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4.1 
Least Squares Prediction
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The ability to predict is important to:
– business economists and financial analysts who 

attempt to forecast the sales and revenues of 
specific firms

– government policy makers who attempt to predict 
the rates of growth in national income, inflation, 
investment, saving, social insurance program 
expenditures, and tax revenues

– local businesses who need to have predictions of 
growth in neighborhood populations and income so 
that they may expand or contract their provision of 
services

Accurate predictions provide a basis for better 
decision making in every type of planning context

4.1
Least Squares 

Prediction
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In order to use regression analysis as a basis for 
prediction, we must assume that y0 and x0 are 
related to one another by the same regression 
model that describes our sample of data, so that, in 
particular, SR1 holds for these observations

where e0 is a random error.

0 1 2 0 0β βy x e  Eq. 4.1

4.1
Least Squares 

Prediction
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The task of predicting y0 is related to the problem 
of estimating E(y0) = β1 + β2x0

– Although E(y0) = β1 + β2x0  is not random, the 
outcome y0 is random 

– Consequently, there is a difference between the 
interval estimate (a confidence interval) of 
E(y0) = β1 + β2x0 and the prediction interval 
for y0

4.1
Least Squares 

Prediction
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The least squares predictor of E(y0) comes from 
the fitted regression line

0210 xbbŷ Eq. 4.2

4.1
Least Squares 

Prediction
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Figure 4.1 A point prediction
4.1

Least Squares 
Prediction
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To evaluate how well this predictor performs, we 
define the forecast error, which is analogous to the 
least squares residual:

– We would like the forecast error to be small, 
implying that our forecast is close to the value 
we are predicting

   0 0 1 2 0 0 1 2 0ˆ β β b bf y y x e x      Eq. 4.3

4.1
Least Squares 

Prediction
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Taking the expected value of f, we find that

which means, on average, the forecast error is zero 
and      is an unbiased predictor of E(y0).

       
 

1 2 0 0 1 2 0

1 2 0 1 2 0

β β

β β 0 β β
0

E f x E e E b E b x

x x

      
    



0ŷ

4.1
Least Squares 

Prediction
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However, unbiasedness does not necessarily imply 
that a particular forecast will be close to the actual 
value 
– is the best linear unbiased predictor 

(BLUP) of E(y0) if assumptions SR1–SR5 hold
0ŷ

4.1
Least Squares 

Prediction
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The variance of the forecast is 

   
 

2
02

2
1var σ 1

i

x x
f

N x x

 
   

  
Eq. 4.4

4.1
Least Squares 

Prediction
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The variance of the forecast is smaller when:
– the overall uncertainty in the model is smaller, 

as measured by the variance of the random 
errors σ2

– the sample size N is larger
– the variation in the explanatory variable is 

larger
– the value of              is small  2

0 -x x

4.1
Least Squares 

Prediction
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In practice we use

for the variance
The standard error of the forecast is:

   
 

2
02

2

-1ˆvar σ 1
-i

x x
f

N x x

 
   
  

   se varf fEq. 4.5

4.1
Least Squares 

Prediction
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The 100(1 – α)% prediction interval of y0 is:

 0ˆ secy t fEq. 4.6

4.1
Least Squares 

Prediction
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Figure 4.2 Point and interval prediction
4.1

Least Squares 
Prediction
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For our food expenditure problem, we have:

The estimated variance for the forecast error is:

4.1.1
Prediction in the 
Food Expenditure 

Model

 0 1 2 0ˆ 83.4160 10.2096 20 287.6089y b b x    

   
 

 
 

    

2
02

2

2 2
22

0 2

2
22

0 2

1ˆvar 1

ˆ ˆˆ

ˆˆ var

i

i

x x
f

N x x

x x
N x x

x x b
N



 



 
   

  

   


   





4.1
Least Squares 

Prediction
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The 95% prediction interval for y0 is:

The prediction interval is wide even for x0 = 20, 
which is close to            . We observe that se( f ) = 
90.6 is very close to             . Thus the uncertainty 
in the prediction of y0 comes from the large 
uncertainty in the model. We can improve that by:
– Changing the functional form of the model
– Including additional independent variables 

   
 

0ˆ se 287.6089 2.0244 90.6328

104.1323,  471.0854
cy t f  



4.1
Least Squares 

Prediction

4.1.1
Prediction in the 
Food Expenditure 

Model

x 19.6
 89.6 
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There are two major reasons for analyzing the 
model

1. to explain how the dependent variable (yi) 
changes as the independent variable (xi) 
changes

2. to predict y0 given an x0

1 2 β βi i iy x e  Eq. 4.7

4.1
Least Squares 

Prediction

4.1.1
Prediction in the 
Food Expenditure 

Model
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Closely allied with the prediction problem is the 
desire to use xi to explain as much of the variation 
in the dependent variable yi as possible.
– In the regression model Eq. 4.7 we call xi the 

‘‘explanatory’’ variable because we hope that its 
variation will ‘‘explain’’ the variation in yi

4.2
Measuring 

Goodness-of-fit
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To develop a measure of the variation in yi that is 
explained by the model, we begin by separating yi
into its explainable and unexplainable 
components. 

– E(yi) is the explainable or systematic part
– ei is the random, unsystematic and 

unexplainable component 

 i i iy E y e Eq. 4.8

4.2
Measuring 

Goodness-of-fit
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Analogous to Eq. 4.8, we can write:

– Subtracting the sample mean from both sides:

ˆ ˆi i iy y e Eq. 4.9

 ˆ ˆi i iy y y y e   Eq. 4.10

4.2
Measuring 

Goodness-of-fit
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Figure 4.3 Explained and unexplained components of yi

4.2
Measuring 

Goodness-of-fit
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Recall that the sample variance of yi is
 2 ˆ

1
i

y

y y
s

N







4.2
Measuring 

Goodness-of-fit
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Squaring and summing both sides of Eq. 4.10, and 
using the fact that                       we get: 

   2 2 2ˆ ˆi i iy y y y e     

 ˆ ˆ 0i iy y e 

Eq. 4.11

4.2
Measuring 

Goodness-of-fit
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Eq. 4.11 decomposition of the ‘‘total sample 
variation’’ in y into explained and unexplained 
components 
– These are called ‘‘sums of squares’’ 

4.2
Measuring 

Goodness-of-fit
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Specifically:

 
 

2

2

2

total sum of squares  SST

ˆ sum of squares due to regression  SSR

ˆ sum of squares due to error  SSE

i

i

i

y y

y y

e

  

  

 





4.2
Measuring 

Goodness-of-fit
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We now rewrite Eq. 4.11 as:
SSE SSR SST 

4.2
Measuring 

Goodness-of-fit
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Let’s define the coefficient of determination, or 
R2 , as the proportion of variation in y explained 
by x within the regression model:

2   1SSR SSER
SST SST

  Eq. 4.12

4.2
Measuring 

Goodness-of-fit
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We can see that:
– The closer R2 is to 1, the closer the sample 

values yi are to the fitted regression equation
– If R2 = 1, then all the sample data fall exactly 

on the fitted least squares line, so SSE = 0, and 
the model fits the data ‘‘perfectly’’ 

– If the sample data for y and x are uncorrelated 
and show no linear association, then the least 
squares fitted line is ‘‘horizontal,’’ and identical 
to , so that SSR = 0 and R2 = 0

4.2
Measuring 

Goodness-of-fit

y



Principles of Econometrics, 4th Edition Page 31Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues

When 0 < R2 < 1 then R2 is interpreted as ‘‘the 
proportion of the variation in y about its mean that 
is explained by the regression model’’

4.2
Measuring 

Goodness-of-fit
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The correlation coefficient ρxy between x and y is 
defined as:

4.2.1
Correlation 

Analysis

 
   

σcov ,
ρ

σ σvar var

xy
xy

x y

x y

x y
 Eq. 4.13

4.2
Measuring 

Goodness-of-fit
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Substituting sample values, as get the sample 
correlation coefficient:

where:

– The sample correlation coefficient rxy has a value 
between  -1 and 1, and it measures the strength of 
the linear association between observed values of x
and y

xy
xy

x y

s
r

s s


    

   

   

2

2

1

1

1

xy i i

x i

y i

s x x y y N

s x x N

s y y N

   

  

  





4.2
Measuring 

Goodness-of-fit

4.2.1
Correlation 

Analysis
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Two relationships between R2 and rxy:
1. r2

xy = R2

2. R2 can also be computed as the square of the 
sample correlation coefficient between yi and

The last property makes R2 a measure of 
goodness-of-fit of the regression model, that can 
be extended to the case where we have more than 
one independent variable.  

4.2.2
Correlation 

Analysis and R2

1 2ˆi iy b b x 

4.2
Measuring 

Goodness-of-fit
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For the food expenditure example, the sums of 
squares are:

4.2.3
The Food 

Expenditure 
Example

 
 

2

2 2

495132.160

ˆ ˆ 304505.176

i

i i

SST y y

SSE y y e

  

   


 

4.2
Measuring 

Goodness-of-fit
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Therefore:

– We conclude that 38.5% of the variation in food 
expenditure (about its sample mean) is 
explained by our regression model, which uses 
only income as an explanatory variable

2 1

304505.1761
495132.160 

0.385

SSER
SST

 

 



4.2
Measuring 

Goodness-of-fit

4.2.3
The Food 

Expenditure 
Example
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The sample correlation between the y and x 
sample values is:

– As expected:

  
478.75

6.848 112.675
0.62

xy
xy

x y

s
r

s s






2 2 20.62 0.385xyr R  

4.2
Measuring 

Goodness-of-fit

4.2.3
The Food 

Expenditure 
Example
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The key ingredients in a report are:
1. the coefficient estimates
2. the standard errors (or t-values)
3. an indication of statistical significance
4. R2

Avoid using symbols like x and y
– Use abbreviations for the variables that are 

readily interpreted, defining the variables 
precisely in a separate section of the report.

4.2.4
Reporting the 

Results

4.2
Measuring 

Goodness-of-fit
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For our food expenditure example, we might have:
FOOD_EXP = weekly food expenditure by a 

household of size 3, in dollars
INCOME = weekly household income, in $100 units

And:

where 
* indicates significant at the 10% level
** indicates significant at the 5% level
*** indicates significant at the 1% level



     

2

* ***

_ 83.42 10.21      0.385

        se          43.41 2.09

  FOOD EXP INCOME R

4.2
Measuring 

Goodness-of-fit

4.2.4
Reporting the 

Results
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4.3 
Modeling Issues
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There are a number of issues we must address 
when building an econometric model

4.3
Modeling Issues
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What are the effects of scaling the variables in a 
regression model?
– Consider the food expenditure example

• We report weekly expenditures in dollars 
• But we report income in $100 units, so a 

weekly income of $2,000 is reported as         
x = 20

4.3.1
The Effects of 

Scaling the Data

4.3
Modeling Issues
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If we had estimated the regression using income in 
dollars, the results would have been:

– Notice the changes
1. The estimated coefficient of income is now 

0.1021
2. The standard error becomes smaller, by a 

factor of 100. 
–Since the estimated coefficient is smaller by 

a factor of 100 also, this leaves the t-statistic 
and all other results unchanged.

  
     

2

* ***

_ 83.42 0.1021 $      0.385

        se          43.41 0.0209

  FOOD EXP INCOME R

4.3
Modeling Issues

4.3.1
The Effects of 

Scaling the Data
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Possible effects of scaling the data:
1. Changing the scale of x: the coefficient of x

must be multiplied by c, the scaling factor
• When the scale of x is altered, the only other 

change occurs in the standard error of the 
regression coefficient, but it changes by the 
same multiplicative factor as the coefficient, 
so that their ratio, the t-statistic, is unaffected

• All other regression statistics are unchanged

4.3
Modeling Issues

4.3.1
The Effects of 

Scaling the Data
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Possible effects of scaling the data (Continued):
2. Changing the scale of y: If we change the 

units of measurement of y, but not x, then all 
the coefficients must change in order for the 
equation to remain valid
• Because the error term is scaled in this 

process the least squares residuals will also 
be scaled

• This will affect the standard errors of the 
regression coefficients, but it will not affect 
t-statistics or R2

4.3
Modeling Issues

4.3.1
The Effects of 

Scaling the Data
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Possible effects of scaling the data (Continued):
3. Changing the scale of y and x by the same 

factor: there will be no change in the reported 
regression results for b2, but the estimated 
intercept and residuals will change
• t-statistics and R2 are unaffected.
• The interpretation of the parameters is made 

relative to the new units of measurement.

4.3
Modeling Issues

4.3.1
The Effects of 

Scaling the Data
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The starting point in all econometric analyses is 
economic theory
– What does economics really say about the 

relation between food expenditure and income, 
holding all else constant? 

– We expect there to be a positive relationship 
between these variables because food is a 
normal good

– But nothing says the relationship must be a 
straight line

4.3.2
Choosing a 

Functional Form

4.3
Modeling Issues
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In fact, we do not expect that as household income 
rises that food expenditure will continue to rise 
indefinitely at the same constant rate.
Instead, as income rises we expect food 
expenditures to rise, but we expect such 
expenditures to rise in a decreasing rate.    

4.3
Modeling Issues

4.3.2
Choosing a 

Functional Form
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Figure 4.4 A nonlinear relationship between food expenditure and income
4.3

Modeling Issues

4.3.2
Choosing a 

Functional Form
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By transforming the variables y and x we can represent 
many curved, nonlinear relationships and still use the 
linear regression model
– Choosing an algebraic form for the relationship 

means choosing transformations of the original 
variables

– The most common are:
• Power: If x is a variable, then xp means raising 

the variable to the power p
–Quadratic (x2)
–Cubic (x3)

• Natural logarithm: If x is a variable, then its 
natural logarithm is ln(x)

4.3
Modeling Issues

4.3.2
Choosing a 

Functional Form
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Figure 4.5 Alternative functional forms
4.3

Modeling Issues

4.3.2
Choosing a 

Functional Form
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Summary of three configurations:
1. In the log-log model both the dependent and 

independent variables are transformed by the 
‘‘natural’’ logarithm. Thus,

• The parameter β2 is the elasticity of y with 
respect to x. An 1% increase in x leads to a 
β2 % change in y.

2. In the log-linear model only the dependent 
variable is transformed by the logarithm. 
Thus,

4.3
Modeling Issues

4.3.2
Choosing a 

Functional Form

2
ln /
ln /

  
d y dy y
d x dx x

 
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• A unit change in x leads to a 100 β2 % change in y. 
3. For the linear-log model, we can write that:

• Thus, in the linear-log model we can say that a 1% 
increase in x leads to a β2 /100 unit change in y.

2 ln /
 

dy dy
d x dx x



4.3
Modeling Issues

4.3.2
Choosing a 

Functional Form

2
ln /

 
d y dy y

dx dx

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4.3
Modeling Issues

4.3.2
Choosing a 

Functional Form

Table 4.1 Some Useful Functions, their Derivatives, Elasticities and Other
Interpretation
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We wish to choose a functional form for the food 
expenditure model that is consistent with Figure 
4.4.
One option is the linear-log model.
The food expenditure model in logs is:

The estimated version is:

4.3
Modeling Issues

4.3.3
A Linear-log Food 
Expenditure Model

 1 2_ ln FOOD EXP INCOME 

  
     

2

***

_ -97.19 132.17 ln      0.357

        se           84.24  28.80

FOOD EXP INCOME R  
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For a household with $1,000 weekly income, we 
estimate that the household will spend an additional 
$13.22 on food from an additional $100 income
– Whereas we estimate that a household with $2,000 

per week income will spend an additional $6.61 
from an additional $100 income 

– The marginal effect of income on food expenditure 
is smaller at higher levels of income
• This is a change from the linear, straight-line 

relationship we originally estimated, in which 
the marginal effect of a change in income of 
$100 was $10.21 for all levels of income

4.3
Modeling Issues

4.3.3
A Log-linear Food 
Expenditure Model
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Alternatively, we can say that a 1% increase in 
income will increase food expenditure by 
approximately $1.32 per week, or that a 10% 
increase in income will increase food expenditure 
by approximately $13.22 

4.3
Modeling Issues

4.3.3
A Log-linear Food 
Expenditure Model
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Figure 4.6 The fitted linear-log model
4.3

Modeling Issues

4.3.3
A Log-linear Food 
Expenditure Model
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1. Choose a shape that is consistent with what 
economic theory tells us about the relationship.

2. Choose a shape that is sufficiently flexible to 
‘‘fit’’ the data.

3. Choose a shape so that assumptions SR1–SR6 
are satisfied, ensuring that the least squares 
estimators have the desirable properties 
described in Chapters 2 and 3

GUIDELINES FOR CHOOSING A FUNCTIONAL FORM
4.3

Modeling Issues

4.3.3
A Log-linear Food 
Expenditure Model
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Even when we have chosen an adequate functional 
form, one or more of the model assumptions may not 
hold.
1. Examine the regression results vis-à-vis theory.
2. Look at the least squares residuals in order to see 

if there are any evidence that assumptions SR3 
(homoskedasticity), SR4 (no serial correlation) 
and SR6 (normality) are violated.
• There are formal statistical tests to check for:

– Homoskedasticity
– Serial correlation
– Normality

• Use residual plots

4.3.4
Using Diagnostic 
Residual Plots

4.3
Modeling Issues
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Figure 4.7 Randomly scattered residuals
4.3

Modeling Issues

4.3.4
Using Diagnostic 
Residual Plots
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Figure 4.8 Residuals from linear-log food expenditure model

4.3.4a
Homoskedastic 
Residual Plot

4.3
Modeling Issues
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The well-defined quadratic pattern in the least 
squares residuals indicates that something is 
wrong with the linear model specification
– The linear model has ‘‘missed’’ a curvilinear 

aspect of the relationship
– Or the error term is not uncorrelated 

(assumption SR4)

4.3.4b
Detecting Model 

Specification Errors

4.3
Modeling Issues
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Figure 4.9 Least squares residuals from a linear equation fit to quadratic data
4.3

Modeling Issues

4.3.4b
Detecting Model 

Specification Errors
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Hypothesis tests and interval estimates for the 
coefficients rely on the assumption that the errors, 
and hence the dependent variable y, are normally 
distributed
– Are they normally distributed? 

4.3.5
Are the Regression 

Errors Normally 
Distributed?

4.3
Modeling Issues
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We can check the distribution of the residuals 
using:
– A histogram
– Formal statistical test

• Merely checking a histogram is not a formal 
test

• Many formal tests are available
–A good one is the Jarque–Bera test for 

normality

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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Figure 4.10 EViews output: residuals histogram and summary statistics for 
food expenditure

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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The Jarque–Bera test for normality is based on 
two measures, skewness and kurtosis 
– Skewness refers to how symmetric the residuals 

are around zero
• Perfectly symmetric residuals will have a 

skewness of zero
• The skewness value for the food expenditure 

residuals is -0.097
– Kurtosis refers to the ‘‘peakedness’’ of the 

distribution.
• For a normal distribution the kurtosis value 

is 3

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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The Jarque–Bera statistic is given by:

where
N = sample size
S = skewness
K = kurtosis

 2
2 3

6 4
KNJB S

 
  
 
 

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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When the residuals are normally distributed, the 
Jarque–Bera statistic has a chi-squared distribution 
with two degrees of freedom
– We reject the hypothesis of normally distributed 

errors if a calculated value of the statistic 
exceeds a critical value selected from the chi-
squared distribution with two degrees of 
freedom
• The 5% critical value from a χ2-distribution 

with two degrees of freedom is 5.99, and the 
1% critical value is 9.21

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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For the food expenditure example, the Jarque–
Bera statistic is:

– Because 0.063 < 5.99 there is insufficient 
evidence from the residuals to conclude that the 
normal distribution assumption is unreasonable 
at the 5% level of significance 

  0.063
4

32.990.097
6
40JB

2
2 







 


4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
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We could reach the same conclusion by examining 
the p-value
– The p-value appears in Figure 4.10 described as 

‘‘Probability’’ 
– Thus, we also fail to reject the null hypothesis 

on the grounds that 0.9688 > 0.05

4.3
Modeling Issues

4.3.5
Are the Regression 

Errors Normally 
Distributed?
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4.4 
Polynomial Models



Principles of Econometrics, 4th Edition Page 74Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues

In addition to estimating linear equations, we can 
also estimate quadratic and cubic equations 

4.4
Polynomial Models
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The general form of a quadratic equation with one 
independent variable is:

The general form of a cubic equation is:

4.4.1
Quadratic and 

Cubic Equations

2
1 2 y x 

3
1 2 y x 

4.4
Polynomial Models
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4.4.2
An Empirical 

Example

Figure 4.11 Scatter plot of wheat yield over time
4.4

Polynomial Models
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One problem with the linear equation 

is that it implies that yield increases at the same 
constant rate β2, when, from Figure 4.11, we 
expect this rate to be increasing
The least squares fitted line is:

2 2β βt tYIELD TIME e  



     

2

*** ***

0.638 0.0210      0.649

 se      0.064  0.0022

  t tYIELD TIME R

4.4
Polynomial Models

4.4.2
An Empirical 

Example
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Figure 4.12 Residuals from a linear yield equation
4.4

Polynomial Models

4.4.2
An Empirical 

Example
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Perhaps a better model would be:

But note that the values of TIMEt
3 can get very 

large
– This variable is a good candidate for scaling. 

Define TIMECUBEt = TIMEt
3/1000000

The least squares fitted line is:

3
1 2β βt t tYIELD TIME e  



     

2

*** ***

0.874 9.68      0.751

 se       0.036  0.822

  t tYIELD TIMECUBE R

4.4
Polynomial Models

4.4.2
An Empirical 

Example



Principles of Econometrics, 4th Edition Page 80Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues

FI G U RE 4.13 Residuals from a cubic yield equation
4.4

Polynomial Models

4.4.2
An Empirical 

Example
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4.5 
Log-linear Models
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Econometric models that employ natural 
logarithms are very common
– Logarithmic transformations are often used for 

variables that are monetary values
• Wages, salaries, income, prices, sales, and 

expenditures
• In general, for variables that measure the 

‘‘size’’ of something
• These variables have the characteristic that 

they are positive and often have distributions 
that are positively skewed, with a long tail to 
the right

4.5
Log-linear Models
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4.5
Log-linear Models



Principles of Econometrics, 4th Edition Page 84Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues

The log-linear model, ln(y) = β1 + β2x, has a 
logarithmic term on the left-hand side of the 
equation and an untransformed (linear) variable on 
the right-hand side
– Both its slope and elasticity change at each 

point and are the same sign as β2

– In the log-linear model, a one-unit increase in x
leads, approximately, to a 100 β2 % change in y

4.5
Log-linear Models
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Suppose that the yield in year t is                       
YIELDt = (1+g)YIELDt-1, with g being the fixed 
growth rate in 1 year
– By substituting repeatedly we obtain             

YIELDt = YIELD0(1+g)t

– Here YIELD0 is the yield in year ‘‘0,’’ the year 
before the sample begins, so it is probably 
unknown

4.5.1
A Growth Model

4.5
Log-linear Models
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Taking logarithms, we obtain:

The fitted model is:

      
t

tgYIELDYIELDt

21

0

ββ
1lnlnln




 
     *** ***

ln 0.3434 0.0178

    se            0.0584 0.0021

  tYIELD t

4.5
Log-linear Models

4.5.1
A Growth Model
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Using the property that ln(1+x) ≈ x if x is small, 
we estimate that the growth rate in wheat yield is 
approximately     = 0.0178, or about 1.78% per 
year, over the period of the data.

ĝ

4.5
Log-linear Models

4.5.1
A Growth Model
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Suppose that the rate of return to an extra year of 
education is a constant r
– A model for wages might be:

4.5.2
The Wage 
Equation

     0

1 2

ln ln ln 1

β β

WAGE WAGE r EDUC

EDUC

     
 

4.5
Log-linear Models
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A fitted model would be:

– An additional year of education increases the 
wage rate by approximately 9%
• A 95% interval estimate for the value of an 

additional year of education is 7.8% to 
10.2%

 
     *** ***

ln 1.6094 0.0904

     se         0.0864  0.0061

  WAGE EDUC

4.5
Log-linear Models

4.5.2
The Wage 
Equation
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In a log-linear regression the R2 value 
automatically reported by statistical software is the 
percent of the variation in ln(y) explained by the 
model
– However, our objective is to explain the 

variations in y, not ln(y) 
– Furthermore, the fitted regression line predicts 

whereas we want to predict y

4.5.3
Prediction in the 
Log-linear Model

 
1 2ln y b b x 

4.5
Log-linear Models
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A natural choice for prediction is:

– The subscript “n” is for “natural” 
– But a better alternative is:

– The subscript “c” is for “corrected”
– This uses the properties of the log-normal 

distribution

    1 2ˆ exp ln expny y b b x  

    2ˆ2 σ 2
1 2ˆ ˆ ˆexp σ 2c ny E y b b x y e    

4.5
Log-linear Models

4.5.3
Prediction in the 
Log-linear Model
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Recall that      must be greater than zero and e0 = 1 
– Thus, the effect of the correction is always to 

increase the value of the prediction, because        
is always greater than one

– The natural predictor tends to systematically 
underpredict the value of y in a log-linear 
model, and the correction offsets the downward 
bias in large samples

2̂

2σ̂ 2e

4.5
Log-linear Models

4.5.3
Prediction in the 
Log-linear Model
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For the wage equation:

The natural predictor is:

    ˆ exp ln exp 2.6943 14.7958ny y  

 ln 1.6094 0.0904 1.6094 0.0904 12 2.6943WAGE EDUC      

4.5
Log-linear Models

4.5.3
Prediction in the 
Log-linear Model
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The corrected predictor is:

– We predict that the wage for a worker with 12 
years of education will be $14.80 per hour if we 
use the natural predictor, and $17.00 if we use 
the corrected predictor 

  ˆ 2ˆ ˆ 14.7958 1.1487 16.9964c ny E y y e    

4.5
Log-linear Models

4.5.3
Prediction in the 
Log-linear Model
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FIGURE 4.14 The natural and corrected predictors of wage
4.5

Log-linear Models

4.5.3
Prediction in the 
Log-linear Model
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A general goodness-of-fit measure, or general R2,  
is:

4.5.4
A Generalized R2

Measure

   2
ˆ

22 ˆ,corr yyg ryyR 

4.5
Log-linear Models



Principles of Econometrics, 4th Edition Page 97Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues

For the wage equation, the general R2 is:

– Compare this to the reported R2 = 0.1782

  22 2ˆcorr , 0.4312 0.1859g cR y y    

4.5
Log-linear Models

4.5.4
A Generalized R2

Measure
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A 100(1 – α)% prediction interval for y is:

         exp ln ,exp lnc cy t se f y t se f    

4.5.5
Prediction 

Intervals in the 
Log-linear Model 

4.5
Log-linear Models
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For the wage equation, a 95% prediction interval 
for the wage of a worker with 12 years of 
education is:
   

 
exp 2.6943 1.96 0.5270 ,exp 2.6943 1.96 0.5270

52604,  41.6158

     


4.5
Log-linear Models

4.5.5
Prediction 

Intervals in the 
Log-linear Model 
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FIGURE 4.15 The 95% prediction interval for wage
4.5

Log-linear Models

4.5.5
Prediction 

Intervals in the 
Log-linear Model 
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4.6 
Log-log Models
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The log-log function, ln(y) = β1 + β2ln(x), is 
widely used to describe demand equations and 
production functions
– In order to use this model, all values of y and x 

must be positive
– The slopes of these curves change at every 

point, but the elasticity is constant and equal to 
β2

4.6
Log-log Models
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If β2 > 0, then y is an increasing function of x
– If β2 > 1, then the function increases at an 

increasing rate
– If 0 < β2 < 1, then the function is increasing, but 

at a decreasing rate
If β2 < 0, then there is an inverse relationship 
between y and x

4.6
Log-log Models
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4.6.1
A Log-log Poultry 
Demand Equation

FIGURE 4.16 Quantity and Price of Chicken
4.6

Log-log Models
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The estimated model is:

– We estimate that the price elasticity of demand 
is 1.121: a 1% increase in real price is estimated 
to reduce quantity consumed by 1.121%

   
     

2
g

*** ***

ln 3.717 1.121 ln       0.8817

 se   0.022   0.049

Q P R   
Eq. 4.15

4.6
Log-log Models

4.6.1
A Log-log Poultry 
Demand Equation
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Using the estimated error variance      = 0.0139, 
the corrected predictor is:

The generalized goodness-of-fit is:

  
  

2

2

ˆ 2
c

ˆ 2

0.0139 2

ˆ ˆQ

exp ln

exp 3.717 2.121 ln

nQ e

Q e

P e









  

2̂

   8817.0939.0ˆ,corr 222  cg QQR

4.6
Log-log Models

4.6.1
A Log-log Poultry 
Demand Equation
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