . Thus 1

1

1
1 1   (3.2)


   .  If (3.2) is satisfied 

then the series is stationary and E(Xt) = μ  

From (3.1.1) it is: 1 1 1

1

( ) ( ) ( )   (3)
1

t t t

c
E X c E X E c     


−= +  +  = +  =

−
. If 

we now define the deviation from the mean as  t tX X = − , then we have 

1 1   (3.4)t t tX X −= + . From (4) we can obtain 

( ) 2

1 1 1 1 2 1 1 1 1 2 1

0

... ...   (3.5)j

t t t t t t t t t t j

j

X X X            


− − − − − −

=

= + = + + = = + + + =  .  

From (3.5) it is obvious that ( ) 0,tE X =  given that the power series in (3.5) 

converges. Furthermore, 

2

2 2 2

0 1 1 1

0 0 0 0

( ) ( )  ( ) ( )j j i j

t t t j t j t i t j

j j i j

Var X E X E E E       
   

+

− − − −

= = = =

 
= = = = + = 

 
  

2
2 2

1 2

1

( ) 0   (3.6)
1

j 
 


+ =

−
 . Now if we multiply (3.4) by 

t kX −
 we obtain 

1 1t t k t t k t t kX X  X  X  X − − − −= + . Thus 
1 1( ) ( ) ( ) (3.7)t t k t t k t t kE X X E X  X E  X      − − − −= + .  

However, the expectation of the product of the error term and the lagged 

process is zero for values of k larger than zero because according to (3.5) the only 

disturbances affecting it are past ones and not future ones. Back to (3.7), we see that it 

can be written as  1 1k kγ   −= . This recursive relationship combined with (3.6) 

produce: 
2

k k

k 1 1 02

1

 
1


   


= =

−
. Dividing both sides by 0  gives: 

1   (3.8)k

k = .    

According to (3.8) if 0 < φ1 < 1 then the correlogram should decay 

exponentially, taking values on the positive axis, whereas if -1 < φ1 < 0, the 

correlogram will decay and oscillate in sign. As far as the partial autocorrelations are 
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concerned, we have: 11. 1. 1 1   = = =  and 
2 2 2

2 1 1 1
22 2. 2 2

1 1

0
1 1

   
 

 

− −
= = = =

− −
.  So, it 

is obvious that for an AR(1) model the following holds: 0kk =  for all k > 1, which 

means that the only non-zero partial autocorrelation is that of the first order.  

Remark 

Inspecting (3.8) implies that the process has an infinite memory. The current value of 

the process depends on all past values, although the magnitude of dependence 

declines with time.    

A2.2 Moving Average Models 

In the Moving Average process of order q each observation Xt is generated by 

a weighted average of random disturbances going back q periods. We denote this 

process as MA(q) and represent it as: Xt = b + εt - θ1 εt-1 - θ2 εt-2 -…- θq εt-q  (3.16). 

Where the parameters θ may be positive or negative.  

In the MA model (and also in the AR model) the random disturbances are 

assumed to be independently distributed across time. In particular, each disturbance 

term is assumed to be a normal random variable with mean equal to zero and a 

constant variance, and a zero covariance. Now, (3.16) can be more compactly written 

as: Xt = b + (1- θ1B - θ2B
2 -…- θqB

q) εt  or  Xt = b + θq(B) εt 

Remark 

All MA models are stationary (by their construction). However, another concept is 

relevant for MA, called invertibility condition. As you suspected, a necessary and 

sufficient condition for invertibility is that the roots of the polynomial θq(B) must lie 

outside the unit circle.  
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A2.2.1 First-order Moving Average process 

For q = 1 model (3.16) becomes: 

Xt = b + εt - θ1 εt-1  (3.16.1) or  

Xt = b + (1 - θ1B) εt  (3.16.2) or  

Xt = b + θ1(B) εt  (3.16.3) 

According to the condition for invertibility it must be that: 1

1

1
1 1


   , 

( )tE X = , 2 2

0 1( ) (1 )tVar X  = = + , 
2

1 ,  1

    0,  1

k k

k

  = − =

= 
 and 

1

2

1

,  1
1

    0,  1

k k

k






−
= =

+

= 

. As 

far the partial autocorrelation is concerned, it can be shown that is given by   

2

1 1
kk. 2( 1)

1

(1 )

1

k

k

 


 +

−
= −

−
.  

A few Remarks 

If θ1 > 0, then ρ1 < 0, and the partial autocorrelation decays exponentially while all of 

them are negative.  

If θ1 < 0, then ρ1 > 0, and partial autocorrelation alternates sign.  

If an MA(1) process is invertible, then it can be expressed as an AR(∞) process. This 

holds for MA processes of any order.    

A2.3 Mixed Autoregressive Moving Average Models 

Many stationary random processes cannot be modelled as purely MA or as 

AR, since they have the qualities of both types of processes. The logical extension of 

the models presented in the last two sections is the Mixed Autoregressive Moving 

Average process, which we denote as ARMA(p,q). The mathematical expression of 

such a process is: Xt = c + φ1Xt-1+ φ2Xt-2 + …+ φpXt-p + εt - θ1 εt-1 - θ2 εt-2 -…- θq εt-q  

(3.17). Equation (3.17) can be rewritten as: φp(B)Xt = c + θq(B) εt  (3.17.1) 
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Obviously, the ARMA(p,q) model can be thought as a generalisation of the 

previous models since the family of AR and MA models are nested in it. For instance, 

an AR(p) model can be seen as an ARMA(p,0) model and similarly a MA(q) model 

can be viewed as an ARMA(0,q) model. It can be shown that the necessary and 

sufficient condition for the stationarity of the ARMA model is that the roots of the 

polynomial φp(B) lie outside the unit root circle. By symmetry, the necessary and 

sufficient condition for the invertibility of the ARMA model is that the roots of the 

polynomial θq(B) lie outside the unit root circle.  

A2.3.1 First-order Autoregressive - First-order Moving Average 
Process 

 

For p = 1 and q = 1 model (3.17) becomes: Xt = c + φ1Xt-1 + εt - θ1 εt-1  

(3.17.2) The stationarity and invertibility conditions are as previous shown. The 

moments of the process are given as follows: 
2

21 1 1
0 2

1

1 2

1

  
 



+ −
=

−
 and 

1 1 1 1
1 2

1

( )(1 )

1

   




− −
=

−
. From the above it can be shown that 1 1 1 1

1 2

1 1 1

( )(1 )

1 2

   


  

− −
=

+ −
.  

As far as the partial autocorrelation is concerned, the first order one is equal to 

the autocorrelation coefficient and the subsequent behave similarly to those of a 

MA(1) model.  Since the polynomials characterising the model are of first order they 

have a unique real root. As a result, the correlogram and the graph of the partial 

autocorrelation will decay exponentially after the first lag.  

A2.4 The Box-Jenkins Methodology 

The Box-Jenkins (BJ hereafter) approach to time-series model building is a 

method of finding, for a given data set, an ARMA model that adequately represents 

the data-generating process. This is an iterative approach, where the researcher's aim 

is to relate a model to the data, and basically consists of the following three steps: 
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• Identification, where by the use of data, and of any information about how 

the series was generated, to suggest a subclass of parsimonious models to be 

entertained.     

• Estimation, where by efficient use of the data the researcher aims at making 

inferences about parameters conditional on the adequacy of the model 

entertained.  

• Diagnostic Checking, where we check the fitted model in its relation to the 

data with intent to reveal inadequacies and so achieve model improvement. 

It should also be borne in mind that the researcher is aiming at a parsimonious 

model. Parsimony means that the model should have as few parameters as possible, 

consistent with the aim of capturing the major features of the data. In the words of 

Box and Jenkins "…we employ the smallest number of parameters for adequate 

representations"  

 A2.4.1 Identification and its Objectives  

It should first be said that identification and estimation necessarily overlap. 

Thus, we may estimate the parameters in a model, which is more elaborate than that 

which we expect to find, so as to decide at what point simplification is possible.  

At the identification stage no precise formulation of the problem is available, 

statistically 'inefficient' methods must necessarily be used. It is a stage at which 

graphical methods are particularly useful and judgement must be exercised. However, 

it should be borne in mind that preliminary identification commits us to nothing 

except tentative consideration of a class of models that will later be efficiently fitted 

and checked.   



 32 

A2.4.2 Identification Techniques 

  The objective is to select p and q in the ARMA(p,q) model to be fitted to the 

data. In principle, one attempts to match the theoretical autocorrelation and partial 

autocorrelation patterns with observed sample counterparts. In practice, the 

autocorrelations of the underlying process, the population autocorrelations, are not 

known. Therefore, one must rely on estimates based on realisations of a given time 

series. These estimates are called sample autocorrelations. Here are a few tips, which 

are useful in identifying: 

• Pure AR models of order p are indicated when sample partial autocorrelations cut 

off after lag p. The autocorrelation of such models do not cut off, but decay 

toward zero. So, the basic characteristic that identifies an AR model is the 

behaviour of its sample partial autocorrelation, which should be 'negligible' after 

the pth term.  

• Pure MA models of order q are indicated when sample autocorrelations cut off 

after lag q. The partial autocorrelation of such models do not cut off, but decay 

toward zero.  

• If both the autocorrelation and partial autocorrelation tail off, a mixed process is 

suggested. Furthermore, the autocorrelation function of a mixed process 

containing a p-th order autoregressive component and a q-th order moving 

average component, is a mixture of exponentials and damped sine waves after the 

first q-p lags.  

• Conversely, a mixture of exponential and damped sine waves dominates the 

partial autocorrelation function after the first p-q lags. So in plain English, mixed 

ARMA models do not yield a cut off in either the autocorrelation or partial 

autocorrelation patterns. Rather, the autocorrelation function decays toward zero 

in a complicated pattern for lag larger than q.  
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It is a difficult task to successfully identify p and q when both are non zero, but 

experience suggests that it is rare for either of these to be larger than 2. In fact some 

researchers suggest it is rare for (p+q) to be larger than 2. As mentioned above, the 

researcher should bear in mind that a parsimonious model should always be preferred 

over an elaborate one. However, in practice more than one parsimonious model may 

be identified and carried forward to the next stage.  

In general, autoregressive (moving average) behaviour, as measured by the 

autocorrelation function, tends to mimic moving average (autoregressive) behaviour 

as measured by the partial autocorrelation function. For example, the autocorrelation 

function of a first-order AR process decays exponentially, while the partial 

autocorrelation function cuts off after the first lag. Correspondingly, for a first-order 

MA process, the autocorrelation function cuts off after the first lag. Although not 

precisely exponential, the partial autocorrelation function is dominated by exponential 

terms and has the general appearance of an exponential.  

A2.4.3 Hypothesis testing for sample autocorrelation and partial 
autocorrelation      

  As mentioned above assessing whether sample autocorrelations and sample 

partial autocorrelations are ‘negligible’ lies at the heart of the identification stage. 

However, one has to define the term 'negligible' in this context, and furthermore 

quantify it so as to avoid any subjective criteria. In other words, we are interested in 

the statistical significance of the sample moments, we want to be able to decide 

whether a point estimate of the (partial) autocorrelation is significantly different from 

zero or can be treated as zero for statistical purposes. Thus, in our context ‘negligible’ 

is synonymous to 'statistically insignificant from zero'.  

Estimated autocorrelations can have rather large variances and can be highly 

correlated with each other. For this reason, as emphasised by Kendall, detailed 
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adherence to the theoretical autocorrelation function cannot be expected in the 

estimated function. In particular, moderately large estimated autocorrelations can 

occur after the theoretical function has damped out, and apparent ripples and trends 

can occur in the estimated function, which have no basis in the theoretical function. In 

employing the estimated function as a tool for identification, it is usually possible to 

be fairly sure about broad characteristics, but more subtle indications may or may not 

represent real effects, and two or more related models may need to be entertained and 

investigated further. Thus, we need some means for judging whether the (partial) 

autocorrelation are effectively zero after some specific lag q or p respectively. So, 

skipping the maths and distributional assumptions, it turns out that if the point 

estimate (sample) of an autocorrelation does not lie in the interval: 
2 2

( , )
T T

−
, where 

T stands for the sample size, then the corresponding population autocorrelations are 

statistically different from zero. In other words, we reject the null hypothesis that the 

population (partial) autocorrelation is equal to zero.    

A2.4.4 Estimation 

The methods for estimating the various ARMA(p,q) models are highly 

significant for the course' s progression, however a detailed technical demonstration 

lies outside of the course's scope.  

A2.4.5 Diagnostic Checking  

The third stage of the BJ methodology is to check whether the model fits the 

data. In ARMA modelling model checking is particularly important not least because 

the model selection stage of the cycle involves application of a certain amount of skill 

and judgement in being able to recognise (partial) autocorrelation patterns.  
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Thus, after the identification and estimation stages still the question remains of 

deciding whether the model is adequate. If there is good evidence of serious 

inadequacy, we shall need to know how the model should be modified in the next 

iterative cycle. What we are doing is described partially by the words 'testing 

goodness of fit'. Diagnostic checks must be such that they place the model at 

jeopardy. There are three main groups of diagnostic checks (i) Residual analysis, (ii)  

Fitting Extra parameters-the underspecified model, and (iii) Underfitting-the 

overspecified model.   

A2.4.6 Residual Analysis 

Residual Analysis is usually based on the fact that the residuals of an 

adequate model should be approximately white noise. Recall that for a white-noise 

process the autocorrelations are zero. Therefore, the significance of the residual 

autocorrelation is tested. One way of testing the null is to plot the residual 

autocorrelation and visually inspect whether all sample estimates lie within the two 

bands discussed above. A more formal way of testing for the absence of 

autocorrelation from the residuals is to compute the so-called Portmanteau statistic. 

Thus to check the overall acceptability of the residual autocorrelation the following 

statistic, known as Ljung-Box statistic, is used: 2

1

1
( 2)

K

k

k

Q T T r
T k=

= +
−

 , where 

2~ K p qQ  − − . Thus, if Q is higher than the appropriate critical value, then we reject the 

null hypothesis that autocorrelations up to order K are zero.  

A2.4.7 Fitting extra parameters-the underspecified model 

In order to verify that the estimated model contains the appropriate number of 

parameters to represent the data, one can include an additional parameter to see if the 

addition results in an improvement over the original model.  
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A2.4.8 Underfitting-the overspecified model 

Another very useful check on the model adequacy is to evaluate whether the 

current model does not contain redundant parameters. Redundant parameters can be 

explored simply by employing the standard t-statistic in order to test for individual 

coefficient significance and the F-test for joint significance of the coefficients.  

A2.4.9 Information Criteria for Model Selection  

     Model selection criteria are based on the estimate of the variance of the residuals. 

If ˆ
t  are the residuals from the estimated model, then 2 2

1

1
ˆˆ

T

t

tT
 

=

=   is their sample 

variance. The first criterion considered is the so-called Akaike Information Criterion 

(AIC), 2ˆln 2
k

AIC
T

= +  , and the second is the Bayesian Information Criterion 

(BIC), 2ˆln ln
k

BIC T
T

= + . The selection of the model when at least two candidate 

models are considered is made by choosing the model, which minimises the selected 

information criterion.    
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3. Deviations from OLS assumptions II: Non-
constant Variance 

3.1 Heteroscedasticity Tests  

3.1.1 The Goldfeld-Quandt test 

Consider the model:  y X u= +  with ( ) 2var ,  0t t tu Z  = =  , where Z is 

a variable taken from the regressor matrix X (possibly a transformation). Therefore 

this setup assumes that we have previously identified Z as the source of the problem.  

Description of the test   

Divide the overall sample into two sub-samples, omitting anywhere from 1/6 

to 1/3 of the observations from the middle of the data set. The sub-samples will have 

n1 and n2 observations (where the first set of observations will have smaller 

variance).Estimate separate regressions for each sub-sample, and obtain the residual 

sum of squares (ESS) from these equations. If the errors from the original equation 

are normally distributed then the quantity:   2

2
~

i

i
n k

i

ESS



−  

The test statistic for the Goldfeld-Quandt test is obtained by taking the ratio of 

the two independent chi-square random variables above, dividing each by its degrees 

of freedom. The ratio: 

( )

( )
( ) ( )2 1

2
22

2

,

1
12

1

/

~

/

n k n k

ESS
n k

F
ESS

n k





− −

 
− 

 

 
− 

 

. 

If the null hypothesis of Homoscedasticity is true then the test statistic reduces to: 

( ) ( )

( ) ( ) ( ) ( )2 1

2
2 2 2

,1

1 1 1

/ ˆ
~

ˆ/
n k n k

ESS n k
F

ESS n k




− −

−
=

−
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We then expect the value of this statistic to be approximately equal to one. If 

the test statistic exceeds the critical F-value then we reject the null hypothesis of 

Heteroscedasticity.  

3.1.2 The Breusch-Pagan test  

The main difference in the philosophies of the two tests is that the first one 

utilizes info from the two sub-samples while the second one utilizes info from the 

variance of the whole sample and uses an auxiliary regression. In this case, one is 

trying to explicitly test whether a particular variable explains the variance of the 

residual (under the null it should not).     

Description of the test   

Estimate the equation of interest: y X u= + , then obtain the residuals, then 

calculate:  2 2ˆ ˆ /tu n =  , And then estimate: 
2

0 12

ˆ

ˆ
tu

a Z v


= + +  (auxiliary 

regression). 

The statistic is an LM taking the form: n*R2, with 1df (in other contexts the 

degrees of freedom will be equal to the number of parameters set equal to zero under 

the null hypothesis). 

 

3.2 Time-Varying Volatility: The GARCH family  

3.2.1 The ARCH model  

There might be certain periods during which the environment within which 

agents operate is more uncertain (volatile). Such cases would be during wars, after 

major recessions, different economic regimes etc. In general, there might simply be 

persistence in uncertainty that would render the assumption of constant error variance 

inappropriate. Engle (1982) has developed the basic model that may be used in such 

cases, the so-called ARCH (Auto-Regressive Conditional Heteroscedasticity) model.  
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0 1 1t t ty y  −= + + , and 2 2

0 1 1t t t     −= + . 

Alternatively, ( )0,t tN h and 2

0 1 1t th    −= + . 

Originally a 2-step procedure was suggested in order to test for ARCH effects: 

• Estimate the basic model and retrieve the squared residuals. 

• Inspect the sample autocorrelation function (ACF) of the squared residuals, where 

under the absence of ARCH effects the ACF should be insignificantly different 

from zero at all lags.  

In case, ARCH effects are present then this new information regarding the 

distributional characteristics of the error term should be taken into account. Use the 

maximum likelihood method to maximise the following function: 

( )
21

ln 2 ln
2 2 2

t t t t

T T
LLF h h y x = − − − − , where ( )

2

0 1 1 1t t th y x  − −= + − . 

We expect 0 1, 0    and 10 1  . In case there is a structural reason which 

suggests that the volatility of the error term is affected by a certain variable then we 

may extent the model to the ARCH-in-Mean (ARCH-M) where we enter this variable 

as a determinant of the th  function.  

3.2.2 The GARCH model  

This is simply an extension of the ARCH model allowing, apart from past 

values of the squared error term, for past levels of th  itself to have an impact on 

current volatility. Hence the model reads: 

2 2

0t i t i j t jh    − −= + +   

A GARCH-M extension is also possible.  
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4. Trends and Seasonality in Time Series 
 

 

4.1.1 Stationary vs. Non-Stationary Processes  

Shocks to a stationary time series are temporary; over time the effects of 

shocks will dissipate, and the series will revert to its long-run level. We already know 

that a weakly stationary series will:  

• Exhibit mean reversion in that it fluctuates around a constant long-run mean. 

• Has a finite variance that is time-invariant 

• Has a theoretical correlogram (autocorrelation function) that diminishes as lag 

length increases.           

4.1.2 Non-stationary series 

Shocks to a non-stationary time series are permanent. In addition, non-stationary 

series have the following properties:  

• The mean and the variance of a non-stationary series are time-dependent 

• There is no long-run mean to which the series returns 

• The variance goes to infinity as time approaches infinity 

• Theoretical autocorrelations do not decay but, in finite samples, the sample 

correlogram dies out slowly.  

Notes 

(i) The sample correlogram is a very useful tool for detecting the presence of non-

stationarity. However, it is not a formal way which can help us in deciding with 

conviction (within the limits of statistical inference) whether a series is non-stationary 

or not. For instance, the sample correlogram of an AR(1) series with 0.99 =  will 

exhibit the type of gradual decay of a non-stationary process. 
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Non-stationarity seems a natural feature of economic life. Legislative change 

is one obvious source of non-stationarity, often inducing structural breaks in time 

series, but it is far from the only one. Economic growth, perhaps resulting from 

technological progress, ensures secular trends in many time series. Such trends need 

to be incorporated into statistical analyses, which could be done in many ways, 

including the venerable linear trend.  

Our focus here will be on a type of stochastic non-stationarity induced by 

persistent accumulation of past effects, called unit-root processes (an explanation for 

this terminology is provided below). Such processes can be interpreted as allowing a 

different `trend' at every point in time, so are said to have stochastic trends. There are 

many plausible reasons why economic data may contain stochastic trends. For 

example, technology involves the persistence of acquired knowledge, so that the 

present level of technology is the accumulation of past discoveries and innovations. 

Economic variables depending closely on technological progress are therefore likely 

to have a stochastic trend. The impact of structural changes in the world oil market is 

another example of non-stationarity. Other variables related to the level of any 

variable with a stochastic trend will `inherit' that non-stationarity, and transmit it to 

other variables in turn: nominal wealth and exports spring to mind, and therefore 

income and expenditure, and so employment, wages etc. Similar consequences follow 

for every source of stochastic trends, so the linkages in economies suggest that the 

levels of many variables will be non-stationary, sharing a set of common stochastic 

trends. A non-stationary process is, by definition, one which violates the stationarity 

requirement, so its means and variances are non-constant over time. For example, a 

variable exhibiting a shift in its mean is a non-stationary process, as is a variable with 



 42 

a heteroscedastic variance over time. We will focus here on the non-stationarity 

caused by stochastic trends and discuss its implications for empirical modelling.  

4.1.3 A Special Case: The Random Walk model 

Consider the special case of an AR(1) model taking the following form 

1t t ty y −= +  or t ty  = . Clearly, this is a special case of an AR(1) model where 1 =  

and 0 0 =  (the intercept). This is the so-called Random-Walk without drift. You 

can think of this as describing your wealth from betting on the outcome of a coin toss, 

and a head adding £1 to your wealth while a tail costing you £1. Let £ 1t = +   if a 

head appears and £ 1t = −  in the event of a tail. Thus, your current wealth ty  equals 

last period’s wealth 1ty −  plus the realized value of t . If 0y   is a given initial 

condition then the following is true: 0

1

t

t i

i

y y 
=

= +  .  

Taking expected values, we obtain ( ) ( ) 0t t sE y E y y−= =  , thus the mean of a 

random walk is a constant. However, all stochastic shocks have non-decaying 

effects.  Given the first t realizations of the t  process, the conditional mean of 1ty +  

is:  ( ) ( )1t t t t tE y E y y+ = + = , similarly the conditional mean of t sy +  (for any s > 0) 

can be obtained from:   ( ) ( )t s t t t tE y E y y+ = + =     

Basically it is the Markovian property implying that the conditional means for 

all future dates are equal to the current value. However, an t  shock has a non-

decaying effect, so the sequence of ty  is permanently influenced by a shock.  

Notice that the variance is time-dependent. To see that recall that: 

( ) ( ) 2

1 1...t t tVar y Var t   −= + + + = , so 

( ) ( ) ( ) 2

1 1...t s t s t sVar y Var t s   − − − −= + + + = −   
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So as it becomes apparent, the variance is not constant and furthermore as 

t → , the variance of ty  also approaches to infinity. The autocovariance of ty  and 

t sy −  is: ( )( ) ( )( )0 0 1 1 1 1... ...t t s t t t s t sE y y y y E      − − − − −− − = + + + + + + =         

( ) ( ) ( ) ( )2 2 2 2

1 1...t s t sE t s   − − −
 + + + = −
 

. The autocorrelation takes the following 

form: ( )
0.5

/s t s t = −    

4.1.4 Unit Roots and the problems with inference  

Suppose we know that a series is generated by an AR(1) model:  

1 1t t ty y −= + . First, suppose that we wish to test the null hypothesis that 1 0 = . 

Under the maintained null hypothesis, we can estimate the parameters by OLS the fact 

theta the error term is a white noise and that  1 1   we can obtain an efficient 

estimate for the parameters of interest. Then, obtain the standard error of the estimate 

and calculate the standard t-stat in order to carry on with the hypothesis testing.  

However, the situation is quite different if we want to test the hypothesis 

that 1 1 = . Now, under the null hypothesis ty  is non-stationary and we know that the 

variance becomes infinitely large as t increases. Under the null hypothesis, it is 

inappropriate to use classical statistical methods to estimate and perform significance 

tests on the coefficient 1 . It is rather simple to show that the OLS estimate will yield 

a biased estimate. Recall that ( )
0.5

1 1 / 1t t = −    . Since the estimate of 1  is directly 

related to the value of 1 , the estimated value is based to be below its true value of 

unity. The estimated model will mimic that of a stationary AR(1) process with a near 

unit root. Hence, the usual t-stat cannot be used to test the hypothesis of interest.                
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4.1.5 Spurious Regression  

Consider the following regression model: 0 1t t ty z u = + + . The assumptions 

of the CLRM necessitate that both series are stationary and that the errors have a zero 

mean and a finite variance. In the presence of non-stationary variables, there might be 

what Granger and Newbold (1974) called a spurious regression. Such a regression 

typically has a high R-squared, t-stats that appear to be insignificant, but h results are 

without any economic meaning.  

What Granger and Newbold (1974), using Monte Carlo analysis, showed was 

that when using two independent random walks such as: 
1t t yty y −= + , and  

1t t ztz z −= +  , then the regression model above is meaningless; any relationship 

between the two variables is spurious. Surprisingly, at the 5% level of significance, 

they were able to reject the null hypothesis 1 0 =  in approximately 75% of the time. 

Moreover, the regression had very high R-squared values and the residuals exhibited a 

high degree of autocorrelation. Effectively what the regression is picking-up is the 

two stochastic trends which dominate the behaviour of the two series.  

4.1.6 Testing for Unit Roots (Augmented Dickey-Fuller Test) 

Recall that a time series is said to be (weakly) stationary if the population 

mean, variance, and (auto)covariances exist and do not change over time. A stationary 

series is said to be integrated to order 0, or I(0). Nonstationary series can take many 

forms, including those with deterministic shifts and/or explosive properties, but those 

that when first-differenced produce an invertible stationary series are called I(1). If a 

series has to be differenced d times to induce stationarity, it is said to be an I(d) 

series, or integrated to order d.  

Dickey and Fuller (1979) provided a formal way for testing for the presence of 

unit roots. Starting with an AR(1) model of the form 1t t ty y −= + , and subtract 1ty −  
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from both sides, a new but equivalent equation arises 1t t ty y − = + , where 

1 = − .  This model can be used to test for the presence of a unit root. Note that 

acceptance of the null, 0 = , implies that the model can be expressed totally in terms 

of changes in the variable. Rejection of the null ( 0  ) implies that 0  or 

equivalently that 1  , is appropriate. Thus, the modified model is useful in 

distinguishing between levels and differences. However, two points are worth making 

about regressions such as 1t t ty y − = +  and a similar relationship exists for higher 

order models, that is those with autocorrelated residuals t , as is noted below. First, a 

standard t-test or asymptotic normal test should not be used for the test 0 = , the test 

that distinguishes between changes and levels. Instead, the t-ratio for ̂  should be 

compared to a critical value from Fuller’s (1976) tables; such a test is known as a 

Dickey-Fuller test in the first-order case, or an augmented Dickey-Fuller test (ADF) 

in higher order models discussed below. The distribution of the Dickey-Fuller test 

critically depends on whether the constant,  , is zero in the equation that generates 

the data, the so-called dgp (data generating process) but not on the order of the 

autoregressive process describing t  . It is worth considering four separate cases. 

i. The true model is a random walk without drift, 1t t ty y −= +  and one 

estimates 1t t ty y − = +   that is a regression without a constant. The 5% 

critical value (one-sided) is -1.95 for all reasonable sample sizes compared to -

1.64 for a large sample normal test. 

ii. The true model is a random walk without drift, 1t t ty y −= +  and 

1t t ty y  − = + +  is estimated, that is a regression with a constant. The 5% 

critical value (one-sided) varies between -2.93 (50 observations) and -2.86 

(large samples). 
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iii. The true model is a random walk with drift, 1t t ty y  −= + +  with 0   and 

1t t ty y  − = + +  is estimated, that is a regression with a constant. The t-test 

on ̂  is asymptotically normal because the time trend that results from a non-

zero constant dominates the lagged dependent variable. However, the variance 

of the estimate depends upon unknown parameters and, therefore, this test is 

not feasible. 

iv. The true model is a random walk with drift, 1t t ty y  −= + + , with 0  , 

and 1t t ty t y   − = + + +  is estimated, that is a regression with a constant 

and a time trend ( t ). The 5% critical value (one-sided) varies between -3.50 

(50 observations) and -3.41 (large samples). 

 

Decision rule: If the pseudo t-stat is lower (higher) than the DF critical value 

(obtained from the appropriate tables), then reject (do not reject) the null of non-

stationarity. The choice of case depends on what the data generating process might be 

believed to be. Most practitioners use case (ii) when a series is not thought to drift and 

case (iv) when drift is apparent. One argument in favour of these two cases is that the 

model should be ‘reasonable’ under both the null (nonstationarity) and the alternative 

(stationarity -possibly about a linear time trend). However, as in all hypothesis tests, 

rejection of the null does not imply the alternative is correct nor does failure to reject 

imply that the null is correct.  

The DF test assumes that the error term is white noise. However, sometimes 

this is not a realistic assumption. Effectively, one account for this possibility by using 

the so-called Augmented DF test where lags of the dependent variable are added in 

the following fashion: 
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1 1

2

p

t t t i t

i

y y y − − +

=

 = +  +  

Naturally, the outcome of the test depends upon the choice of p. If p is too 

short, the residuals are autocorrelated and the test is biased. On the other hand, if p is 

too large, the equation is over-parameterised and a lack of power will result. The 

choice of p can be made on the basis of a sequence of t-tests or some other criterion 

such as AIC or BIC. 

4.1.7 Unit Roots and the Order of Integration 

A unit root implies that a series is non-stationary; note though that a series 

may have more than one unit roots. If  ty  has a single unit root then ty  is stationary. 

In other words, ty  needs to be differenced once to achieve stationarity. It is useful to 

remember that: Order of integration = number of times a series needs to be 

differenced in order to achieve stationarity = number of unit roots. For instance, if  

( )ty I n  then ty  is integrated of order n . Typically, 0,1,  or 2n = . 

Although `classical' econometric theory generally assumed stationary data, 

particularly constant means and variances across time periods, empirical evidence is 

strongly against the validity of that assumption. Nevertheless, stationarity is an 

important basis for empirical modelling, and inference when the stationarity 

assumption is incorrect can induce serious mistakes. To develop a more relevant 

basis, we considered recent developments in modelling non-stationary data, focusing 

on autoregressive processes with unit roots. We showed that these processes were 

non-stationary but could be transformed back to stationarity by differencing and 

cointegration transformations, where the latter comprised linear combinations of the 

variables that did not have unit roots. We investigated the comparative properties of 

stationary and non-stationary processes, reviewed the historical development of 
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modelling non-stationarity and presented a re-run of a famous Monte Carlo simulation 

study of the dangers of ignoring non-stationarity in static regression analysis. Next, 

we described how to test for unit roots in scalar autoregressions, then extended the 

approach to tests for cointegration. Finally, an extensive empirical illustration using 

two gasoline prices implemented the tools described in the preceding analysis. Unit-

root non-stationarity seems widespread in economic time series, and some theoretical 

models entail unit roots. Links between variables will then `spread' such non-

stationarities throughout the economy. Thus, we believe it is sensible empirical 

practice to assume unit roots in (log) levels until that is rejected by well-based 

evidence. Cointegrated relations and differenced data both help model unit roots, and 

can be related in equilibrium-correction equations, as we illustrated. For modelling 

purposes, a unit-root process may also be considered as a statistical approximation 

when serial correlation is high. Monte Carlo studies have demonstrated that treating 

near-unit roots as unit roots in situations where the unit-root hypothesis is only 

approximately correct makes statistical inference more reliable than otherwise. 

Unfortunately, other sources of non-stationarity may remain, such as changes in 

parameters (particularly shifts in the means of equilibrium errors and growth rates) or 

data distributions, so careful empirical evaluation of fitted equations remains 

essential. We reiterate the importance of having white-noise residuals, preferably 

homoscedastic, to avoid misleading inferences. This emphasizes the advantages of 

accounting for the dynamic properties of the data in equilibrium-correction equations, 

which not only results in improved precision from lower residual variances, but 

delivers empirical estimates of adjustment parameters. Later we will attempt to 

explain cointegration analysis will address system methods. Since cointegration 
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inherently links several variables, multivariate analysis is natural, and recent 

developments have focused on this approach. 
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5. Dynamic Specification, Error Correction Model, 
Cointegration in Single Equation setting 

5.1 A Taxonomy of Dynamic models  

As discussed earlier the presence of serial correlation implies that the 

dependent variable (Y) is not only affected by X at time t but also by past values of X.  

In other words, serial correlation might not be of pure form but simply an indication 

that the model in misspecified. Therefore, it could be the case that the appropriate 

strategy to deal with autocorrelation is not to model it directly but to incorporate time 

lags explicitly instead. This would be the case when the dependent variable does not 

respond immediately to a specific change in the independent variables but does so 

with some delay. Think of a general model where we allow Y to depend on its own 

history, on the current and past level of X. (Assuming that all series are stationary): 

1 0 1 1t t t t tY Y X X    − −= + + + +  

The above model is usually called Autoregressive Distributed Lag (ADL). An 

interesting element is that it describes the dynamic effects of a change in tX  on 

current and future values of Y . Taking partial derivatives, we can obtain the 

immediate response, given by: 0
t

t

Y

X



=


 

Sometimes also called impact multiplier. The effect after one period is: 

1
1 0 1

t t

t t

Y Y

X X
  + 

= + = +
 

 

After two periods is: ( )2 1
0 1

t t

t t

Y Y

X X
   + + 

= = +
 

 

It is obvious that after the first period the effect is decreasing as long as  1   

(we know what this condition implies!). One can now derive the long-run multiplier 

(or also called equilibrium multiplier) 
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( ) ( ) ( )( )2 0 1
0 0 1 0 1 0 0 1... 1 ...

1

 
          



+
+ + + + + = + + + + + =

−
 

This captures the fact that the unit increase in tX  will have a cumulative effect 

on the current and future levels of  tY . To arrive at a similar conclusion return to the 

ADL model and derive the equilibrium relationship between the variables by 

effectively imposing that in the long–run the following will hold: 

( ) ( ) ( ) ( )1 1,t t t tE X E X E Y E Y− −= = . Hence: ( ) ( ) ( ) ( )0 1t t t tE Y E Y E X E X   = + + +  

or ( ) ( )0 1

1 1
t tE Y E X

 

 

+
= +

− −
.  

5.1.1 Finite Distributed Lag model  

A Restricted version of the ADL with the autoregressive coefficient being zero 

is given below: 
0

k

t i t i t

i

Y a X −

=

= + +  

As before, the impact of X on Y occurs (is distributed) over a finite number of 

periods. The first beta (β0) coefficient denotes the impact of a unit change in X on the 

mean of Y in the same period, given the lagged values of X. It is called the impact 

(short-run) multiplier. The beta coefficients of the lagged values of X, which relate 

changes in X from previous periods to the mean of Y are called interim multipliers. 

For instance, β1 denotes the effect of a unit change in X last period on the mean of Y 

in the current period. It is called interim multiplier of order 1. If this one unit of 

change in X is maintained indefinitely, the mean of Y changes by β0 in the initial 

period and by (β0 + β1) after two periods. The latter sum denotes the two-period 

interim multiplier. The equilibrium multiplier is given by the sum of betas 
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A useful metric often derived from the DL model is the average or Mean Lag, 

defined as: 0

k

i

i

i

ML




==


.  

The mean lag is simply a weighted average of the betas, where these values do 

not necessarily sum to 1. The mean lag denotes the average number of periods during 

which a sustained change in X influences Y. 

Technically, one should have no problem in estimating model as it stands. 

However, in practice it is unusual to have prior information for the order of the 

distributed lag model, which means that the selection of the lag order is part of the 

estimation process. Why do we care about specifying the correct lag order? Because if 

too few lags are included specification error occurs leading to biased and inconsistent 

parameter estimates. If too many lags are included, the 'irrelevant' X's will potentially 

contribute to a multicollinearity problem adversely affecting the magnitudes of lagged 

X's as well as their t-statistics. Notice that even if we knew the 'true' lag order, if it is 

too high then we would have a severe loss of degrees of freedom since each lag 

consumes one degree of freedom. In general, when we usually do not know the 'true' 

lag order we run both the dual risks of both multicollinearity and specification error. 

A number of methods for estimating DL models have been proposed; in this course 

we will review the Koyck's model (KDL).  

5.1.2 Koyck Model 

Assuming that the coefficients continuously diminish, so that the influence of 

successively distant values of X become smaller, and that these weights decrease 

geometrically, the coefficient for the ith period lag of X, βi can be expressed as: 

0

i

i  =  
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Where   is a constant. If 1 =  the assumption of declining lag coefficients is 

violated.  When 0 = , Y is not affected by X. Therefore, for geometrically declining 

weights this constant must satisfy the following restriction: 0 1  .  The constant    

indicates the rate of decay for the distributed lag. The closer it is to one, the slower 

the decrease in successive lag coefficients, while for small values of lambda, the 

coefficients fall more rapidly. The quantity 1 −  is called the speed of adjustment, 

which indicates the rate at which successive lag coefficients decrease.  

5.1.3 Error Correction Model (ECM) 

Starting from the ADL subtract 1tY −  from both sides to obtain: 

( ) ( )1 0 0 1 11t t t t tY Y X X     − − = − − +  + + +  or 

( ) 0 1 11t t t t tY X Y a X   − − =  − − − − + .  

Intuition: the change in Y is due to the current change in X (the first 

differences) plus an error correction mechanism. If  1tY −  is above the equilibrium 

value that corresponds to 1tX −  (the underlying equilibrium economic relationship), 

that is if the ‘equilibrium error’ in square brackets is positive, an additional negative 

adjustment in   tY  is generated. Very important is the speed of adjustment, 

determined by ( )1 −  and is positive since 1   (stability). 

5.1.4 Partial Adjustment Model 

This is an alternative model with an intuitive economic interpretation. Let *

tY  

denote the optimal or desired level of Y and assume that: *

t t tY a X = + + . The 

actual value of tY  will differ from *

tY  because an adjustment to its optimal level is not 

immediate. Suppose that the adjustment is only partial in the sense that: 

( )( )*

1 11t t t tY Y Y Y− −− = − −  
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5.2 Dynamic Comovement: Cointegration 

 

An example of dynamic comovement (US interest rates of maturities 1 and 2 

years, monthly data from 1981 to 2000) is given in the graph below:  

 

A necessary, but not sufficient condition for cointegration is that the two series 

should be integrated of the same order. Even if a pair of series is individually non-

stationary, certain linear combinations of contemporaneous observations seem to be 

stationary in the sense that they do not require further differencing to exhibit limited 

dependence (Stock, 1987). Suppose that both X and Y are I (1), as the case at hand, so 

that their changes are I (0). Then typically any linear combination of X and Y will be I 

(1).  However, if there exists a linear combination such that Z=X-Y is I (0), then X 

and Y are said to be co-integrated. Put more formally, following Engle and Granger 

(1987) the components of a vector Z are said to be co-integrated of order d, b, denoted 

as Z ~ CI (d-b) if: 

(i) all components of Z are I(d);  
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(ii) there exists a vector  (  0 ) such that   Z~ I ( d-b ), b  0. The vector  is called 

the co-integrating vector.  

In the case of d = b = 1, co-integration would mean that the so-called 

equilibrium error would be I (0) and therefore Z will rarely drift far from zero (in the 

case of a zero mean) and will often cross the zero line. In other words the equilibrium 

relationship described by Z will occur occasionally, so it will not be meaningless. The 

basic idea is that at least in the long run, the two series will move together, despite 

their individual non-stationarity, so there exist(s) linear combination (s) of them 

which is (are) stationary. In a sense, the line X-Y=0 can be considered to be an 

‘equilibrium’ or ‘attractor’ of the system in the phase-space, so that Z can be 

interpreted as the extent to which the system is out of equilibrium.  

5.2.1 Testing for Cointegration in single equation framework: The 
Engle-Granger approach 

An equivalent question as to whether the relationship between X and Y is 

spurious is whether they are cointegrated. Granger (1981) introduced the case 

t t ty x  = + + , where the individual time series are I(1) but the error term is I(0). 

That is, the error term might be autocorrelated but, because it is stationary, the 

relationship will keep returning to the equilibrium or long-run equation t ty x = + . 

More formally, if a vector of time series is I(d) but a linear combination is integrated 

to a lower order, the time series are said to be Cointegrated. However, it is instructive 

to return to an I(1) world to put the cointegrated model in perspective. Granger (1981) 

and Engle and Granger (1987) demonstrated that, if a vector of time series is 

cointegrated, the long-run parameters can be estimated directly without specifying the 

dynamics because, in statistical terms, the estimated long-run parameter estimates 

converge to their true values more quickly than those operating on stationary 
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variables. That is, they are ‘superconsistent’ and a two-step procedure of first 

estimating the long-run relationship and estimating the dynamics, conditional on the 

long run becomes possible. As a result, simple static models came back in vogue in 

the late 1980’s but it rapidly became apparent that small sample biases can indeed be 

large (Banerjee et al, 1986).  

Two major problems typically arise in a regression such as (6.2.1). First, it is 

not always clear whether one should regress yt on xt or vice versa. Endogeneity is not 

an issue asymptotically because the simultaneous equations bias is of a lower order of 

importance and, indeed, is dominated by the nonstationarity of the regressor. 

However, least squares is affected by the chosen normalisation and the estimate of 

one regression is not the inverse of that in the alternative ordering unless 
2 1R = . 

Secondly, the coefficient ̂  is not asymptotically normal when tx   is I(1) without 

drift, even if t  is iid. Of course, autocorrelation in the residuals produces a bias in the 

least squares standard errors, even when the regressor is nonstationary, and this effect 

is in addition to that caused by nonstationarity. The preceding discussion is based on 

the assumption that the disturbances are stationary. In practice, it is necessary to pre-

test this assumption. Engle and Granger suggested a number of alternative tests but 

that which emerged as the ‘popular’ method is the use of an ADF test on the residuals 

without including a constant or a time trend. Naturally, this test depends upon the 

normalisation rule and, hence, conflict can, and often does arise. This led some 

researchers to conduct the test in both directions, but such an approach would cause 

severe size distortions. The ADF critical values are inappropriate because, as the least 

squares procedure is designed to minimise the residual variance, disturbances which 

are, in fact, nonstationary will produce estimated residuals that are biased towards a 
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finite variance (stationary) time series. For example, the bivariate critical value is 

approximately -3.2. 

 

 
 

 



 58 

6. VAR, Dynamic Systems (atheoretical 
econometrics) 

6.1 The VAR Representation  

Employing a Vector Autoregression (VAR) is a way to avoid classifying 

variables between exogenous and endogenous; similarly, no a priori restrictions are 

used. Hence, sometimes called atheoretical econometrics (Sims). In essence all 

variables are treated symmetrically. Consider the two-variable case: 

 
10 12 11 1 12 1

20 21 21 1 22 1

t t t t yt

t t t t zt

y b b z y z

z b b y y z

  

  

− −

− −

= − + + +

= − + + +
              (1) 

Where the error terms are white noises and are independent across equations. Such a 

model is called a first-order vector autoregression, VAR(1). We can re-write the 

model in a reduced form: 

   

10 112 11 12

20 121 21 22

1

1

or

t t yt

t t zt

y b yb

z b zb

 

 

−

−

          
= + +          

          

t 0 1 t-1 t
Bx = Γ +Γ x +ε

     (2) 

the standard VAR form is obtained as follows: 

1 1 1 1

1 1 1

where

, ,

− − − −

− − −= = =

t 0 1 t-1 t

t 0 1 t-1 t

0 0 1 1 t t

B Bx = B Γ +B Γ x +B ε

x = A + A x + e

A B Γ A B Γ e B ε

          (3) 

6.1.1 Stability and Stationarity 

Solving the system backwards we obtain: 

( ) ( ) 2

t 0 1 0 1 t-2 t-1 t 1 0 1 t-2 1 t-1 tx = A + A A + A x +e +e = I + A A + A x + A e +e     (4) 

and after n iterations, this yields: 

( ) 
n

n i n+1

t 1 1 0 1 t-i 1 t-n-1

i=0

x = I + A + ...A A + A e + A x          (5) 
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As we continue to iterate backward, it is clear that convergence requires the 

expression n

1
A  vanish as n approaches infinity. So stability requires that the roots of 

( )( ) ( )2

11 22 11 221 1a L a L a a L− − −  lie outside the unit root circle.  

6.1.2 Estimation and Identification 

Consider the following multivariate generalization: 

t 0 1 t-1 2 t-2 p t-p+ tx = A + A x + A x +...+ A x +e          (6) 

The variables to be included in the model are selected according to the relevant 

economic theory. Apart from that there is a whole set of other things to consider, such 

as: (i) Lag length and (ii) Identification.  

6.1.3 Choice of the appropriate Lag length 

It is of particular importance because we need to avoid over-parameterization 

or under-parameterization and furthermore the lag length affects the degrees of 

freedom. If p is the lag length, then each of the n equations contains np coefficients 

plus the intercept term. Incorrect choice of lag order results in: (i) if too small then the 

model is misspecified, (ii) if too large then degrees of freedom are wasted.  

Let ,u r   be the variance-covariance matrices of the unrestricted and 

restricted systems respectively, and let c denote the maximum number of regressors 

contained in the equation with highest lag order. Asymptotically the test statistic:  

( )   u rLR = T-c log Σ - log Σ   (7) has a chi-square distribution with degrees of 

freedom equal to the restrictions in the system. Additionally one could resort to the 

standard criteria (AIC, SBC).  

6.1.4 Identification 

Model 1, in the structural form, cannot be estimated due to the feedback 

inherent in the system, so zt is correlated with the error term. Note that there is no 
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such problem with versions (3) or (6) for that matter. The issue is whether one can 

recover all the information present in system (1). More formally, is model (1) 

identifiable given the OLS estimates of the VAR model in the form of (3)? The 

answer to that is NO, unless we restrict system (1) in an appropriate way. To show 

you why, consider this: the structural model has 10 parameters, while the VAR model 

has 9 parameters. Hence, one of the parameters has to be restricted. Following Sims 

(1980) imposing the restriction on system (1) that 21b  equals zero, yields: 

10 12 11 1 12 1

20 21 1 22 1

t t t t yt

t t t zt

y b b z y z

z b y z

  

  

− −

− −

= − + + +

= + + +
    

so now 
121

1

0 1

b
B−

− 
=  

 
 

and the system in a VAR form now looks like: 

10 111 1212 12

20 121 22

1 1

0 1 0 1

t t yt

t t zt

y b yb b

z b z

 

 

−

−

− −           
= + +           

            
or 

10 12 20 1 1211 12 21 12 12 22

20 121 22

t t yt zt

t t zt

y b b b y bb b

z b z

    

 

−

−

− −− −        
= + +        

        
 

Estimating the following system: 

10 11 1 12 1

20 21 1 22 1

t t t yt

t t t zt

y a a y a z e

z a a y a z e

− −

− −

= + + +

= + + +
 

yields the following estimates: 

10 10 12 20

11 11 12 21

12 12 12 22

20 20

21 21

22 22

a b b b

a b

a b

a b

a

a

 

 





= −

= −

= −

=

=

=

 

we can also calculate the parameters of the variance-covariance matrix: 
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( )

( )

( )

2 2 2

1 12

2

2

2

1 2 12,

y z

z

z

Var e b

Var e

Cov e e b

 





= +

=

= −

 

Now we have 9 equations which can be solved to solve for the 9 parameters. 

Rethinking the restriction imposed: we have restricted y not to have any 

contemporaneous effect on z. Hence, contemporaneous shocks from both equations 

affect y, but only shocks in z affect its contemporaneous value. Such decomposition, 

in a triangular fashion, is called a Choleski Decomposition. 
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7. Cointegration in a Multiple Equation setting 
The Engle-Granger two-step method for testing for cointegration suffers from several 

drawbacks: 

• The problem of normalisation 

• Cannot be used to estimate multiple cointegration vectors it does not deal with the 

endogeneity of the regressors (see discussion on VAR models) 

7.1 Three fundamental theorems on cointegrated variables 

7.1.1 The rank of the cointegration space 

If the vector of variables of interest is of order  n  there may be up to 1n −  

linearly independent cointegration vectors, Clearly, if there are two variable sin the 

vector there can be at a maximum one cointegration vector the number of 

cointegration vectors is called the cointegrating rank.  

7.1.2 Cointegration and Common Stochastic Trends 

Cointegration of a vector of variables implies that the number of unit roots in 

the system is less than the number of unit roots in the corresponding univariate series. 

If two variables are cointegrated then they must share the same stochastic trend. In 

fact, as a general rule one can move from the number of cointegrating relations ( r ) 

and the number of common stochastic trends ( q ):   r n q= − . 

7.1.3 The Granger Representation Theorem 

If two variables are cointegrated then by virtue of the GRT a Vector Error 

Correction model is in place as follows: 

( )

( )

1 1

0 0

1 1

0 0

k k

t x t t i t i i t i xt

i i

k k

t y t t i t i i t i yt

i i

x x y x y

y x y x y

    

    

− − − −

= =

− − − −

= =

 = − +  +  +

 = − +  +  +

 

 
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Where ( )1 1t tx y− −−  is the error-correction term and x , 
y  are the speed-of-

adjustment coefficients. So the VECM is essentially a VAR in first-differences 

augmented by the level terms capturing the deviation from equilibrium from the last 

period in matrix form the model is: 

  uΠΧΔΧΓ...ΔΧΓΔΧΓΔΧ
tktktkttt

+−+++=
−−−−−− 112211

   

Where 

121
1

−=−−−−= ,...,k,   i)         A...A(IΓ
ii

   

and   )A...A(IΠ
k

−−−−=
1

      

 The rank of matrix  determines whether there are any significant 

cointegrating vectors between the variables. Clearly if the rank of   is zero the 

matrix is null and the model is just a VAR model in first differences. The other 

extreme case is when   has full column rank, which is equivalent to the stationarity 

of the vector process.  The intermediate case of reduced column rank implies that 

there exist stationary linear combinations of the variables, corresponding to the 

cointegration vectors.  =  is the matrix of long-run parameters, the first  

component is the matrix of weights with which each cointegration vector enters each 

equation.      

7.1.4 Digression: Characteristic Roots 

Let A  be an ( )n n  square matrix with elements 
ij , and x  an ( )1n  vector. 

The scalar   is called a characteristic root of A  if: Ax x= , let  I  be an ( )n n  

identity matrix, then: ( )0 0Ax x A I x − =  − = . Since x  is a vector containing 

values not identically equal to zero then the previous equation requires that the rows 

of ( )A I−  be linearly dependent. Equivalently, it requires that: 0A I− =  (called 
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the characteristic equation and will always be a polynomial of order ( )n  in  , which 

immediately implies that there will be ( )n  roots ). So the characteristic roots can be 

found by finding the values of   that satisfy: 0A I− = .    

Example 

0.5 0.2

0.2 0.5
A

− 
=  

− 
 so that 

0.5 0.2

0.2 0.5
A I






− −
− =

− −
 

Solving for the value of   such that 0A I− =  yields a quadratic equation of the 

form: 2 0.21 0 − + = , the two values that solve the equation are 1 20.7, 0.3 = =  

(the characteristic roots). If the series are not cointegrated the rank is zero and all 

these characteristic roots will equal zero.  

7.2 Formal tests for the rank of the cointegration space  

There are two formal tests to help us decide (i) whether a set of series are 

cointegrated and (ii) the number of cointegration vectors in case of cointegration 

These are:  ( )
1

ˆln 1
n

trace i

i r

T 
= +

= − −  and ( )max 1
ˆln 1 rT  += − − .  

Where ˆ
i  is the estimated values of the characteristic roots (eigenvalues) 

obtained form the estimated  matrix. T = number of observations (the length of the 

time series), trace  tests the null that the number of distinct cointegration vectors is less 

than or equal to r against a general alternative. It should be clear that trace  equals zero 

when all ˆ
i  are zero. The further the estimated characteristic roots are from zero, the 

more negative is ( )ˆln 1 i−  and the larger the trace  statistic. max  tests the null that the 

number of cointegration vectors is r against the alternative of r+1 vectors.  
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8. Causality and Time Series 

The question of Cause and Effect is a fundamental one in our attempt to 

understand our environment. Although Causality is one of the central and most widely 

discussed concepts in the scientific agenda, scientists of different disciplines disagree 

about its appropriate definition. Therefore, if one wants to be sharp, has to use an 

operational definition of Causality. Furthermore, there is a need for invariant and 

independent of theories criterion. Especially in economics and politics where there is 

little consensus for the ‘laws’ governing economic and political systems, a criterion 

dependent on the theoretical framework adopted, would be undermined by the 

model’s validity. For this reason the use of a purely statistical criterion, independent 

of economic or political theory is essential. It turns out that such a criterion can be 

developed if the Granger’s definition of causality is used (Granger, 1969).   

8.1 Granger Causality 

Granger’s definition of causality is in terms of predictability. The pivotal idea 

is that a ‘cause’ ought to improve our ability to forecast an effect in a stochastic 

system. In other words, a variable X causes another variable Y if the latter can be 

more accurately forecasted by using the history of X rather than by not doing so. 

Thus, Granger’s definition of causality is based upon an incremental predictability 

criterion.   

Furthermore, Granger’s definition of causality is based on the stochastic 

nature of the variables and its central feature is the direction of the flow of time. It is 

purely a statistical criterion relying entirely on the assumption that the future cannot 

cause the past. To put more formally, the essence of Granger’s concept of causality is 

that X causes Y if the knowledge of X’s history leads to improved prediction of Y. 

Before formally defining causality, the following axiom is assumed to hold: 
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Axiom: The past and present may cause the future, but the future cannot cause the 

past. 

In order to provide an operational definition of causality, Granger (1980) will 

be followed. Suppose that one is interested in the possibility that a series Xt causes 

another Yt+n. Let Jt be the universal information set available at time t. Define Jt - Xt as 

the set of elements of Jt without the element Xt.  

Then it is, 

Definition A  If MSE2 (Yt+n | Jt) < MSE (Yt+n| Jt  - Xt+n) 

Then Xt Granger causes Yt+n, denoted by X → Y.  

If a less general information set than the universal is available, as always is the 

case in economic modelling, then a prima facie cause occurs. However, if causality is 

present in the way defined above, there is no information on whether it holds 

bilaterally, that is, if Y causes X. If causality exists in both directions we say that 

feedback occurs. This is formally defined as: 

 Definition B 

If MSE (Yt+n | Jt) < MSE (Yt+n| Jt  - Xt+n) 

Then Xt Granger causes Yt+n, denoted by X → Y.  

and 

If MSE (Xt+n | Jt) < MSE (Xt+n| Jt  - Yt+n) 

  Then Yt Granger causes Xt+n, denoted by Y → X.  Therefore, bidirectional 

causality is present denoted by: XY 

To recap the causal structure of a bivariate system is exhausted  by the 

following four mutually exclusive outcomes: X→Y, unidirectional causality running 

from X toY, or 

 
2 MSE stands for Mean Square Error 
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Y→X, unidirectional causality running from Y to X, or XY, bidirectional causality 

exists, or X and Y are independent meaning that no causal link exists between the two 

processes. 

8.1.1 Testing for causality 

The traditional way for testing causality among two variables was developed 

in the Box-Jenkins framework. Basically, after determining the ARMA model for 

each of the series, attention was turned to their residuals. Simply, the researcher was 

looking for evidence of cross correlation among the two residual series in order to rule 

out independence. Among other problems of this way of testing is that there are 

questions about the ‘statistical power’ of this procedure. Furthermore, inferences 

regarding one-way causality are problematic. However, to do justice to the procedure 

it should be mentioned that it is less sensitive to the choice of the lag length.  

Currently, the dominant procedure for assessing Granger Causality among 

stationary series3 assumes that the information relevant to the prediction of the 

respective variables is contained solely in the time series data on these variables. The 

test involves estimating the following regressions: 

(8.2)    

(8.1)    
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Where it is assumed that the disturbance terms are uncorrelated across 

equations. The idea behind the above formulation is that each of the variables is 

related to its past values as well as of the other variable.  

 The causal structure of a bivariate system, as discussed earlier, is exhausted by 

four mutually exclusive outcomes. In order to determine which of the four is a better 

 
3 A generalisation of the procedure exists to accommodate nonstationarity.  
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description of the data at hand we can formulate a number of hypotheses in terms of 

the parameters appearing in the above models. We now distinguish four cases: 

If the estimated coefficients on the lagged X in (8.1) are jointly statistically 

different from zero and the set of estimated coefficients on the lagged Y in (8.2) are 

not jointly different from zero, then Unidirectional Causality exists from X to Y. 

Conversely, if the set of coefficients of lagged X is jointly zero and the set of 

coefficients on lagged Y are jointly different from zero, then Unidirectional 

Causality exists from Y to X. Evidence for Feedback is indicated when both sets of 

coefficients are different from zero in both equations, and finally Independence is 

suggested when the sets of X and Y coefficients are not statistically different from 

zero in both the regressions.  The actual testing of the above hypotheses is based on 

a set of F-tests in the form of restricted and unrestricted regressions models.  

A final remark 

Before proceeding to applications of the Granger test, keep in mind that the number of 

lagged terms to be included in the regressions is an important practical question. Also 

bear in mind that inference on the direction of causality may depend critically on the 

lag structure adopted.  
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