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9.1 
Introduction
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When modeling relationships between variables, 
the nature of the data that have been collected has 
an important bearing on the appropriate choice of 
an econometric model
– Two features of time-series data to consider:

1. Time-series observations on a given 
economic unit, observed over a number of 
time periods, are likely to be correlated

2. Time-series data have a natural ordering  
according to time

9.1
Introduction
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There is also the possible existence of dynamic 
relationships between variables 
– A dynamic relationship is one in which the 

change in a variable now has an impact on that 
same variable, or other variables, in one or 
more future time periods

– These effects do not occur instantaneously but 
are spread, or distributed, over future time 
periods

9.1
Introduction
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9.1
Introduction FIGURE 9.1 The distributed lag effect
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Ways to model the dynamic relationship:
1. Specify that a dependent variable y is a 

function of current and past values of an 
explanatory variable x

• Because of the existence of these lagged 
effects, Eq. 9.1 is called a distributed lag 
model

9.1
Introduction

9.1.1
Dynamic Nature of 

Relationships

1 2( , , ,...)t t t ty f x x x Eq. 9.1
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Ways to model the dynamic relationship (Continued):
2. Capturing the dynamic characteristics of time-

series by specifying a model with a lagged 
dependent variable as one of the explanatory 
variables

• Or have:

–Such models are called autoregressive 
distributed lag (ARDL) models, with 
‘‘autoregressive’’ meaning a regression of yt
on its own lag or lags

9.1
Introduction

9.1.1
Dynamic Nature of 

Relationships

Eq. 9.2 1( , )t t ty f y x

Eq. 9.3 1 1 2( , , , )t t t t ty f y x x x  
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Ways to model the dynamic relationship (Continued):
3. Model the continuing impact of change over 

several periods via the error term

• In this case et is correlated with et - 1

• We say the errors are serially correlated or 
autocorrelated

9.1
Introduction

9.1.1
Dynamic Nature of 

Relationships

Eq. 9.4 1( ) ( )t t t t ty f x e e f e   
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The primary assumption is Assumption MR4:

• For time series, this is written as:

– The dynamic models in Eqs. 9.2, 9.3 and 9.4 
imply correlation between yt and yt - 1 or et and 
et - 1 or both, so they clearly violate assumption 
MR4

9.1
Introduction

9.1.2
Least Squares 
Assumptions

   cov , cov , 0   for i j i jy y e e i j  

   cov , cov , 0   for t s t sy y e e t s  
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• A stationary variable is one that is not explosive, 
nor trending, and nor wandering aimlessly without 
returning to its mean.

• It has the following properties:
•
•
• . The covariance between 

two different time periods depends on the 
distance between them. 

9.1
Introduction

9.1.2a
Stationarity
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9.1
Introduction

9.1.2a
Stationarity

FIGURE 9.2 (a) Time series of a stationary variable 
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9.1
Introduction

9.1.2a
Stationarity

FIGURE 9.2 (b) time series of a nonstationary variable that is ‘‘slow-turning’’ 
or ‘‘wandering’’ 
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9.1
Introduction

9.1.2a
Stationarity

FIGURE 9.2 (c) time series of a nonstationary variable that ‘‘trends”
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9.2 
Serial Correlation
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When cov(yt, ys) = 0 for t ≠ s likely to be violated, 
and how do we assess its validity? 
– When a variable exhibits correlation over time, 

we say it is autocorrelated or serially 
correlated
• These terms are used interchangeably 

9.2
Serial Correlation
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Recall that the population correlation between two 
variables x and y is given by:

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

 
   

cov ,
ρ

var var
xy

x y

x y

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For a stationary variable we define  

The notation ρ1 is used to denote the population 
correlation between observations that are one period 
apart in time
– This is known also as the population 

autocorrelation of order one. 
– The second equality in Eq. 9.5 holds because            

var(yt) = var(yt-1) , a property of time series that are 
stationary

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

 
   

 
 

1 1
1

1

cov , cov ,
ρ

varvar var
 



 t t t t

tt t

y y y y
yy y

Eq. 9.5
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The first-order sample autocorrelation for y is 
obtained from Eq. 9.5 using the estimates:

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

    

   

1 1
2

2

1

1cov ,
1

1var
1

 




  


 






T

t t t t
t
T

t t
t

y y y y y y
T

y y y
T
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Making the substitutions, we get:

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

Eq. 9.6

  

 
1

2
1 2

1






 








T

t t
t

T

t
t

y y y y
r

y y
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More generally, the k-th order sample 
autocorrelation for a series y that gives the 
correlation between observations that are k periods 
apart is:

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

Eq. 9.7   

 
1

2

1

T

t t k
t k

k T

t
t

y y y y
r

y y


 



 







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How do we test whether an autocorrelation is 
significantly different from zero?
– The null hypothesis is H0: ρk = 0
– A suitable test statistic is:

9.2
Serial Correlation

9.2.1a
Computing 

Autocorrelation

Eq. 9.8  0 0,1
1

k
k

rZ T r N
T


  
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9.2
Serial Correlation

9.2.1b
An example: GDP 

growth rate

FIGURE 9.3 Time series for U.S. GDP growth: 1985Q2 to 2009Q3
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Applying this to our problem, we get for the first 
four autocorrelations:

9.2
Serial Correlation

9.2.1b
An example: GDP 

growth rate

Eq. 9.9 1 2 3 40.494   0.411   0.154   0.200r r r r   
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For our problem, we have:

– We reject the hypotheses H0: ρ1 = 0 and         
H0: ρ2 = 0

– We have insufficient evidence to reject          
H0: ρ3 = 0

– ρ4 is on the borderline of being significant.
– We conclude that the quarterly growth rate in 

U.S. GDP, exhibits significant serial correlation 
at lags one and two

9.2
Serial Correlation

9.2.1b
An example: GDP 

growth rate

1 2

3 4

98 0.494 4.89,    98 0.414 4.10

98 0.154 1.52,    98 0.200 1.98

Z Z

Z Z

     

     
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The correlogram, also called the sample 
autocorrelation function, is the sequence of 
autocorrelations r1, r2, r3, …
– It shows the correlation between observations 

that are one period apart, two periods apart, 
three periods apart, and so on

9.2
Serial Correlation

9.2.1c
The Correlogram
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9.2
Serial Correlation

9.2.1c
The Correlogram

FIGURE 9.4 Correlogram for GDP growth rate
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The correlogram can also be used to check 
whether the multiple regression assumption    
cov(et, es) = 0 for t ≠ s is violated

9.2
Serial Correlation

9.2.2
Serially Correlated 

Errors
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Consider a model for a Phillips Curve:

where is the inflation rate and is the 
unemployment rate. 
– If we initially assume that inflationary 

expectations are constant over time (β1 = INFE
t) 

set β2= -γ, and add an error term:

9.2
Serial Correlation

9.2.2a
A Phillips Curve

 1γE
t t t tINF INF U U   

Eq. 9.10

1 2β βt t tINF DU e  Eq. 9.11
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9.2
Serial Correlation

9.2.2a
A Phillips Curve

FIGURE 9.5 (a) Time series for Australian price inflation
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9.2
Serial Correlation

9.2.2a
A Phillips Curve

FIGURE 9.5 (b) Time series for the quarterly change in the Australian 
unemployment rate



Principles of Econometrics, 4th Edition Page 32Chapter 9: Regression with Time Series Data:
Stationary Variables

To determine if the errors are serially correlated, 
we compute the least squares residuals: 

9.2
Serial Correlation

9.2.2a
A Phillips Curve

Eq. 9.20 1 2t̂ t te INF b b DU  
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The k-th order autocorrelation for the residuals can 
be written as:

– The least squares equation is:

9.2
Serial Correlation

9.2.2a
A Phillips Curve

1

2

1

ˆ ˆ

ˆ

T

t t k
t k

k T

t
t

e e
r

e


 







Eq. 9.12



     
0.7776 0.5279

  0.0658  0.2294
INF DU
se

 
Eq. 9.13
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The values at the first five lags are:

The test statistic is                                         which 
indicates that the null is rejected and the 
error term exhibits autocorrelation (of order 1).

9.2
Serial Correlation

9.2.2a
A Phillips Curve

1 2 3 4 50.549   0.456   0.433   0.420   0.339r r r r r    

1 90 0.549 5.20Z   
1 0 
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9.3 
Other Tests for Serially Correlated 

Errors
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An advantage of this test is that it readily 
generalizes to a joint test of correlations at more 
than one lag

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test
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If et and et-1 are correlated, then one way to model 
the relationship between them is to write:

– We can substitute this into a simple regression 
equation:

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test

1ρt t te e v Eq. 9.14

1 2 1β β ρt t t ty x e v   Eq. 9.15
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We have one complication:      is unknown but we 
can use the least squares residuals     in place.
– Also is unknow. Two ways to handle this 

are:
1. Delete the first observation and use a total 

of T-1 observations 
2. Set           and use all T observations

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test

te

0ˆ 0e 

t̂e
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• To derive the relevant auxiliary regression for the 
autocorrelation LM test, we write the test equation 
as:

 But since we know that                           , we get:

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test

1 2 1ˆβ β ρt t t ty x e v   Eq. 9.16

1 2 ˆt t ty b b x e  

1 2 1 2 1ˆ ˆβ β ρt t t t tb b x e x e v     
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Rearranging, we get:

– If H0: ρ = 0 is true, then LM = T x R2 has an 
approximate χ2

(1) distribution 
• T and R2 are the sample size and goodness-

of-fit statistic, respectively, from least 
squares estimation of Eq. 9.17

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test

   1 1 2 2 1

1 2 1

ˆ ˆβ β ρ
ˆγ γ ρ

t t t t

t t

e b b x e v
x e v





     

   
Eq. 9.17
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Considering the two alternative ways to handle    :

– These values are much larger than 3.84, which 
is the 5% critical value from a χ2

(1)-distribution
• We reject the null hypothesis of no 

autocorrelation
– Alternatively, we can reject H0 by examining 

the p-value for LM = 27.61, which is 0.000

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1
A Lagrange 

Multiplier Test 0ê

   
 

2

2

i   1 89 0.3102 27.61

ii   90 0.3066 27.59

     

    

LM T R

LM T R
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For a four-period lag, we obtain:

– Because the 5% critical value from a χ2
(4)-

distribution is 9.49, these LM values lead us to 
conclude that the errors are serially correlated

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.1a
Testing Correlation 

at Longer Lags

   
 

2

2

iii   4 86 0.3882 33.4

iv   90 0.4075 36.7

LM T R

LM T R

     

    
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This is used less frequently today because its critical 
values are not available in all software packages, and 
one has to examine upper and lower critical bounds 
instead
– Also, unlike the LM and correlogram tests, its 

distribution no longer holds when the equation 
contains a lagged dependent variable

When the error term is serially uncorrelated the D-W 
test statistic is equal to 2.
– When the error term is positively serially correlated 

the D-W test statistic is between 0 and 2.
– When the error term is negatively serially 

correlated the D-W test statistic is between 2 and 4.

9.3
Other Tests for 

Serially Correlated 
Errors

9.3.2
The Durbin-
Watson Test
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9.4 
Estimation with Serially Correlated 

Errors
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Three estimation procedures are considered:
1. Least squares estimation
2. An estimation procedure that is relevant when 

the errors are assumed to follow what is 
known as a first-order autoregressive model

3. A general estimation strategy for estimating 
models with serially correlated errors

9.4
Estimation with 

Serially Correlated 
Errors

1ρt t te e v 
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Suppose we proceed with least squares estimation 
without recognizing the existence of serially 
correlated errors. What are the consequences?
1. The least squares estimator is still a linear 

unbiased estimator, but it is no longer best
2. The formulas for the standard errors usually 

computed for the least squares estimator are 
no longer correct
• Confidence intervals and hypothesis tests 

that use these standard errors may be 
misleading

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation
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It is possible to compute correct standard errors 
for the least squares estimator: 
– HAC (heteroskedasticity and autocorrelation 

consistent) standard errors, or Newey-West 
standard errors
• These are analogous to the heteroskedasticity 

consistent standard errors 

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation
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Consider the model yt = β1 + β2xt + et

– The variance of b2 is:

where

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation

     

 
 

 

2
2

2
2

var var cov ,

cov ,
var 1

var

t t t s t s
t t s

t s t s
t s

t t
t t t

t

b w e w w e e

w w e e
w e

w e





 

 
   
  

 


 

   2
t t tt

w x x x x  

Eq. 9.18
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When the errors are not correlated, cov(et, es) = 0,
and the term in square brackets is equal to one. 
– The resulting expression

is the one used to find heteroskedasticity-
consistent (HC) standard errors

– When the errors are correlated, the term in 
square brackets is estimated to obtain HAC
standard errors

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation

   2
2var vart tt

b w e
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Let’s reconsider the Phillips Curve model:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation



     
     

0.7776 0.5279
        0.0658   0.2294         incorrect se

        0.1030   0.3127         HAC se

INF DU 

Eq. 9.19
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The t and p-values for testing H0: β2 = 0 are:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.1
Least Squares 

Estimation

 
 

0.5279 0.2294 2.301      0.0238     from LS standard errors

0.5279 0.3127 1.688      0.0950     from HAC standard errors

t p

t p

    

    
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Return to the Lagrange multiplier test for serially 
correlated errors where we used the equation:

– Assume the vt are uncorrelated random errors 
with zero mean and constant variances:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.2
Estimating an 

AR(1) Error Model

1ρt t te e v Eq. 9.20

     20     var      cov , 0   for t t v t sE v v v v t s   Eq. 9.21
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Eq. 9.30 describes a first-order autoregressive 
model or a first-order autoregressive process for 
et

– The term AR(1) model is used as an 
abbreviation for first-order autoregressive 
model

– It is called an autoregressive model because it 
can be viewed as a regression model 

– It is called first-order because the right-hand-
side variable is et lagged one period

9.4
Estimation with 

Serially Correlated 
Errors

9.4.2
Estimating an 

AR(1) Error Model
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We assume that:

The mean and variance of et are:

The covariance term is:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.2a
Properties of an 

AR(1) Error

1 ρ 1  Eq. 9.22

   
2

2
20     var

1 ρ
v

t t eE e e   


Eq. 9.23

 
2

2

ρcov , ,    0
1 ρ

k
v

t t ke e k
  


Eq. 9.24
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The correlation implied by the covariance is:

9.4
Estimation with 

Serially Correlated 
Errors

 
 

   
 
 
 
 

2 2

2 2

ρ corr ,

cov ,

var var

cov ,
var

ρ 1 ρ

1 ρ

ρ

k t t k

t t k

t t k

t t k

t

k
v

v

k

e e

e e

e e

e e
e


























Eq. 9.25

9.4.2a
Properties of an 

AR(1) Error
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Setting k = 1:

– ρ represents the correlation between two errors that 
are one period apart
• It is the first-order autocorrelation for e, 

sometimes simply called the autocorrelation 
coefficient

• It is the population autocorrelation at lag one for 
a time series that can be described by an AR(1) 
model

• r1 is an estimate for ρ when we assume a series 
is AR(1)

9.4
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Serially Correlated 
Errors

 1 1ρ corr , ρt te e  Eq. 9.26
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Each et depends on all past values of the errors vt:

– For the Phillips Curve, we find for the first five 
lags:

– For an AR(1) model, we have:

9.4
Estimation with 

Serially Correlated 
Errors

2 3
1 2 3ρ ρ ρt t t t te v v v v      Eq. 9.27

1 2 3 4 50.549   0.456   0.433   0.420   0.339r r r r r    

1 1ˆ ˆρ ρ 0.549r  
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For longer lags, we have:

9.4
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 
 
 
 

22
2

33
3

44
4

55
5

ˆ ˆρ ρ 0.549 0.301

ˆ ˆρ ρ 0.549 0.165

ˆ ˆρ ρ 0.549 0.091

ˆ ˆρ ρ 0.549 0.050

  

  

  

  
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Our model with an AR(1) error is:

with -1 < ρ < 1
– For the vt, we have:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.2b
Nonlinear Least 

Squares Estimation

1 2 1β β    with   ρt t t t t ty x e e e v    Eq. 9.28

     2
10   var    cov , 0   for t t v t tE v v v v t s    Eq. 9.29
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With the appropriate substitutions, we get:

– For the previous period, the error is:

– Multiplying by ρ:

9.4
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Errors

9.4.2b
Nonlinear Least 

Squares Estimation

1 2 1β β ρt t t ty x e v   Eq. 9.30

1 1 1 2 1β βt t te y x    Eq. 9.31

1 1 1 2 1ρ ρβ ρβt t t te e y x    Eq. 9.32
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Substituting, we get:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.2b
Nonlinear Least 

Squares Estimation

 1 2 1 2 1β 1 ρ β ρ ρβt t t t ty x y x v      Eq. 9.33
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The coefficient of xt-1 equals -ρβ2

– Although Eq. 9.33 is a linear function of the 
variables xt , yt-1 and xt-1, it is not a linear 
function of the parameters (β1, β2, ρ) 

– The usual linear least squares formulas cannot 
be obtained by using calculus to find the values 
of (β1, β2, ρ) that minimize Sv

• These are nonlinear least squares estimates

9.4
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9.4.2b
Nonlinear Least 

Squares Estimation
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Our Phillips Curve model assuming AR(1) errors 
is:

– Applying nonlinear least squares and presenting 
the estimates in terms of the original 
untransformed model, we have:

9.4
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9.4.2b
Nonlinear Least 

Squares Estimation

 1 2 1 2 1β 1 ρ β ρ ρβt t t t tINF DU INF DU v      Eq. 9.34



       
10.7609 0.6944      0.557

  0.1245  0.2479               0.090
t t tINF DU e e v

se
   

Eq. 9.35
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Nonlinear least squares estimation of Eq. 9.33 is 
equivalent to using an iterative generalized least 
squares estimator called the Cochrane-Orcutt 
procedure
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9.4.2c
Generalized Least 

Squares Estimation
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We have the model:

– Suppose now that we consider the model:

• This new notation correspond to a general 
class of autoregressive distributed lag 
(ARDL) models
–Eq. 9.37 is a member of this class

9.4
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Serially Correlated 
Errors

9.4.3
Estimating a More 

General Model

 1 2 1 2 1β 1 ρ β ρ ρβt t t t ty x y x v      Eq. 9.36

1 1 0 1 1δ θ δ δt t t t ty y x x v     Eq. 9.37
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Note that Eq. 9.37 is the same as Eq. 9.36 since:

– Eq. 9.36 is a restricted version of Eq. 9.37 with 
the restriction δ1 = -θ1δ0 imposed

9.4
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9.4.3
Estimating a More 

General Model

 1 0 2 1 2 1δ β 1 ρ    δ β    δ ρβ    θ ρ     Eq. 9.38
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Applying the least squares estimator to Eq. 9.37 
using the data for the Phillips curve example 
yields:

9.4
Estimation with 

Serially Correlated 
Errors

9.4.3
Estimating a More 

General Model



         
1 10.3336 0.5593 0.6882 0.3200

   0.0899  0.0908          0.2575       0.2499
t t t tINF INF DU DU

se
    

Eq. 9.39
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 The equivalent AR(1) estimates are:

 These are similar to our other estimates.
 One can test the validity of the AR(1) error term 

assumption by testing the hypothesis .
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When the simple regression model was introduced, we 
have assumed that the independent variable is not 
random (SR5).
We cannot maintain this assumption anymore in time-
series models. Both and are sampled jointly so we 
do not know the value of prior to sampling.
We substitute SR5 with TSMR2 (see next page).
This assumption in conjunction with the others 
guarantees that OLS estimators are unbiased and 
efficient.
Adding TSMR6 the t and F-statistics follows the t and 
F distributions, respectively.  
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9.4
Estimation with 

Serially Correlated 
Errors

9.4.4
Assumptions

TSMR1.
TSMR2.  y and x are stationary random variables, and et is independent of

current, past and future values of x.
TSMR3.  E(et) = 0
TSMR4.  var(et) = σ2

TSMR5.  cov(et, es) = 0   t ≠ s
TSMR6.  et ~ N(0, σ2)

0 1 1 2 2β β β β ,    1, ,t t t t q t q ty x x x x e t q T            

ASSUMPTIONS OF THE DISTRIBUTED LAG MODEL
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The ARDL model is more general than the previous 
specification. It includes a lagged dependent variable 
in the right-hand-side:

The model can be written as:

is correlated with so assumption TSMR2 is 
violated. 
This means that the least squares estimator is no 
longer unbiased but it consistent (under TSMR2A). 
The estimator is said to be consistent when it 
converges to the population parameter as the sample 
size tends to infinity. 

9.4
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1 1 0 1 1δ θ δ δt t t t ty y x x v     

1 1 0 1 1 1δ θ δ δt t t t ty y x x v      

9.4.4
Assumptions
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TSMR2A In the multiple regression model 
Where some of the xtk may be lagged values of y, vt is uncorrelated with all 
xtk and their past values.

1 2 2β β βt t K tK ty x x v    

ASSUMPTION FOR MODELS WITH A LAGGED DEPENDENT VARIABLE
9.4

Estimation with 
Serially Correlated 

Errors
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