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1 Preview

• An important result in stochastic calculus: Itô’s lemma

• The Black–Scholes–Merton model and the hedging argument to pricing op-

tions

• Risk neutral valuation

• The effect of dividends

• Options on stock indices, currencies and futures contracts

• Formal analysis of the Greeks and the hedging of options
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2 More on stochastic calculus

• In order to price option contracts, we assume that the underlying asset S

follows a specific stochastic process, the parameters of which will determine

whether the option will end up “in” or “out–of–the–money”.

• The usual assumption in finance is that S follows a gBm (i.e. a Markov, Itô

process that is always positive as long as S0 > 0).

• However, regardless of the process of dS, an option holder/writer would like

to know how the option value changes as S changes, i.e. what is the process

for dc (for a call) or for dp (for a put).
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• For any general Itô process

dx = α (x, t) dt+ b (x, t) dz (1)

and any real function f (x, t) : R× R+ → R, Itô∗ [10] has shown that

df (x, t) =
∂f (x, t)

∂t
dt+

∂f (x, t)

∂x
dx+

1

2

∂2f (x, t)

∂x2
(dx)2 (2)

where (dx)2 can be calculated using the “stochastic multiplication table”:

dt dz
dt 0 0
dz 0 dt

• This important mathematical result, referred to as Itô’s lemma, can be

thought of as the differentiation rule for functions of stochastic variables.

∗Kiyoshi Itô, Japanese mathematician (born 1915).
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EXAMPLE 1: x follows a gBm (“popular” version of the lemma)

For x following

dx = µxdt+ σxdz (3)

and for a general function f (.) of x and time, t, apply (2) to get

df (x, t) =
∂f (x, t)

∂t
dt+

∂f (x, t)

∂x
[µxdt+ σxdz] +

1

2

∂2f (x, t)

∂x2
[µxdt+ σxdz]2

=
∂f (x, t)

∂t
dt+ µx

∂f (x, t)

∂x
dt+ σx

∂f (x, t)

∂x
dz

+
1

2

∂2f (x, t)

∂x2

[

µ2x2 (dt)2 + σ2x2 (dz)2 + 2µσx2 (dz)2
]

=

[

∂f (x, t)

∂t
+ µx

∂f (x, t)

∂x
+

1

2
σ2x2

∂2f (x, t)

∂x2

]

dt+ σx
∂f (x, t)

∂x
dz
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EXAMPLE 2: The Forward Price

If the interest rates are constant, we know that the forward price Ft is

Ft = Ste
r(T−t)

If the spot price St follows a gBm,

dSt = µStdt+ σStdz (4)

how does the forward price changes (dF ), as time passes?

View the forward price as F (t, S) and apply Itô’s lemma (equation (2)):

∂F
∂S = er(T−t) ∂2F

∂S2 = 0 ∂F
∂t = −rSer(T−t)

dF =
[

er(T−t)µS − rSer(T−t)
]

dt+ er(T−t)σSdz

Substitute F = Ser(T−t) to get

dF = (µ− r)Fdt+ σFdz
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EXAMPLE 3: The Lognormal Property

Let S follow a gBm (equation (4)) and define the function G (S, t) = ln (S).

What is the process that G follows?

Because

∂G
∂S = er(T−t) ∂2G

∂S2 = 0 ∂G
∂t = −rSer(T−t)

it follows through Itô’s lemma that

dG =

(

µ−
σ2

2

)

dt+ σdz

thus G = ln (S) follows a generalised Wiener process (i.e. an aBm).
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From the properties of the aBm we know that the change in ln (S) between time

zero and time T is normally distributed with mean

(

µ− σ2

2

)

T and variance

σ2T

ln (ST )− ln (S0) ∼ N

[(

µ−
σ2

2

)

T, σT
1
2

]

This is why if the stock price S follows (4), then ln
(
ST
S0

)

is normally distributed

(i.e. S is log–normal).
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3 The Black–Scholes–Merton model

• In 1973 Black and Scholes managed to solve a problem that had puzzled

the most prominent finance scholars for at least 15 years (notable efforts by

Boness [3] and Samuelson [13] are characteristic of the time period).

• The problem was the pricing of European–style options written on shares

that pay no dividends: more specifically, it was not clear how future cash

flows that the option writer might have to make are supposed to be dis-

counted.



IHU–Financial Derivatives#13 10

• If the option ends up in–the–money, the option writer faces a risk that is

1 : 1 with the riskiness of the underlying asset; if the option ends up out–

of–the–money, the writer faces no risk. However, an option writer trying to

determine a fair price for the option cannot know in advance which of the

two cases is going to materialise at maturity.

• The key idea behind the breakthrough by Black and Scholes is to construct

a “no–arbitrage” portfolio, whose theoretically–correct discount factor can

be determined.
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4 Model Assumptions

• The share price follows the process

dS = µSdt+ σSdz

with µ and σ constants.

• Short–selling of securities (with full use of the proceeds) is permitted.

• There are no transaction costs or taxes

• All securities are perfectly divisible.

• There are no riskless arbitrage opportunities.

• Security trading is continuous.

• The risk–free rate of interest, r, is constant and the same for all maturities.
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5 Derivation of the model

• The stock price (S) process is

dS = µSdt+ σSdz (5)

and let c (S, t) denote the price of a European call option. Apply Itô’s lemma

for c (S, t) to get

dc =

(

∂c

∂S
µS +

∂c

∂t
+

1

2

∂2c

∂S2
σ2S2

)

dt+
∂c

∂S
σSdz (6)

• Consider the following “no–arbitrage” portfolio

−1 call option, c

∆ ≡ + ∂c
∂S shares, S

(7)
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i.e. go short (sell) one call option and buy (go long) an amount ∂c
∂S of shares.

Define Π as the value of this portfolio; clearly

Π = −c+
∂c

∂S
S (8)

and the change in the portfolio value over an infinitesimal time interval dt
is

dΠ = −dc+
∂c

∂S
dS (9)

• Substituting (5) and (6) into equation (9) yields

dΠ = −
∂c

∂S
µSdt−

∂c

∂t
dt−

1

2

∂2c

∂S2
σ2S2dt−

∂c

∂S
σSdz

︸ ︷︷ ︸

−dc

+
∂c

∂S
(µSdt+ σSdz)
︸ ︷︷ ︸

dS

=

(

−
∂c

∂t
−

1

2

∂2c

∂S2
σ2S2

)

dt (10)
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• The change in the portfolio value over dt is riskless!!! (It does not involve

any dz term). To exclude the possibility of riskless arbitrage, the portfolio

must instantaneously earn the same rate of return as other short–term risk–

free securities. Thus

dΠ = rΠdt

with r the risk–free interest rate.
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• Substituting from equations (8) and (10) we get

dΠ = rΠdt

(

−
∂c

∂t
−

1

2

∂2c

∂S2
σ2S2

)

dt = r

(

−c+
∂c

∂S
S

)

dt

−
∂c

∂t
−

1

2

∂2c

∂S2
σ2S2 = −rc+

∂c

∂S
rS

1

2
σ2S2 ∂

2c

∂S2
+ rS

∂c

∂S
+

∂c

∂t
− rc = 0 (11)

• This is the Black–Scholes partial differential equation (hereafter PDE). It

has many solutions; the particular solution for the European call is obtained
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by applying boundary conditions:

c (S, T ) = (ST −K)+ ≡ max (ST −K, 0) (12)

c (0, t) = 0 ∀t ∈ [0, T ]

The solution of (11) subject to (12) comes from physics (the “heat equa-

tion”) and is the Black–Scholes formula for a European call.

c = S0Φ(d1)−Ke−rTΦ(d2) (13)

d1,2 =
lnS−lnK+

(

r±1
2σ

2
)

T

σT 1/2 Φ(x) = (2π)−1/2
∫ x

−∞
e−

1
2s

2
ds

where the function Φ (.) is the cumulative probability distribution function

for a standardised normal distribution. Equivalently, the European put op-

tion is given by (d1,2 as above)

p = Ke−rTΦ(−d2)− S0Φ(−d1) (14)
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6 What is a PDE?

• Any equation that involves a function f (x), and its derivatives f ′ (x), f ′′ (x),

f ′′′ (x), etc. is called a differential equation (DE). For example,

1

2
f ′′ (x)− 5f ′ (x) + f (x) = 5

f ′ (x)− [f (x)]2 = 0

are differential equations.

• A partial differential equation (PDE) is an equation that involves a (multi-

variate) function f (x, y, . . .) and its partial derivatives ∂f
∂x,

∂f
∂y , etc. Exam-
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ples are

∂f (x, y)

∂x
+

∂f (x, y)

∂y
− 3

∂2f (x, y)

∂y2
= π

x
∂f (x, y, z)

∂x
+ y

∂f (x, y, z)

∂y
+ z

∂f (x, y, z)

∂z
=

= xyz

[

∂2f (x, y, z)

∂x2
−

∂2f (x, y, z)

∂y2

]

• Solving a DE or a PDE involves determining what is the function for which
the equation is true. For example, what is the solution of

f ′′′ (x)− f ′′ (x) + f ′ (x)− f (x) = 0

A simple substitution would convince you that

f (x) = ex + c c ∈ R
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What about

2f ′ (x)− xf ′′ (x) = 0

Maybe you can see that

f (x) = 1
x + c c ∈ R

• To determine one of the possible (infinite) solutions, a boundary condition

is required. In the first example, if we know that

f (0) = 5 ⇒ f (x) = ex + 4

In the second example, if we are given the extra condition

lim
x→+∞

f (x) = 1 ⇒ f (x) =
1

x
+ 1
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7 Risk–neutral valuation

• One key property of the Black–Scholes–Merton PDE and the resulting option

price is that they do not involve any variable affected by the risk preferences

of investors.

• The expected return of the underlying asset, µ, which depends on risk pref-

erences of investors (the higher the risk aversion of the investor, the higher

the required return), does not appear in the equation.

• If risk preferences do not enter the equation, they cannot affect its solution.

Thus, any set of preferences can be used when evaluating the option price.

In particular, the very simple assumption that all investors are risk neutral

can be made.

• In a risk–neutral world, the expected return of all securities is r. Moreover,

the present value of any future cash flow can be obtained by discounting
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with the risk free rate. This takes care of the “discount–factor” problem we
discussed earlier.

• For a European call, risk–neutral valuation implies:

– Assume the expected rate of return of S is the risk–free rate of return
(i.e. assume µ = r)

– Calculate the expected payoff from the option at maturity

– Discount the expected payoff at the risk–free interest rate

• Namely,

c = e−rTEQ
[

(ST −K)+
]

(15)

where EQ [.] denotes the expected value in a risk–neutral world. It can be
shown† that the expectation is equal to

EQ
[

(ST −K)+
]

= S0e
rTΦ(d1)−KΦ(d2) (16)

†Proof available at Hull [9, pp. 262-264].
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Substitute this in (15) to get the Black–Scholes equation

c = S0Φ(d1)−Ke−rTΦ(d2)

• Equation (16) brings out a very important insight of the formula: Φ (d2) is

the probability that the call option will be exercised, KΦ(d2) is the strike

price times the probability that the strike price will be paid and S0e
rTΦ(d1)

is the expected value of a variable that equals ST if ST > K and zero

otherwise in a risk–neutral world.
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8 Extensions & alternative option pricing models

• Cox and Ross [5] pure jump model

dS

S
= µdt+ (k − 1) dq

= µdt+







k − 1 with probability λdt

0 with probability 1− λdt

where q is a continuous–time Poisson process, λ is the intensity of the pro-

cess, and k− 1 is the jump amplitude. This model says that the percentage

change on asset price S is composed of a drift term, µdt and a term dq that

with probability λdt will jump the percentage stock change to k − 1 and

with probability 1− λdt will do nothing.
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• Merton [12] mixed diffusion–jump model

dS

S
= µdt+ σdz + (k − 1) dq

where dz a Brownian motion and dq, k as before. The model’s plausibil-

ity comes from the intuition that stock prices seem to have small, almost

continuous movements most of the time but sometimes experience large

discrete jumps when important new information arrives.
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• Cox [4] and Cox and Ross [6] constant elasticity of variance model

dS = µSdt+ σS
α
2dz

where α is the elasticity of variance factor (0 ≤ α < 2). If α = 2 the model

collapses to the Black–Scholes formula. For α < 2 the standard deviation of

the return distribution moves inversely with the level of the asset price. The

intuitive appeal of such an argument is that if the price of a company’s share

decreases significantly, this should make the company more risky and that

the variance/standard deviation of its returns’ distribution should increase.
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9 The effect of dividends

• Merton has modified the Black and Scholes [2] European call option for-

mula, so as to accommodate the possibility that the underlying asset pays

a continuous dividend yield, δ, i.e.

dS = (µ− δ)Sdt+ σSdz

• The no–arbitrage portfolio is the same in this case as well. However observe

that the change in the portfolio dΠ is not given by (10). At any instant dt,

the holder of the portfolio earns −∂c
∂t−

1
2
∂2c
∂S2σ

2S2 plus the dividends received

by being “long” ∆ number of shares, i.e. δS ∂c
∂Sdt

dΠ =

(

−
∂c

∂t
−

1

2

∂2c

∂S2
σ2S2 + δS

∂c

∂S

)

dt (17)
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• This portfolio is again riskless, thus the equilibrium condition is again dΠ =

rΠdt but with dΠ now given by (17). The resulting PDE is

1

2
σ2S2 ∂

2c

∂S2
+ (r − δ)S

∂c

∂S
+

∂c

∂t
− rc = 0

which when solved subject to (12) yields

c = S0e
−δTΦ(d1)−Ke−rTΦ(d2) (18)

p = Ke−rTΦ(−d2)− S0e
−δTΦ(−d1) (19)

d1,2 =
lnS − lnK +

(

r − δ ± 1
2σ

2
)

T

σT 1/2
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• Merton has also demonstrated that the option bounds we derived in lecture

#8 need to be modified in instances when the underlying asset provides a

dividend yield

1. [Call lower bound] For a European call written on an asset that pays a

continuous dividend yield δ over [0, T ], the following inequality holds

c ≥
(

S0e
−δT −Ke−rT

)+
(20)

2. [Put lower bound] For a European put written on an asset that pays that

pays a continuous dividend yield δ over [0, T ], the following inequality holds

p ≥
(

Ke−rT − S0e
−δT

)+
(21)

3. [Put–Call parity] The price of a European call option can be deduced from

the price of the corresponding put, and vice versa.

c− p = S0e
−δT −Ke−rT (22)
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4. [American options & early exercise] It is always optimal to early–exercise

American options (calls and puts) written on a flow–paying underlying as-

sets. Thus

C ≥ K − S

P ≥ K − S0

P ≥ p

C ≥ c
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10 Options on stock indices (stock index options)

• The underlying asset of such options is an index tracking the movement of

a stock market as a whole (FTSE, S&P, NASDAQ).

• Traded both in OTC and exchange markets, can either be European (e.g.

S&P 500) or American (e.g. S&P 100) in nature. When exercised, they are

settled in cash (no delivery of the “underlying asset” is involved).

• Under the assumption that the index follows a gBm, European index options

can be priced by the dividend–adjusted formula of Black–Scholes–Merton

(equations (18)–(19)). In this instance, the dividend yield δ should be set

equal to the average, continuously–compounded and annualised dividend

yield of all the shares comprising the index (not a trivial task).
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11 Options on foreign currencies (currency options)

• These are options to buy or sell a foreign currency up until or at a prespecified

date, at a predetermined exchange rate.

• Traded in both OTC and exchange markets, can either be European or

American style.

• Very useful contracts for hedging FX risk.‡

• Garman and Kohlhagen [7] and Grabbe [8] have shown that if the spot

exchange rate follows a gBm, the dividend–adjusted formulae (18)–(19)

can be used to price European–style currency options by setting the dividend

yield δ equal to rf , the foreign country risk–free rate of interest.

‡Homework: what is the difference between hedging a future currency exposure with a currency
option and with a foreign exchange forward contract?
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12 Options on futures contracts (futures options)

• Written on both financial and commodities futures, traded in exchange mar-

kets, usually American in style.

• When exercised the holder acquires a long position (for a call option) or a

short position (for a put) in the underlying futures contract

• Their popularity is due to the fact that it is easier to deliver a futures contract

than the underlying commodity or financial asset. Moreover, seldom are the

underlying futures contracts held until their maturity.

• Black [1] has shown that under the assumption of a gBm futures price,

the dividend–adjusted Black–Scholes–Merton framework (equations (18)–

(19)) can be applied to European futures options by setting δ = r and

S0e
−δT = f0.
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EXAMPLE 4: Price of a stock index option

A European call option on S&P 500 is two months away from maturity. The

current value of the index is 930, the strike price 900, the risk–free rate is 8% per

annum, the volatility of the index is 20% per annum and the index is expected

to pay a dividend yield of δ = 3% in the next year. The call price is

d1 =
lnS − lnK +

(

r − δ + 1
2σ

2
)

T

σT 1/2

=
ln 930− ln 900 +

(

0.08− 0.03 + 1
20.2

2
)

× 2
12

0.2×
(
2
12

)1/2

= 0.5444
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d2 = d1 − σT
1
2

= 0.5444− 0.2×

(
2

12

)1/2

= 0.4628

Φ (d1) = Φ (0.5444) = 0.7069 Φ (d2) = Φ (0.4628) = 0.6782

c = S0e
−δTΦ(d1)−Ke−rTΦ(d2)

= 930× e−0.03× 2
12 × 0.7069− 900× e−0.08× 2

12 × 0.4628 = 51.83

Thus, one option contract would cost $5, 183 (since one index option contract

is on 100 times the index)
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13 Hedging and the Greeks

• Consider a financial institution or a market maker that has written (sold) a

number of options. How can this position be hedged?

– Naked position: One possible strategy is to do nothing. This strategy

works well if the options sold end up out–of–the–money and are not

exercised. However, there is a danger that if the options end up deep

in–the–money, this strategy involves buying (expensively) the underlying

assets necessary to cover the options exercise.

– Covered position: This strategy involves buying—immediately after the

options are written—the necessary assets to cover possible options exer-

cise. This strategy is ok if the options are indeed exercised, but otherwise

we are left with a position in the underlying asset that might depreciate

in value.
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– Stop–Loss strategy: This strategy involves buying (selling) the under-

lying asset the minute the option becomes in–the–money (out–of–the–

money). It will work fine for deep in or out–of–the–money options, but

for options that are written at–the–money, it will involve large transac-

tion costs. Even in the absence of transaction costs, this strategy will

involve substantial costs: this is because when the underlying asset price

is equal to the exercise price (S = K), it is impossible to know whether

in the next instant it will move in a direction that will make the options

written in or out–of–the–money.

• Most traders use more sophisticated hedging schemes than those mentioned

above, based on calculations of delta, gamma, vega, etc.
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14 Delta hedging

• Recall that the delta of an option, ∆, was defined in lecture #3 as the rate

of change of the option price with respect to the price of the underlying

asset; for a call

∆ =
∂c

∂S

• Delta is very closely related to the Black–Scholes–Merton analysis. See in

equation (7) how the “no–arbitrage” portfolio is constructed in the deriva-

tion.

• Delta summarises the number of underlying assets an option writer must

hold in order to hedge the exposure associated with future exercise. If the

writer holds ∆ shares for every option written, the position is said to be

delta neutral.
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• It is important to realise that, because delta changes as S changes, the

investor’s position remains delta–hedged (delta neutral) only for a relatively

short period of time. The hedge has to be adjusted (rebalanced) periodically.

• In the Black–Scholes–Merton framework, delta can be calculated by differ-

entiating equations (13), (14) or (18), (19) with respect to S (not trivial!).

The results are:

No dividends Dividends

Call ∆ Φ (d1) e−δTΦ(d1)

Put ∆ Φ (d1)− 1 e−δT [Φ (d1)− 1]



IHU–Financial Derivatives#13 39

• The delta of a portfolio of options is a weighted average of the individual

deltas of the options in the portfolio

∆π =
n∑

i=1

wi∆i

where wi the quantity of option i in portfolio π.
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15 Theta

• Recall that the theta of an option, Θ, was defined in lecture #3 as the rate

of change of the option price with respect to the passage of time; for a call

Θ =
∂c

∂t

• Theta summarises the change in the price of an option when time decreases

as we reach the option maturity. It is also known as the time decay of the

option

• In the Black–Scholes–Merton framework, theta can be calculated by differ-

entiating equations (13), (14) or (18), (19) with respect to T (not trivial!).
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The results are:

No dividends Dividends

Call Θ
−

S0Φ
′(d1)σ

2T
1
2

−rKe−rTΦ(d2)

−
S0Φ

′(d1)σe
−δT

2T
1
2

+ δS0Φ (d1) e
−δT

−rKe−rTΦ(d2)

Put Θ
−

S0Φ
′(d1)σ

2T
1
2

+rKe−rTΦ(−d2)

−
S0Φ

′(d1)σe
−δT

2T
1
2

− δS0Φ(−d1) e
−δT

+rKe−rTΦ(−d2)

where

Φ′ (x) =
1

(2π)1/2
e−

x2

2

• In the formulae above, time is measured in years. Divide Θ with 365 or 252
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to get the theta of an option per calendar or trading day respectively.

• Theta is negative usually because as time to maturity decreases (with all

else equal) the option tends to become less valuable.
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16 Gamma

• Gamma (Γ) is the rate of change of delta with respect to the price of the

underlying asset. It is the second partial derivative of the option price with

respect to the underlying asset price; for a call

Γ =
∂∆

∂S
=

∂2c

∂S2

• If gamma is small, delta changes slowly, and adjustments to keep a position

delta neutral need to be made only relatively infrequently.
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• In the Black–Scholes–Merton framework, gamma can be calculated by dif-

ferentiating equations (13), (14) or (18), (19) twice with respect to S (not

trivial!). The results are:

No dividends Dividends

Call Γ
Φ′(d1)

S0σT
1
2

Φ′(d1)e
−δT

S0σT
1
2

Put Γ
Φ′(d1)

S0σT
1
2

Φ′(d1)e
−δT

S0σT
1
2
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17 Vega

• Recall that the vega of an option, V, was defined in lecture #3 as the rate

of change of the option price with respect to the volatility of the underlying

asset; for a call

V =
∂c

∂σ

• Despite the fact that volatility is assumed constant in the Black–Scholes–

Merton framework, in reality it is not! Thus we expect the price of an option

to change if the arrival of news alters the volatility of the underlying asset.

• If vega is high (low) in absolute value, the position is very (only slightly)

sensitive to small changes in volatility. Vega neutrality protects against large

changes in the price of the underlying asset between hedge rebalancing.
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• In the Black–Scholes–Merton framework, vega can be calculated by differ-

entiating equations (13), (14) or (18), (19) with respect to σ (not trivial!).

The results are:

No dividends Dividends

Call V S0T
1
2Φ′ (d1) S0T

1
2Φ′ (d1) e

−δT

Put V S0T
1
2Φ′ (d1) S0T

1
2Φ′ (d1) e

−δT
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18 Rho

• Recall that the rho of an option, ρ, was defined in lecture #3 as the rate of

change of the option price with respect to the interest rate; for a call

ρ =
∂c

∂r

• It measures the sensitivity of the option price to interest rate changes, despite

the fact that in the Black–Scholes–Merton framework r is assumed constant.

No dividends Dividends

Call ρ KTe−rTΦ(d2) KTe−rTΦ(d2)

Put ρ −KTe−rTΦ(−d2) −KTe−rTΦ(−d2)
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19 Hedging option positions in practice

• Ideally, an option writers would like to make their positions delta, gamma,

vega, etc. neutral by frequently rebalancing their positions. This however is

impossible most of the times.

• Traders would usually zero out delta sensitivity at least once every day and

monitor the other sensitivities; in case any of those become too large in a

positive or negative direction, either corrective action is taken or trading is

curtailed.

• Moreover, traders benefit from the economies in scale present in hedging

derivatives “books” with large volumes of both calls and puts and of different

maturities and strike prices.
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20 Using the Greeks for hedging funds/portfolios

• Consider a manager in charge of a $X million fund tracking the S&P 100,

that wishes to hedge against the possibility that the portfolio will decline

below $ (X − Y ) million.

• Alternatives:

– Buy put options on the stocks that comprise the portfolio (expensive)

– Buy put options on the S&P 100 index (satisfactory if option market

makers have the liquidity to absorb the trades that large fund managers

wish to carry out, and if required strike prices and exercise dates are

available on exchanges)

– Create the put option synthetically : Adjust the holdings of the fund so

as to maintain a position with a delta (∆) equal to the delta of the

desired option



IHU–Financial Derivatives#13 53

EXAMPLE 5: Synthetic Put

A portfolio that mimics the S&P 500 is worth $90 million. To protect against

market downturns, the managers require a six–month European put on the port-

folio with a strike price of $87 million. The S&P 500 currently stands at 900,

the risk–free rate is 9% p.a., dividend yield 3% p.a. and the volatility of the

portfolio is 25%

One alternative is to buy 1, 000 puts on the S&P 500 with a strike price of 870

(if available). The other alternative is to create the option synthetically:

- Calculate the ∆ of the option required

∆ = e−δT [Φ (d1)− 1]
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d1 =
lnS − lnK +

(

r − δ + 1
2σ

2
)

T

σT 1/2

=
ln 900− ln 870 +

(

0.09− 0.03 + 1
20.25

2
)

× 6
12

0.25×
(
6
12

)1/2
= 0.4499

and thus

∆ = e−0.03× 6
12 × (Φ (0.4499)− 1)

= −0.3215

This shows that 32.15% of the portfolio should be sold, to match the sensitivity

(delta) of the position required.
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21 Reading

• Hull [9], Chapters 12, 13, 14

• Jarrow and Turnbull [11], Chapters 8, 9

• Stulz [14], Chapter 12

• Black and Scholes [2]
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