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1 Preview

• Modelling asset prices and interest rates as stochastic processes.

• Markov, Wiener, generalised Wiener and Itô processes.

• Geometric Brownian motion and process for interest rates.
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2 Modelling asset prices

• The price and payoff of a derivative contract depends not only on the current

price of the underlying asset (S0 for futures/forwards, r0 or Lt for FRAs,

T–bill futures, etc.), but also on the future (and currently unknown) asset

price (S̃T , r̃T,T+m, LT,T+m) at maturity or delivery date, T .

• To make things even more complicated, the pricing of some derivative con-

tracts, e.g. American–style options, depends on all possible asset prices up

to and including the maturity date T (S̃τ , t ≤ τ ≤ T ).

• Thus, the first step towards analysing and pricing derivatives is a concrete

modelling framework for (underlying future) asset prices or interest rates.
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Asset prices or interest rates in the financial engineering literature are assumed

to follow continuous–time Markov stochastic processes. What is all that?

3 Stochastic processes

• Any variable whose value changes over time in an uncertain way is said to

follow a stochastic process.

• Stochastic processes can be categorised as discrete–time or continuous–time:

– the value of a variable that follows a discrete–time stochastic process

can change only at certain fixed points in time

– the value of a variable that follows a continuous–time stochastic process

can change at any time
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• Stochastic processes can also be categorised as discrete–variable or continuous–

variable:

– in a continuous–variable stochastic process, the variable can take any

value within a certain range

– in a discrete–variable stochastic process, only certain values are possible

Discrete–time Continuous–time
Discrete–variable No. of goals scored by M. Owen Accidents on M1
Continuous–variable Magnitude of annual rainfall Temperature

• Continuous–variable, continuous–time stochastic processes are used in fi-

nance to model asset prices or rates.
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4 Markov processes

• A variable assumed to follow a Markov∗ stochastic process has the property

that only the current value of the variable is relevant for predicting the

future.

• The past history of the variable and the “path” followed by the variable

before the current value has emerged are irrelevant. That is why non–

Markov processes are known as path–dependent.

• Modelling financial prices as Markov stochastic processes implies that we

cannot tell anything about the asset’s price “tomorrow” by using its price

history up to today. This is consistent with the weak–form of the market

efficiency hypothesis.

∗Andrei Andreyevich Markov, Russian mathematician (born 1856, died 1922).
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5 Some statistics

• Consider a variable z following a Markov process

zt = z0 +
t∑

i=1

εi

(1)

ε ∼ i.i.d. N (0, 1)

This process is known as a random walk. Verify that

zt − z0 =
t∑

i=1

εi (2)

and thus

(z1 − z0) ∼ N (0, 1)
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(z2 − z0) ∼ N
(
0, 21/2

)

...

(zT − z0) ∼ N
(
0, T 1/2

)

since adding i.i.d. normally distributed ε’s results in a normal distribution

in which the mean is the sum of the means, the variance is the sum of the

variances (and thus the standard deviation is the square root of the sum of

the standard deviations).
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6 Wiener, generalised Wiener and Itô processes

• The process in equation (2) is known as a Wiener process.† It had been

used extensively in physics, where it is referred to as Brownian motion.‡

Writing equation (2) as

z (T )− z (0) =
N∑

i=1

εi (∆t)
1
2

(3)

N =
T

∆t
and taking the limit as ∆t → 0 yields the Brownian motion as the “infinites-

imal time–step” limit of the discrete–time random walk.

†Norbert Wiener, Russian mathematician (born 1894, died 1964)
‡Robert Brown, English botanist (born 1773, died 1858)
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• Formally, the properties of the Brownian motion are:

– The change dz during a small period of time dt is

dz = ε (dt)
1
2 (4)

ε ∼ N (0, 1) (5)

– The values dz for any two different short time intervals dt are indepen-

dent

• These two properties imply

mean of dz = 0 mean of [z (T )− z (0)] = 0

variance of dz = dt variance of [z (T )− z (0)] = T

st. deviation of dz = (dt)
1
2 st. deviation of [z (T )− z (0)] = (T )

1
2
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• If the random term ε in (5) is allowed to follow a general normal distribution

with mean µ and standard deviation σ, N (µ, σ), then a variable x is said to

follow a generalised Wiener process (or arithmetic Brownian motion—aBm)

dx = µdt︸︷︷︸
drift term

+ σdz︸︷︷︸
volatility term

(6)

= µdt+ σε (dt)
1
2 (7)

• This implies

mean of dx = µdt mean of [x (T )− x (0)] = µT

variance of dx = σ2dt variance of [x (T )− x (0)] = σ2T

st. deviation of dx = σ (dt)
1
2 st. deviation of [x (T )− x (0)] = σ (T )

1
2
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• More generally, any generalised Wiener process with drift and volatility terms

that can be functions of the underlying variable x and time t,

dx = α (x, t) dt+ b (x, t) dz

are known as Itô processes.

• The Brownian motion (equation (3)) and the arithmetic Brownian motion

(equation (6)) are of course Itô processes. So are the following examples

dx = xdt+ σx
3
2dz

dx = σdz

dx = λxt2dt+ νt2dz
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7 Modelling financial asset prices for derivative pricing

• The first financial engineering application was the option pricing model of
Bachelier§ [1] in 1900.

• In his Ph.D. thesis, Bachelier derived a formula for the price of the options
that were traded then in the Parisian Bourse¶ under the assumption that
underlying asset prices follow arithmetic Brownian motions.

• Despite the direct link between option pricing theory and Bachelier’s work,
his economic rational is flawed from today’s point of view. His assumption
that asset prices can follow an aBm is unreasonable due to limited liability.

• Asset prices cannot go negative. For example, share prices, even when firms
go bankrupt, they become worthless (i.e. zero price) and do not require
shareholders to make extra payments.

§Louis Bachelier, French mathematician (born 1870, died 1946).
¶what are now called barrier options.
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• However, the arithmetic Brownian motion (equation (6)) has the undesir-

able property that regardless of the initial value x0 and the drift/volatility

parameter values, the probability that x will become negative in the future

is non–zero.



IHU–Financial Derivatives#12 17

8 Geometric Brownian motion

• Samulelson [3], who rediscovered Bachelier’s work about 50 years later,

identified and modified the erroneous asset price assumption by proposing

an alternative stochastic process

dx = µxdt+ σxdz

(8)
dx

x
= µdt+ σdz

known as a geometric Brownian motion (gBm).

• A gBm belongs to the family of Itô processes and is also a continuous–time

Markov stochastic process.

• Moreover, a gBm has the desirable property that x > 0 always, as long as

x0 > 0.
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• Equation (8) implies that stock prices are lognormally distributed, or alter-

natively that stock price returns are normally distributed

∆x

x
∼ N

(
µ∆t, σ (∆t)

1
2

)

• Black and Scholes [2] used the process in (8) to model share prices in their

Nobel prize–winning option pricing formula. Since their work, a gBm is the

usual assumption for asset prices in finance.
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9 Should we use a gBm for interest rates?

• Despite the fact that asset prices are usually assumed to follow gBm pro-

cesses in the financial engineering literature, whether this process is appro-

priate for modelling the yield curve of the interest rates is questionable.

• One important difference between interest rates and stock prices is that

while one expects stock prices to appreciate over a long period of time, time

series of interest rates appear to be pulled back to some long–run average

level over time.

• This phenomenon is known as mean reversion. When interest rates are high

(low), mean reversion tends to cause them to have a negative (positive)

drift.

• There is compelling economic arguments in favour of mean reversion. When

interest rates are high, the economy tends to slow down and there is low
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demand for funds from borrowers. As a result, rates decline. An inverse

argument applies when rates are low.

• The simplest mean–reverting process—also known as an Ornstein–Uhlenbeck

process—is the following:

dx = η (x− x) dt+ σdz

dx = (α+ βx) dt+ σdz

where η is the speed of reversion, and x is the “normal” or “long–run” level

of x, i.e. the level at which x tends to revert to. Sometimes the second

formulation is used where

β = −η

α =
x

η
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• The Ornstein–Uhlenbeck mean–reverting process belongs to the family of

Itô processes and is also a continuous–time Markov stochastic process. It

implies that

mean of x (T ) = x+ [x (0)− x] e−ηT

variance of x (T )− x = σ2

2η

(
1− e−2ηT

)
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10 Monte Carlo simulation: A stock price example

This example demonstrates how paths of a gBm (like those in the previous

figure) can be produced via Monte Carlo simulation. Consider a stock, priced

S0 = £1 today, that pays no dividends. Using the past history of the stock’s

price, you estimate µ = 15% and σ = 30% per annum. If the stock price follows

a gBm

dS = µSdt+ σSdz (9)

then, for any small discrete time step ∆t, we can write

∆S = µS∆t+ σSε (∆t)
1
2

ε ∼ i.i.d. N (0, 1)

Thus, we can simulate possible future stock price paths by:
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1. Choose the magnitude of the time step, ∆t. Suppose we choose ∆t = 1
365

(one day). Substitute values and write the above equations as

St+1 − St = 0.15St
1

365
+ 0.3Stε

(
1

365

)1
2

2. Draw a random number (ε) from a standard normal distribution.‖ For a

first draw ε = 0.834,

S1 = £1 + 0.15× 1×
1

365
+ 0.3× 1× 0.834×

(
1

365

)1
2
= £1.013507

3. Drawing a new (independent) ε will produce S2, and so on.∗∗

‖This can be accomplished in MS Excel for example, through Tools > Data Analysis > Random
Number Generation.

∗∗HOMEWORK: If the same stock pays a continuous dividend yield δ, then dS = (µ− δ)Sdt+
σSdz. Plot 10 different stock price paths for δ = 3%.



IHU–Financial Derivatives#12 27

References

[1] L. Bachelier. Theorie de la speculation. PhD thesis, Annales de l’Ecole

Normale Superieure, 1900.

[2] F. Black and M. Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–654, 1973.

[3] P. A. Samuelson. Rational theory of warrant pricing. Industrial Management

Review, 6(Spring):13–31, 1965.




