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1 Preview

• Numerical methods for option pricing

• Monte Carlo simulation

– Formal treatment

– Advantages and disadvantages

– Exotic options pricing and the Greeks

• The binomial asset pricing model

– Assumptions and model set–up

– No–arbitrage pricing and risk neutral valuation

– Extension to multiple periods and convergence to Black and Scholes [2]

– The effect of dividends and the pricing of American options
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2 Numerical methods for option pricing

• The beauty and convenience of the Black and Scholes [2] framework is that

it is “designed” in such a manner, that it produces an analytic solution (i.e.

a closed–form equation) for the prices of European calls and puts.

• However, not all option contracts (e.g. American, Asian, Barrier) admit such

convenient analytic solutions. In most such cases, the PDE that the price

of a non–European option must satisfy does not admit a known solution.

To price such options, several numerical methods have been proposed in the

literature.
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• In what follows, we will demonstrate the most popular numerical methods

in the literature, initially in the context of European options, and then show

how to extend them for non–European contracts.

• The most popular numerical methods are:

– Monte Carlo simulation

– Binomial asset pricing model

– Finite difference methods
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3 Monte Carlo simulation: Formal treatment

• In 1977 Boyle [3] demonstrated how European options can be priced via

Monte Carlo simulation.

• The argument is based on the risk–neutral valuation result, i.e.

c = e−rTEQ
[
max (ST −K)+

]

p = e−rTEQ
[
max (K − ST )

+
]

• So, if we can calculate the option’s expected payoff in a risk–neutral world,

the option price will be given by discounting it with the risk–free rate. As-

suming that interest rates are constant, this basically involves approximating

the expected risk–neutral payoff by a large number of simulated possible as-

set paths. This means the following steps:
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– Divide the time horizon [0, T ] into N , equally spaced intervals, each of

length ∆t.

– For each time interval, sample M , normally distributed random numbers,

with zero mean and unit standard deviation (M × N random numbers

in total).

– Use the random number to produce M ×N matrix of possible paths for

the underlying asset in a risk–neutral world. For an asset S paying a

continuous dividend yield and following a gBm [in a risk–neutral world,

Q],

dS = (r − δ)Sdt+ σSdz

St+∆t = St exp

[(
r − δ −

σ2

2

)
∆t+ σε (∆t)

1
2

]
(1)
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N.B.: Equation (1) is slightly different from the discrete version we have

used in our simulation example in lecture#6 (pp. 25–26). The above is

the correct and exact discrete version of a gBm, while the one in #6 is

only an approximation.

– At the option maturity, T = N × ∆t, calculate the option payoff for

each of the M simulated paths (i.e. a M × 1 vector)

for a call, (ST −K)+ or for a put, (K − ST )
+

– Calculate the average payoff over all M paths, and then discount the

result with e−rT .

• Boyle [3] has shown that as M → +∞ and N → +∞ (i.e. ∆t → 0), the

simulated option price converges to the correct, Black and Scholes price,

OMC → OB&S.
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4 Advantages and disadvantages

• Advantages of MC simulation method:

– Can be used when the payoff of the contract depends on the actual path
followed by the underlying variable S, as well as when it depends only
on the final value of S.

– Any stochastic process for S can be accommodated, as well as any
payment patterns made by the underlying asset (e.g. dividends)

– Can be extended to accommodate situations where the option from the
derivative depends on several underlying market variables.

• Disadvantages of MC simulation method:

– It is computationally time–consuming

– Despite some recent research results (see for example, Longstaff and
Schwartz [7]), it cannot easily handle situations where there are early
exercise opportunities (i.e. American, Bermudan options).
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5 Calculating the Greeks via Monte Carlo simulation

• The Greek letters covered in lecture #9–10 can be calculated via Monte
Carlo simulation.

• Suppose that we are interested in the partial derivative of f with respect
to x, where f is the value of the option contract and x is the value of an
underlying asset or a parameter that affects the option value.

• To calculate ∂f
∂x, use MC to produce one estimate of the option price, f̂ as

we’ve seen. Then assume that parameter x increases slightly by ∆x, and
re–calculate a new value for the option f̂∗, the same way as f̂ (same number
of time intervals N and random paths M).

• Then, an estimate of the Greek letter under review is given by

f̂∗ − f̂

∆x
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6 An exotic option example

• An average–strike Asian put option (denote Ap), gives its holder the right

(without the corresponding obligation) to sell at time T and asset S for

a price equal to the average asset price realised between time t = 0 and

maturity time T , i.e.

Ap =


1

i

T∑

i=0

Sti − ST



+

• There is no closed–form solution for this option contract. However, we can

use our Monte Carlo methodology to calculate its price.
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• The only difference for this contract is that the strike price is different for

each asset price path: for each of the M possible path, we need to take the

average over time (i.e. over N path realisations). The result is the strike

price that applies for this particular path.

• Once the above is repeated for all paths M , again calculate the option’s

payoff, take the average payoff, and then discount the result with e−rT to

get the option price.
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7 The Binomial Asset Pricing Model

• In 1979, Cox, Ross and Rubinstein [4] published one of the most important

pedagogical papers in option pricing. Their binomial asset pricing model

goes as follows:

• Consider the following simple market: 2 assets, 2 possible states of nature

• Assets:

1. Underlying asset

2. Risk free asset

• States

1. “u”— Price of the underlying goes up

2. “d”— Price of the underlying goes down

• If market is complete and there is to be no–arbitrage, what should be the

correct price of a European call option?
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8 Underlying asset

• The price of the underlying asset follows the binomial process:

u · S0
ր

S0
ց

d · S0

t = 0 t = ∆t

where S0 is the price of the asset in the beginning of the period. The price

at t = ∆t will be either Su = u · S0 or Sd = d · S0.
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9 Risk free asset

• The riskless asset pays £1 at t = ∆t no matter which state of nature

prevails. Its price follows

1
ր

e−r∆t

ց
1

t = 0 t = ∆t

• This asset is also referred to as pure discount or zero–coupon bond (with

“normalised” face value of £1). If you buy a zero–coupon bond for £e−r∆t

today, you will get e−r∆ter∆t = 1 in a period’s time.
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• Assumption: constant, continuously compounded riskless rate.

• Parameters d, u and r verify the following relation:

0 < d < 1 < er∆t < u (2)

– If er∆t ≥ u no one would invest in the stock since the rate of the riskless

investment is at least as great, and sometimes greater than the return

of the stock.

– If d ≥ er∆t one could borrow money and invest in the stock since, even

in the worst case, the stock price rises at least as fast as the debt used

to buy it.

– Sometimes one assumes d = 1
u to simplify results.
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10 Isn’t this too simple?

• In reality, stock price movements are far more complicated that those implied

by the binomial asset pricing model.

• However, this simple model is useful because:

1. Within the binomial model the concept of no–arbitrage pricing and its

relation to risk–neutral pricing is clearly illuminated.

2. The model is used widely in practice because with a sufficient number of

time–steps, it provides a good, computationally tractable approximation

to continuous–time models (which is the benchmark in the literature).

3. The method can be extended to handle cases that the (continuous–time)

B&S cannot.
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11 Arbitrage pricing

• Depending on which state prevails at time t = ∆t, a European call option

will have different values denoted cu and cd

cu
ր

c0
ց

cd

t = 0 t = ∆t
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• To price the option, at time t = 0 we construct an no–arbitrage portfolio

containing:

– One underlying asset S0

– φ calls c0

• The value of the portfolio is

V0 = S0 + φc0

At t = ∆t we will have

Vu = uS0 + φcu
ր

V0
ց

Vd = dS0 + φcd

t = 0 t = ∆t
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• Now choose φ in such a manner, so that the no–arbitrage portfolio becomes

riskless, i.e. it yields a risk free rate of return er∆t.

Therefore, the no–arbitrage condition is:

Vu = Vd = V0e
r∆t (3)

or equivalently

uS0 + φcu = dS0 + φcd = (S0 + φc0) e
r∆t

Basic algebra yields the solution

φ =
S0 (u− d)

cd − cu

cu≥cd
≤ 0 (4)

and

c0 = e−r∆t

{
er∆t − d

u− d
cu +

[
1−

er∆t − d

u− d

]
cd

}
(5)
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• The coefficient φ is interpreted as the number of call options necessary to

include in an arbitrage portfolio containing one asset.

• The negative sign of φ implies that we sell or write call options against the

asset.

• In other words, φ is the number of call options that one can write against

the asset, so that a portfolio containing these and one asset is risk–free

(perfect hedge).

• The same analysis could be done if we write one call and we want to know

how many assets we must be long. In this case, take the inverse of φ and

reverse its sign. This is known as the hedge ratio or “delta” of a call.

∆ = −
1

φ
=

cu − cd
Su − Sd

≥ 0 (6)
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12 Risk–neutral probability

• In the no–arbitrage result for c0 in (5), define

Q ≡
er∆t − d

u− d
(7)

as the risk–neutral probability.

• Indeed, Q has the necessary properties of a probability measure. Property

(2) ensures that

0 < Q < 1

• The amazing thing about the pricing formula in (5) is that we do not need

the actual probabilities∗ of states “u” and “d”, say P and 1 − P, to price

options.

∗Also known as: historical, objective, subjective, empirical or standard.
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13 Binomial formula

• The price of a European option is equal to its expected value computed using

risk–neutral probabilities Q, 1 − Q and then discounted using the riskless

rate r.

• From (5) using notation (7) we get:

c0 = e−r∆t [Q · cu + (1−Q) · cd] = e−r∆tEQ [c̃1|F0] (8)

where c̃1 denotes the random price of the option which could be either

c1 = cu or c1 = cd.

• The expectation taken using risk–neutral probabilities Q, 1 − Q is denoted

EQ [.] and the set {Q, 1− Q} is called risk–neutral probability measure or

Q–measure. The expectation taken is conditional on the information F0

available at time t = 0.
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14 Multiperiod setting

• Let t = 0,∆t, 2∆t, . . . , n ·∆t, . . . T where T = N ·∆t

• It is straightforward to generalise (8) to multiperiod binomial trees

• On each sub–tree

cn = e−r∆t
[
Qc

(u)
n+1 + (1− Q) c

(d)
n+1

]
= e−r∆tEQ [c̃n+1|Fn] (9)

Use the above as many times as there are tree nodes between t = 0 and T

(N times)

c0 = e−r∆tEQ [c̃1|F0]

= e−r2∆tEQ
[
EQ [c̃2|F1] |F0

]

= . . .

= e−rTEQ
[
EQ

[
. . .EQ [c̃T |FT−∆t

]
| . . . |F1

]
|F0

]
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• But from the properties of conditional expectations we know that†

EQ
[
EQ [c̃n+2|Fn+1] |Fn

]
= EQ [c̃n+2|Fn]

Pursuing this further yields

c0 = e−rTEQ [c̃T |F0]

However, we know that at maturity, a call option is

c̃T =
(
S̃T −K

)+

†This property is referred to as the “tower law”.
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15 European option pricing formula

c0 = e−rTEQ
[(
S̃T −K

)+
|F0

]
(10)

The value of a European call is a (conditional) expectation — under the risk–

neutral probability measure—of its payoff at maturity, discounted using the risk-

less interest rate. This is the exact same result as equation (11) in lecture

#4.
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16 A two–period put option example

You observe a European put written on a stock with S0 = £50, K = £52,

r = 5% p.a. and T = 2 years. Let ∆t = 1 year, u = 1.20 and d = 0.80 so that

Suu = 72
ր

Su = 60
ր ց

S0 = 50 Sud = Sdu = 48
ց ր

Sd = 40
ց

Sdd = 32

t = 0 t = 1 T = 2 years
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Use a binomial tree to price the option.

puu = (K − Suu)
+ = (52− 72)+ = 0

ր
pu

ր ց

p pud = pdu = (K − Sud)
+ = (52− 48)+ = 4

ց ր
pd

ց

pdd = (K − Sdd)
+ = (52− 32)+ = 20

t = 0 t = 1 T = 2 years
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SOLUTION:

1. Calculate the payoff at all final tree nodes (T = 2).

2. Calculate the risk–neutral probabilities Q = e0.05×1−0.8
1.2−0.8 = 0.6282 and 1 −

Q = 0.3718

3. Use equation (10): Multiply the payoff of each ending node with the risk–

neutral probability of reaching this node, discount with the risk–free rate to

time t = 0 and sum

p = e−0.05×2
[
0.62822 × 0 + 2× 0.6282× 0.3718× 4 + 0.37182 × 20

]

= 4.1923
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17 From the Binomial model to Black–Scholes

• We will demonstrate how the Binomial model can be extended to continuous–

time and how it relates to the Black and Scholes [2] formula

• A binomial tree with N steps (each of size ∆t, such that T = N ·∆t) has

N + 1 end–nodes and 2N possible paths of reaching the end–nodes.

• The risk–neutral probability of reaching a particular end–note is given by

B (n|N,Q) =
N !

(N − n)!n!
Qn (1− Q)N−n

while the call option payoff is
(
undN−nS0 −K

)+

where n = 0, 1, 2, . . . , N is the number of upwards movements in the un-
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derlying asset.‡ Thus

c = e−rT
N∑

n=0

N !

(N − n)!n!
Qn (1−Q)N−n

(
undN−nS0 −K

)+

• Separate the two elements undN−nS0 and K in the max operator by only

considering the paths that end up with a positive payoff

c = S0

N∑

n=a

N !

(N − n)!n!

(
Q′
)n (

1− Q′
)N−n

−Ke−rT
N∑

n=a

N !

(N − n)!n!
Qn (1−Q)N−n

‡Remember, ∀x ∈ Q, x! = 1 · 2 · . . . · x, and 0! ≡ 1.
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c = S0B
(
n ≥ a|N,Q′

)
−Ke−rTB (n ≥ a|N,Q) (11)

where B
(
n ≥ a|N,Q′) is the complementary binomial distribution function,

a is the smallest non–negative integer greater than

a
∈Q
>

ln (K/S0d
n)

ln (u/d)

and

Q′ =
u

erT
Q

• Cox, Ross and Rubinstein [4] show that if the u and d parameters are set

so as to match the volatility σ of the Black–Scholes framework, i.e.

u = eσ(T/N)0.5

d = e−σ(T/N)0.5
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then equation (11) converges to the Black and Scholes [2] for a large number

of time steps N since

lim
N→+∞

B
(
n ≥ a|N,Q′

)
= Φ(d1)

lim
N→+∞

B (n ≥ a|N,Q) = Φ (d2)



IHU–Financial Derivatives#15 33

18 The effect of a known dividend yield

• In cases where the underlying asset pays a proportional dividend yield δ, the

stock prices on tree nodes would be

Su . . . u︸ ︷︷ ︸
j

d . . . d︸ ︷︷ ︸
i−j

=





S0u
jdi−j for i∆t before ex–div date

S0 (1− δ)ujdi−j for i∆t after ex–div date

with i = 0, 1, . . . N and j = 0, 1, . . . i.

• The risk–neutral probability Q in equation (7) is accordingly modified

Q ≡
e(r−δ)∆t − d

u− d
(12)



IHU–Financial Derivatives#15 34



IHU–Financial Derivatives#15 35

19 The effect of a known dollar dividend

• If the dividend is known as a dollar amount and not as a proportion of the

stock price, then the resulting binomial tree is non-recombining, i.e. after

the ex–div date the tree has 2i instead of i + 1 nodes. This increases the

computational complexity considerably.

• In this case, the stock prices on tree nodes would be

Su . . . u︸ ︷︷ ︸
j

d . . . d︸ ︷︷ ︸
i−j

=





S0u
jdi−j for i∆t before ex–div date

(
S0u

qdq−k −D
)
ui−kji−j−k for i∆t after ex–div date

with i = 0, 1, . . . N , j = 0, 1, . . . i, q = 0, 1, . . . k and k the lowest integer

greater than the ex–div date.
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20 Pricing American options in the binomial model

• An American–style option, unlike a European one, gives the holder the right

(without the corresponding obligation) to buy (call, C) or sell (put, P )

the underlying asset for a specific price, at any point in time up until the

specified maturity date.

• In cases where the underlying asset pays no cash flows (e.g. dividends),

we have shown (see lecture #3, p.11) that an American call will never be

optimally early–exercised. However, the American put may be early exercised

in such cases. How can we price an American put on a non–dividend paying

asset?
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• Firstly, we need to modify our backward–induction equation (9)

Pn = max




K − Sn︸ ︷︷ ︸
immediate

, e−r∆t
[
QP

(u)
n+1 + (1−Q)P

(d)
n+1

]

︸ ︷︷ ︸
put “alive”





(13)

• Again we would start from the option maturity T = N ·∆t, where

PN =
(
K − S̃N

)+

and work backwards to t = 0 using equation (13) as in the European case.
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21 Two–period case

Let N = 2. At maturity :

P̃2 =
(
K − S̃2

)+
(14)

where S2 ∈

{
S
(uu)
2 , S

(ud)
2 , S

(dd)
2

}
. At the intermediate node:

P̃1 = max
{
K − S̃1, e

−r∆tEQ
[
P̃2|F1

]}
(15)

where S1 ∈

{
S
(u)
1 , S

(d)
1

}
. At the onset:

P0 = e−r∆tEQ
[
P̃1|F0

]
(16)

where P1 ∈

{
P
(u)
1 , P

(d)
1

}
.
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• Combine (14), (15) and (16) to get

P0 = e−r∆tEQ




max





(
K − S̃1

)+
, e−r∆tEQ



(
K − S̃2

)+
︸ ︷︷ ︸

P̃2

∣∣∣∣∣∣∣∣∣
F1








︸ ︷︷ ︸
P̃1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F0




• Thus to calculate the put price P0, we are interested only in the (conditional)

expected present values of
(
K − S̃2

)+
and

(
K − S̃1

)+
. To compute that

we need to consider all possible “paths” of the asset price, i.e. couplets

{S1, S2}.
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• If the option is to be exercised, it will be:

– Either at t = ∆t with payoff
(
K − S̃1

)+
> 0

– Or at t = 2∆t with payoff
(
K − S̃2

)+
> 0

and the random variable τ ∈ {∆t, 2∆t} is called a “stopping time”.
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22 Numerical examples

• Consider the following set of parameters:§

The price of the underlying asset at t = 0 S0 = 300
The strike price K = 300
“up” factor u = 2

“down” factor d = 1
u = 1

2
time step ∆t = 1

Discount factor e−r∆t = 4
5

§Parameters values are rather unrealistic; however they should help demonstrate the principles.
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23 Preliminaries

• Build the underlying price “tree” and calculate the risk–neutral probabilities.

Suu = 1200
ր

Su = 600
ր ց

S0 = 300 Sud = Sdu = 300
ց ր

Sd = 150
ց

Sdd = 75
t = 0 t = 1 t = T = 2

Q ≡ er∆t−d
u−d =

5/4−1/2
2−1/2

= 1
2 1−Q = 1− 1

2 = 1
2
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24 European call

900 = (1200− 300)+ = cuu
ւ

360
ւ տ

c0 = 144 0 = (300− 300)+ = cud
տ ւ

0
տ

0 = (75− 300)+ = cdd

cu = e−r∆t [Qcuu + (1− Q) cud] = 360

c0 = e−r∆t [Qcu + (1−Q) cd] = 144
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25 American call

900 = (1200− 300)+ = Cuu

ւ

360 = max



 60︸︷︷︸
Su−K

, 360





ւ տ

C0 = 144 0 = (300− 300)+ = Cud
տ ւ

0 = max



−150︸ ︷︷ ︸
Su−K

, 0





տ

0 = (75− 300)+ = Cdd
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26 European put

0 = (300− 1200)+ = puu
ւ

0
ւ տ

p0 = 36 0 = (300− 300)+ = pud
տ ւ

90
տ

225 = (300− 75)+ = pdd

pd = e−r∆t [Qpuu + (1−Q) pud] = 90

p0 = e−r∆t [Qpu + (1− Q) pd] = 36
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27 American put

0 = (300− 1200)+ = Puu

ւ

0 = max



−300︸ ︷︷ ︸
K−Su

, 0





ւ տ

P0 = 60 0 = (300− 300)+ = Pud
տ ւ

150 = max



 150︸︷︷︸
K−Su

, 90





տ

225 = (75− 300)+ = Pdd
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• Note that

P0︸︷︷︸
American

= 60 > 36 = p0︸︷︷︸
European

C0︸︷︷︸
American

= 144 = 144 = c0︸︷︷︸
European
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28 Advantages and disadvantages

• Advantages of the binomial model:

– Can easily handle situations where there are early exercise opportunities.

– Can be used when the payoff of the contract depends on the actual path

followed by the underlying variable S, as well as when it depends only

on the final value of S.

– Demonstrates clearly and in an easy framework the concepts of no–

arbitrage pricing and risk neutral valuation.

• Disadvantages of the binomial model:

– It is impossible to extend the model in situations where the option from

the derivative depends on more than two underlying market variables.

– Not all stochastic processes for the underlying asset S can be accommo-

dated.
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29 Reading

• Hull [5], Chapters 10, 18 (pp. 392–414), 19–20 (advanced reading)

• Baxter and Rennie [1], Chapter 2

• Jarrow and Turnbull [6], Chapters 5, 17, 19, 20

• Stulz [8], chapter 12

• Cox, Ross and Rubinstein [4]
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