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Abstract

One of the most popular risk measurement techniques in finance is Value-at-Risk.

This measure quantifies the worst expected loss over a given confidence level and

target horizon, under normal market conditions. Even though VaR methods are

commonly used, they are useful only when they predict accurately future risks.

For this reason, backtesting models are of a great importance. Backtesting is a

statistical procedure, where VaR estimates are continuously compared to the ac-

tual profits or losses of the investment.

In this thesis, the concept of VaR as an invaluable tool for financial risk man-

agement is explained, and a theoretical but detailed description of some of the

methods of VaR computation are presented. Our primary objective is to identify

by using different backtesting methods, which Value-at-Risk method is the most

accurate. The performance of the VaR models is measured by applying several

different tests of conditional and unconditional coverage to the exchange rate of

the 10 major currencies towards euro. For our calculations, we used daily data

from 04/01/1999 until 04/07/2017. The outcomes of the statistical backtests show

that the model of VaR with the best performance is the EWMA.
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Chapter 1

Introduction

A main characteristic of the financial markets is change. Changes could either have

positive or negative sense for the investors. As a result, risk, which is precisely

interwoven with gain or loss, becomes something inevitable in financial markets.

The acceptance of this concept does not imply, the effort to eliminate risk, which

is impossible, nor does it imply the acceptance of consequent losses fatalistically.

As Wriston (2009) claimed, “All of life is the management of risk, not its elimina-

tion.” Thus, the main concept is to decide what risks to avoid and how could this

happen and what risk to accept and the terms of their acceptance. Under these

assumptions, the two main pillars of risk management are introduced: Firstly, es-

tablish a risk quantification method and secondly, develop and implement a valid

backtesting method to evaluate the validity of the estimated risk numbers.

1.1 History of VaR

Over the last decades risk management is considered as a distinct sub-field in fi-

nance theory. The problem of measuring risk is an old one in statistics, economics

and finance, however VaR did not emerge as a distinct project until the late 1980’s.

The stock market crash of 1987 was the triggering event. This was the first crisis in

which a lot of economists began to worry about the firm-wide survival. Neverthe-

less the growth of risk management traces back to the 1970’s, where the breakdown

of Bretton Woods system of fixed exchange rates and the adoption of new theory,

such as the Black-Scholes model, contributed to the “revolution” of risk manage-

1
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ment. Further factors that should be taken into consideration is the increase of

trading activity all these years (Linsmeier & Pearson, 1996, Dowd, 1998) [1], [2]

and the growth of the dollar value of outstanding derivatives positions. Indica-

tively, from 1.1 trillion dollars in 1986 to 72 trillion dollars in 1999 (Jorion, 2001)

[3]. All these facts combined with the unpredictable financial disasters of Barings

Bank, Orange County and Daiwa intensified the need of new risk measurement

tools. Consequently, Value at Risk is presently the most used risk management

technique by financial institutions, non-financial institutions, and regulators alike.

VaR is mostly used by commercial and investment banks to quantify potential loss

in value of financial derivatives (or traded portfolios) from adverse market condi-

tions, over a specific period of time, however it can be used by any firm so as to

measure its exposure to risk.

The mathematical form of risk management had already been developed by Harry

Markowitz in the context of portfolio theory, in 1950’s. In 1970’s and 1980’s

some financial institutions started constructing their own risk management mod-

els. However it was not until the pioneering work from J.P Morgan and their

publication of RiskMetrics system in 1994 that made VaR the industry-wide stan-

dard (Dowd, 1998, Jorion, 2001) [2], [3]. The system, which was available for free

on the internet providing data feed for computing market risk, was the first that

allowed public access to data and information that was once proprietary (Jorion,

2007) [4]. Furthermore, the Basel Committee on Banking Supervision (BCBS)

regulatory guidelines have required banks with substantial trading activity to set

aside a proportion of capital so as to insure against extreme portfolio losses. Be-

cause of RiskMetrics system, regulators became interested in VaR, allowing banks

to utilize their own internal risk models in computing and reporting their VaR, for

the estimation of regulatory capital requirements (Linsmeier & Pearson, 1996) [1].

The VaR methodology is now being utilized to quantify credit risk, operational

risk and liquidity risk, leading to the ‘Holy Grail’ of risk management (Jorion,

2007) [4].
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1.2 Criticism about VaR

“A 99% Value at Risk calculation does not evaluate what happens in the last one

percent. . . This is like an airbag that works all the time, except when you have a

car accident.”- David Einthorn- [5]

Value at Risk is a very popular and widely used risk management tool. However

several criticisms have arisen concerning VaR methods, which are still debated.

The knowledge of the limitations of VaR is crucial for the avoidance of future fi-

nancial disasters. In an interview in Derivatives Strategy magazine, Nassim Taleb

(1997) [6] delivered a blistering attack on value at risk. His claims could be sup-

ported by many economists and they are examined in detail in numerous papers.

Amongst some of the issues raised are the following:

1. Using VaR could provide a false sense of security that could lead to excessive

risk taking and use of leverage. (Nassim Taleb, 1997) [6]. There is a mis-

conception by many investors that Value at Risk expresses “the most they

could lose”. Especially in cases where a 99% confidence level is used, this

phenomenon is quiet often. However, even when investors are fully aware of

the true concept of VaR, subconsciously the 99% confidence may be mislead-

ing for their estimations. In real terms, unfortunately 99% is very far from

100% and this misunderstanding could be fatal.

2. Value at Risk does not measure the worst case loss. For example, a 99% VaR

indicates us that in 1% of cases, the expected loss will not exceed the VaR

amount. However, this metric does not provide us the magnitude of the loss

incurred within this 1% of trading days nor the maximum possible loss. .

According to David Einhorn (2008) [5], VaR focuses on risks near the center

of the distribution that are more manageable and ignores the tails. In those

cases the worst case loss could be fatal, such as the bankruptcy of Lehman

Brothers or a terrorist attack.

3. Another criticism which dominates in literature as well is the model perfor-
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mance. This is the result of the adoption of VaR according to the BCBS

about capital regulatory purposes (Pritsker, 1997) [7]. Even though the

greatest attention was given to model performance, there appears to be lit-

tle coverage on the comparison of the estimation performance of VaR tech-

niques. Different methods of computation could lead to different results for

the same portfolio, making the representativeness of VAR ambiguous.

4. Method accuracy vs computational time, which is examined in detail by

Pritsker (1997) [7], is another issue. It is of a great importance, methods of

computing VaR to be both accurate and available on a time basis. In his

study Pritsker verified that there is likely to be an inherent tradeoff between

these objectives since more rapid methods tend to be less accurate.

1.3 The Purpose of the Study

This study has two main objectives. First of all, it provides a theoretical com-

parison of different methods of computing VaR. It is known, that there are many

different methodologies for this purpose, however each one of them has its own

pros and cons, derived from the specific underlying hypothesis of them. Our goal

is to provide the reader the fundamental knowledge of the most common VaR

methods. In that point we should mention that even thought the concept of VaR

seems straightforward, the implementation is not that simple. More precisely, the

study considers the following methods:

1. Variance-Covariance Approach.

2. Historical Simulation.

3. Calculation of VaR using GARCH model for the volatility.

4. Calculation of VaR using EWMA model for the volatility.

With the theoretical comparison of the above approaches, we place more empha-

sis on their shortcomings, which provides a motivation for the backtesting of VaR.

4



SECTION 1.4 CHAPTER 1

Therefore, a theoretical comparison of some of the traditional methods of backtest-

ing is presented. The following backtesting techniques will be discussed namely;

Kupiec’s proportion of failures test, Kupiec’s time until first failure tests, indepen-

dence test, joint-test, and Basel Committee’s ‘traffic light’ approach. In the second

part of this study, an application of the theoretical background for both the VaR

calculation methodologies and the backtesting techniques, takes place. This will

be conducted to the exchange rate of the 10 major currencies towards euro, with

daily data from 04/01/1999 until 04/07/2017.

The above analysis takes place, in order to identify, according to the statistical

backtests, which VaR model shows the most accurate performance.

1.4 Questions answered by the Study

Risk management is a topic of a great importance for financial institutions and

regulators as well. As mentioned above, the effort to assure that uncertainty does

not deflect the endeavor from the business goals is not easy to implement. Some

of the questions that arise by those who are concerned, and which are part of our

study are listed below.

1. What are the underlying assumptions in some models of Value at Risk?

2. How can we validate the accuracy of VaR estimates?

3. What are some methods of backtesting VaR?

4. Which are the key statistical assumptions of backtesting models and how

can we implement them?

5. How do some of the VaR backtesting techniques fare in validating the accu-

racy of VaR estimates in forex market?

5



Chapter 2

Literature Review

Unfortunately, literature on VaR model backtesting is recent and relatively limited.

This chapter begins with a synopsis about the drivers of VaR and its definition.

Following, we present the calculation of returns and the parameters we used for

the implementation of VaR. Different VaR models, their characteristics and short-

comings are then reviewed. The chapter ends with a presentation of some of the

backtesting techniques for validating the accuracy of VaR models.

2.1 Why VaR?

“VAR is like a wobbly speedometer. Even so, it gives a rough indication of speed.

Derivatives disasters have occurred because drivers or passengers did not worry at

all about their speed. Of course, there can be other sources of crashes. Like blown

tires, for instance. Such accidents can be compared to operational risks, against

which VAR provides no direct protection. Still, a wobbly speedometer is better

than nothing.” - Philippe Jorion- [8]

Value at Risk is the most popular tool for measuring and managing risk in the fi-

nancial industry. Even though this risk management model is one of the statistical

probability theories that have been known to perform poorly when applied to the

financial markets, its popularity is due to some special characteristics. Besides, the

model would not be used at all if it didn’t confer benefits to those major financial

banks and institutions that use it and have the expertise to do so. Jorion (2007)
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[4] in an article for “Derivatives Strategy” magazine named “In Defence of VaR”,

reported some of these.

One of the most important advantages of VaR, is that as a concept it is sim-

ple to understand, interpret and further use in analyses. Since VaR is expressed

both in price units and as a percentage of portfolio value, gives us the ability to

get a rough idea about the extent of risk in a portfolio, with just one number. The

comparison of different assets and portfolios is another beneficial characteristic of

VaR, since it is applicable to any assets with price such as stocks, bonds, currencies

and the most important, derivatives. VaR is so widespread and commonly used,

that is considered the gold standard for risk management. Thus, when competitors

use it, clients require it, and regulators recommend it, there is no reason to reject it.

However the key word, which was mentioned above as well, is “derivatives”. Over

the last decades, the importance of derivatives in finance has increased rapidly,

since they are used in all “key” areas of the field. They are added to bond issues

and capital investment opportunities, they are used to transfer risk, in executive

or employee compensation plans and the list goes on. The proliferation of deriva-

tives has been accompanied by an increase in the trade of cash instruments and

the proliferation of different financing opportunities. This fact coincided with the

growth of foreign trade and the rise of international financial relations between

companies (Linsmeier & Pearson, 1996) [1]. Even though some economists use

derivatives for speculation, they are mostly used to hedge financial risk. This is

applied by transferring a wide range of risks in the economy from one entity to

another.

It goes without saying that the financial industry has reached a stage where it

is imperative for those working in the industry, to understand how derivatives

work, the manner in which they are used, and more importantly, how to quantify

their risk. As a result of the sheer numbers and complexity of some of these in-

struments, the magnitude of risks in companies’ portfolios are often not obvious.

As a consequence, there has been demand for portfolio level quantitative measures

7
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of market risk, and VaR has become a significant component of such risk measures

(Jorion, 2007) [4].

2.2 Basics of VaR

Risk plays an important role in business activities. We could define risk as “the

possibility that something bad or unpleasant will happen”. In financial terms, we

could divide risk into the following three categories: market, credit and liquidity

risk. According to Jorion (2001) [3], VaR was developed originally to gauge market

risk, which is caused by movements in the volatility of asset prices. Subsequently,

Dowd (1998) [2] claims that market risk can be subdivided into 4 categories: in-

terest rate risks, equity price risks, exchange rate risks and commodity price risks.

More mathematically, Jorion (2001) [3] gives the following definition of VaR:

“VaR describes the quantile of the projected distribution of gains and losses over

the target horizon. If c is the selected confidence level, VaR corresponds to the 1-c

lower-tail level.”

To sum up, VaR is a number that summarizes the worst loss over a target horizon

given a specific confidence level, under normal market conditions. In fact, it is

a “probability boundary” of potential losses, a quantitative measure of portfolios

downside risk. Under the worst case scenario VaR will not indicate us exactly the

magnitude of the potential loss. VaR is a boarder value that will not be crossed

more that a given number of times, depending on the confidence level.

For instance, with a 95% confidence level, VaR should be such that it exceeds

5% of the total number of observations in the distribution.

VaR has two important and appealing characteristics. First, it provides a sim-

ple and consistent measure of risk for different types of instruments and positions.

Second, it takes into account the correlation between different risk factors. This

characteristic is crucial whenever computing risk metrics for a portfolio consisting

8
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of more than one instrument (Dowd, 1998) [2]. In mathematical terms, VaR is

calculated as follows:

V aR = α · σ ·W

Where:

α: the confidence level.

σ: the standard deviation of the portfolio returns

W: the initial portfolio value

For example let’s consider the following situation. We have a portfolio whith initial

value of 100 million euros and the annual volatility of the portfolio returns is 30%.

The 10-day VaR at 99% confidence level for this portfolio is:

V aR99% = −2.33 · 30% ·
√

10/250 · 100 = −13.98 million

The time horizon and confidence level are of great importance in interpreting VaR

outcomes. The holding period indicates how far into the future we are looking; the

longer the holding period the larger the potential losses. Investors such as financial

firms, who have actively traded portfolios, use a 1-day period, while institutional

investors and non-financial corporations prefer longer time horizons. According

to Dowd (1998) [2], the choice of the holding period should depend on the time

it takes for the firm to liquidate the portfolio. However, we should also take into

consideration the properties of the specific VaR method. For instance, for methods

with use of normal approximations, a short term horizon should be preferable.

The confidence level on the other hand determines with how much certainty the

measurement is made. Higher confidence levels mean higher potential losses. Re-

garding the choice of confidence level, we should mention that depends on the

purpose. In the case of capital requirements, confidence levels depend on the risk

aversion of the manager. Thus, risk averse managers choose higher confidence

levels. In our case study, we used a 99% confidence level for the computation of

VaR.

The events which occur when the returns of a portfolio exceed the estimated VaR

9
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measure are called VaR breaches. The number of breaches, typically, should be as

close as possible to the indicative number defined by the confidence level. There-

fore, one way of testing the accuracy of VaR models, is to conduct backtesting,

considering the VaR breaches, which is the empirical focus of our study.

2.3 The choice of VaR Parameters

Value at Risk is applicable to many different portfolios. The holding period and

confidence level are the most essential quantitative parameters, without which VaR

estimates are meaningless. In each diverse situation different criteria are applied

for the choice of holding period and confidence level. If VaR number is used to

compare risks among different markets, the choice of parameters is arbitrary as

long as consistency is maintained. However, if we use VaR to measure potential

loss, the parameters should be determined by the nature of the portfolio.

Liquidity should be one of the criteria used for the choice of the holding period

(Dowd, 1998) [2]. More specifically, financial institutions determine the holding

period due to the amount of time required so as to liquidate the portfolio. For

instance, banks and financial institutions with actively traded portfolios use the

one day VaR measure. On the other hand, investors and non-financial firms choose

longer VaR horizons. Another criterion that should be considered is the specific

properties of VaR methods used. More precisely, the methods which assume that

the returns of the portfolio are normally distributed are accurate only if short time

horizons are used. In the same time, backtesting procedure can be conducted only

with the application of a short holding period. Jorion (2007) [4] submits that

the Basel Committee on Banking Supervision imposes that banks and financial

institutions should perform backtesting over a one day period, despite the 10 day

horizon used for regulatory capital.

Concerning the choice of the confidence level, purpose at hand is crucial. Dowd

(1998) [2] states that the choice depends on whether the VaR number is for capital

requirements, to provide input for internal risk management, or it is for making

10
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comparisons among different portfolios. As for the assessment of capital holdings,

in case of the internal capital, the confidence level depends on internal risk aver-

sion, while in case of regulatory capital, the choice depends on the prescribed levels

of the regulation. Nevertheless, if the main purpose is backtesting VaR models,

it is recommended to avoid high confidence levels. This is due to the fact that

high confidence levels tend to reduce the number of observations in the tail of

the distributions of returns. As a result the power of the test is reduced as well

(Jorion, 2007) [4]. Another aspect is to consider confidence levels for accounting

and comparison purposes. Different institutions report their VaR estimates using

varying confidence levels (Dowd, 1998) [2].

2.4 Measuring Returns

By definition Value at Risk estimate is the downside of the portfolio return distri-

bution. As a result we proceed with the definition of portfolio return. As portfolio

return δP , we define the difference between the value of the portfolio at subsequent

time intervals, i.e. δP = Pt − Pt−1 where Pt and Pt−1 are the portfolio values at

time t and t − 1 respectively. There are two expressions for the rate of return:

the arithmetic and geometric. The arithmetic rate of return, Ra, is given by the

difference between the current portfolio price and the previous period’s price, all

divided by the previous period’s portfolio price:

Ra =
Pt − Pt−1

Pt−1

The geometric or log return of an asset is instead defined as:

Rg = ln

(
Pt
Pt−1

)
Where ln(·) denotes the natural logarithm. Here we assume all income payments

such as dividends are zero or reinvested in the portfolio such that they are reflected

in the portfolio price.

The two returns are typically fairly similar, as can be seen from:

Rt+1 = ln(St+1)− ln(St) = ln

(
St+1

St

)
= ln(1 + rt + 1) ≈ rt + 1

11
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The approximation holds because ln(x) ≈ x − 1 when x is close to 1. More

precisely:

Rg = ln

(
Pt
Pt−1

)
= ln(1 +Ra).

If Ra is small, then by Taylor expansion, Rg = Ra − R2
a

2
+ R3

a

3
− ..., which implies

Rg ≈ Ra, if Ra is small. Thus, in practice, as long as returns are small, arith-

metic returns and geometric returns converge. On the other hand, in times of high

volatility or long holding periods, the choice of the type of returns which is used

is crucial, since this may have a negative impact in VaR estimates.

In most cases it makes economic sense to use geometric returns, since if geometric

returns are normally distributed, it is not possible to get a price that is nega-

tive. On the other hand, normally distributed arithmetic returns could generate

negative asset prices. This is meaningless since stocks or portfolios have limited

downside risk.

2.5 Different VaR Models

“One of the most difficult aspects of calculating VaR is selecting among the many

types of VaR methodologies and their associated assumptions.” (Minnich, 1998) [9]

Even though VaR is an easy and intuitive concept, its measurement is a challenging

statistical problem. In practice, the main objective of calculating VaR is to provide

a reasonably accurate estimate of downside risk at a reasonable cost. This requires

choosing for the specific portfolio the most appropriate VaR method, among many

different industry methods. VaR estimates obtained through alternative method-

ologies prove to have economically significant differences (Beder, 1995; Hendricks,

1996) [10], [11]. VaR can be estimated parametrically or non-parametrically with

many different methodologies. However all these methodologies follow a common

general structure, which can be summarized in three steps: a) Mark-to-Market

the portfolio, b) Estimate the distribution of returns of the portfolio, c) Calculate

the VaR. Parametric models assume the return distribution belongs to a paramet-

ric family, such as the normal distribution, while non-parametric models do not

12
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make any assumptions regarding the distributional shape of portfolio returns and

therefore tend to require simulation. As a result, in parametric approach VaR can

be computed directly from the standard deviation of the portfolio’s return distri-

bution together with a multiplicative factor that is based on the VaR confidence

level (Jorion, 2007) [4].

This chapter presents the fundamentals of some of the most common VaR com-

putation methods: Variance-Covariance, Historical simulation, EWMA model and

GARCH model. The major aim of the discussion is not to provide a detailed de-

scription of the methods, but rather, to emphasize on the strengths and weaknesses

of each of the approaches. For a detailed and more comprehensive discussion on

the various VaR methodologies we refer the reader to, for instance; Linsmeier &

Pearson (1996) [1], Dowd (1998) [2] or Jorion (2007) [4].

2.5.1 Variance/Covariance (Normal) Approach

The Variance/Covariance method is the easiest to implement. The basic assump-

tion is that the portfolio consists of only securities with jointly normal distribution.

Since the portfolio return is the linear combination of normal variables, it is also

normally distributed (Jorion, 2001) [3]. The assumption of normality is the most

basic and straightforward approach, as a result this method is ideal for portfolios

that consist of only linear instruments (Dowd, 1998) [2]. Estimating VaR is there-

fore attained by simply multiplying the current portfolio price/value (P0) by the

portfolio standard deviation (σ) and a multiplicative factor (α) from the normal

distribution for the chosen confidence level, i.e.

V aR = α · σ · P0

Using this approach, the portfolio standard deviation is assumed to be a linear

combination of the volatilities and covariances of portfolio elements, and thus de-

termined using the variance/covariance matrix. For this reason the method is

called Variance-Covariance approach. At this point we should mention that the

famous RiskMetrics model of J. P. Morgan (1996) [12] is an analytic variance-

covariance method.
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For a foex portfolio, which is our case, the plain standard deviation would be

useful to calculate the required VaR. In case of a portfolio consisting of different

securities, the first step is to ‘map’ individual investments into a set of simple

and standardized market instruments. Then each instrument is stated as a set

of positions in these standardized market instruments. The following step is the

calculation of the variances and covariances of the instruments. The final step is

the calculation of VaR by using the estimated variances and covariances and the

weights on the positions. The pros and cons of Variance-Covariance method are

both consequences of the main underlying assumptions, on which it is based. The

main of these is the assumption about the linear relationship among market risk

factors and the assumption that portfolio returns are joint normally distributed.

Simplicity is the main advantages of Variance/Covariance method. The assump-

tion of Normality allows us to use all the mathematical properties of the Normal

distribution and also take advantage of the translatability between different hold-

ing periods and confidence levels.

Even though the simplicity of the method is tempting, the method can be subject

to a number of criticisms, since the huge body of contemporary empirical evidence

has shown that probability distributions of real life data exhibit “fatter tails” that

the standard normal distribution. This means that extreme outcomes are more

likely to happen, that the normal distribution imposes. In that case, according

to Jorion (2007) [4] the method tends to overestimate risk for small confidence

levels and underestimates risk for higher confidence levels. Another “drawback” of

Variance/Covariance method, is that we cannot use it for portfolios which include

instruments whose returns are non linear functions of risk, such as options. This is

a problematic trait given the increasing use of non-linear assets in financial market

portfolios. In that case Delta-Normal approach is a solution. This method implies

is to take first order Taylor approximations to the returns of these instruments

and then compute VaR by using the linear approximation. Since this method is

effective when we have limited non-linearity in a portfolio, Delta-Gamma models
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were proposed by Britten-Jones and Schaefer (1999) [13], which use second order

approximations. It is obvious that there is improvement by using first and second

order approximations. On the other hand, this tends to introduce more complex-

ity, thus losing some of the basic simplicity of the variance-covariance method due

to the additional assumptions required in light of the normality loss (Damodaran,

2007) [14]. We are not going through these methods in detail, as we are not using

them in this thesis.

2.5.2 Historical Simulation

The historical simulation method is a non-parametric approach that is both easy

to understand and implement. The method of historical simulation provides an

implementation of full valuation and some advantage over the normal method, as it

does not impose any distributional assumptions and does not require calculations

of variances and covariances. All that we need is historical data of the time series.

This method is based on the hypothetical assumption that the portfolio is held

constant over the observation holding period. The estimation of VaR can then

be attained by reading the desired quantile from the distribution of the portfolio

returns. The method consists of going back in time and applying current weights

to a time series of historical asset values (Jorion, 2001) [3].

Rp,k =
N∑
i=1

wi,tRi,k k = 1, ..., t

The returns of this formula “reconstruct” a new, hypothetical portfolio, by using

the history and the current position. A great advantage of this method is that it

allows for non-linear securities and the implementation is simply, by only using the

historical data. Since the method does not rely on specific assumptions about valu-

ation models, is not prone to model risk. As a result it can account for fat tails and

excludes the need for any linear approximations (for instance first and/or second

order Taylor approximations), which tend to lead to inaccurate VaR calculations.

Thus, it can be utilized on any portfolio with all kinds of instruments, both linear

and non-linear (Jorion, 2007) [4]. For these reasons historical simulations is per-

haps the most widely used method by banks and financial institutions worldwide,

to compute VaR (Jorion, 2001) [3]. The above advantages render historical simu-
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lation as superior over the variance-covariance approach, especially when dealing

with non-linear portfolios, which have become a major feature of most financial

market portfolios nowadays (Jorion, 2007) [4].

However, a serious assumption of historical simulations dictates that the past will

repeat itself. Even if this assumption holds sometimes, in cases of high volatility

the VaR estimate might be severely distorted. The rationale is that the period of

data may omit important events, and of course, the sample may contain events

that may not appear again in the future. Moreover a major complication emanates

from the inclusion into the portfolio of ‘new’ market instruments that don’t have a

robust amount of historical market data. Even though the same critique could be

expressed for any other VaR methodology as well, in this case it is more important,

since the calculation of VaR is largely based on historical data (Damodaran, 2007)

[14]. Another disadvantage of historical simulations is that the users should choose

wisely the time period of data. It is a challenge to decide how far the historical

data should go and it is of a great importance to have a large period of data,

especially if high confidence levels are used. Using large period of data, on the

other hand, leads to a case where more emphasis is given to old time data, rather

than new information. As a result we have distorted VaR estimates when the

historical data set exhibits some huge market jumps. An efficient solution to these

problems was suggested by Dowd (1998) [2]. He presented a convenient solution

to the problems above with the use of weighted historical simulation, which gives

lower weights in observations that lie further in the past (Dowd, 1998) [2]. In that

way we could accurately recognize the market jumps in past periods.

2.5.3 GARCH Model

A cursory look in financial data suggests that some time periods are riskier than

others, as a result the expected value of the magnitude of the errors differs. More-

over there is a degree of autocorrelation in the riskiness of financial returns, since

risky times are not scattered randomly across the data. The variation of the ampli-

tude of the returns from time to time is called “volatility clustering” and GARCH

models, which stand for autoregressive conditional heteroscedasticity and general-
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ized autoregressive conditional heteroscedasticity, are designed to deal with these

issues. GARCH model uses the class of models developed by Engle (1982) [15]

and Bollerslev (1986) [16]. As with the EWMA and the RM models, the return

series is assumed to be conditionally normally distributed and VaR measures are

calculated by multiplying the conditional standard deviation by the appropriate

percentile point on the normal distribution. This model has become a widespread

tool for dealing with time series heteroscedastic models.

More precisely, we define ht the variance of the residuals of a regression rt =

mt +
√
htεt. Here, by definition the variance of ε is equal to one. The form of the

GARCH model for the variance is:

ht+1 = ω + α(rt −mt)
2 + βht = ω + αhtε

2
t + βht.

At this point the constants ω, α, β must be estimated. Updating requires the pre-

vious forecast h and residual. The weights are (1− α − β, β, α) and the long run

variance is
√

ω
1−α−β . This is applicable only if α + β < 1 and makes sense if the

weights are positive (α > 0, β > 0, ω > 0).

The model that we describe is a GARCH (1,1) model. The first number in the

parenthesis indicates us the number of autoregressive lags which appear in the

equation described above, while the second number refers to the number of mov-

ing average lags. The GARCH (1, 1) model is the simplest and more robust of the

family of volatility models and can be extended and modified in many ways.

2.5.4 EWMA Model

Under this model, the standard deviation of returns for date t is estimated over a

window from date t− k till date t− 1 is:

σt =

√√√√(1− λ)
t−1∑
s=t−k

λt−s−1r2s

=
√
λσ2

t−1 + (1− λ)r2t−1

(2.1)

EWMA may be seen as a special case of the GARCH (1,1) in which ω = 0,

α = 1−λ and β = λ. Once we estimate σt the returns are assumed to be normally
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distributed, so the VaR estimates are obtained using percentile points on the nor-

mal distribution: the 99% VaR is -2.33σ and the 95% VaR is -1.66σ. In this case

λ ∈ (0, 1) is known as the decay factor. This factor reflects how the impact of

past observations decays while forecasting one day ahead σt. As the observations

move towards the past, the impact decays exponentially, thus the most recent ob-

servation has the largest impact. A high value of λ leads to a lower decay of the

weights and indicate persistence and long memory of past observations. On the

other hand, low values of λ the weights attached to the returns, decay rapidly as we

move further to the past. The EWMA approach to variance estimation was popu-

larized by RiskMetrics, advocating the use of λ = 0, 94 with daily financial returns.

In this method, the choice of window width k is critical. Short windows suffer

from inferior statistical efficiency, however they do better in capturing short term

volatility dynamics.
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Chapter 3

Backtesting Methods

Given the existence of these alternative models for VaR estimation, and the im-

portance of VaR to financial firms and financial regulators, evaluating the validity

and accuracy of such measures has become an important question. There is a

recent, and rapidly growing, literature on the evaluation of VaR models. From a

regulatory perspective, it is highly desirable to treat the VaR model as a black

box, and obtain inferences about its quality using the observed time series of the

returns and the VaR estimates. Strategies for testing and model selection are said

to be “model free” if the information set that they exploit is restricted to the time

series of the returns and VaR estimates.

Up to this point we have mentioned the main methods of VaR computation.

Since the aim of this thesis is to identify which method has the most accurate

outcome, our next step is to conduct backtesting procedures for each particular

model. Besides, a VaR model is useful only if it predicts future risks with accuracy.

Indicatively, Hendricks (1996) [11] stated that the method of historical simulation

provides exceptional performance compared to the Variance-Covariance approach

and mainly when dealing with high confidence levels. Of course this observation

is reasonable if we consider that the Variance-Covariance approach assumes nor-

mality, while in real terms most securities have “fat tailed” distributions. Other

empirical studies have shown that the analytical approach (Variance-Covariance)

provides accurate results for portfolios with a limited number of non- linear in-

struments (Campbell, 2005). Similarly, in the next section comparisons between
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the different methods of Value at Risk will follow, based on the empirical evidence

of our results.

Backtesting is a statistical procedure, where VaR estimates are compared with

actual profits and losses systematically. A straightforward and simple method of

backtesting is to examine whether the frequency of VaR exceedances is in line

with the number we expect, according to our confidence level. For instance, if

a 99% confidence level is used to compute daily VaR, we expect 1 exception to

occur every 100 days, under normal conditions. These types of tests are known as

unconditional coverage tests, since they ignore conditioning, or time variation, in

the data. When conducting unconditional coverage tests for a specific confidence

level, higher number of exceptions than the number expected would indicate that

the VaR measure systematically understates the portfolio’s actual risk level. The

case which we have fewer than expected VaR violations would be a sign that we

have an overly conservative VaR measure that overstates risk. At this point we

should mention that neither of the two extremes is desirable since they have capi-

tal implications.

Exceptions however could occur closely in time, which also should invalidate the

model. In theory, exceedances should be spread evenly in time, which means they

should be independent. Otherwise, this could be an indication that our model does

not capture correctly the changes in market volatility and correlations. An ideal

VaR model, theoretically, should be able to statistically measure the dispersion

of the exceptions. These types of tests are called conditional coverage tests (i.e.

conditional on current conditions) (Jorion, 2001) [3]. The clustering of exceptions

renders an invalid VaR model, since it does not capture market volatility and

correlations accurately. In times of recession, large losses occurring in succession

are more likely to lead to disastrous events, like bankruptcy (Christoffersen, 1998)

[17]. Consequently, tests of conditional coverage thus also test for conditioning,

alternatively time variation, in the data (Jorion, 2007) [4].

Another form of conditional coverage tests is the so called joint tests, which com-
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bine conditional coverage tests, such as the independence property test with the

unconditional tests. In backtesting verification systems should be able to sat-

isfy both the unconditional coverage and independence properties (Christoffersen,

1998) [17].

Assuming that the number of exceedances is x and the size of our sample is T

we can define the failure rate as x/T . Under the idealistic scenario, the failure

rate would be equal to the confidence level. Therefore, the expected number of

exceptions x in a total of T observations is (1− c)T . Certainly, the number of ex-

ceptions will not be exactly (1− c)T . Instead, it could swing within an acceptable

range. In the backtesting method, the range for x will be calculated and thus the

VaR model can be accepted or rejected (Campbell, 2006) [18]. Considering that

each day will produce either a VaR exception or not with probability p = (1− c),

the exceptions express a classic Bernoulli Trial (Bernoulli process). As a result,

their sum will follow the Binomial distribution:

f(x) =

(
T

x

)
(1− c)xcT−x ∀x = 0, 1, 2, ... .

At this point we should mention that a Binomial distribution x has expected value

E[X] = (1 − c)T and variance V [X] = (1 − c)Tc. Since we have a large enough

sample size, T, by applying the central limit theorem we can approximate the

Binomial distribution by a normal distribution;

z =
x− µ
σ

=
x(1− c)T√

(1− c)Tc
.

Where Z ∼ N(0, 1). As a result, given a confidence level c, there is a range for z,

say |z| ≤ a, where a is the number in the standard normal tables corresponding

to (1− c). Hence the range for x can be calculated as;

(1− c)T − α
√

(1− c)Tc < x < (1− c)T + α
√

(1− c)Tc.

The model is accepted if the number of exceptions x is within the range, and re-

jected otherwise (Dowd, 2006) [19].

A great number of different VaR backtesting methods have been proposed. In the

following chapter, an insight in different backtesting methods is provided. Since

21



SECTION 3.1 CHAPTER 3

the aim of this thesis is the accuracy of the performance of different models of

VaR, the focus is on those backtests that we are using for the empirical evidence.

More precisely, in this thesis we focus on the following techniques:

• Kupic’s “Proportion of Failures” (POF) Test (1995)

• Kupic’s “Time until first failure” (TUFF) Test

• Basel Committees (1996) Traffic Light approach

• Independence Test, Christoffersen (1998)

• Christoffersen’s Conditional Coverage Test

• Mixed Kupiec-Test by Haas (2001)

3.1 Unconditional Coverage

3.1.1 Kupiec’s Tests

POF - Test:

The most straightforward and widely known test, which was suggested by Kupiec

(1995) [20]. This test examines whether the observed number of exceedances is

in line with the expected number, due to the confidence level. Using this test we

validate (backtest) the accuracy of the VaR model by recording the failure rate.

That is, the proportion of times VaR is exceeded in a given sample. It is also known

as POF-test (proportion of failures). To implement the test, we use Hypothesis

testing, where the null hypothesis (H0) imposes that our model is “correct”.

H0 : p = p̂ =
x

T

Where:

p: the failure rate suggested by the confidence level

p̂: the observed failure rate deviation of the portfolio returns

x: the number of exceedances

T : the size of our sample (the total number of observations)
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The point is to identify whether the observed failure rate and the failure rate sug-

gested by the confidence level statistically differ.

The same test can be conducted as a Likelihood Ratio test, which is a statistical

test that calculates the ratio between the maximum probabilities of a result under

two alternative hypotheses. The numerator is defined as the maximum probability

of the observed result under null hypothesis and the denominator as the maximum

probability of the observed result under the alternative hypothesis. This value is

compared to the critical value of χ2 distribution with one degree of freedom, and

if it is larger, the null hypothesis is rejected and our model is inaccurate. Since

the exceptions follow the Binomial distributions, the form of the LR test is the

following:

LRPOF = −2 ln[(1− p)(T−x)px] + 2 ln[(1− x/T )T−x(x/T )x] (3.1)

An immediate observation is that the interval for exceptions is dependent on the

test confidence level p = (1 − c). As we increase the confidence level p the value

of α becomes smaller and thus we have a smaller interval for x. In that way it

is easier to reject the VaR model. On the other hand, smaller value of p leads

to larger interval for x and as a result, becomes easier to accept the current VaR

model (Jorion, 2007) [4].

One more observation about this test is that usually the interval for x is large.

This means that for c = 99% and T = 251 trading days, as long as x < 7 the

model is accepted. However there is high probability that even though the number

of exceptions for this confidence level is less that 7, the model is inaccurate. This

type of error is intertwined with Type I and Type II errors. Type I error refers

to the probability of rejecting a correct model, while Type II error expresses the

probability of not rejecting an incorrect model. Our main purpose is to find a

test statistic that would minimize the possibility of either or both errors occurring

(Jorion, 2007) [4].

The table below shows a summary of the non-rejection regions for the Kupiec POF

test statistic (1995) [20] for different observation periods and confidence levels.
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Table 3.1: Non-rejection Region for Number of Failures x

VaR confidence

Level

Probability

Level p = (1-c)
T=251 days T=510 days T=1000 days

99.0% 0.01 x<7 1<x<11 4<x<17

97.5% 0.025 2<x<12 6<x<21 15<x<36

95.0% 0.05 6<x<20 16<x<36 37<x<65

92.5% 0.075 11<x<28 27<x<51 59<x<92

90.0% 0.1 16<x<36 38<x<65 81<x<120

From the table above it is clear that as we increase the sample size the power

of the test increases. For instance at 90% confidence level, the interval x/T for

accepting the model with 251 observations is in the range [16/251] = 0.06; 36/251

= 0.14] compared to [81/1000 = 0.08; 120/1000 = 0.12] for 1000 observations,

which is much tighter.

However Kupiec’s POF-test has some weaknesses. First of all, the test is sta-

tistically weak for sample sizes consistent with the regulatory framework, which is

one year. This weakness has already been acknowledged by Kupiec himself (Jo-

rion, 2007) [4]. Furthermore, this test takes into consideration only the number of

exceptions and not the frequency of their occurrence. Thus, it may fail to reject

a model that produces clustered exceptions (serially dependent violations), which

is a common weakness of unconditional coverage models (Campbell, 2006) [18].

TUFF-Test:

“Time until first failure” is another type of test suggested by Kupiec. This time,

by using the Likelihood Ratio statistic, we compute the time (v) it takes for the

first exception to occur.

LRTUFF = −2 ln

(
p(1− p)ν−1(
1
ν

)(
1− 1

ν

)ν−1

)
(3.2)

By following the same steps, we reject our model if the value of LR-TUFF is larger

than the critical value of χ2 distribution.
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The main drawback of this test is that it does not identify unsuitable VaR models.

For instance, it might not reject a model that reports exceedance in day 7 with

99% daily VaR (Dowd, 2006) [19]. Due to the lack of power, Kupiec’s TUFF-test

is best used only as a preliminary to the POF-test when there is no larger set of

data available. Finally, we could also use it for testing independence of exceptions

in the mixed Kupiec-test by Haas (2001) [21], which we are going to discuss later

on.

3.1.2 Basel Committee’s (1996) Traffic Light Approach

Since 1998, Regulatory Framework imposes that banks should set aside a specific

amount of capital, so as to cover potential portfolio losses. This amount of required

capital is defined by the bank’s VaR estimations. Due to this framework, a strict

measure of backtesting is needed, so as to prevent banks from understating their

risk estimates. The Basel Committee decided to allow banks to use their own VaR

estimates for the calculation of the capital requirement (Jorion, 2001)[3].

The backtesting method used for the regulatory framework, is carried out by com-

paring the last 250 daily 99% VaR estimates with corresponding daily trading

outcomes. The model is evaluated by counting the VaR exceptions for this period.

Specifically, the regulatory risk based capital requirements are a function of the

larger of either the bank’s current assessment of the 99% confidence level VaR

over a 10 day holding period or a multiple of the bank’s average reported 99%

confidence level VaR over the preceding 60 day holding period plus an additional

amount that reflects the underlying credit risk (c) of the bank’s portfolio (Basel

Committee, 1996)[22].

The size of the Market risk capital requirement depends on the outcome of back-
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testing:

MRCt = max

[
V aRt(0.01), St ·

1

60

59∑
i=0

V aRt−i(0.01)

]
+ c

St =


3 if x ≤ 4 green

3 + 0.2(x− 4) if 5 ≤ x ≤ 9 yellow

4 if 10 ≤ x red

Where:

St: the scaling factor

x: the number of exceptions over the 250 days

In essence St is like a “penalty” factor, which increases as the number of exceptions

increase. This happens, since the accepted value of Market risk capital is the most

conservative. The risk based capital requirement rises when a VaR model indicates

more risk. What may be less intuitive from equation above is that the risk based

capital requirement also depends on the accuracy of the VaR model. Importantly,

the multiplication factor, k, varies with backtesting results. According to the scal-

ing factor, the Basel Committee classifies the outcomes of backtesting in three

categories: green, yellow and red. In the first category, the VaR method is consid-

ered accurate and accepted. The yellow zone outcomes could be produced by both

accurate and inaccurate models with relatively high probability, even though they

are more likely for inaccurate models. In that case, if the bank is able to demon-

strate that the VaR model is ‘fundamentally sound’ and suffers, for example, from

“bad luck” (i.e. not due to normal market conditions), supervisors may consider

revising their requirements. Finally, the red zone indicates a clear problem with

the VaR model and as a result, immediate rejection of the model.

The table below displays the probabilities of obtaining a given number of ex-

ceptions for a correct model with 99% confidence level and T=250 days.
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Table 3.2: Basel ‘Traffic Light’ Probabilities of Obtaining Exceptions

ZONE Number of excpeptions(x) Scaling Factor(k)
Probability

P(X = x)

Cumulative Prob.

P(X <x)

Green zone

0

1

2

3

4

0

0

0

0

0.4

8.11%

20.47%

25.74%

21.49%

13.41%

8.11%’

28.58%

54.32%

75.81%

89.22%

Yellow zone

5

6

7

8

9

0.5

0.65

0.75

0.85

1

6.66%

2.75%

0.97%

0.30%

0.08%

95.88

98.63

99.60%

99.90%

99.98%

Red zone 10+ 1 0.02% 100.00%

Source: Calculation. Given we have c=99% (p=1%) and T=250 days,by substituting this in the Bi-

nomial distribution, we can determine the probability with which certain number of exceptions can be

realized and the cumulative probability as well.

From the exception table (Table 3.2) it is evident that there is a probability of

2.75% that we will have exactly six exceptions in 250 days, and that there is a

probability of 98.63% that the number of exceptions will be less or equal to six.

Despite the simplicity of this method, Basel Traffic light approach is not accu-

rate so as to evaluate a VaR model. One of the reasons is that it does not take

into account the independence of the exceptions. Furthermore, the framework can-

not easily distinguish between accurate and inaccurate models. For these reasons

the method is best used as a preliminary test for the accuracy of VaR.
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3.2 Conditional Coverage

The unconditional coverage tests and the Traffic Light approach take into con-

sideration only the number of the exceptions and not the independence of their

occurrence. Efficient VaR models are able to react in changes in volatility in cor-

relations, otherwise a sequence of consecutive exceptions is occurred. It is very

important to detect exceptions’ clustering, since the occurrence of large losses in

succession is more likely to lead to disastrous events than individual exceptions

occurring occasionally. (Christoffersen & Pelletier, 2004)[23]

The tests of conditional coverage provide us a solution to this problem. Follow-

ing we present two conditional coverage tests: Christoffersen’s (1998)[17] interval

forecast test and the mixed Kupiec-test by Haas (2001)[21].

3.2.1 Christoffersen’s Interval Forecast Test

This test is an independence test (or Markov test), suggested by Christoffersen

(1998)[17]. It is the most known test of conditional coverage. Similar to Kupiec’s

test, it uses the log-likelihood testing, however the test is extended so as to cope

with the independence of exceptions. Furthermore, the test examines whether the

exceptions of every day is independent from the outcome of the previous day. For

example, if the likelihood of a VaR exception increased on a day preceeding a

previous VaR exception, then this would point towards a need to raise VaR level

estimates, as successive losses would imply higher risk exposure. Christoffersen’s

test applies the same Likelihood-Ratio statistical testing framework as Kupiec for

the independence of exceptions.

The analytical form of the procedure is presented in Christoffersen (1998)[17].

At first we define a dummy variable which takes the value of 1 when an exception

is occurred and 0 otherwise:
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It =

 1 if violation occurs

0 if no violation occurs

Let us also define nij as the number of days when condition j occurred assuming

that condition i occurred on the previous day. As a result the following contin-

gency table occurs:

Table 3.3: Contingency Table

It−1 = 0 It−1 = 1

It = 0 n00 n10 n00 + n10

It = 1 n01 n11 n01 + n11

n00 + n01 n10 + n11 N

Furthermore πi is the probability of an exception occurring conditional on state i

on the previous day.

π0 =
n01

n00 + n01

, π1 =
n11

n10 + n11

and π =
n01 + n11

n00 + n01 + n10 + n11

At this point, a hypothesis test is conducted. For an accurate model, the prob-

ability of an exception taking place today should be independent of whether an

exception occurred or not the day before. This means that our null hypothesis

imposes:

H0 : π0 = π1

The equivalent likelihood ratio test is the following:
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LRind = −2 ln

(
(1− π)n00+n10 · πn01+n11

(1− π0)n00 · πn01
0 · (1− π1)n10 · πn11

1

)
That is, the chance of an exception occurring after a day of no exception is the

same as occurring after a day of an exception (Campbell, 2005)[18]. If these pro-

portions differ greatly from each other the validity of VaR is in doubt.

As with the POF-test the LR-statistic follows the the χ2 (Chi-squared) distri-

bution with 1-degree of freedom. As a result, if the value of the LRind -statistic

is less than the critical value of χ2 (Chi-squared) distribution, p with 1-degree of

freedom, the model is considered accurate, otherwise it is rejected.

If we combine this statistic with Kupiec’s POF Test, we obtain the conditional

coverage test:

LRcc = LRind + LRpof

LRcc follows χ2 distribution with 2 degrees of freedom. If the value of the LRcc

statistic is higher than the critical value the null hypothesis is rejected, and the

model is inaccurate.

With Christoffersen’s test, for an inaccurate VaR model, we can examine if the

cause of inefficiency is inaccurate coverage, clustered exceptions, or even both.

For this evaluation one could conduct independently the LRind and LRpof tests.

In that point we should mention that according to Campbell (2005)[18], in some

cases a model passes the joint test, while fails in either the independence or the

coverage test separately. Thus, it is preferable to conduct each one of the tests,

even though the joint test is positive.

A crucial drawback of Christoffersen’s method is that it only considers depen-

dence between two successive days and as a result it has limited power against

clustering. However it is possible that a VaR violation does not depend on the

violation that occurred the day before, but many days ago. Thus this method is
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weak to produce robust results.

3.2.2 Mixed Kupiec-Test

Haas (2001)[21] introduced an improved method, which combines the ideas of Ku-

piec and Christoffersen. This test measures the time between the exceptions so

it can capture more general forms of dependence. In essence this test is a mixed

Kupiec-test which measures the time between exceptions, instead of observing only

whether an exception today depends on the outcome of the previous day.

To conduct this test, Kupiec’s TUFF-test is needed. According to Haas (2001)[21],

Kupiec’s TUFF-test, which was used to measure the time until the first exception,

can be used to count the time between two exceptions. The form of the test

statistic now becomes:

LRi = −2 ln

(
p(1− p)νi−1(
1
νi

)(
1− 1

νi

)νi−1

)
(3.3)

Where νi is the time between exceptions i and i−1. If we calculate the LR statistics

for each exception we have an independence test, where the null hypothesis is that

the exceptions are independent from each other. The form of the test statistic for

n exceptions is the following:

LRind =
n∑
i=2

[
− 2 ln

(
p(1− p)νi−1(
1
νi

)(
1− 1

νi

)νi−1

)]
− 2 ln

(
p(1− p)ν−1(
1
ν

)(
1− 1

ν

)ν−1

)
(3.4)

The statistic follows χ2 distribution with n degrees of freedom and combined with

the POF-test, we obtain the mixed Kupiec’s test, which covers us both for inde-

pendence and coverage:

LRmix = LRpof + LRind

The LRmix -statistic is χ2 distributed with n + 1 degrees of freedom. Just like
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with other likelihood-ratio tests, the statistic is compared to the critical values of

χ2 distribution. If the test statistic is lower, the model is accepted, otherwise the

model is rejected.
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Data and Methodology

The technical part of this thesis is carried out upon foreign exchange data. The

objective of this study is to examine the accuracy of different VaR models that are

currently used by great companies and financial institutions, based on different

backtesting methods.

The performance of a VaR method depends a lot on the type of the portfolio

being considered. For this reason, the decision about the VaR simulation method

and the type of portfolio used in the study has not been randomly selected. The

procedures of backtesting are conducted by comparing daily profits and losses with

daily VaR estimates using a time period of one year (in our case 257 trading days).

Similarly, VaR estimates are calculated using a one day moving window over a 257

day holding period. The accuracy of the results of VaR calculations is evaluated

by applying the Basel framework and tests by Kupiec (1995)[20], Christoffersen

(1998)[17] and Haas (2001)[21]. Due to some technical limitations that we are

going to discuss later, it was not possible to have an arithmetic value for all the

tests that we presented in previous chapters. However, the backtesting process

here is thorough enough and provides a satisfactory view on the accuracy of the

VaR models at this point.

At this chapter we describe briefly the portfolio composition and data, the cal-

culation process of Value-at-Risk and finally the backtesting process.
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4.1 Portfolio Composition and Data

All market and sample data is actual daily data for the period 4 January 1999 to

4 July 2017 (a sample of 4740 days). Our data is derived from the official site of

the European Central Bank (www.ecb.europa.eu), which provided us with daily

exchange rates against the euro for the following 10 major currencies of world:

Australian dollar, Canadian dollar, Japanese yen, Norwegian krone, Russian ru-

ble, Swedish krona, Swiss franc, Turkish lira, Pound sterling and US dollar. The

sample under investigation includes highly volatile periods, since the years of the

financial crisis of 2008 are included.

The reason we chose to conduct the technical part of this thesis upon foreign

exchange data, is because the forex market is considered to be the largest financial

market with over 5 trillion dollars in daily transactions. This number is greater

than the futures and equity markets combined and makes forex market the biggest

and most liquid market globally. International currency markets are made up of

banks, commercial companies, central banks, investment management firms, hedge

funds, retail forex brokers and investors as well. We could claim that the operation

of forex market is fundamental for the international trade and global investing. As

a result the valuation of the accuracy of risk management tools is of a great im-

portance in this field.

At the same time, a second reason for focusing on the foreign exchange rate market

is that we have a linear relationship in the assets and in that way we could make

comparisons of various VaR models without restrictions and difficulty.
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4.2 Calculation Process of VaR

According to Jorion (2007)[4] the choice of the confidence level for the calculation

of VaR should not be arbitrary when backtesting is conducted. A confidence level

of 95% is recommended so as to attain enough observations. With this confidence

level, it is possible to observe enough VaR exceptions within the one year time

period. However in this thesis we preferred a tighter bound for our estimations,

and we used a 99% confidence level. The selection was due to the consideration

of “real life” choices of financial institutions and investors, which use VaR as an

indication of the amount of their capital cushion. The confidence level is crucial

and should reflect the degree of risk aversion of the company and the cost of a

loss of exceeding VaR. Higher risk aversion, or greater costs, implies that a greater

amount of capital should cover possible losses, thus leading to a higher confidence

level.

The VaR for each one of the 10 exchange rates was calculated for every day, after

calculating the 1-day volatility, employing a rolling 1-year return sample. The cal-

culations of different methods of VaR and backtesting as well were conducted by

using mainly the Excel spreadsheet program, combined with the statistical soft-

ware of Stata.

Since the main purpose of this thesis is to identify which VaR method performs

the best, we computed VaR for 4 of the most commonly used methods of VaR:

Parametric, Historical Simulation, EWMA and GARCH.

The Parametric (Variance/Covariance) was the easiest to implement. The ba-

sic assumption is that the portfolio consists of only securities with jointly normal

distribution. Estimating VaR is therefore attained by simply multiplying the cur-

rent portfolio price/value by the portfolio standard deviation and a multiplicative

factor from the normal distribution for the chosen confidence level.

The historical simulation method is a non-parametric approach that is both easy

to understand and implement. Since the method of historical simulation does not
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impose any distributional assumptions and does not require calculations of vari-

ances and covariances, all that we need is historical data of the time series. The

estimation of VaR was attained by reading the desired quantile from the distri-

bution of the portfolio returns. The method consists of going back in time and

applying current weights to a time series of historical asset values.

With the EWMA method once we estimate σt the returns are assumed to be

normally distributed, so the VaR estimates are obtained using percentile points

on the normal distribution. This method is useful as it puts more weight to recent

market developments. In addition, the user can define the weight that will be

used in the estimation process. In this study we used the EWMA decay factor at

0.94, according to RiskMetrics (1996)[24] recommendation for daily data (Jorion,

2001)[3]. This method has relatively more emphasis on recent developments of

market prices and at this point it is important to realize that the choice of this

parameter has a significant effect on the outcome of the estimation. The following

figure gives as a greater picture of this issue:

Figure 1: EWMA weights.

For example, using a decay factor 0.94 leads to a situation where the last observa-

tion (t− 1) is given a 6% weight and an observation one month ago (t− 21) only

1.74% weight. In practice, if the market experiences sudden jumps in volatility,

VaR estimates react faster to these changes when using a lower decay factor.
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Finally, GARCH model was implemented to deal with issues of volatility cluster-

ing. We know that there is a degree of autocorrelation in the riskiness of financial

returns, since risky times are not scattered randomly across the data. In a GARCH

model the return series is assumed to be conditionally normally distributed and

VaR measures are calculated by multiplying the conditional standard deviation

with the appropriate percentile point on the normal distribution. In this thesis we

implemented a GARCH (1,1) model, after estimating the constants required by

the model. For the calculation of VaR with this method we used Stata program

which helped us estimate the variance of the residuals.

4.3 Backtesting Process

Using the Excel program we calculated the VaR estimates and the net profit or

loss as well. The next step is to compare the actual profit or loss against the VaR

estimates and count the number of exceptions against the VaR estimates. These

exception figures would then be used in each backtest model to validate the VaR

estimates.

If we denote rt,t+1 the profit or loss of the portfolio over one day time interval

the corresponding VaR estimate is then defined as V aRt. V aRt is calculated at

the beginning of the period, i.e. using the closing prices of day t. For example, if

the first VaR estimate is calculated with the closing prices of the day t then this

estimate is compared to the outcome of the profit or loss that is realized at the

end of the day t+ 1. In conducting the backtests, the number of exceptions or the

test statistic values where compared to a mapping table with either the number

of exceptions or the χ2 (Chi-squared) distribution critical value, depending on the

backtest method.
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Empirical Results

According to Haas (2001)[21] and Campbell (2005)[18] for the validation of Value

at Risk models more than one backtesting technique should be used. Therefore

the outcome of a test should be confirmed by another test. In this thesis, for every

model of VaR (parametric, historical simulation, EWMA, GARCH) we utilize all

backtesting methods that mentioned earlier for validating the accuracy of the VaR

outcomes.

For the frequency of the exceptions we use the Basel’s Committee “Traffic Light”

Approach and Kupiec’s POF-test. Christoffersen’s interval forecast test and mixed

Kupiec-test study the independence of exceptions. These tests are the traditional

and most common tests, whose implementation only requires the total number of

observations, the number of exceptions and the time when exceptions occurred.

Campbell (2005)[18], Niepolla (2009)[25] and Jorion (2007)[4], stated that high

confidence levels should be avoided for backtesting purposes. For this reason we

utilize a confidence level that is not so high. Therefore all backtests are conducted

at 95% percentile of the χ2 (Chi-squared) distribution as the critical value for the

Likelihood-Ratio tests. The use of 95% confidence level implies that relatively

strong evidence is required for the rejection of a VaR model.
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5.1 VaR Data Consolidated Output

As mentioned to in the previous section, we compared the VaR estimate V aRt−1

with the realized profit and loss, rt, at time t, so as to establish the number of

exceptions as well as when they occur. Below the tables present the consolidated

results of the number of exceptions from the analysis, which is the main output

required for the backtesting procedure. Since we have 10 different exchange rates

against the euro and a large data set, we present indicatively the tables for the 3

major currencies of the world: US dollar, Pound Sterling and Japanese Yen. The

analytical tables for all the exchange rates are available in Appendix B.

Table 5.1: Number of VaR exceptions according to the type of model: US dollar

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 5 6 1 5

2 0 2 1 1

3 3 2 0 7

4 3 1 3 4

5 3 3 5 3

6 2 3 2 1

7 0 1 1 0

8 4 5 4 0

9 15 11 8 18

10 1 0 4 11

11 4 2 5 4

12 3 5 4 5

13 1 1 3 0

14 4 4 9 0

15 12 3 10 0

16 8 6 4 2

17 3 5 6 3
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Table 5.2: Number of VaR exceptions according to the type of model:Pound Ster-

ling

POUND STERLING

Year Parametric Historical Simulation EWMA GARCH

1 4 8 2 1

2 1 1 2 0

3 1 3 2 0

4 3 2 2 0

5 1 2 3 0

6 1 1 2 0

7 2 2 4 0

8 3 3 3 0

9 11 10 3 5

10 2 0 2 6

11 3 3 4 2

12 4 3 6 3

13 0 0 3 0

14 5 4 4 1

15 5 4 6 0

16 8 5 6 2

17 2 3 3 3

It is quite obvious from the tables that different VaR models yield different re-

sults. The number of exceptions varies, and in some cases significantly, between

the models. This observation holds for all exchange rates, making the validation

of our models indispensable.
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Table 5.3: Number of VaR exceptions according to the type of model: Japanese

Yen

JAPANESE YEN

Year Parametric Historical Simulation EWMA GARCH

1 3 1 3 17

2 1 3 3 12

3 1 0 3 8

4 8 7 4 0

5 6 6 4 3

6 4 4 8 1

7 4 3 8 0

8 12 8 9 1

9 16 7 10 19

10 0 0 4 24

11 5 3 5 24

12 3 3 4 23

13 0 0 0 0

14 5 5 3 10

15 5 2 8 5

16 5 2 5 1

17 6 5 5 3

5.2 Frequency of Exceptions

5.2.1 Basel Committees (1996) ”Traffic Light” Approach

The Basel Committees “Traffic light” approach is an unconditional coverage test

which tests for the frequency of exceptions (failure rate). We should mention that

the test is applicable only to banks. Nevertheless the Basel framework provides a

useful exercise as a preliminary test before moving towards statistical hypothesis-

based backtests. For regulatory purposes this backtesting method is mainly used

at a 99% confidence level and exceptions boundaries are provided for this confi-
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dence level. However, for purposes of internal backtesting various confidence level

exceptions can be computed. We can combine the VaR translation property and

the tables of the Binomial distribution to find the exception ranges for the 90% and

95% confidence levels. The following Table 5.4 below displays the cut-off regions

for the number of exceptions using the ‘traffic light’ approach for the three VaR

confidence levels.

Table 5.4

Zone

Confidence Level Green Yellow Red

99% 0-4 5-9 10+

95% 0-17 18-26 27+

90% 0-32 33-43 44+

At this point we recall that the green zone indicates an accurate VaR model,

the yellow zone defines a model that is doubtful, while the red zone indicates an

inaccurate model. We should also mention that outcomes close to zero for lower

confidence levels are also a problem for the model, even though the green zone

indicates an accurate VaR model. For instance, if we observe zero exceptions at

a 95% confidence level over 250 days, our model is considered overly conservative

and actually useless. On the other hand, regulators are only interested in identi-

fying models that underestimate risk, thus even though these outcomes are false,

from a regulator’s point of view they are acceptable.

The findings show that in majority all VaR models are accurate. This outcome is

expected since backtesting has taken place under a 95% confidence level and for

this method the intervals of model acceptance are wider at lower confidence levels

(i.e. 95% and 90%). In the table above all models are accurate, with exception

the GARCH model for the US dollar in year 9, in which the model is under con-

sideration.
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Table 5.5: Traffic Light Approach results according to the type of model: US dollar

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 Green Green Green Green

2 Green Green Green Green

3 Green Green Green Green

4 Green Green Green Green

5 Green Green Green Green

6 Green Green Green Green

7 Green Green Green Green

8 Green Green Green Green

9 Green Green Green Yellow

10 Green Green Green Green

11 Green Green Green Green

12 Green Green Green Green

13 Green Green Green Green

14 Green Green Green Green

15 Green Green Green Green

16 Green Green Green Green

17 Green Green Green Green

As you can see in the Appendix, in most of the cases the models are classified

in the Green zone, rarely in Yellow zone and only in very few cases Traffic Light

Approach determines a model as inaccurate by classifying it in the Red Zone.

Usually these are the cases where we have a very large number of exceptions. For

example in GARCH model for the Russian ruble at year 16 we had 28 VaR vi-

olations and the model was classified in the Red Zone. The analytical tables in

Appendix B indicate that the cases where models are considered inaccurate are

these where GARCH model for the computation of VaR is used.

As we will discuss later on, in general terms, the results from Traffic Light Ap-
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proach are in line with the results of Kupiec’s POF-Tests. The finding makes

intuitive sense since both tests are based on the same testing framework looking

at the failure rate.

5.2.2 Kupiec’s Tests

We utilize Kupiec’s POF-test to statistically test the model’s accuracy in estimat-

ing the proportion of exceptions (unconditional coverage). It is used to examine

whether the amount of exceptions is too large, as was suggested by the Basel traf-

fic light approach, but this time in statistical terms. Even though the number of

observations for one year is limited, the POF-test should yield some significant

results, especially with lower confidence levels. Throughout the process of back-

testing we use 95% percentile of the χ2 distribution as the critical value for all the

likelihood-ratio tests, which means that reasonably strong evidence is required in

order to reject the model.

More or less the test should confirm the results obtained from the Traffic Light

Approach. This is expected since the Basel Traffic Light framework is derived di-

rectly from the failure rate test. However, POF-Test proves that outcomes close to

zero for lower confidence levels are a problem for the model, since our model is con-

sidered overly conservative and useless. This is the reason why Kupiec’s POF-Test

and Traffic Light Approach do not agree in cases where we have a small number of

exceptions, like in the case of the US dollar. Thus Kupiec’s test rejects the model

in most of the years, while Traffic Light Approach accepts it. Even though POF-

test has been criticized for having low statistical power in distinguishing accurate

from inaccurate models, the results can be considered to be fairly reliable with one

year of data and lower confidence levels of 95% and 90%, as in our case.
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Table 5.6: Kupiec’s Test outcome for the US dollar.

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 Reject Reject Reject Reject

2 - Reject Reject Reject

3 Reject Reject - ACCEPT

4 Reject Reject Reject Reject

5 Reject Reject Reject Reject

6 Reject Reject Reject Reject

7 - Reject Reject -

8 Reject Reject Reject -

9 ACCEPT ACCEPT ACCEPT ACCEPT

10 Reject - Reject ACCEPT

11 Reject Reject Reject Reject

12 Reject Reject Reject Reject

13 Reject Reject Reject -

14 Reject Reject ACCEPT -

15 ACCEPT Reject ACCEPT -

16 ACCEPT Reject Reject Reject

17 Reject Reject Reject Reject

Another test of Kupiec that we conducted is the TUFF-test. The statistical sig-

nificance of this test is limited, so no conclusions regarding the quality of a VaR

model should be based on it. In fact the test provides quiet misleading results

compared to POF-Test and Traffic Light Approach. Further evidence exists in the

Appendix.
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5.3 Independence of Exceptions

5.3.1 Independence test of Christoffersen

We use Christoffersen’s independence test to examine if the exceptions are spread

evenly over time or they are clustered. To conduct this test we calculate an LRind

statistic, which we compare to the critical value of the χ2 distribution with one

degree of freedom, for a 95% confidence level. If the value of the LR statistic is

below this value (3,84) the model is considered accurate. In order to calculate the

LR statistic for independence first of all we need to identify the contingency table

and of course the probabilities that come of table 5.7.

Table 5.7

Independence

Test Data (for the US dollar-Parametric method-Year 9)

n00 n01 n10 n11 π0 π1 π

226 14 14 1 0,058333 0,066667 0,058824

NB: nij is the number of days in which state j occurred in one

day while it was at I the previous day, i.e. n11 is the number of

consecutive exceptions. And π is the probability of an exception

conditional on state i the previous day, i.e. π0 is the condi-

tional probability of an exception occurring given no exception

the previous day.

If we substitute the number of conditional exceptions nij and the probability of

conditional π exceptions from the results data (Table 4.5) into LR-test statistic

(LRind) equation (2.6.9) gives:

LRind = −2 ln

(
(1− 0.058824)(226+14) · (0.058824)(14+1)

(1− 0.058333)226 · 0.05833314 · (1− 0.066667)14 · 0.0666671

)
= 0, 017059686

Since the value of the LRind is below the critical value of 3,84 the accuracy of
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the model is accepted. The table below indicates the results of Independence Test

for the US dollar.

Table 5.8: The results of Independence Test for the US dollar.

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 ACCEPT ACCEPT ACCEPT ACCEPT

2 - ACCEPT ACCEPT ACCEPT

3 ACCEPT ACCEPT - ACCEPT

4 ACCEPT ACCEPT ACCEPT ACCEPT

5 ACCEPT ACCEPT ACCEPT ACCEPT

6 ACCEPT ACCEPT ACCEPT ACCEPT

7 - ACCEPT ACCEPT -

8 ACCEPT ACCEPT ACCEPT -

9 ACCEPT ACCEPT ACCEPT ACCEPT

10 ACCEPT - ACCEPT ACCEPT

11 ACCEPT ACCEPT ACCEPT ACCEPT

12 ACCEPT ACCEPT ACCEPT ACCEPT

13 ACCEPT ACCEPT ACCEPT -

14 ACCEPT ACCEPT ACCEPT -

15 ACCEPT ACCEPT ACCEPT -

16 ACCEPT ACCEPT ACCEPT ACCEPT

17 ACCEPT ACCEPT ACCEPT ACCEPT

In that case according to the test the majority of VaR models are accurate. In

fact, for the most of the exchange rates of the whole study the test had a positive

outcome. That means that it is extremely rare to have multiple exceptions occur-

ring successive days.

Once again we applied this test for all the exchange rates of each one of the 4
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different VaR methods. In many cases there are years that we had not exceptions

occurring for two consecutive days. As a result π1 (the probability that we have

exceptions for two successive days) is zero and the value of the LRind test cannot

be defined. Since we have no consecutive exceptions, it is reasonable to conclude

that the model is accepted. Even though in many cases we had not an arithmetic

value for the LR test it is clear that in the vast majority the outcome is positive to

the acceptance of the model. Despite this outcome no instant conclusions should

be derived from it, because the test does not capture more general forms of depen-

dence between exceptions such as duration based dependence. Of course we could

say that the model avoids the most severe time of dependence, which is multiple

exceptions occurring consecutive days.

5.3.2 Independence Test of the Mixed Kupiec-Test

This test was suggested by Haas (2001)[21] and it is preferable than Christof-

fersen’s test of independence, since it captures all forms of dependence between

exceptions and not only these occurring in successive days. The implementation

of the test includes an LR test which is distributed as an χ2 distribution with n

degrees of freedom, equal to the number of exceptions.

The implementation of the test for the US dollar, parametric method of VaR,

in year 15 has the following outcome: LRind = 9, 806880918 + 0, 801139262 =

10, 60802018. Since the value of LRind is below the critical value of 21,02606982,

the model is accepted.

As we can see from the table below, the results for the acceptance of the model

vary and depend on the method of VaR and the special characteristics of each the

year. We know that the data include periods of high volatility and the investiga-

tion takes place when market conditions are not normal.
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Table 5.9: The results of Independence Test of the Mixed Kupiec for the US dollar.

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 Reject Reject - Reject

2 - Reject - -

3 Reject Reject - ACCEPT

4 ACCEPT - ACCEPT ACCEPT

5 ACCEPT ACCEPT ACCEPT ACCEPT

6 ACCEPT ACCEPT ACCEPT -

7 - - - -

8 Reject ACCEPT Reject -

9 Reject ACCEPT ACCEPT Reject

10 - - Reject ACCEPT

11 ACCEPT ACCEPT Reject Reject

12 ACCEPT ACCEPT ACCEPT ACCEPT

13 - - Reject -

14 ACCEPT ACCEPT Reject -

15 ACCEPT Reject ACCEPT -

16 - - Reject -

17 Reject Reject Reject Reject

By applying the test to our data, we see that we do not have an arithmetic value

in cases where an exception occurred the first day of our year (in that case we

have no value for the TUFF-Tests as well), or even when we had clustered excep-

tion for two successive days, where the summation cannot be calculated in our

LR formula. In these two cases we could conclude of course that the model is

inaccurate. Generally it is obvious that as a test is more conservative and strict

than Christoffersen’s since its results differ significantly from Christoffersen’s test.
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5.4 Tests of Unconditional Coverage and Inde-

pendence

5.4.1 Christoffersen’s Interval Forecast Test

With the combination of Kupiec’s POF-Test and Christoffersen’s independence

test, we can perform a joint test of conditional coverage. The test statistic can be

derived directly from the results of the previous backtests as follows:

LRcc = LRind + LRpof

The value of LRcc is compared to the critical value of the χ2 distribution with two

degrees of freedom, for a 95% confidence level, which is 5,99. If this number is

lower than 5,99 the model is rejected. For example, let’s consider the LRcc for the

US dollar for Year 9 of the parametric model:

LRcc = LRind + LRpof = 0, 01706 + 0, 360181 = 0, 37724

This value is less than the χ2 (Chi-squared) critical value of 5.99 (95% percentile

with 2-degrees of freedom), and therefore the model is accepted.

In cases where we already know that the POF-test produced results where critical

values were exceeded significantly, the results from the joint test are not surprising,

and that is the case. Generally, when the values of LRind or LRpof are significantly

larger than the critical values, it is highly possible that LRcc will also exceed the

critical value and our model will be inaccurate. This conclusion is obvious in the

case of US dollar.

The cases we accepted the VaR models, are these which the model was accepted

by Kupiec’s POF-Test and Christoffersen’s independence test. Unfortunately, we

are not able to conduct the LRcc test when we have no value for the LRind or the

LRpof , which is the reason why there are many gaps in our tables. A close look

at the consolidated tables (Appendix B) will prove that for this specific test we
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have not a fixed outcome, since the conclusions for the validity of the model vary.

Below the outcomes of the test for the US dollar are presented:

Table 5.10: Christoffersen’s Interval Forecast Test results for the US dollar.

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 - - - -

2 - - - -

3 - - - ACCEPT

4 - - - -

5 - - - -

6 - - - -

7 - - - -

8 - - - -

9 ACCEPT ACCEPT ACCEPT ACCEPT

10 - - - ACCEPT

11 - - - -

12 - - - -

13 - - - -

14 - - ACCEPT -

15 ACCEPT - ACCEPT -

16 ACCEPT - - -

17 - - - -
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5.4.2 Mixed Kupiec’s-Test

Mixed Kupiec’s -test is capable of capturing more general forms of dependence

between exceptions instead of just two successive days, thus it can be considered

to be more informative and reliable than the joint test by Christoffersen. As with

Christofferssen’s Interval Forecast test above, the mixed Kupiec-test can also be

conducted in a straightforward fashion since we already have the results of the

POF-test and the independence test:

LRmix = LRpof + LRind

Let’s calculate as an example, the LRmix for the 3rd year of the parametric method

of the US dollar:

LRmix = 11, 36376 + 11, 18488 = 22, 54864

This time we compare the value of LRmix with the 95% percentile of χ2 distribu-

tion with n+1 degrees of freedom, where n is the number of exceptions. The model

is rejected if the value of LRmix is lower than the critical value. This outcome is in

a way expected, when we have a failure resulted also from the Christoffersen’s test

which is statistically weaker than the mixed Kupiec-test. For our example, LRmix

is higher than the critical value of 9,487729037 of the χ2 distribution (with 4 de-

grees of freedom since that year we had 3 VaR exceptions), so the model is rejected.

Indicatively, we present the results for the US dollar exchange rate, in which the

majority of the outcomes indicate that we should reject VaR models. Among the

other models, the EWMA method has two positive indications. We could say that

the results are worrying.
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Table 5.11: Mixed Kupiec’s Test results for the US dollar.

US DOLLAR

Year Parametric Historical Simulation EWMA GARCH

1 Reject Reject - Reject

2 - Reject - -

3 Reject Reject - Reject

4 Reject - Reject Reject

5 Reject Reject Reject Reject

6 Reject Reject Reject -

7 - - - -

8 Reject Reject Reject -

9 - ACCEPT ACCEPT -

10 - - Reject ACCEPT

11 Reject Reject Reject Reject

12 Reject Reject Reject Reject

13 - - Reject -

14 Reject Reject - -

15 ACCEPT Reject ACCEPT -

16 - - Reject -

17 Reject Reject Reject Reject

5.5 Final Results and Discussion

Even though we applied many different backtests in this study, the purpose is

not to use the wide scale of tests in forthcoming testing. Out of all the backtests

we conducted more attention should be paid on those that are considered to be

the most reliable. Therefore we ought to be careful when interpreting backtesting

results from Kupiec’s TUFF-Test, and for the same reason one should recognize

the shortcomings of Christoffersen’s independence test as well. According to Haas

(2001)[21] the most reliable and robust test is the mixed Kupiec’s Test. Haas
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recommended that the procedure we should follow for model validation with back-

testing is the following:

Figure 2: The procedure for model validation by Haas.

As we can see from the flowchart above, the testing procedure starts with the

mixed Kupiec’s test. A positive outcome should be confirmed by the separate

tests of coverage and independence, since we know that joint tests may not always

detect violations of these two properties. If the model is rejected due to the mixed

Kupiec’s test, the next step is to investigate whether the rejection is due to incor-

rect coverage between exceptions, dependence or even both.

All the tests we mentioned were applied in our dataset which is composed of

10 foreign exchange rates towards euro, for 17 years. VaR was calculated by 4

different methods and backtesting was conducted for each one of them, in order

to identify the most efficient VaR method. Unfortunately the analytical results of

both the VaR estimates and backtesting procedure cannot be analyzed in detail

for every currency and every year, since the data set is very large. However we

have created analytical tables that indicate the results from the Excel spreadsheet

and are available in Appendix B.
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Following the strategy of optimal backtesting suggested by Haas (2001)[21] and

taking into consideration the outcomes of the backtests, we counted for each one

of the VaR methods (Parametric, Historical simulation, EWMA, GARCH), for

every currency and every year the number of accepted models. To our surprise,

the proportion of accepted VaR models due to the number of years and assets was

very small. The VaR model which was accepted most of the times was the EWMA.

The second one was Historical simulation, and following GARCH and Parametric

method.

The fact that the method of EWMA was proven to be the most efficient of these

4 was compatible to our intuition. This method puts more weight to recent mar-

ket developments, thus even though it takes into consideration past events the

method controls how much the future will be affected by the past. In essence

this happens due to the decay factor λ. In this study we used the EWMA decay

factor at 0.94, according to RiskMetrics (1996)[24] recommendation for daily data

(Jorion, 2001)[3]. However, the user can define the weight that will be used in the

estimation process, since this parameter has a significant effect on the outcome of

the estimation. In practice, if the market experiences sudden jumps in volatility,

VaR estimates react faster to these changes when using a lower decay factor.

It would be challenging to test whether different choice of parameters would yield

better results. For instance, using a different decay factor is a potential idea for

future testing. Especially the unusual circumstances in case of 2008 perhaps re-

quire a different approach by laying even more emphasis on recent developments,

i.e. using a lower decay factor.
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Conclusions

“In short we ought to be able to identify most VaR bad models, but the worrying

issue is whether we can find any good ones.” (Dowd, 2006)[19]

VaR is one of the most prominent risk management techniques in finance, mostly

used by financial institutions, non-financial institutions, and regulators alike. Nev-

ertheless, it is important to mention that when implementing VaR systems, a num-

ber of simplifications and assumptions are involved. Even though VaR is widely

used and commonly accepted as a risk management tool several criticisms have

arisen concerning VaR methods, which are still debated. This makes the accuracy

of VaR estimates dubious. There are a number of studies that have been conducted

comparing the performance of the various VaR methods. In this study we focused

on foreign exchange rates towards euro.

The theoretical part of this thesis provided a comparison of some of the VaR

estimation techniques. More precisely, we compared the variance-covariance ap-

proach, historical simulation, EWMA and GARCH models. During the theoretical

comparison of these methods we placed emphasis on their shortcomings, knowing

their potential drawbacks provide motivation for the backtesting of VaR. More-

over, a theoretical comparison of some of the most common backtesting methods

was presented.

We defined the fundamental properties of an accurate VaR model which are un-
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conditional coverage, the independence property and conditional coverage and we

discussed their relevance from the perspective of examining the accuracy of VaR

model estimates. We reviewed the tests that examine the validity of the uncondi-

tional coverage property, the independence property, or joint properties. The back-

testing techniques that were presented are; Kupiec’s Proportion of Failures-Test,

Basel Committees “Traffic light” Approach, Independence tests of Christoffersen

and Kupiec and the joint-tests of Christoffersen and Kupiec.

The second part of this work was an empirical study that focused on applying

the presented backtesting techniques in validating the accuracy of the VaR models

mentioned above. The backtesting procedure was conducted at a 95% confidence

level for a data set of 17 years. The results from backtests provided some indica-

tion of potential problems with the models. The tests of unconditional coverage

suggested underestimation of risk in many cases for our data, while Christoffersen’s

test of independence indicated more positive results. This means that an excep-

tion which occurred today did not seem to have an effect on whether an exception

will occur tomorrow. On the other hand, the mixed Kupiec’s-Test produced a dif-

ferent outcome suggesting that the exceptions are not totally independent of each

other. This test is more reliable since it captures more general forms of dependence.

The backtesting results raise concerns about the model’s ability to estimate in

satisfactory precision when market conditions are not normal. For example we

can imagine the turbulent market of 2008 and especially the rising volatility dur-

ing the autumn. Inevitably the crisis caused problems in estimating parameters

that should describe future market movements. Besides all VaR models rely on

historical market data, thus this issue concerns VaR systems in general. VaR is

not able to capture abnormal market behavior, so even if we have strong evidence

against our VaR models, we should be very cautious in accepting or rejecting the

model.

During the empirical analysis, we provided some evidence that some of the back-

testing models may produce misleading results and are unable to distinguish good
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VaR models from bad ones. More precisely, the Christoffersen’s framework is in-

capable of capturing exception dependence, and in addition, the TUFF-test by

Kupiec produced very misleading results compared to the POF-test.

Finally, after taking into consideration all the parameters of backtesting proce-

dure we came to the conclusion that the most accurate VaR model for our data

is the EWMA. Of course this estimation does not hold for all kinds of assets or

portfolios. In our investigation we used exchange rates for a long time horizon,

since we have a linear relationship in the assets and in that way we could make

comparisons of various VaR models without restrictions in Excel program. A study

of different types of instruments might yield a different outcome. It would be very

interesting to conduct the same study for equities, government bonds, commodi-

ties or interest rate derivatives. Moreover we should point that for the backtesting

we used a 95% confidence level. Confidence levels of 99% or 90% may not agree

with our outcomes. These are very interesting avenues for further research.

Systematic backtesting should be a regular part of VaR reporting in order to

constantly monitor the performance of models. To this end, it is imperative that

VaR estimates are never considered to be the Holy Grail of portfolio risk manage-

ment, irrespective of how sophisticated the VaR model may be. The knowledge of

the shortcomings associated with VaR models could lead to better interpretation

of VaR numbers, and consequently improved financial risk management.

58



References

[1] Thomas J Linsmeier, Neil D Pearson, et al. Risk measurement: An introduc-

tion to value at risk. 1996.

[2] Kewin Dowd. Beyond value at risk: the new science of risk management.

1998.

[3] P. Jorion. Value at Risk, The New Benchmark for Managing Financial Risk,

2nd Edition. McGraw-Hill, United States., 2001.

[4] P. Jorion. Value at Risk, The New Benchmark for Managing Financial Risk,

3rd Edition. McGraw-Hill, United States., 2007.

[5] David Einhorn and Aaron Brown. Private profits and socialized risk. Global

Association of Risk Professionals, 42:10–26, 2008.

[6] Nassim Taleb and P Jorion. Against var. Derivatives Strategy, 2:21–26, 1997.

[7] Matthew Pritsker. Evaluating value at risk methodologies: accuracy versus

computational time. Journal of Financial Services Research, 12(2):201–242,

1997.

[8] Philippe Jorion. In defense of var. Derivatives Strategy, 2(4):20–23, 1997.

[9] Tanya Styblo Beder, Michael Minnich, Hubert Shen, and Jodi Stanton. Vi-

gnettes on var. Journal of Financial Engineering, 7:289–309, 1998.

[10] Tanya Styblo Beder. Var: Seductive but dangerous. Financial Analysts Jour-

nal, 51(5):12–24, 1995.

[11] Darryll Hendricks. Evaluation of value-at-risk models using historical data.

1996.

59



[12] JP Morgan. Reuters (december 18, 1996), riskmetrics-technical document,

fourth edn, jp morgan and reuters, new york.

[13] Mark Britten-Jones and Stephen M Schaefer. Non-linear value-at-risk. Review

of Finance, 2(2):161–187, 1999.

[14] Aswath Damodaran. Strategic risk taking: a framework for risk management.

Pearson Prentice Hall, 2007.

[15] Robert F Engle. Autoregressive conditional heteroscedasticity with estimates

of the variance of united kingdom inflation. Econometrica: Journal of the

Econometric Society, pages 987–1007, 1982.

[16] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity.

Journal of econometrics, 31(3):307–327, 1986.

[17] Peter F Christoffersen. Evaluating interval forecasts. International economic

review, pages 841–862, 1998.

[18] Sean D Campbell. A review of backtesting and backtesting procedures. The

Journal of Risk, 9(2):1, 2006.

[19] Kevin Dowd. Retrospective assessment of value at risk. Risk Management:

A Modern Perspective, Amsterdam et al, pages 183–203, 2006.

[20] Paul H Kupiec. Techniques for verifying the accuracy of risk measurement

models. The journal of Derivatives, 3(2):73–84, 1995.

[21] Marcus Haas. New methods in backtesting. Financial Engineering Research

Center, Bonn, 2001.

[22] BASLE COMMITEE ON BANKING SUPERVISION. Amendment to

the capital accord to incorporate market risks. Basle, Switzerland, jan.

1996a.[Links], 1996.

[23] Peter Christoffersen and Denis Pelletier. Backtesting value-at-risk: A

duration-based approach. Journal of Financial Econometrics, 2(1):84–108,

2004.

60



[24] JP Morgan. Riskmetricstm–technical document, morgan guaranty trust com-

panies. Inc. New York, 1996.

[25] Olli Nieppola et al. Backtesting value-at-risk models. 2009.

61



Appendix A

Critical Values of the χ2

Distribution

62



63



Appendix B

Analytical Outcomes of

Backtesting Process

64



65



66



67



68



69



70



71



72



73



74



75



76



77



78



79



80



81



82



83



84



85



86



87



88



89



90



91



92



93



94



95



96



97



98



99



100



101



102



103



104



105



106



107



108



109



110



111



112


