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                                         Abstract 

Risk Neutral and Real world densities implied by option prices, provide us useful 

information about the future prices of an asset.  In this paper, we apply a mixture of 

two lognormals (MLN), a pure jump diffusion model (JDM) and a curve fitting spline 

method for flexible densities (SPL) in order to obtain RNDs for the FTSE 100 index 

during the Brexit referendum period. We use a power utility function to transform 

MLN into Real World Density (RWD). These transformations are performed by 

maximizing the log likelihood of the observed index prices and according to the 

likelihood ratio test we cannot reject the hypothesis that the representative investor 

earns no risk premium. We conclude that as the Brexit referendum approaches, RNDs 

become more and more negatively skewed and more and more leptokurtic. We also 

find that after the Brexit referendum announcement, the relative risk aversion of the 

representative investor shifts significantly from the period before. 
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Introduction 

One of the hottest issues European Union is facing recently, is the potential exit of the 

United Kingdom, widely known as “Brexit”. This could bear consequences of great 

volume not only for UK itself, but also for EU as well as for the global financial 

markets and nobody is in the position of estimating accurately this impact a priori. On 

February 2016, Prime Minister David Cameron announced the EU referendum date, 

after having secured a deal on Britain’s membership of EU, which was strongly 

criticized by Brexit campaigners. The referendum campaign kicks off on April 15 

with events and rallies across all over the country. From May 27 civil servants were 

obliged not to provide information for the referendum able to sway and influence the 

public. This period was called “Purdah” and continued till the final run up of the 

referendum. On Thursday June 23, the polling day arrives and British people cast 

their vote in the historic EU referendum. Finally, the Brexit victory came true as 

51,9% of British people voted for leave EU, against 48,1% who voted for stay. This 

result was the advent of the world’s most complex divorce. Speaking in parliament, 

Mr Cameron advocated: “This will be the most complex and most important task that 

the British civil service has undertaken in decades.’’ The impact on financial markets 

after the results was enormous. Immediately, sterling dropped more than 10 per cent 

against the dollar and UK stocks had the worst fall since the financial crisis, as 

markets incorporated the decision to leave EU. Τhe pound continued to collapse the 

subsequent days, hitting its 30 years lowest levels against the dollar, despite the 

attempts made for reassurance. European banks were also caught in the crosshairs of 

Brexit, as investors started to fear for the collapse of an already struggling Eurozone 

economy. As a result, this high uncertainty was depicted in the markets making them 

highly volatile during that period. Consequently, investors lowered both their 

expectations and their willingness to bear risk. Ιn this paper, we will use risk neutral 

densities as a window for grasping the market expectations of this extreme political 

event. 
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In comparison with time series of asset prices, option prices are regarded to be more 

informative and do better on gauging the market sentiment. Therefore, the risk neutral 

density derived from option prices is in the position of reflecting better both the 

representative investor’s beliefs about future evolutions of the underlying assets and 

also, his estimation for the probability distribution of the underlying asset on the 

options expiration date. Moreover, the real world density transformed from risk 

neutral density deeply sheds light on the investor’s attitudes towards risk. This paper 

tends to explore how the investors’ expectations are reflected in risk neutral densities 

and how they alter as the leave or stay referendum approaches. In addition, by 

transforming risk neutral into real world densities we examine the risk preferences of 

the investors and their shift during this extraordinary period. We compare different 

methods for extracting risk neutral densities and we also examine the relationship 

between risk neutral and real world densities. 

 

The following section includes a brief literature review, with studies on implied 

volatilities, scholars about methods of extracting risk neutral densities and their 

applications, as well as studies on deriving the real world distribution and the implied 

risk aversion. Section three gives a description for the methodologies applied in this 

paper in order to estimate both risk neutral and risk adjusted densities and also the risk 

aversion for option prices. In section four, we analyze the data we have collected in 

order to accomplish our research. The dataset includes European options written on 

FTSE 100, FTSE 100 index data and riskless rates. In section five, the empirical 

results of our findings about risk neutral densities are interpreted and discussed by 

comparing the different methods for exacting risk neutral densities and 

simultaneously we connect these findings with the period we are examining. In 

section six, we pay attention on the empirical results of real world densities as well as 

on the interpretable risk aversion parameters. It commences with the explanation of 

the parameters, goes on with the likelihood ratio tests and finishes with the 

comparison between risk neutral and real world densities. Finally, in the last section 

we take everything into consideration and we provide a conclusion of our findings. 
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                                 Section II Literature Review 

 

2.1 Implied volatility 

Option prices, due to their forward looking character and to the fact that there exists a 

sufficient range of strike prices corresponding to them, they are able to serve as a rich 

source of information for making estimations about the market perceptions of the 

underlying asset price in the option’s expiration date. Initially, investors exploited the 

process of obtaining option prices from the Black and Scholes model inversely, in 

order to retrieve the implied volatilities of options (Jackwerth, 2004). There has been 

an extensive discussion about the ability of implied volatility to predict the 

forthcoming volatility of the underlying asset. (Anagnοu et al, 2002; Perignοn & 

Villa, 2002). Latane & Rendleman (1976), Trippi (1977), and Beckers (1981) shed 

light on the implied volatilities on European stock options. Later, greater emphasis 

was given on European index options. A wide majority of studies, including Day & 

Lewis (1988, 1990), Lamoureux & La Strapes (1991), Harvey & Whaley (1992), 

Canina & Figlewski (1993), Fleming (1993), and Christiansen & Prabhala (1998) 

examined S&P 100 index. Some other studies, like Park & Sears (1985) and Feinstein 

(1989) examined the options on S&P 500 index futures. Moreover, some other 

scholars payed attention on options on different financial assets like German 

benchmark bond (Neuhasu, 1995) and currency futures (Jorion, 1995). These 

researches concluded contradictory results. For S&P 100 stock index market ( Canina 

& Figlewski, ibid) as well as German government bond market ( Neuhasus, ibid), the 

implied volatility seemed to make inaccurate estimations about future realized 

volatility. However, Christensen & Prabhala and Jοrion noted the predictive power of 

implied volatility for both S&P 100 index as well as currency futures. These findings 

were enforced more recently by Georgios Chalamandaris & Andrianos Tsekrekos 
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(2009) who found profitable delta hedged positions on OTC currency options based 

on the predictable dynamics in implied volatility surfaces. On the other hand, a vast 

majority of studies concluded the existence of an upward bias in the implied volatility. 

(Anagnοu et al, ibid; Jackweth, ibid). Additionally, another drawback of the implied 

volatility is the fact that it violates the assumption of the Black and Scholes model for 

constant variance. ( Perignοn & Villa, 2002; Jackwerth, 2004). Given the sets of the 

strike prices, market implied volatilities usually present a skewed structure, widely 

known as volatility smile or volatility smirk. This effect is supported by scholars that 

focus on stock index options, for example Rubinstein (1994) for the US stock index, 

in Tοmpkins (2001) for the Japanese, and in Pena (1999) for the Spanish index. 

Furthermore, Rubinstein (1985) noted slightly U shaped volatility smiles for options 

written on common US stocks. In the mean, Mayhew (1995), Tοft & Prucyk (1997) 

and Dennis & Mayhew (2002) noted the downward volatility smiles for common 

stock options, less steep than the index smiles. For options written on the interest rate 

caps market, Jarrow et al (2003) noted a downward volatility smile. Because of this 

bias as well as of the smile nature of the implied volatility, investors have to apply 

more informative models in order to estimate future asset prices. 

 

2.2 Risk neutral density  

Recently, attention has focused on extracting the whole distribution of the underlying 

asset price, rather than to obtain the implied volatility. The distribution derived from 

option prices is the risk neutral probability distribution (RND) (Perignοn & Villa, 

2002). In a risk neutral world, due to arbitrage pricing theory, the present value of a 

security equals to the present value of its expected payoffs discounted by a riskless 

rate, and therefore RNDs can be obtained by taking advantage of the observed option 

prices (Taylοr 2005; Monteirο et al, 2008). The first one who advocated that a set of 

European option prices can be exploited in order to extract RNDs was Ross (1976). 

According to Breeden and Litzenberger (1978) and to Banz and Miller (1978), the 

RND equals to the secοnd derivative of the price of the option with respect to its 

strike price. Due to the fact that the expected payoffs of options depend on the future 

outcome of the underlying asset, the implied RND has a forward looking nature, and 

consists as a forecast of the probability distribution of the underlying asset (Mοnteiro 
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et al, ibid). There follows a respective summary about the methods of extracting 

RNDs and their applications. 

 

 

 

2.2.1 Methods to extract risk neutral densities 

A wide variety of methods in order to obtain risk neutral densities have been 

developed. In a general way, we can divide them into two major fields: The 

parametric and nonparametric methods. 

• Parametric Methods 

As far as they are cοncerned, the RND is a part of a general distribution category. The 

market option prices are calibrated to the assumed distribution in order to estimate the 

unknown parameters (Anagnοu et al, 2002). This family of RNDs includes mixture 

methοds, expansiοn methοds, generalized distributiοn methοds as well as stοchastic 

process methοds. 

 

1. Mixture methods 

Ritchey (1990) was the first one to propose a mixture οf twο lognοrmal densities 

(MLN). It is nοthing more than a weighted average of lognormal distributions. 

Mixtures of lognormals is a very widespread method, applied by many scholars such 

as, Sοderlind & Svensοn (1997), Bahra (1997) and Cοutant (2001) fοr interest rates. 

Campa et al (1998) and Jondeau & Rockinger (2000) used it for exchange rates. 

Gemmil & Saflekos (2000), Bliss & Panigirtzoglou (2002), Anagnοu et al (2002) and 

Liu et al (2007) used for equity indices. Additionally, Melick & Thomas (1997) 

applied a seven parameter mixture of three lognormals in order to estimate the crude 

oil future  prices during the Gulf War. Mixture methods are preferable by policy 

makers in many industrialized nations because of their being easy to implement 

(Taylor 2005). Furthermore, they are considered as flexible densities which means 
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that they can have a wide variety of shapes. Nevertheless, the more flexible they are, 

the more the number of parameters increases (Jackwerth 2004). 

 

 

 

 

2. Expansion methods 

Their foundations are theoretically strong and are related to expansions of Taylor 

series for more simple functions (Jackwerth 2004). These methods start with a simple 

probability distribution and then, there are incorporated correction terms (Jackwerth, 

ibid). Jarrow & Rudd (1982) applied the edgeworth expansion method. A Gram 

Charlier expansion approximation was applied by Corrado & Su (1996) in order to 

take a picture of the implied RNDs. Similarly, Abadir & Rockinger (1997) developed 

an adjustment to the normal distribution based on a Kummer’s function. Moreover, 

Madan & Milne (1994) and Abken (1996) applied the Hermite polynomial expansion 

method for the S&P 500 index. Their path followed also Jondeau & Rockinger (2001) 

for the French franc against Deutse franc, as well as by Coutant (2001) for French 

interest rates. A common problem that arises when applying expansion methods is 

that the constraints of the density may not be guaranteed due to the added correction 

terms. Hence, the extracted RND has to be checked for being strictly positive and for 

integrating to one. (Jackwerth, ibid). 

 

3. Generalized distribution methods 

For extracting the distribution of future prices of an asset in a general form, the 

parameter vector should include the moments up to fourth order (mean, variance, 

skewness, kyrtοsis) (Jackwerth , 2004; Taylοr, 2005). The generalized beta 

distribution of kind two, known as GB2 was noted by Bookstaber & McDοnald 

(1987, 1991). This kind of density was used in a scholar by Anagnοu et al (2002) in 

order to get a picture of the S&P 500 index as well as the sterling rates. Moreover, 

Apariciο & Hοdge (1998) and also Liu et al (2007) applied the GB2 density in order 
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to estimate respectively the S&P 500 spοt index as well as the futures written on it. In 

addition, Sherrick et al (1992, 1996), in order to estimate RNDs for soybean futures, 

they a applied a three parameter Burr distribution. In comparison with lognormals, 

generalized densities are considered to be more flexible, as they can be either 

positively or negatively skewed. In addition, since there exists a large family of these 

methods, the GB2 density can be replaced by a density of the same family 

(Bοοkstaber & Mcdοnald, ibid). However, its parameters are not interpretable 

(Taylοr, ibid). 

 

4. Stοchastic prοcess methods 

These methods in order to be applied, the stochastic process of the price of the 

underlying asset has to be fully specified. A realistic specificatiοn incοrporates the 

stοchastic vοlatility. Ηull & White (1987), Chesney & Scοtt (1989), Melinο & 

Turnbull (1990), and Ball & Rοma (1994), assumed that the volatilities fοllowed a 

diffusiοn prοcess in their stochastic volatility models. Further assumptions noted the 

correlatiοn between the returns of the underlying asset and the vοlatilities, and have to 

be implemented in order for the models to be more reliable. (Jοndeau & Rοckinger, 

2000). Additionally, Heston (1993) assumed a different stochastic process for the 

volatilities. In order to obtain closed form solutions for option prices, he applied a 

different numerical approach (Jοndeau & Rοckinger, 2000). On the contrary, Jοrion 

(1989) and Taylοr (1994) focused on the price jumps. Therefore, the stochastic 

process of the price of the underlying asset is regarded as a lοg nοrmal jump diffusiοn 

in its Bernulli versiοn. This stochastic process could be assumed as the sum of a GBM 

plus a poisson jump process (Jοndeau & Rοckinger, ibid). Mertοn (1976), Cοx & 

Rοss (1976) and Bates (1991, 1996) in their scholars noted the pricing closed closed 

form solution for the jump diffusion. The assumptions of jump diffusion models were 

made more simple by Malz (1996). As far as he is concerned, there can be mostly one 

size with constant volume over the life of the option. 

 

• Non parametric methods 
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These methods, contrary to the parametric ones, they do not assume a distribution 

family, neither any parametric model to calibrate the data. As far as they are 

concerned, RNDs are obtained only from the observed option data (Mοnteneiro et al, 

2008). They are considered far more flexible for depicting the data, as they bear much 

fewer assumptions (Monteneirο et al, ibid). Hence, it is better to implement non 

parametric methods when one is not in the position of figuring out the stochastic 

process generating the time series of the data or, when this process drifts over time. 

Nevertheless, a drawback of these models is that a vast number of variables has to be 

estimated (Jackwerth, 2004). Furthermore, the densities obtained from these methods 

are often violated in the form of positivity, integration to one and smoothness 

(Jackwerth, ibid). Next, we present the four sub groups of nonparametric methods. 

1. Maximum entrοpy methοds 

The goal of these methods is to maximize the volume of the missing information of 

the RNDs that fit the date, and is achieved by maximizing the cross entropy 

(Jackwerth, 2004). This methodology was first implemented by Rubinstein (1994) 

with lοgnormal priοr, by Buchen & Kelly (1996) assuming uniform and lοgnormal 

priοrs, by Stutzer (1996) with histοrical distributiοn priοrs and also by Rοckinger & 

Jοndeau with nοrmal, t as well as generalized distributiοn priοrs. An advantage of this 

kind of methods is the fact that they regard very few assumptions and put no 

constraints on the dataset (Taylor, 2005). However, large negative values might serve 

as denominators for these methods because they use the logarithm of very small 

probabilities.  

 

2. Kernel regression methοds 

Data of option prices are used to calibrate either the call option price formula, or the 

implied volatility function, without any assumption abοut the shape οf a regressiοn 

functiοn (Jackwerth, 2004; Taylοr, 2005). Rookley (1997) in his scholar applied a 

bivariate kernel method in logmoneyness and time to maturity. In the aftermath, 

Pritsker (1998) implemented the same kernel method for options written on interest 

rates. Their path also was also followed by Ait Sahalia & Lo (1998, 2000) who 

implemented kernel regression methods in order to obtain RNDs for S&P 500 index. 

These methods appear to have two disadvantages. Firstly, they are considered to be 
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data intensive and secondly, in the very case that data have gaps, it might be 

impossible to smooth RNDs. ( Jackwerth, ibid). 

 

3. Implied binοmial trees 

Τhey assume a priori that the RND for all possible knots is established using binοmial 

trees (Mοnteiro et al, 2008). According to Cox Rox and Rubinstein, the binomial tree 

consists as a discretization of the Black and Scholes model. A generalization of the 

already existing binomial trees was mentioned by Jackwerth (1997) as an expanded 

form of the model of Rubinstein. On the contrary, a different approach was noted by 

Derman & Kani (1994), who used the stepping forward method in order to construct 

the tree, which could be characterized as numerically instable. Later, Chriss (1996), 

and Barle & Cakici (1998) implemented some methods in order to make this method 

more stable. A similar approach which also suffers from instabilities is the Dupire 

tree. 

 

4. Curve fitting methods 

Shimko (1993) was the precursor of the implied volatility function method. He 

mentioned that firstly option prices have to be converted into implied volatilities with 

the Black and Scholes formula in order to interpolate and smooth the implied 

volatility curve. Subsequently, implied volatilities which lie on the smooth curve have 

to be extrapolated into option prices in order to obtain the RNDs (Figlewski, 2009). 

This method was applied by Malz (1997) who converted the observed market option 

and exercise prices into sets of deltas as well as implied vοlatilities, which seems to 

have flexible RND tails. Apart from the method of Shimko, which is nothing more 

than a simple quadratic polynomial of strike prices, Campa et al (1998) implemented 

a cubic spline polynomial for interpolating the implied volatility. Later on, Bliss & 

Panigirtzoglou (2002, 2004) took advantage of this method but in a different way. 

Instead of using a volatility/exercise price space, they introduced a volatility/delta 

space. It seems to be more flexible than the quadratic function at the cost of having 

more parameters to be estimated (Taylor, 2005). The drawback of these methods is 
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firstly that the first two derivatives should be continuous, and also that sometimes 

negative probabilities may arise. 

 

• Comparison of different methods 

A wide range of scholars has focused on comparing different methods of obtaining 

RNDs (Bahra, 1997; Jοndeau & Rockinger, 2000; Cοutant et al, 2001). Anderssοn & 

Lοmakka (2003) examined the stability of different methods, while Markοse & 

Alentοrn (2005) occupied with the pricing errors that arise. They did not come to a 

similar conclusion. For Bahra and Jοndeau & Rockinger mixtures of lognormals 

appear to be more preferable. As far as Coutant is concerned, hermite polynomials 

seem to outperform the mixtures and maximum entropy methods. On the other hand, 

Bliss and Panigirtzοglou (2000) and Campa (1998) find the curve fitting methods 

better than the parametric ones. As a result, taking the available literature into 

consideration, we cannot conclude that there exists a unique method or a family of 

methods which is always better than the others. Hence, we are in the position of 

advocating that all methods mentioned yield sensible densities. 

 

2.2.2 Applications of risk neutral density 

There is a wide variety of researches which seek to evaluate the estimated implied 

RNDs apart from just applying a methodology. To begin with, Lοngstaff (1995) and 

Rοsenberg (1998) implemented RNDs methods in order to price derivatives. 

According to Perignon & Villa (2002), implied RNDs serve as appropriate tools for 

pricing exotic derivatives with complex payoffs. Secondly, RNDs are very common 

tools in risk management (Perignοn & Villa, ibid). Jackwerth & Rubinstein (1996), 

Ait Sahalia & Lο (2000) and Berkοwitz (2001) implement implied RNDs from option 

prices in order to estimate the value at risk for extreme losses. More recently, Navatte 

& Villa (2000), Han (2008) and Conrad (2008) in their scholars shed light on the 

higher moments of RNDs in the optimal portfolio choice and also in asset pricing. 

Moreover, a strong majority of researches exploits RNDs as a medium in order to 

grasp market expectations about very important economic and political events. One 

category of the most popular events examined by RNDs are the stock market crashes. 
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(Bates, 1991; Gemmil, 1996; Malz, 1996; Jackwerth & Rubinstein, ibid; Melick & 

Thοmas, 1997; Jemil & Saflekοs, 1999; Bahra et al, 2001). In Bate’s point of view, 

risk neutral densities did not predict the market crash of 1987, and this was in 

accordance with the findings of Gemmil on FTSE 100 index. In addition, Shiratsuka 

(2001) who investigated RNDs for the Japanese and Korean markets, concluded that 

RNDs seem to be reactive than predictive. Another family of studies emphasizes on 

information deriving from news. Bahra (1997) as well as McManus (1999) approved 

the predictive power of RNDs’ in the alterations in Government’s interest rate 

policies. These findings were also enforced by Campa et al (1999) with respect to the 

international finance. More specifically, his scholar illustrated that the investors’ 

expectations in the currency market can be modeled by RNDs. Furthermore, Jοndeau 

& Rοckinger (2000) in their research occupied with the French legislative election in 

1997 and to their point of view, RNDs did well on grasping the market anticipation 

about the election results. On the other hand, due to Gemmill & Saflekοs (2000) 

RNDs could not depict market expectations before the general elections in the UK. 

Last but not in the least, RNDs can serve as an innovative way to estimate the implied 

risk aversion of the representative investor (Ait Sahalia & Lο, ibid; Jackwerth, 2000; 

Rοsenberg & Engle, 2002; Bliss & Panigirtzοglou, 2004). 

 

2.3 Real world density (RWD) 

In the recent years, a hot issue concerning many scholars is the relationship between 

risk neutral and real world densities. In a theoretical basis, RND is similar to RWD if 

and only if the investors did not seek extra return for taking riskier investments in 

other words, if they were risk neutral. Hence, we can assume that the only difference 

between RND and RWD stems from the representative investor’s risk aversiοn 

(Anagnοu et al, 2002). Due to Jackwerth’s point of view, the following equation must 

hold: 

Risk neutral density = real world density * risk aversion adjustment. 

One majority of researches payed attention on the methodology of converting RNDs 

into RWDs, while another one focuses on the estimation and interpretation of the 

implied risk aversion. Ait Sahalia & Lο (1998, 2000) and Rosenberg & Engle (2002) 
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mentioned the risk adjustment with a stochastic discount factor or with a pricing 

kernel after having combined the modern asset pricing theοry with present as well as 

future cοnsumption. Assuming that the moments of the returns do not change 

significantly over time, or else that the returns are stationary, Ait Sahalia & Lο (ibid) 

came up with a risk aversion measure in a dynamic exchange ecοnomy. Similarly, 

Rosenberg & Engle (ibid) figured out the “empirical pricing kernel” and via this, they 

modeled a dynamic risk aversiοn functiοn. Under the assumption that the investors’ 

risk preferences do not shift by the passage of time, his marginal utility of terminal 

consumption is proportional with the stοchastic discοunt factοr (Jackwerth, 2000). 

Nevertheless, these functions suffered from some anomalies. A more appropriate idea 

in order to extract RWDs was the power utility function, which was developed in the 

later studies of Bakshi & Kapadia (2003) as well as of Liu et al (2007). Bliss & 

Panigirtzοglou (2004) under the assumption that the representative investor is 

rational, they implemented not only power utility function, but also an exponential 

one in order to estimate the risk aversion for FTSE 100 and S&P 500 options. Bunn 

(1984) and Fackler & King (1990) did the same thing but in a different way. Apart 

from utility functions, they applied a recalibration method, which can be used to any 

set of risk neutral densities. By this method, RNDs are converted directly into RWDs 

via the cumulative distribution of the Beta function. Finally, Liu et al ibid derived 

RWDs from mixtures of lognormals and GB2 RNDs by using both power utility 

function and calibration method. 
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                                     Section III Methodology 

 

3.1 Risk neutral density estimation methods 

As far as Breeden and Litzenberger (1978) are concerned, the unique risk neutral 

density f(x) for every possible value x of the price of the underlying asset St can be 

extracted from European style call options C(X) if and only if there are observed 

contracts for all exercise prices X and under the assumption of the absence of 

arbitrage opportunities. Then, the RND f(x) equals 

f(x) = 𝑒𝑒𝑟𝑟𝑟𝑟 𝜕𝜕
2𝑐𝑐

𝜕𝜕𝑋𝑋2
   and 

c(X) = 𝑒𝑒−𝑟𝑟𝑟𝑟  ∫ (𝑥𝑥 − 𝑋𝑋)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
𝑋𝑋 ,                                                                                 (1) 

where r stands for the continuous risk free rate and t is the time to the option’s 

maturity and Q represents the risk neutral measure 

c(X)=𝑒𝑒−𝑟𝑟𝑟𝑟𝐸𝐸𝑄𝑄[max (St − X, 0)].                                                                                 (2) 
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In this paper, we will discuss further two methods of the parametric family, the 

mixtures of two lognormals and the jump diffusion model. 

 

 Mixtures of lognormal method (MLN) 

According to the majority of the previous studies, the prices of financial assets S, 

follow a geometric brownian motion process (GBM), 

    𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆                                                                                                (3) 

Assuming a risk neutral world, we replace μ with r-q and according to Liu et al (2007) 

the RND of the underlying asset’s price at the expiration date of the contract could be 

defined as a weighted combination of two lognormal densities 𝑓𝑓𝐿𝐿𝐿𝐿 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 (𝑥𝑥|𝜃𝜃) = 𝑤𝑤𝑓𝑓𝐿𝐿𝐿𝐿(𝑥𝑥|𝑆𝑆1,𝜎𝜎1,𝑇𝑇) + (1 − 𝑤𝑤)𝑓𝑓𝐿𝐿𝐿𝐿(𝑥𝑥|𝑆𝑆2,𝜎𝜎2,𝑇𝑇)                                  (4) 

Where, 

 𝑓𝑓𝐿𝐿𝐿𝐿(𝑥𝑥|𝑆𝑆,𝜎𝜎,𝑇𝑇) = 1
𝑥𝑥𝑥𝑥√2𝜋𝜋𝜋𝜋

exp (−1
2
�log(𝑥𝑥)−�log(𝑆𝑆)−0.5𝜎𝜎2𝛵𝛵�

𝜎𝜎√𝛵𝛵
�
2

)                                       (5) 

Τhe parameter vector equals to 𝜃𝜃 = [𝑆𝑆1, 𝑆𝑆2,𝜎𝜎1,𝜎𝜎2,𝑤𝑤], where 0 ≤ 𝑤𝑤 ≤ 1 because w 

represents a probability. In order for the density to be characterized as risk neutral, the 

following constraint should hold: 𝑤𝑤𝑤𝑤1 + (1 − 𝑤𝑤)𝑆𝑆2 = 𝑆𝑆, where S is the current price 

of the underlying asset. The MLN considers the returns’ non stationarity and unlike 

lognormal polynomials, its tails are always positive. It assumes that the returns are 

normally distributed and its parameters shift by the passage of time because the 

financial risk fluctuates. (Ritchey 1990). In comparison with a single lognormal 

(SLN), the MLN can take flexible shapes which depict better the market expectations 

against the rigid shape of the SLN due to the five parameters against the one of SLN. 

Hence, an MLN considers the price of a European call option to be a mix of Black 

and Scholes prices and thus, the theoretical price of a European call option is 

 𝑐𝑐(𝑋𝑋|𝜃𝜃, 𝑟𝑟, 𝑡𝑡) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑆𝑆1,𝑋𝑋,𝜎𝜎1, 𝑟𝑟, 𝑡𝑡) + (1 − 𝑤𝑤)𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆2,𝑋𝑋,𝜎𝜎2, 𝑟𝑟, 𝑡𝑡)                         (6) 

where Cbs denotes the call price of the Black and Scholes formula. 

 

  Jump diffusion model (JDM) 
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At the advent of extreme events, the Black and Scholes model may misprice the 

observed option data, due to the huge price variations of the assets (Bedοui & Hamdi, 

2010). There stands a majority of scholars who take into consideration that the 

stochastic process of the assets is a lognormal jump diffusion process, rather than a 

GBM (Jοriοn, 1989; Taylor, 1994). This process, assumes that the price follows a sum 

of GBM and a jump diffusion component. According to Bedoui and Hamdi, this 

method can illustrate the effects of excess skewness and kurtosis. It is then defined 

𝑑𝑑𝑑𝑑 = 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑆𝑆𝜎𝜎𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘                                                                                      (7)      

with p representing the poisson probability. λ is the average jump rate and k in its 

absolute value represents the volume of the jump. It is a random variable and its sign 

determines if the jump is positive or negative (Jοndeau & Rockinger, 2000).                        

Under the assumption of a risk neutral world, the stochastic process of the price is 

𝑑𝑑𝑑𝑑 = �𝑟𝑟 − 𝑞𝑞 − 𝜆𝜆𝜆𝜆(𝑘𝑘)�𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘                                                             (8)   

Considering that during the life of the option there will occur at least one jump of 

constant size we define the components of the Black and Scholes model as  

no jump: 𝑑𝑑1 =
ln�𝑆𝑆𝑋𝑋�+�𝑟𝑟−𝑞𝑞−𝜆𝜆𝑘𝑘−0.5𝜎𝜎2�𝛵𝛵

𝜎𝜎√𝑇𝑇
+ 𝜎𝜎√𝛵𝛵                                                          (9)   

               𝑑𝑑2 = 𝑑𝑑1 −  𝜎𝜎√𝛵𝛵                                                                                      (10)  

Jump:      𝑑𝑑1′ =
ln�𝑆𝑆𝑋𝑋�+ln(1+𝑘𝑘)+�𝑟𝑟−𝑞𝑞−𝜆𝜆𝑘𝑘−0.5𝜎𝜎2�𝛵𝛵

𝜎𝜎√𝑇𝑇
+ 𝜎𝜎√𝛵𝛵                                           (11) 

                𝑑𝑑2′ = 𝑑𝑑1′ −  𝜎𝜎√𝛵𝛵                                                                                       

(12) 

In accordance with the Bernulli version of the jump diffusion, like the MLN the 

theoretical price of a European call option is a weighted sum of two call Black and 

Scholes call prices                                                                                                    

𝐶𝐶(𝑋𝑋) = (1 − 𝜆𝜆𝜆𝜆)𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆,𝑇𝑇,𝑋𝑋, 𝑟𝑟, 𝑞𝑞 + 𝜆𝜆𝑘𝑘,𝜎𝜎) + (𝜆𝜆𝑇𝑇)𝐶𝐶𝐶𝐶𝐶𝐶(𝑆𝑆(1 + 𝑘𝑘),𝑇𝑇,𝑋𝑋, 𝑟𝑟, 𝑞𝑞 + 𝜆𝜆𝑘𝑘,𝜎𝜎) 

                                                                                                                                (13) 

with 1 − 𝜆𝜆𝜆𝜆 representing the no jump probability in the option’s horizon and 𝜆𝜆𝑘𝑘 the 

volume of the jump in its absolute form. Furthermore, it can be considered that the 
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risk neutral density of this model is a mixture of two densities and then it is defined 

as: 

𝑓𝑓𝑓𝑓(𝑥𝑥) = (1 − 𝜆𝜆𝜆𝜆)
1

𝑥𝑥𝑥𝑥√2𝜋𝜋𝜋𝜋
exp [−0.5(𝑑𝑑2(𝑋𝑋))2] + 𝜆𝜆𝑡𝑡

1
𝑥𝑥𝑥𝑥√2𝜋𝜋𝜋𝜋

exp [−0.5(𝑑𝑑2′(𝑋𝑋))2] 

                                                                                                                              (14) 

with parameter vector 𝜃𝜃 = [𝜎𝜎, 𝜆𝜆, 𝑘𝑘]  under the constraint 0 ≤ 𝜆𝜆 ≤ 1
𝛵𝛵
 

 

 

 

 

 

 

 

 

 

 Spline Method (SPL) 

In the case that the option’s implied volatility is not constant, but a dynamic function, 

the true density is not a lognormal distribution. Consequently, in order to determine 

the RND shape, there should be specified a function that fits the implied volatility. 

We consider 𝜎𝜎(𝛸𝛸) = 𝜎𝜎(𝛸𝛸|𝜃𝜃) with 𝜃𝜃 representing the parameter vector that should be 

estimated. In this paper, we apply the method proposed by Andersen and Wagener 

(2002). In order to specify the implied volatility function, this method considers a 

spline of fourth order polynomials in a σ/delta space under the condition that it is 

three times differentiable at the knot points. Under this case, the second order 

derivative of this function is a differentiable spline of parabolic functions, which gives 

a much more flexible shape in the RND than the Shimko’s method which is a simple 

quadratic function in a volatility/Strike price space. Compared with cubic 

formulations proposed by Bliss and Panigirtzoglou (2002) and Liu et al (2007) which 
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are not three times differentiable, it solves the problem of zig zag shapes, or “kinks” 

which appear in these methods. Furthermore, it is more computationally feasible than 

cubic splines because they assume one parameter for every knot point making the size 

of the parameter vector large. However, like all curve fitting methods, there may arise 

negative probabilities (Bliss & Panigirtzoglou,ibid). The implied volatility function 

we apply is 

 𝜎𝜎(𝛿𝛿|𝜃𝜃) = 𝛼𝛼0 + 𝛼𝛼1𝛿𝛿 + 𝛼𝛼2𝛿𝛿2 + 𝛼𝛼3𝛿𝛿3 + 𝛼𝛼4𝛿𝛿4 + ∑ 𝛼𝛼4+𝑖𝑖𝑠𝑠
𝑖𝑖=1 (𝛿𝛿 − 𝑘𝑘𝑘𝑘)4                        

(15) 

Where s represents the number of knot points, 𝛿𝛿 is the delta implied by the Black and 

Scholes model and θ is the parameter vector. First, we convert observed option prices 

into implies volatilities in order to calculate deltas. We choose one knot point in our 

implementation with the value of 0.5 𝑘𝑘1 = 0.5 because it is enough to provide 

reasonable fit while preserving the flexible shape and so, our parameter vector 

consists of six free parameters 𝜃𝜃 = [𝛼𝛼0 …𝛼𝛼6]. Afterwards, implied volatilities are 

extrapolated into call option prices and hence, we can have option prices for all 

strikes. This allows us to calculate the RND directly from (1).  The second order 

derivative of the call price with respect to the strike price can be approximated 

numerically from the following expression: 

𝜕𝜕2𝑐𝑐
𝜕𝜕𝑋𝑋2

= 𝐶𝐶(𝑋𝑋+𝛥𝛥𝛥𝛥)−2𝐶𝐶(𝑋𝑋)+𝐶𝐶(𝑋𝑋−𝛥𝛥𝛥𝛥)
𝛥𝛥𝛥𝛥2

                                                                                        

(16) where, 𝛥𝛥𝛥𝛥 represents a small change in the strike price so we define it 0.5 equal 

to the tick size of FTSE 100. 

 

 

 

3.2 Risk transformation  

The role of risk aversion is fundamental in economics and finance and has to be taken 

into consideration. A task of great importance is to assess the agent’s behavioral 

patterns under risky situations. Risk neutral densities assume a utopic world where 

agents are indifferent about taking extra risk or no, which is irrational. Assuming that 

the representative investor abhors risk and has rational expectations, a transformation 
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from a risk neutral density to a real world density should be made in order to take 

more informative results. The method we implement for this transformation is based 

on the economic theory and assumes a power utility function for the investor’s risk 

preferences. In order to extract the real world density (RWD), the risk neutral density 

has to be multiplied by the agent’s marginal utility function u(x) (Ait-Sahalia & Lo, 

2000; Jackwerth 2000), and therefore, the following relationship holds for the real 

world density  

 𝑓𝑓𝑓𝑓(𝑋𝑋) = 𝑓𝑓𝑓𝑓(𝑋𝑋)/𝑢𝑢′(𝑥𝑥)
∫ 𝑓𝑓𝑓𝑓(𝑌𝑌)/𝑢𝑢′(𝑦𝑦)𝑑𝑑𝑑𝑑∞
0

                                                                                   

(17) 

The power utility function we implement u(x) seems to be the most widespread for 

real world transformations (Bliss & Panigirtzoglou, 2004; Liu et al, 2007). Assuming 

this function, the relative risk aversion is constant and proportional to the CRRA 

parameter γ. The function has the following form 

𝑢𝑢(𝑋𝑋) = 𝛸𝛸1−𝛾𝛾

1−𝛾𝛾
  if 𝛾𝛾 ≠ 1 and 𝑢𝑢(𝑋𝑋) = log(𝑋𝑋) if 𝛾𝛾 = 1                                                        

(18) 

As a consequence, the RWD is given by 

 𝑓𝑓𝑓𝑓(𝑋𝑋) =
𝑋𝑋𝛾𝛾𝑓𝑓𝑓𝑓(𝑋𝑋)

∫ 𝑌𝑌𝛾𝛾𝑓𝑓𝑓𝑓(𝑌𝑌)𝑑𝑑𝑑𝑑∞
0

                                                                                            

(19) 

If the risk aversion parameter γ is positive it indicates that the agent is risk averse and 

seeks risk premium for taking risky investments. If it is zero, the risk neutral 

assumption is the correct one, and if it is negative, the investor is risk seeker (Taylor, 

2005). 

 

 

 

 Mixtures of lognοrmals transformation 
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Due to the fact that there are no closed formed solutions for the transformations of the 

jump diffusion model and for the spline, we transform the mixtures of lognormals 

method. We assume that the RWD is given by (19) and that the γ parameter is 

constant over an annual period. Obviously, if the RND is a mixture of lognormals, the 

RWD will also be a mixture of lognormals (Liu et al, 2007) and therefore the 

following relationship holds 

𝑓𝑓𝑓𝑓(𝑋𝑋|𝜃𝜃, 𝛾𝛾) = 𝑤𝑤∗𝑓𝑓𝑓𝑓(𝑋𝑋|𝑆𝑆1∗,𝜎𝜎1,𝛵𝛵) + (1 − 𝑤𝑤∗)𝑓𝑓𝑓𝑓(𝑋𝑋|𝑆𝑆2∗,𝜎𝜎2,𝛵𝛵)                                      

(20) 

and the real world parameters are 

𝜃𝜃∗ = [𝑆𝑆1∗, 𝑆𝑆2∗,𝑤𝑤∗,𝜎𝜎1,𝜎𝜎2]                                                                                          

(21) 

 𝑆𝑆𝑆𝑆∗ = 𝑆𝑆𝑆𝑆 exp(𝛾𝛾𝜎𝜎𝑖𝑖2𝑇𝑇)     𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2                                                                             

(22) 

1
𝑤𝑤∗ = 1 + 1−𝑤𝑤

𝑤𝑤
  (𝑆𝑆2

𝑆𝑆1
)𝛾𝛾 exp [0.5  (𝛾𝛾2 − 𝛾𝛾)(𝜎𝜎22 − 𝜎𝜎12 )𝛵𝛵]                                             

(23) 

 

 

3.3 Estimation of RND and the transformation parameters 

At a first step we estimate the RND vector of parameters θ. For the mixtures of 

lognormals and for the jump diffusion model, we derive it by minimizing the root of 

the average squared differences between the observed prices of call options and the 

theoretical ones. Hence, 

𝐺𝐺(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑚𝑚𝑚𝑚𝑚𝑚�∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑋𝑋)−𝐶𝐶(𝑋𝑋𝑋𝑋|𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                                                     

(24)  

For the estimation of the parameter vector of the spline we use the method proposed 

by Andersen and Wagener (2002). The function which has to be minimized has a 

more complex form. 
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The spline parameters are obtained by minimizing numerically the average squared 

error between the observed implied volatilities σi’s and the calibrated implied 

volatilities 𝜎𝜎�(𝛿𝛿𝛿𝛿) given by (15) with a smoothing penalty 

𝐺𝐺(𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒) = min∑ [𝜎𝜎𝜎𝜎 − 𝜎𝜎�(𝛿𝛿𝛿𝛿)]2 + 𝜆𝜆 ∫ 𝜅𝜅(𝛿𝛿)2𝑑𝑑𝑑𝑑1
0

𝑁𝑁
𝑖𝑖=1                                                         

(25) 

Where 

𝜅𝜅(𝛿𝛿) = |𝜎𝜎�′′(𝛿𝛿𝛿𝛿)|
[1+𝜎𝜎�′(𝛿𝛿𝑖𝑖)2]3/2                                                                                                          

(26) 

The parameter λ represents the weighted penalty between goodness of fit and 

smoothness. Like Bliss & Panigirtzoglou we choose it to be 0.0011 because for this 

value the RND has the optimal relationship between goodness of fit and flexibility. 

For lower values of λ, densities are not smooth and for higher values, they lack in 

goodness of fit. Commonly, κ is chosen to be simply the second derivative of the 

spline function, which penalizes significantly the curvature at steep segments. This 

problem is solved by the application of (26), the denominator of which considers the 

steepness of the curve.  

At a second step, we estimate the relative risk aversion parameter γ. For this 

procedure, we apply the maximum likelihood estimation method, which is commonly 

considered enough consistent for optimization problems (Liu et al, 2007). We define 

𝑆𝑆𝑇𝑇𝑇𝑇 the prices of the underlying at the options’ expiration dates and we also define 𝑡𝑡𝑖𝑖∗ 

the expiration dates. The log likelihood function which has to be maximized has the 

following form 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑆𝑆𝑇𝑇𝑇𝑇|𝛾𝛾) = ∑ log (𝑓𝑓𝑓𝑓, 𝑖𝑖(𝑁𝑁
𝑖𝑖=1 𝑆𝑆𝑇𝑇𝑇𝑇|𝛾𝛾,𝜃𝜃∗))                                                                           

(27) 
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Section IV Data analysis 

In our study, we collect from Bloomberg the daily closing prices for European style 

call and put options which are written on FTSE 100 spot index and traded at LIFFE, 

with the contract symbol “ESX”. Each contract is valued at 10 pounds per index point 

and is quoted on index points. These options expire on every third Friday of the 

expiration month and the trade ceases at 10:15 (London time). The delivery months 

are the serial months out to two years. The exercise prices are found on intervals 

between 25, 50, 100 or 200 index points with respect to the lifetime of the expiration 

month and the minimum tick size for them is 0.5. The daily cash settlement for these 

contracts is determined by taking into consideration the FTSE 100 average index level 

in a sample of 15 consecutive seconds in an interval between 16:20 and 16:30 

(London time basis). In the last trading day it is determined between 10:10 and 10:30. 

The buyer of such a contract is obliged to pay the premium in full the business day 

after the transaction and the minimum trade is 500 contracts. These options are chosen 

because the underlying index is considered as the “UK market portfolio”. 

According to the put call parity, all European put options can be converted into calls 

and vice versa. This relationship holds if and only if there are no arbitrage 

opportunities. However, in the real market this may be violated because of the 

mispricing of many options. Hence, in our study in order avoid this problem and get 

more informative results we use only call options. 

In order to shed light on the market expectations for the Brexit referendum day, we 

choose options which expire the nearest dates before and after the referendum date. 

The referendum date was on 23 June 2016 and the nearest expiration dates before and 

after were 17 June of 2016 and 15 July of 2016. Options of the first expiration date 

started to trade on 23 June of 2014, exactly two years before while the contracts of the 

second expiration date on 7 August of 2015. We estimate RNDs and RWDs for every 

consecutive month or two weeks for each period which finally gives us 41 

overlapping distributions, 27 for the first period and 14 for the second. 

In order to secure that our results are informative and make sense, the collected data 

pass from some exclusion criteria. Firstly, we exclude options for which the following 
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relationship does not hold: 𝐶𝐶 > 𝑆𝑆 − 𝐾𝐾𝐾𝐾−𝑟𝑟𝑟𝑟 We know for the financial theory that the 

value of a European option is the sum of its intrinsic and time value, so the lower 

bound is the intrinsic value and options that trade less than this are considered 

mispriced. Also, we exclude options with values less than the tick size because they 

are considered illiquid and account for only a tiny proportion of our sample. Finally, 

we eliminate options which do not trade for more than four consecutive days, because 

they are also assumed as illiquid. After the implementation of the filtering criteria, our 

data sample shrinks approximately per 50%. The following table gives information 

about the observations per day for each period. By t1, we define the options that 

expire on 17/6/2016, one week before the referendum and by t2, we define the options 

with expiration on 15/72016, approximately one month after the referendum. It refers 

to the call option data after the filtration we applied. As we see, in 2014 we have 

observations only for t1 options. On 2014 for example, there are traded on average t1 

calls in intervals of 22 strike prices, which implies that for this year RNDs and RWDs 

are derived by taking into consideration 22 observations average. It is interesting to 

notice that for all years except 2014, out of the money options are more than the in the 

money ones. It is also very interesting that from 2015 to 2016, which is the 

referendum year, the in the money options traded for both periods decline, while 

increases significantly the number of out of the money call options. For t1 they 

increase by 35% (31 over 23 contracts) and for t2, they increase by 75% (28 over 16 

contracts). This means that there is a galloping demand for out of the money call 

options in the referendum year. At a first glance, this seems irrational as a buyer of an 

OTM call option has optimistic expectations about the underlying asset. A feasible 

explanation for this increase is that they may serve as tools for speculative strategies. 

For example, investors may use them as protective calls while they open short 

positions against the FTSE 100 index before the referendum, or others who want to 

speculate on the volatility of the index might use them for applying straddles or 

butterfly spreads. 
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Table 1   Descriptive statistics of observed call options 
per day       

    
      Total    
number of calls   

              
ITM   OTM   

    t 1             t2               t1          t2         t 1           t2 
2014 Max  49 - 24 - 24 - 

  Average 22 - 8 - 8 - 
2015 Max  69 58 26 23 52 43 

  Average 37 30 13 11 23 16 
2016 Max  68 60 15 20 59 52 

  Average 37 35 9 10 31 28 
 

Table 1 shows the summary statistics of the observed call options for both expiration dates as mentioned by t1 and 

t2. They are generated by the observations of 533 days in total and are expressed in annual basis. There are 

included the data that passed the filtering criteria. 

 

Furthermore, we collected from Bloomberg the adjusted closing prices for the FTSE 

100 index which correspond to the issue as well as to the expiration dates of the 

options and they are used in order to obtain the RNDs. We did not take into account 

dividend yields for the index because they have little or no effect on the results. 

As a risk free rate, we consider the 6month short sterling London interbank offered 

rate (LIBOR) on UK pound, because it is considered globally as a benchmark for 

approximating the riskless return and the majority of transactions are based on it. It is 

also collect it from Bloomberg and then is transformed with regards to the continuous 

compound. We observe that for our sample period it ranges from 0.55% to 0.75%, 

which indicates that it bears tiny or no effect on our results. 
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Section V Empirical Results of RNDs 

After having applied the methodology discussed earlier, we have extracted RNDs and 

RWDs every one month or two weeks for each of the expiration days we mentioned. 

In total we have 41 overlapping densities, 27 of which representing the estimations on 

one week before the referendum (t1) and 14 of which the estimations on 22 days after 

the referendum(t2). For the MLN and JDM, the parameters are estimated by 

minimizing the root mean squared errors of the call prices defined by (24) and for the 

SPL parameters we minimized the equation (25). In this section, we are going to 

discuss the options at the money implied volatility in comparison with the index 

returns. Then, we present the pricing errors of the methods we applied. Furthermore, 

the moments of the RNDs are discussed. In addition, we show the RND estimations 

for two specific dates respectively and also the evolution of the RNDs by the passage 

of time.  

 

5.1 Implied volatility 

At a first step, before presenting the RNDs, we should get a first glance at the forward 

looking nature of the options. As far as Taylor, Yadav and Zhang (2010) are 

concerned, when the prediction horizon coincides with the expiration of the options, 

the at the money implied volatility is the best prediction for the future volatility of the 

underlying asset compared with volatility forecasts based on historical data and 

generated by ARCH models. However, they advocate that when the forecast horizon 

is one day ahead, volatility predictions from historical data outperform those based on 

the implied volatility. The following graphs could show some verification on these 

results. Figure 1 depicts the daily returns of FTSE 100. The blue area refers to the 

period before the brexit referendum announcement starting from January of 2014 and 

ending on 19 February of 2016, which is the date of referendum announcement by 

Kameron. The red area refers to the period from the announcement to July of 2016, a 

month after the referendum. Figure 2 shows the time evolution of the at the money 

implied volatility for the options sets for the two expiration dates as mentioned earlier. 

The shaded area of figure 2 illustrates the period after the referendum announcement.  

The samples of the two figures correspond chronologically. From figure 1, we can 

grasp that in the period after the announcement, the index is more volatile than before. 
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More specifically, in the first period, the annualized volatility was 16% while in the 

second one it increased by 4 percentage points (20%). This is a first sign of the 

investors’ anxiety for the referendum results and the volume of the impact it will 

carry. On 23 of June, the referendum date, the index had a positive return of 1,12%. 

However, the day after, when the referendum results were released, the index fell by -

3,2% and the fall continued in the consecutive days. This upward trend of the index 

volatility is explained by the proportional upward trend of the at the money implied 

volatility for both expiration dates. The inclining trend starts by the referendum 

announcement when we observe a high for both expiration dates (14,6% for t1 and 

15,4% for t2) and goes on till the expiration. We can observe that the ATM implied 

volatility of the options which expire before the referendum is higher than of those 

which expire after. This inverses after the announcement. Contracts that expire after 

the referendum have significantly higher ATM implied volatility which peaks at the 

referendum date (26,9%). This hints that investors seem to be more anxious about the 

after referendum period and gives a first impression that observed option prices carry 

useful information about the economic sentiment. 

 

 

 

Figure 1 shows the daily returns of FTSE 100. The blue area refers to the period from June 2014 to 16 February 

2016 and the orange area refers to the period from 16 February to 14 July. By σ1 and σ2 are defined the realized 

annualized standard deviations of the returns that correspond to each period. 
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Figure 2 shows the at the money implied volatility every month for the two sets of options as described and 

mentioned earlier by t1 and t2. The shaded area separates the two periods before and after The announcement. 

The value marked is the value on the referendum date.  

 

 

 

5.2 Pricing errors of the three methods 

In this section, there are examined the descriptive statistics of the average errors of 

each method. Table 2 gives an overall summary of the root average squared error of 

all methods for options of both expiration dates (t1, t2), and is derived by the 

procedure discussed earlier. Tables 3, 4, 5 summarize the error of each method for 

options of both expiration dates (t1, t2) respectively in an annual basis. (Further 

details are given below each table). We examine the descriptive statistics of the 

average error, because they provide us useful information on whether we can price 

options accurately by using the density function we assumed. First of all, we can 

stress that overall, the MLN has the lowest error compared to the other methods for 

both sets of options. (For t1: 0.72<0,99<2,26 and for t2: 1,62<2,06<2,57). 

Furthermore, we observe that the spline method performs the worst in fitting the data, 

as it shows the largest pricing error. This coincides with the findings of Liu et al 

t1 19/2 [VALUE] 

t2 19/2 [VALUE] 

23/6    [VALUE] 

0

0.05

0.1

0.15

0.2

0.25

0.3
23

/6
/2

01
4

23
/7

/2
01

4
23

/8
/2

01
4

23
/9

/2
01

4
23

/1
0/

20
14

23
/1

1/
20

14
23

/1
2/

20
14

23
/1

/2
01

5
23

/2
/2

01
5

23
/3

/2
01

5
23

/4
/2

01
5

23
/5

/2
01

5
23

/6
/2

01
5

23
/7

/2
01

5
23

/8
/2

01
5

23
/9

/2
01

5
23

/1
0/

20
15

23
/1

1/
20

15
23

/1
2/

20
15

23
/1

/2
01

6
23

/2
/2

01
6

23
/3

/2
01

6
23

/4
/2

01
6

23
/5

/2
01

6
23

/6
/2

01
6

Figure 2 at the money implied volatility 

t1 t2



30 | P a g e  
 

(2007), who advocated that spline methods are inferior to the classic parametric ones 

in pricing accurately the observed data. In our case, a possible explanation for this 

could be the fact that there are observed less in the money options than out of the 

money (table 1) which can make the implied volatility function less consistent. 

However, an interesting point to stand is that the spline’s error is the less volatile with 

respect to the options that expire after the referendum compared to the other methods 

(1,39<3,05<2,66). The maximum error of the spline for this set of options is 4,88 

significantly lower than the 12,05 of JDM and 10,45 of MLN. Consequently, despite 

the highest average error, the spline method should be taken seriously into account. In 

addition, some useful information we can grasp is that for all methods, the average 

error is higher and more volatile for the options that expire after the referendum. This 

is driven by the year of 2016, the referendum year. More specifically, for the MLN 

the average error in 2016 for t2 options is 2,34, much higher than 0,32 in 2015. For 

the JDM, it is even higher (2,98 in 2016 over 0,41 in 2015). For the spline method, we 

do not mention such an increase between these two consecutive years. (2,64 in 2016 

over 2,4 in 2015). A feasible explanation for this could be that due to the higher 

uncertainty in the referendum period, many (t2) options might trade mispriced. On the 

other hand, for the contracts that expire before the referendum (t1), they are priced 

more accurately in 2016 than in the years before by all methods. However, the 

differences in the average error between the years are less significant compared with 

those of the second set of options (t2) for all methods. 

 

Table 2 MLN   JDM   Spline   

G(theta) t1 t2 t1 t2 t1 t2 

Max 1,90 10,45 3,52 12,05 6,31 4,88 

Min 0,18 0,13 0,25 0,13 0,38 0,76 

Mean 0,72 1,62 0,99 2,06 2,26 2,57 

Std 0,52 2,66 0,83 3,05 1,54 1,39 

25% percentile 0,34 0,34 0,43 0,44 1,13 1,15 

50% percentile 0,44 0,79 0,65 1,26 1,97 2,60 

75% percentile 1,25 1,58 1,37 2,39 2,90 3,44 
                                                                                                                                               
Each pricing error is the root of the average squared difference between the observed price and the price implied 

by each RND. Each summary statistic is derived from a set of 27 values of errors for options that expire on t1 and 

from a set of 14 values for options that expire on t2.          
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Table 3 2014   2015   2016   

G(theta) MLN t1 t2 t1 t2 t1 t2 

Max 1,90   1,51 0,73 0,77 10,45 

Min 0,33   0,20 0,13 0,18 0,57 

Mean 1,20   0,64 0,32 0,43 2,34 

Std 0,60   0,48 0,26 0,18 3,14 

25% percentile 0,44   0,33 0,14 0,30 0,77 

50% percentile 1,31   0,40 0,16 0,40 1,15 

75% percentile 1,64   1,07 0,57 0,53 2,41 
 

Each pricing error is the root of the average squared difference between the observed price and the price implied 

by MLN. Each summary statistic is derived from a set of 7,10,10 values of errors which correspond to 2014, 2015 

and 2016 for options that expire on t1 and from a set of 6 and 8 values of errors which correspond to 2015 and 

2016 for options that expire on t2. 

 

Table 4 2014   2015   2016   

G(theta) JDM t1 t2 t1 t2 t1 t2 

Max 2,80   3,52 1,09 0,77 12,05 

Min 0,70   0,25 0,13 0,33 0,86 

Mean 1,71   0,87 0,41 0,53 2,98 

Std 0,75   0,88 0,42 0,15 3,52 

25% percentile 0,85   0,39 0,13 0,37 1,17 

50% percentile 0,36   0,48 0,14 0,54 1,46 

75% percentile 2,20   1,10 0,82 0,63 3,20 
 

Each pricing error is the root of the average squared difference between the observed price and the price implied 

by JDM. Each summary statistic is derived from a set of 7,10,10 values of errors which correspond to 2014, 2015 

and 2016 for options that expire on t1 and from a set of 6 and 8 values of errors which correspond to 2015 and 

2016 for options that expire on t2. 
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Table 5 2014   2015   2016   

G(theta) SPL t1 t2 t1 t2 t1 t2 

Max 5,85   6,31 4,31 2,08 4,88 

Min 2,73   0,89 0,76 0,38 0,92 

Mean 3,74   2,13 2,40 1,15 2,67 

Std 1,12   1,53 1,49 0,66 1,42 

25% percentile 2,90   1,12 0,89 0,42 1,30 

50% percentile 3,51   1,58 2,93 1,29 2,58 

75% percentile 4,56   2,70 3,64 1,70 3,93 

      

Each pricing error is the root of the average squared difference between the observed price and the price implied 

by SPL. Each summary statistic is derived from a set of 7,10,10 values of errors which correspond to 2014, 2015 

and 2016 for options that expire on t1 and from a set of 6 and 8 values of errors which correspond to 2015 and 

2016 for options that expire on t2. 

    

5.3 Moments of the RNDs methods        

In this section, we elaborate on the first four moments of the densities extracted by the 

RNDs methods. Table 6 summarizes the mean, standard deviation, skewness and 

kurtosis of the derived densities for both sets of options (t1, t2). Table 7 gives a 

summary of the average first four moments of the RNDs for both sets of options 

respectively for the period before and after the referendum announcement. Figures 

4,5,6,7 depict the time evolution of the skewness and kurtosis implied by the RNDs 

for both sets of options. Further details are given below each table and figure. First of 

all, in order to make sense, the mean and standard deviation are divided by the closing 

index price on the expiration date for each set of options. Furthermore, as far as 

standard deviation is concerned, due to the fact that the densities are overlapping with 

fixed expiration date for each set of options, it shrinks in proportion with the time to 

maturity. In other words, the RND standard deviation and percentile range are 

functions of the time to maturity. (Birru & Figlewski, 2009). In order to be a 

comparable measure, it is multiplied by the “squared root of T rule” 

(� 365
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

) (Birru & Figlewski, ibid). To begin with, it is 

observed that the mean of the first moment of the densities of all methods is very 

similar and close to 1. This hints that the estimated values for the index on the 
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expiration date implied by the RNDs, are close to the actual closing index prices (on 

each expiration date). Secondly, we are in the position of grasping that for the 

densities implied by the first set of options which expire before the referendum, the 

first moment is greater than the unit (on average) for all methods. This stresses, that 

the estimated value is greater than the actual value of the index or in other words, that 

the expectations are kind of optimistic. Nevertheless, this fraction is below unit for the 

densities of all RND methods for options that expire after the referendum, which on 

its turn is a first sign of the pessimism about the after referendum period. It is also 

interesting to notice that for all methods and for both sets of options, the average 

estimation is higher in the period before the referendum announcement and declines 

in the period after. Furthermore, as far as the second moment is concerned, the three 

methods show similar results. Overall, the RNDs estimated by the contracts which 

expire after the referendum (t2) are slightly more volatile than those which stem from 

options with expiration before the referendum (t1). Investigating each period 

separately (before and after the announcement), it is observed that the second moment 

of the RNDs implied by options expiring on t2 rises significantly in the period after 

the announcement. The same is also observed in the RNDs by contracts that expire on 

t1, but the differences are slight. Taking this into account, we can assume that 

investors and market makers discount the uncertainty that brings the referendum 

announcement and make volatile expectations. In addition, cumulative the MLN 

RNDs on t1 are positively skewed against MLN RNDs on t2 which are negatively 

skewed (0,08 vs -0,28). JDM RNDs are negatively skewed on both expiration dates (-

0,27 -0,29) while SPL RNDs are positively skewed on both t1 and t2. (0,58 0,05). 

However, examining each period separate, we get a different view. With respect to the 

expiration date t1, we can stress that MLN and SPL RNDs become negatively skewed 

after the referendum announcement, while JDM RNDs are negatively skewed in both 

periods and become slightly more left tailed after the announcement. RNDs on t2, 

similarly change sign by the advent of the announcement and become more negatively 

skewed in comparison with RNDs on t1. Negative skewness by definition means 

greater probability for a substantial negative return, because more observations are in 

the left tail of the distribution than in the right. Normal distribution assumes zero 

skewness, or else symmetric densities. This shift in the skewness between the two 

periods sheds light on the negative sentiment about the referendum. Moreover, as for 

kurtosis, we mention that cumulative for all RNDs and for both expirations, it is near 
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3 which assumes the normal distribution except for spline RNDs which have 

leptokurtic properties (3,60 for t1 and 4,21 for t2). However, making the same 

distinction between the two periods, it is observed that for all RND methods, densities 

on t2 become significantly more leptokurtic after the referendum announcement. 

Values of kurtosis greater than 3 (assumed by normal distribution), imply heavy tails, 

or else probabilities for extreme scenarios. Leptokurtic properties are another sign of 

the negative economic climate. Another point to stand, is the fact that kurtosis 

estimations are more volatile than those of the three first moments. 

 

 

 

   

Table6   MLN   JDM   SPL   

Moments summary   t1 t2 t1 t2 t1 t2 

mean/St*               
  Max 1,19 0,99 1,16 0,98 1,17 1,01 
  Min 0,97 0,89 0,97 0,87 0,97 0,87 
  Mean 1,04 0,93 1,05 0,93 1,06 0,93 
  Std 0,06 0,03 0,05 0,03 0,06 0,03 
Std*/St*               
  Max 0,18 0,43 0,25 0,35 0,17 0,39 
  Min 0,09 0,11 0,11 0,12 0,09 0,11 
  Mean 0,13 0,17 0,16 0,17 0,12 0,16 
  Std 0,02 0,08 0,03 0,06 0,02 0,07 
Skewness               
  Max 0,62 0,50 0,05 0,47 1,57 1,04 
  Min -0,56 -2,22 -1,79 -1,95 -1,74 -2,29 
  Mean 0,08 -0,28 -0,27 -0,29 0,58 0,05 
  Std 0,30 0,89 0,37 0,76 0,83 1,03 
Kurtosis               
  Max 3,33 9,37 7,81 7,90 6,80 11,57 
  Min 2,17 2,17 1,83 2,25 2,36 2,70 
  Mean 2,66 3,48 2,53 3,42 3,60 4,21 
  Std 0,30 2,16 1,10 1,74 1,23 2,55 
      

Each summary statistic is derived from the first four moments of 27 densities for RNDs estimations on t1 and of 14 

RNDs estimations on t2     

 



35 | P a g e  
 

 

 

Table 7   MLN   JDM   SPL   
Average moments divided by 
period t1 t2 t1 t2 t1 t2 

mean/St* Period 1 1,10 0,94 1,06 0,93 1,10 0,94 
  Period 2 1,01 0,92 1,01 0,92 1,01 0,92 
Std*/St* Period 1 0,13 0,14 0,17 0,14 0,11 0,12 

  Period 2 0,14 0,19 0,15 0,20 0,15 0,19 

Skewness Period 1 0,20 0,33 -0,24 0,18 0,94 0,75 
  Period 2 -0,20 -0,72 -0,35 -0,72 -0,43 -0,48 

Kurtosis Period 1 2,72 2,85 2,32 2,84 3,57 3,66 
  Period 2 2,53 4,19 3,11 4,03 3,67 4,88 
 

Period 1 refers to a time sample from 23 June of 2014 to 18 February of 2016 and period 2 refers to a sample 

from 19 February 2016 to 15 July 2016. Overall, with respect to options expiring on t1, we have 20 RNDs for 

period 1 and 7 RNDs for period 2. With respect to options expiring on t2, for period 1 we have 6 RNDs and 8 

RNDs for period2. 

In order to get an even clearer view on the expectations of the investors before and 

after the referendum announcement, we elaborate more on the third and fourth 

moment of the implied RNDs for both expiration dates. In figures 3 and 4, we can see 

the time evolution of skewness and kurtosis of RNDs estimations on t1. The shaded 

areas separate the periods before and after the referendum announcement. Taking into 

consideration firstly the period before the announcement, we can mention that Spline 

RNDs in 2014 were positively skewed (between 1 and 1,5). This indicates that they 

were estimating higher probabilities for positive returns. In the middle of 2015, they 

remain right tailed but with a downward trend. MLN RNDs are symmetric at most in 

period 1, except for the first middle of 2015 when they turned to be positively 

skewed. JDM RNDs seem to be slightly negatively skewed in 2014 and even more 

left tailed in the first middle of 2015, but in the second middle of 2015 they turn out to 

be symmetric. It bears great significance the fact that in February of 2016, exactly 

after the referendum announcement, the skewness coefficient implied by all RNDs 

starts to plummet and this downward trend continuous till the expiration of the 

contracts. We can observe that in April for instance, two months before the 

referendum, JDM and SPL RNDs are negatively skewed approximately by -2, while 

MLN RNDs by -1. This reflects all the anxiety in the British market for this extreme 

political event. The proportional is observed also in the RND estimations on t2 (about 
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22 days after the referendum). As figure 5 illustrates, the declining trend in skewness 

commences by the referendum announcement and finally, on March JDM and MLN 

RNDs become negatively skewed, while SPL RNDs start to have left tails two months 

later on May. This decline continuous proportionally with the passage of time and is 

in a greater magnitude compared to RNDs implied by contracts that expire before the 

referendum. As we can see, in June RNDs have skewness coefficient less than -2. 

This hints, that the uncertainty is even higher in the distance between June and July 

(after referendum period), which coincides with the expiration of the second set of 

options we use. Finally, taking a glance at kurtosis coefficient, we can stress that in 

RNDs on t1, in the period before February 2016 it is around 3, as it is assumed by the 

normal distribution. Nonetheless, after February, there starts an inclining trend in the 

kurtosis coefficient of JDM and SPL RNDs, which reaches an apex in May, with a 

value greater than 7. This upward trend is slightly observed in MLN RNDs with 

respect to the first expiration date (t1). Similarly, the same is noticed in the RNDs 

estimations on t2 but in an even greater climax. The kurtosis coefficient starts to 

increase in May 2016, after the announcement, and this increase continuous in a 

galloping rate as time to expiration approaches. The highest value is observed on SPL 

RNDs by the start of July 2016, after the referendum (around 12 for SPL, 10 for MLN 

and 8 for JDM). This indicates, that the negative economic sentiment does not cease 

by the referendum, but continuous because markets cannot discount accurately the 

potential consequences that may arise from an exit from the EU. 
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5.4.1 RNDs on November 11, 2015 (before referendum 

announcement) 

In this section, we elaborate on the RNDs estimations at 11 November of 2015, about 

four months before the referendum was announced, with respect to both expiration 

dates t1 and t2. Figure 7 illustrates the estimations on 17 June 2016 (t1). We can 

observe that there are slight differences between the three RND densities. All of them 

are high peaked and in the peaks we can notice the flexible shapes they take. The right 

tails are almost identical. The left tails show some slight differences but not 

significant ones. Furthermore, JDM and SPL appear to be kind of smoother than 

MLN. As far as the first moment is concerned, it is quite similar between the three 

methods. All of them estimate the closing index price at the expiration date to be more 

than 6100 index points, which is an optimistic scenario, as it finally closed at 6021. 

They are slightly positively skewed, with the MLN showing the highest value (0,17) 

which means that they are almost symmetric. Moreover, the kurtosis is below 3 which 

hints that values near the mean are more probable to arise than tail values. Taking 

these into account, we are inclined to believe that before the referendum 

announcement, the markets didn’t expect any negative shock. We are in the position 

of mentioning the same also by taking a glance at the estimations on 15 of July 2016 

(figure 8). There are some differences in the shapes of the RNDs but not significant 

ones. These differences lie on the peaks and on the left tails, while the right tails are 

almost identical. It is also observed that the Spline RND is smoother than MLN and 

JDM which take more flexible shapes. Their mean is around 6300 index points, lower 

than the closing price at the expiration date 6669,5, which could be characterized at a 

first step kind of pessimistic. As far as standard deviation is concerned, they seem to 

be more volatile than those on figure 7, because the time to expiration is more and as 

we mentioned, standard deviation is a function of the time to maturity. However, their 

skewness is around zero. SPL is slightly positively skewed (0,54), JDM symmetric 

and MLN slightly negatively skewed which implies that they do not estimate 

probabilities for substantial negative returns. Moreover, they do not appear leptokurtic 

properties as their kurtosis coefficient is around 3. Consequently, we can advocate 

that in this date RNDs estimations do not seem to discount any adverse scenarios. 
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Table8 MLN JDM   SPL 

RNDs moments         

t1 Mean 6184,17 6175,09   6146,38 

  Std 597,19 616,37   605,48 

  Skewness 0,17 0,04   0,34 

  Kurtosis 2,33 2,38   2,65 

t2 Mean 6279,29 6307,96   6295,16 

  Std 699,74 655,55   645,92 

  Skewness -0,12 0,00   0,54 

  Kurtosis 2,39 2,28   3,09 
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   5.4.2 RNDs on the period after referendum announcement 

In this section, we elaborate on the RNDs estimations after the announcement of the 

referendum. Our goal is to compare the estimations on 17/6/2016 (t1) and on 

15/7/2016 (t2). In order for the comparison to be feasible, we choose the issue date of 

the estimation to be exactly one month before each expiration date t1 and 12. The 

purpose of this is that the options of each expiration date have exactly the same 

number of days to expiration. First of all, on the one hand, we describe the RNDs 

estimations on t1. The expected value of the Index is around 6130 points for all 

methods with slight differences. This value is near the closing price at t1(6029), but 

slightly higher about 2%. As for the second moment, it ranges from 12% to 16% with 

JDM estimating the highest value (16%) and SPL the lowest (12%). As far as the 

skewness coefficient is concerned, all methods are negatively skewed, which 

illustrates the negative sentiment about the forthcoming referendum. The JDM RNDs 

are the most negative skewed (-1,79), the MLN the less (-0,56) and the SPL in the 

middle (-1,5). Taking the kurtosis coefficient into account, we observe that only the 

JDM has leptokurtic properties with a value of 7,81, much higher than 3. MLN and 

SPL have kurtosis value around 3. We can attribute this difference between the RNDs 

to the nature of the JDM to catch the shocks either positive or negative. Figure 9 

shows the three RNDs on 17/6/2016 (one week before the referendum). MLN and 

JDM have similar shapes. They are both left tailed, but the JDM has much heavier left 

tail than MLN which hints the higher probability it estimates for extreme low values 

for the index. Its left tail ranges from 4500 to 5200 index points, which is an extreme 
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adverse scenario while MLN’s left tail ranges from 5200 to 5600 index points. The 

SPL RND looks different. It takes a flexible shape, negatively skewed, but without 

significant tails. On the other hand, we take into consideration the RNDs on 

15/7/2016 (after the referendum). We can notice that the expected index value is 

around 6200 with the MLN RND estimating the lowest price (6135). Compared to the 

closing price on 15/7/2016 which was 6669,5, the RNDs estimations are significantly 

lower around 8%. Taking this into consideration, we could grasp that the option 

market on this date was discounting a significantly negative return for the FTSE 100 

which actually did not occur. According to the second moment, The RNDs on t2 

estimate 2 times higher standard deviation than the RNDs on t1 in both absolute and 

“annualized” value or else, the uncertainty in the after referendum period is two times 

higher than the before referendum period due to the option market. Examining the 

skewness coefficient, RNDs on t2 are significantly negatively skewed, more than 

those on t1. It ranges from -1,95 (JDM) to -2,29 (SPL) and indicates that all of them 

negatively asymmetric. We can also notice an excess kurtosis ranging from (7,26) 

MLN to 8,16 (JDM) greater than 3 and also greater than the values of RNDs on t1. 

Figure 10 gives a picture of these RNDs. Firstly, we can notice that the spline method 

estimates some negative probabilities. It is irrational, but is a common problem of 

curve fitting methods and is mentioned in the literature (Bliss & Panigirtzoglou 2002, 

Andersen & Wagener 2002, Liu et al 2007). It arises especially in high uncertainty 

periods when either the number of in the money and out of the money options is 

unbalanced or when many options are mispriced and hence there are observed some 

extreme values of implied volatilities. Nevertheless, the spline densities integrate to 

one and thus the moments implied make sense. We can also mention from figure 10 

that the right tails of the three densities are quite similar and thin. The interesting part 

lies on the left tails. All of the RNDs appear to have long and heavy left tails ranging 

from 5500 to 3400 index points. The probability mass they contain is far higher than 

the corresponding one of those on t1. To sum up, both RNDs on t1 and on t2 show the 

investors’ anxiety and uncertainty about this extreme political event. Furthermore, this 

anxiety is much greater for the time period about a month after the referendum 

compared to the one about a week before the referendum. 

 

Table 9   MLN JDM   SPL 
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Moments            

17/5/2016-17/6/2016 Mean 6129,91 6146,04   6138,50 

  Mean/St* 1,02 1,02   1,02 

  Std 256,80 301,28   229,97 

  Std*/St* 0,20 0,16   0,2 

  Skewness -0,56 -1,79   -1,50 

  Kurtosis 3,07 7,81   3 

15/6/2016-15/7/2016 Mean 6135,65 6264,96   6260,56 

  Mean/St* 0,92 0,92   0,94 

  Std 734,55 604,89   666,11 

  Std*/St* 0,43 0,35   0,39 

  Skewness -2,12 -1,95   -2,29 

  Kurtosis 7,26 8   8,16 
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5.5 Time evolution of the RNDs estimations 

The purpose of this section is to show how the RNDs estimations of all methods 

mentioned and for both expiration dates t1 and t2 were shifting by the passage of 

time. Figures 11, 12 and 13 illustrate the RNDs estimations of MLN, Spline and JDM 

starting from 23 June of 2014 (when options which expire on t1 started to trade) and 

ending to 17 May 2016 with respect to 17/6/2016, the first expiration date (t1). The 

referendum announcement occurred when these contacts had 0,5 years to maturity. 

Figures 14, 15 and 16 illustrate the RNDs estimations of MLN, Spline and JDM 

starting from 7 August of 2015 (when options which expire on t2 started to trade) and 

ending to 7 July 2016 with respect to 15/7/2016, the second expiration date (t2). The 

referendum announcement occurred when these contacts had 0,6 years to maturity. 

First of all, we observe that in all figures the densities in front are the wider ones and 

shrink by the time. This wideness is proportional to the time to expiration. The longer 

the time to maturity, the higher the probability of large price fluctuations. As the 

expiration approaches, densities become high peaked and narrower which reflects the 

less time for huge price fluctuations. The interesting point to stand is that all RNDs 

for both maturities start with positive skewness. As far as they are concerned, the 

probabilities are higher for positive returns. This indicates a positive economic 

sentiment in the years before 2016. As time passes by, we could observe that RNDs, 

apart from shrinking which stems from the shrink of the time to maturity, their peaks 

shift from the right to the left driving to lower expectations for the index value. Also, 

the heavier probability mass starts to concentrate to the left tails. The less the time to 
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maturity, the closer the referendum date and therefore, the thicker the left tails. 

Contrary to the shrink of the density which is a function of the expiration time, 

negative skewness and leptokurtic properties are attributed to the shift in the 

economic sentiment. According to the leverage effect theory, negative shocks lead to 

higher volatility than equally positive shocks and therefore, there is a negative 

correlation between volatility and returns. In other words, by the advent of negative 

shocks the volatility increases which makes the index a riskier investment. Hence, 

agents seek higher expected return in order to invest and consequently, the prices 

drop. This theory complies with the case we are examining. Finally, we can notice 

that all RNDs take flexible shapes. 

 

 Figure 11                                                                                                                                                            

 

Figure 11 shows 27 MLN overlapping RNDs estimations from 23/6/2014 to 17/5/2016 with respect to the first 

expiration date (17/6/2016). The referendum announcement occurred when the options had 0,5 years to maturity. 

Figure 12 
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Figure 12 shows 27 Spline overlapping RNDs estimations from 23/6/2014 to 17/5/2016 with respect to the first 

expiration date (17/6/2016). The referendum announcement occurred when the options had 0,5 years to maturity. 

 

 

 

 

 

 

Figure 13 

 

Figure 13 shows 27 JDM overlapping RNDs estimations from 23/6/2014 to 17/5/2016 with respect to the first 

expiration date (17/6/2016). The referendum announcement occurred when the options had 0,5 years to maturity. 

 

Figure 14 
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Figure 14 shows 14 MLN overlapping RNDs estimations from 7/8/2015 to 5/7/2016 with respect to the second 

expiration date (15/7/2016). The referendum announcement occurred when the options had 0,6 years to maturity. 

 

 

 

 

 

 

 

Figure 15 

 

Figure 15 shows 14 JDM overlapping RNDs estimations from 7/8/2015 to 5/7/2016 with respect to the second 

expiration date (15/7/2016). The referendum announcement occurred when the options had 0,6 years to maturity. 
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Figure 16 

           

 

Figure 16 shows 14 Spline overlapping RNDs estimations from 7/8/2015 to 5/7/2016 with respect to the second 

expiration date (15/7/2016). The referendum announcement occurred when the options had 0,6 years to maturity. 

 

 

 

 

Section VI Empirical Results of Real World Densities (RWDs) 

As we mentioned before, RNDs assume that investors do not seek to earn excess 

returns for taking risk, which is utopic. Therefore, taking this into consideration, we 

transform the mixtures of two lognormals RNDs into real world densities (RWDs), 

with respect to the investors’ risk preferences. We transform only the MLN RNDs due 

to the fact that there are no closed form transformations for the JDM and the spline 

method we apply in the available literature. For each MLN distribution, we calculate 

the log likelihood at the index levels St* when options expire (t1, t2). We assume that 

the investors’ risk preferences are described by the power utility function and also that 

the relative risk aversion (γ) changes annually. Then we estimate γ by maximizing the 

log likelihood function (equation 27). We exclude the RNDs during 2014 from this 

process, because we only have observations for options expiring on t1 and thus, it 

may cause bias to the results. 

6.1 Estimation of the risk parameters 
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Assuming the MLN RND, our maximum log likelihood γ estimations are 0,16 and 

9,03 for 2015 and 2016 equivalently. The time framework during which we select to 

change γ is subjective, but the majority of previous studies do select to change it 

annually. However, we are aware that the overlapping nature of our data may cause 

some bias in the predictive power of the extracted RWDs. In our study we have 2 

fixed expiration dates and thus, the forecast horizon differs among each issue date we 

extracted RNDs. Most previous studies who followed the same procedure for risk 

transformation used non-overlapping densities with constant forecast horizons. 

However, their goal was to make forecast evaluations between RNDs and RWDs (Ait 

Sahalia & Lo 2000, Bliss & Panigirtzoglou 2004, Liu et al 2007). In this paper, we do 

not seek to compare the forecast ability of densities. On the other hand, we seek to 

shed some light on the risk preferences of the investors especially after the 

referendum announcement. In order to test the statistical significance of the γ 

parameter, we implement the likelihood ratio test. In 2015, the log likelihood 

increases very slightly after the risk adjustment from    -74,24 to -74,21. The 

likelihood ratio test statistic of the null hypothesis of the zero risk parameter is given 

by the increase in the log likelihood times 2. This figure is compared to the test 

statistic’s asymptotic distribution 𝑋𝑋2(1) with 1 degree of freedom for the significance 

levels of 5%, 1% and even 0,5%. We observe that for 2015, the value of the statistic is 

0,07 less than the critical values for every significance level. Thus, we cannot reject 

the null hypothesis of zero risk aversion. Nevertheless, considering 2016 which 

coincides with the referendum announcement, the γ parameter has the value of 9,03. 

The likelihood ratio statistic is 8,06 greater than the critical values for every level of 

significance, even for 0,5%, which indicates that we do reject the null hypothesis of 

no risk aversion. First of all, risk aversion near zero seems irrational. Taylor 2005 and 

Jackwerth 2002 elaborate on zero and negative risk aversions. To their point of view, 

negative or zero risk aversion parameters arise in post crisis periods due to the 

options’ being mispriced. According to them, risk averse investors have the tendency 

to liquidate their positions. As a matter of fact, risk aversion decreases among the 

existing investors. Therefore, zero risk aversion implies that agents are pessimistic 

rather than risk averse. However, in our case 2015 was not a post- crash period for the 

UK. On the other hand, Bliss & Panigirtzoglou in 2004 proved that risk aversion is 

strongly dependent with the forecast horizon of the density. As far as they are 

concerned, the longer the investment horizon the less the risk aversion. Agents who 
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take long horizon investments have alternatives to overcome market shocks. For 

example, they may smooth their consumption and simultaneously, they can increase 

their no investment income by working harder. On the contrary, short-term investors 

do not appear to be very flexible with this and thus, they are more risk averse. For 

FTSE 100 they found that for the investment horizon of 4 months (the maximum they 

examined), the risk aversion had the less value (1,9). In our research, in 2015 the 

average investment horizon is more than 1 year. Consequently, we could attribute the 

insignificant risk aversion of 2015 to the very long time horizon of the options 

expiration. The average investment horizon in 2016 is less than half a year. We cannot 

be sure if this huge increase in the risk parameter between the two years stems from 

the decrease in the investment horizon or from the referendum announcement. In fact, 

the representative agent in 2016 became far more risk averse than the previous year 

(more than 9 times) which hints that more risk premium is demanded for 

investmenting in the market portfolio. The most feasible explanation we can give, is 

that it is an outcome of the combination of both facts we mentioned. 

 

 

Table 10 γ ΜL1 ML0 2(L2-L1) 
Chi 

@5%/1%/0,5% 
 

2015 0,16 -74,21 -74,24 0,07 3,84/6,63/7,88 
 

2016 9,03 -52,90 -56,93 8,06 
   

 

6.2 Comparison of moments between Risk Neutral and Real World Densities 

In this section, we focus on the comparison of moments between MLN RNDs and 

RWDs in the year 2016, because only for this year we found a statistical significant γ 

parameter. For the year 2015, RNDs and RWDs are almost identical as γ is very close 

to zero and statistical not significant. Table 10 summarizes the moments of MLN 

RNDs and RWDs during 2016 for both expiration dates t1 and t2. At a first step, we 

are in the position of observing that the mean of the RWDs is higher than the 

corresponding one of the RNDs for densities on both t1 and t2. (1,04>1,01 for t1 and 
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0,97>0,92 for t2). Yet, with respect to densities on t2 the fraction between the mean 

and the index price at the expiration date is still less than 1, which indicates that the 

RWDs similar to RNDs underestimate the index price after the referendum. 

Furthermore, considering the “annualized” standard deviation, RWDs seem to be less 

volatile than RNDs. For densities on t1 the difference is very slight while for those on 

t2 it drops from 19% to 16%. Moreover, after the risk adjustment, the densities 

become more negatively skewed and more leptokurtic with respect to both expiration 

dates, because the kurtosis coefficient increases. We could stress from this that under 

the assumption that investors are risk averse, greater probabilities are estimated for 

significant negative returns and for scenarios far away from the mean. It is also 

significant that after the adjustment, the moments become less volatile. 

 

 

 

 

 

Table10   MLN  q   MLN p   
2016     
Moments summary t1 t2 t1 t2 

mean/St*           

  Max 1,06 0,96 1,07 0,99 
  Min 0,97 0,89 1,03 0,96 
  Mean 1,01 0,92 1,04 0,97 
  Std 0,03 0,02 0,04 0,01 

Std*/St*           

  Max 0,17 0,43 0,16 0,24 
  Min 0,11 0,12 0,11 0,13 

  Mean 0,14 0,19 0,13 0,16 
  Std 0,02 0,10 0,02 0,04 
Skewness           
  Max -0,05 0,20 -0,27 -0,14 
  Min -0,56 -2,22 -0,47 -1,87 
  Mean -0,20 -0,62 -0,41 -0,74 
  Std 0,16 0,94 0,06 0,60 
Kurtosis           
  Max 3,07 9,37 3,44 12,14 
  Min 2,30 2,17 3,03 3,10 
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Mean 2,53 3,76 3,19 5,42 

  Std 0,25 2,68 0,12 3,46 
 

MLN q refers to the risk neutral MLN while MLN p refers to the risk adjusted MLN. In 2016 we have 8 RNDs and 

RWDs on t1 and 9 RNDs and RWDs on t2. 

 

 

The following figures depict the change in the third and fourth moment of RNDs and 

RWDs during 2016. First of all, taking into consideration the densities with forecast 

horizon before the referendum, we can grasp RWDs are more negative skewed for the 

most time. While in the RNDs the declining trend in skewness starts by the 

referendum announcement and goes on till the expiration, in the RWDs we cannot 

mention such a downwards trend. On the contrary, after April RWDs become less left 

tailed and finally on May, RNDs appear to be more negative skewed than RWDs. 

Something similar is observed on densities estimations on t2. RWDs are more left 

tailed until June. In July, this inverses as RNDs seem to have more negative skewness 

coefficient. Taking a glance at the kurtosis figure, with respect to both expiration 

dates the RWDs are more leptokurtic than RNDs for the whole year. More 

specifically, this difference shrinks among RWDs and RNDs estimations on t1, while 

it widens if we examine those on t2. Figure 20 shows that RWDs kurtosis peaks in 

June, some days before the referendum. This might be regarded as a sign that the risk 

adjustment drives to more pessimistic estimations. 
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Figure 17 shows the time evolution of the skewness of the 8 RNDs and RWDs in 2016 from January 14 to May 17 

with respect to 17/June/2016 (t1). 

 

 

Figure 18 shows the time evolution of the skewness of the 9 RNDs and RWDs in 2016 from January 6 to July 7, 

with respect to 15/July/2016 (t2). 

 

 

 

Figure 19 shows the time evolution of the kurtosis of the 8 RNDs and RWDs in 2016 from January 14 to May 17 

with respect to 17/June/2016 (t1). 
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Figure 20 shows the time evolution of the kurtosis of the 9 RNDs and RWDs in 2016 from January 6 to July 7, with 

respect to 15/July/2016 (t2). 

 

 

 

 

 

 

6.3 RNDs versus RWDs on specific dates 

In this section, we examine the RNDs and RWDs estimations on t1 (17/6/2016) and 

on t2 (15/7/2016) exactly one month before. To begin with, taking into account the 

first date, the RWD appears to have significantly higher mean with the value of 6450 

vs 6129, which is much greater than the closing price at the expiration date. 

According to standard deviation, the RWD is slightly less volatile than the RND, in 

both absolute and annualized terms. It is also slightly less negative skewed and 

slightly more leptokurtic. Figure 21 illustrates the RND and RWD on the date we 

mentioned. We can observe that the RWD has a higher peak and is more right 

centered which indicates the higher estimation. The left tail looks smoother and the 

RWD appears to be more leptokurtic. Taking a glance at the second date, we can also 

stress that the RWD has a higher estimation but still less than the actual closing price 

on July 15. It is interesting to notice that it is by half less volatile than the RND in 

both absolute and annualized terms. We might stress that the higher mean, closer to 
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the actual index price and the lower volatility could indicate more accurate estimation. 

Moreover, the RWD in this date looks less negative skewed, but yet more leptokurtic. 

These properties are depicted in figure 22. We can observe approximately the same as 

in figure 21. The RWD has a higher peak, which has shifted to the right compared to 

the RND. The right tail is almost similar, while the left one looks thinner in the graph. 

The higher kurtosis coefficient could be attributed to the leptokurtic properties, for 

example the higher peak and the lower volatility in combination with the long left tail. 

 

 

 

 

 

 

 

 

 

Table 11   MLN q MLN p 
Moments of RNDs and RWDs     

17/5/2016-17/6/2016 Mean 6129,91 6450,00 
  Mean/St* 1,02 1,07 
  Std 256,80 240 
  Std*/St* 0,14 0,13 
  Skewness -0,56 -0,45 
  Kurtosis 3,07 3,44 

15/6/2016-15/7/2016 Mean 6135,65 6459,51 
  Mean/St* 0,92 0,97 
  Std 734,55 365,96 
  Std*/St* 0,43 0,24 
  Skewness -2,12 -1,50 
  Kurtosis 7,26 12,14 
 

Table 11 summarizes the moments of MLN RNDs and MLN RWDs for the estimations on 17/6/2016 and on 

15/7/2016 (t1, t2) exactly 1 month before. The summary statistics are derived from the moments of 8 densities on t1 

and of 9 densities on t2. 
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RNDs vs RWDs 17/5/2016-17/6/2016 
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Section VII Conclusion and Further research 

In this paper we estimated MLN, JDM and Spline RNDs for the FTSE 100 index 

implied by options that expire on June 17, 2016 (before the referendum) and on July 

15, 2016 (after the referendum). We found that densities derived from option prices 

are very informative and reflect the market anxiety about such an extreme political 

event, the consequences of which could not be discounted accurately a priori. This 

stems from the forward looking nature of options contracts. We conclude that after the 

referendum announcement, the densities become more volatile, negative skewed and 

leptokurtic which hints the uncertainty and pessimism agents have about the final 

outcome of the referendum. Our findings also show, that RNDs on July 15, are even 

more volatile, left tailed and leptokurtic than those on June 17. This indicates that the 

anxiety is even greater for the after Referendum period. Furthermore, we transformed 

the MLN RNDs into MLN RWDs by maximizing the likelihood function with respect 

to the closing prices at the expiration dates. We found that there is no significant risk 

aversion in the year 2015, while in 2016 the relative risk aversion parameter has the 

value of 9 and is statistical significant in every significance level. On its turn, this 
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illustrates that after the referendum announcement, agents became more risk averse 

and demanded higher risk premium for investing in the index than before. However, 

as we mentioned it is difficult to distinguish between pessimism and risk aversion. 

RWDs seem to have higher mean, to be less volatile, more negative skewed and more 

leptokurtic than RNDs. 

The main disadvantage of the RNDs and RWDs estimations methods we described is 

that they can be implemented only to European options. In spite of the fact that for 

most equity indices, only European style options are available, this is not the case for 

stocks or currency. American options are more widely traded, despite being over the 

counter derivatives. Thus, it might be more practical to extract RNDs and RWDs from 

American options because they might be more informative. According to Yisong, 

2010 there exists a twostep method to obtain RNDs from American style options. 

Firstly, American options are converted into European. After the transformation, the 

RNDs moments are approximated. Very few researchers have tried to follow this 

procedure. Furthermore, an even more ambitious researcher could analyze the higher 

order moments of the RNDs. For example, the fifth order moment indicates the 

asymmetry in the tails, which can be also very informative. 
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