Chapter 4 Prediction, Goodness-of-fit, and Modeling Issues

Walter R. Paczkowski Rutgers University

Chapter Contents

- 4.1 Least Square Prediction
- 4.2 Measuring Goodness-of-fit
- 4.3 Modeling Issues
- 4.4 Polynomial Models
- 4.5 Log-linear Models
- 4.6 Log-log Models

- The ability to predict is important to:
 - business economists and financial analysts who attempt to forecast the sales and revenues of specific firms
 - government policy makers who attempt to predict the rates of growth in national income, inflation, investment, saving, social insurance program expenditures, and tax revenues
 - local businesses who need to have predictions of growth in neighborhood populations and income so that they may expand or contract their provision of services
- Accurate predictions provide a basis for better decision making in every type of planning context

■ In order to use regression analysis as a basis for prediction, we must assume that y_0 and x_0 are related to one another by the same regression model that describes our sample of data, so that, in particular, SR1 holds for these observations

Eq. 4.1

$$y_0 = \beta_1 + \beta_2 x_0 + e_0$$

where e_0 is a random error.

- The task of predicting y_0 is related to the problem of estimating $E(y_0) = \beta_1 + \beta_2 x_0$
 - Although $E(y_0) = \beta_1 + \beta_2 x_0$ is not random, the outcome y_0 is random
 - Consequently, there is a difference between the **interval estimate** (a confidence interval) of $E(y_0) = \beta_1 + \beta_2 x_0$ and the **prediction interval** for y_0

■ The least squares predictor of $E(y_0)$ comes from the fitted regression line

$$\hat{\mathbf{y}}_0 = \mathbf{b}_1 + \mathbf{b}_2 \mathbf{x}_0$$

Figure 4.1 A point prediction

■ To evaluate how well this predictor performs, we define the forecast error, which is analogous to the least squares residual:

Eq. 4.3

$$f = y_0 - \hat{y}_0 = (\beta_1 + \beta_2 x_0 + e_0) - (b_1 + b_2 x_0)$$

 We would like the forecast error to be small, implying that our forecast is close to the value we are predicting

 \blacksquare Taking the expected value of f, we find that

$$E(f) = \beta_1 + \beta_2 x_0 + E(e_0) - [E(b_1) + E(b_2) x_0]$$

$$= \beta_1 + \beta_2 x_0 + 0 - [\beta_1 + \beta_2 x_0]$$

$$= 0$$

which means, on average, the forecast error is zero and \hat{y}_0 is an **unbiased predictor** of $E(y_0)$.

- However, unbiasedness does not necessarily imply that a particular forecast will be close to the actual value
 - $-\hat{y}_0$ is the **best linear unbiased predictor** (*BLUP*) of E(y_0) if assumptions SR1–SR5 hold

■ The variance of the forecast is

$$\operatorname{var}(f) = \sigma^{2} \left[1 + \frac{1}{N} + \frac{\left(x_{0} - \overline{x}\right)^{2}}{\sum \left(x_{i} - \overline{x}\right)^{2}} \right]$$

- The variance of the forecast is smaller when:
 - the overall uncertainty in the model is smaller, as measured by the variance of the random errors σ^2
 - the sample size N is larger
 - the variation in the explanatory variable is larger
 - the value of $(x_0 \overline{x})^2$ is small

■ In practice we use

$$\widehat{\operatorname{var}(f)} = \hat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{\left(x_0 - \overline{x}\right)^2}{\sum \left(x_i - \overline{x}\right)^2} \right]$$

for the variance

■ The standard error of the forecast is:

$$\operatorname{se}(f) = \sqrt{\widehat{\operatorname{var}(f)}}$$

■ The $100(1-\alpha)\%$ prediction interval of y_0 is:

$$\hat{y}_0 \pm t_c \operatorname{se}(f)$$

Figure 4.2 Point and interval prediction

4.1.1 Prediction in the Food Expenditure Model

■ For our food expenditure problem, we have:

$$\hat{y}_0 = b_1 + b_2 x_0 = 83.4160 + 10.2096(20) = 287.6089$$

■ The estimated variance for the forecast error is:

$$\widehat{\operatorname{var}(f)} = \widehat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{\left(x_0 - \overline{x}\right)^2}{\sum \left(x_i - \overline{x}\right)^2} \right]$$

$$= \widehat{\sigma}^2 + \frac{\widehat{\sigma}^2}{N} + \left(x_0 - \overline{x}\right)^2 \frac{\widehat{\sigma}^2}{\sum \left(x_i - \overline{x}\right)^2}$$

$$= \widehat{\sigma}^2 + \frac{\widehat{\sigma}^2}{N} + \left(x_0 - \overline{x}\right)^2 \widehat{\operatorname{var}}(b_2)$$

4.1.1 Prediction in the Food Expenditure Model

■ The 95% prediction interval for y_0 is:

$$\hat{y}_0 \pm t_c \operatorname{se}(f) = 287.6089 \pm 2.0244 (90.6328)$$
$$= [104.1323, 471.0854]$$

- The prediction interval is wide even for $x_0 = 20$, which is close to $\bar{x} = 19.6$. We observe that se(f) = 90.6 is very close to $\hat{\sigma} = 89.6$. Thus the uncertainty in the prediction of y_0 comes from the large uncertainty in the model. We can improve that by:
 - Changing the functional form of the model
 - Including additional independent variables

4.1.1
Prediction in the
Food Expenditure
Model

■ There are two major reasons for analyzing the model

$$y_i = \beta_1 + \beta_2 x_i + e_i$$

- 1. to explain how the dependent variable (y_i) changes as the independent variable (x_i) changes
- 2. to predict y_0 given an x_0

- Closely allied with the prediction problem is the desire to use x_i to explain as much of the variation in the dependent variable y_i as possible.
 - In the regression model Eq. 4.7 we call x_i the "explanatory" variable because we hope that its variation will "explain" the variation in y_i

■ To develop a measure of the variation in y_i that is explained by the model, we begin by separating y_i into its explainable and unexplainable components.

$$y_i = E(y_i) + e_i$$

- $-E(y_i)$ is the explainable or systematic part
- $-e_i$ is the random, unsystematic and unexplainable component

■ Analogous to Eq. 4.8, we can write:

Eq. 4.9

$$y_i = \hat{y}_i + \hat{e}_i$$

- Subtracting the sample mean from both sides:

$$y_i - \overline{y} = (\hat{y}_i - \overline{y}) + \hat{e}_i$$

Figure 4.3 Explained and unexplained components of y_i

 \blacksquare Recall that the sample variance of y_i is

$$s_y^2 = \frac{\sum (\hat{y}_i - \overline{y})}{N - 1}$$

■ Squaring and summing both sides of Eq. 4.10, and using the fact that $\sum (\hat{y}_i - \overline{y})\hat{e}_i = 0$ we get:

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum \hat{e}_i^2$$

- Eq. 4.11 decomposition of the "total sample variation" in y into explained and unexplained components
 - These are called "sums of squares"

■ Specifically:

$$\sum (y_i - \overline{y})^2 = \text{total sum of squares} = SST$$

$$\sum (\hat{y}_i - \overline{y})^2 = \text{sum of squares due to regression} = \text{SSR}$$

$$\sum \hat{e}_{i}^{2} = \text{sum of squares due to error} = \text{SSE}$$

■ We now rewrite Eq. 4.11 as:

$$SST = SSR + SSE$$

Let's define the **coefficient of determination**, or R^2 , as the proportion of variation in y explained by x within the regression model:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

■ We can see that:

- The closer R^2 is to 1, the closer the sample values y_i are to the fitted regression equation
- If $R^2 = 1$, then all the sample data fall exactly on the fitted least squares line, so SSE = 0, and the model fits the data "perfectly"
- If the sample data for y and x are uncorrelated and show no linear association, then the least squares fitted line is "horizontal," and identical to \overline{y} , so that SSR = 0 and $R^2 = 0$

■ When $0 < R^2 < 1$ then R^2 is interpreted as "the proportion of the variation in y about its mean that is explained by the regression model"

> 4.2.1 Correlation Analysis

> > ■ The correlation coefficient ρ_{xy} between x and y is defined as:

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)}\sqrt{\text{var}(y)}} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

4.2.1 Correlation Analysis ■ Substituting sample values, as get the sample correlation coefficient:

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

where:

$$s_{xy} = \sum (x_i - \overline{x})(y_i - \overline{y})/(N-1)$$

$$s_x = \sqrt{\sum (x_i - \overline{x})^2/(N-1)}$$

$$s_y = \sqrt{\sum (y_i - \overline{y})^2/(N-1)}$$

- The sample correlation coefficient r_{xy} has a value between -1 and 1, and it measures the strength of the linear association between observed values of x and y

4.2.2 Correlation Analysis and R²

- Two relationships between R^2 and r_{xy} :
 - 1. $r^2_{xy} = R^2$
 - 2. R^2 can also be computed as the square of the sample correlation coefficient between y_i and $\hat{y}_i = b_1 + b_2 x_i$
- The last property makes R^2 a measure of goodness-of-fit of the regression model, that can be extended to the case where we have more than one independent variable.

> 4.2.3 The Food Expenditure Example

> > ■ For the food expenditure example, the sums of squares are:

$$SST = \sum (y_i - \overline{y})^2 = 495132.160$$
$$SSE = \sum (y_i - \hat{y})^2 = \sum \hat{e}_i^2 = 304505.176$$

> 4.2.3 The Food Expenditure Example

■ Therefore:

$$R^{2} = 1 - \frac{SSE}{SST}$$

$$= 1 - \frac{304505.176}{495132.160}$$

$$= 0.385$$

 We conclude that 38.5% of the variation in food expenditure (about its sample mean) is explained by our regression model, which uses only income as an explanatory variable 4.2 Measuring Goodness-of-fit

> 4.2.3 The Food Expenditure Example

■ The sample correlation between the y and x sample values is:

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

$$= \frac{478.75}{(6.848)(112.675)}$$

$$= 0.62$$

- As expected:

$$r_{xy}^2 = 0.62^2 = 0.385 = R^2$$

4.2.4 Reporting the Results

- The key ingredients in a report are:
 - 1. the coefficient estimates
 - 2. the standard errors (or *t*-values)
 - 3. an indication of statistical significance
 - $4. R^2$
- \blacksquare Avoid using symbols like x and y
 - Use abbreviations for the variables that are readily interpreted, defining the variables precisely in a separate section of the report.

4.2 Measuring Goodness-of-fit

4.2.4 Reporting the Results

■ For our food expenditure example, we might have:

FOOD_EXP = weekly food expenditure by a
household of size 3, in dollars

INCOME = weekly household income, in \$100 units

■ And:

$$\widehat{FOOD}_{EXP} = 83.42 + 10.21 INCOME$$
 $R^2 = 0.385$ (se) $(43.41)^* (2.09)^{***}$

where

- * indicates significant at the 10% level
- ** indicates significant at the 5% level
- *** indicates significant at the 1% level

■ There are a number of issues we must address when building an econometric model

- What are the effects of scaling the variables in a regression model?
 - Consider the food expenditure example
 - We report weekly expenditures in dollars
 - But we report income in \$100 units, so a weekly income of \$2,000 is reported as x = 20

4.3.1 The Effects of Scaling the Data

■ If we had estimated the regression using income in dollars, the results would have been:

$$\widehat{FOOD}_{EXP} = 83.42 + 0.1021 INCOME(\$)$$
 $R^2 = 0.385$ (se) $(43.41)^* (0.0209)^{***}$

- Notice the changes
 - 1. The estimated coefficient of income is now 0.1021
 - 2. The standard error becomes smaller, by a factor of 100.
 - Since the estimated coefficient is smaller by a factor of 100 also, this leaves the *t*-statistic and all other results unchanged.

- Possible effects of scaling the data:
 - 1. Changing the scale of x: the coefficient of x must be multiplied by c, the scaling factor
 - When the scale of *x* is altered, the only other change occurs in the standard error of the regression coefficient, but it changes by the same multiplicative factor as the coefficient, so that their ratio, the *t*-statistic, is unaffected
 - All other regression statistics are unchanged

- Possible effects of scaling the data (Continued):
 - 2. Changing the scale of y: If we change the units of measurement of y, but not x, then all the coefficients must change in order for the equation to remain valid
 - Because the error term is scaled in this process the least squares residuals will also be scaled
 - This will affect the standard errors of the regression coefficients, but it will not affect t-statistics or R^2

- Possible effects of scaling the data (Continued):
 - 3. Changing the scale of y and x by the same factor: there will be no change in the reported regression results for b_2 , but the estimated intercept and residuals will change
 - t-statistics and R^2 are unaffected.
 - The interpretation of the parameters is made relative to the new units of measurement.

- The starting point in all econometric analyses is economic theory
 - What does economics really say about the relation between food expenditure and income, holding all else constant?
 - We expect there to be a positive relationship between these variables because food is a normal good
 - But nothing says the relationship must be a straight line

- In fact, we do *not* expect that as household income rises that food expenditure will continue to rise indefinitely at the same constant rate.
- Instead, as income rises we expect food expenditures to rise, but we expect such expenditures to rise in a *decreasing rate*.

Figure 4.4 A nonlinear relationship between food expenditure and income

- By transforming the variables *y* and *x* we can represent many curved, nonlinear relationships and still use the linear regression model
 - Choosing an algebraic form for the relationship means choosing transformations of the original variables
 - The most common are:
 - **Power**: If x is a variable, then x^p means raising the variable to the power p
 - -Quadratic (x^2)
 - -Cubic (x^3)
 - Natural logarithm: If x is a variable, then its natural logarithm is ln(x)

Figure 4.5 Alternative functional forms

- Summary of three configurations:
 - 1. In the log-log model both the dependent and independent variables are transformed by the "natural" logarithm. Thus,

$$\beta_2 = \frac{d \ln y}{d \ln x} = \frac{dy / y}{dx / x} = \varepsilon$$

- The parameter β_2 is the elasticity of y with respect to x. An 1% increase in x leads to a β_2 % change in y.
- 2. In the log-linear model only the dependent variable is transformed by the logarithm. Thus,

4.3.2 Choosing a Functional Form

$$\beta_2 = \frac{d \ln y}{dx} = \frac{dy / y}{dx}$$

- A unit change in x leads to a 100 β_2 % change in y.
- 3. For the linear-log model, we can write that:

$$\beta_2 = \frac{dy}{d \ln x} = \frac{dy}{dx / x}$$

• Thus, in the linear-log model we can say that a 1% increase in x leads to a $\beta_2/100$ unit change in y.

Table 4.1 Some Useful Functions, their Derivatives, Elasticities and Other Interpretation

Name	Function	Slope = dy/dx	Elasticity
Linear	$y = \beta_1 + \beta_2 x$	β_2	$\beta_2 \frac{x}{y}$
Quadratic	$y = \beta_1 + \beta_2 x^2$	$2\beta_2x$	$(2\beta_2 x) \frac{x}{y}$
Cubic	$y = \beta_1 + \beta_2 x^3$	$3\beta_2 x^2$	$(3\beta_2 x^2) \frac{x}{y}$
Log-Log	$\ln(y) = \beta_1 + \beta_2 \ln(x)$	$\beta_2 \frac{y}{x}$	β_2
Log-Linear	$ln(y) = \beta_1 + \beta_2 x$ or, a 1 unit change in x lead	$\beta_2 y$ Is to (approximately) a 100 ($\beta_2 x$ $\beta_2\%$ change in y
Linear-Log	$y = \beta_1 + \beta_2 \ln(x)$	$\beta_2 \frac{1}{x}$	$\beta_2 \frac{1}{v}$
	or, a 1% change in x leads to (approximately) a $\beta_2/100$ unit change in y		

4.3.3 A Linear-log Food Expenditure Model

- We wish to choose a functional form for the food expenditure model that is consistent with Figure 4.4.
- One option is the linear-log model.
- The food expenditure model in logs is:

$$FOOD _EXP = \beta_1 + \beta_2 \ln(INCOME)$$

■ The estimated version is:

$$\widehat{FOOD}_{EXP} = -97.19 + 132.17 \ln(INCOME)$$
 $R^2 = 0.357$ (se) $(84.24) (28.80)^{***}$

4.3.3 A Log-linear Food Expenditure Model

- For a household with \$1,000 weekly income, we estimate that the household will spend an additional \$13.22 on food from an additional \$100 income
 - Whereas we estimate that a household with \$2,000 per week income will spend an additional \$6.61 from an additional \$100 income
 - The marginal effect of income on food expenditure is smaller at higher levels of income
 - This is a change from the linear, straight-line relationship we originally estimated, in which the marginal effect of a change in income of \$100 was \$10.21 for all levels of income

4.3.3 A Log-linear Food Expenditure Model

■ Alternatively, we can say that a 1% increase in income will increase food expenditure by approximately \$1.32 per week, or that a 10% increase in income will increase food expenditure by approximately \$13.22

Figure 4.6 The fitted linear-log model

4.3.3 A Log-linear Food Expenditure Model

GUIDELINES FOR CHOOSING A FUNCTIONAL FORM

4.3.3 A Log-linear Food Expenditure Model

- 1. Choose a shape that is consistent with what economic theory tells us about the relationship.
- 2. Choose a shape that is sufficiently flexible to "fit" the data.
- 3. Choose a shape so that assumptions SR1–SR6 are satisfied, ensuring that the least squares estimators have the desirable properties described in Chapters 2 and 3

4.3.4 Using Diagnostic Residual Plots

- Even when we have chosen an adequate functional form, one or more of the model assumptions may not hold.
 - 1. Examine the regression results vis-à-vis theory.
 - 2. Look at the least squares residuals in order to see if there are any evidence that assumptions SR3 (homoskedasticity), SR4 (no serial correlation) and SR6 (normality) are violated.
 - There are formal statistical tests to check for:
 - Homoskedasticity
 - Serial correlation
 - Normality
 - Use residual plots

Figure 4.7 Randomly scattered residuals

4.3.4 Using Diagnostic Residual Plots

Figure 4.8 Residuals from linear-log food expenditure model

4.3.4a Homoskedastic Residual Plot

4.3.4b
Detecting Model
Specification Errors

- The well-defined quadratic pattern in the least squares residuals indicates that something is wrong with the linear model specification
 - The linear model has "missed" a curvilinear aspect of the relationship
 - Or the error term is not uncorrelated (assumption SR4)

Figure 4.9 Least squares residuals from a linear equation fit to quadratic data

4.3.4b
Detecting Model
Specification Errors

4.3.5
Are the Regression
Errors Normally
Distributed?

- Hypothesis tests and interval estimates for the coefficients rely on the assumption that the errors, and hence the dependent variable *y*, are normally distributed
 - Are they normally distributed?

4.3.5
Are the Regression
Errors Normally
Distributed?

- We can check the distribution of the residuals using:
 - A histogram
 - Formal statistical test
 - Merely checking a histogram is not a formal test
 - Many formal tests are available
 - -A good one is the Jarque-Bera test for normality

Figure 4.10 EViews output: residuals histogram and summary statistics for food expenditure

4.3.5
Are the Regression
Errors Normally
Distributed?

4.3.5
Are the Regression
Errors Normally
Distributed?

- The Jarque—Bera test for normality is based on two measures, skewness and kurtosis
 - Skewness refers to how symmetric the residuals are around zero
 - Perfectly symmetric residuals will have a skewness of zero
 - The skewness value for the food expenditure residuals is -0.097
 - Kurtosis refers to the "peakedness" of the distribution.
 - For a normal distribution the kurtosis value is 3

4.3.5 Are the Regression Errors Normally Distributed?

■ The Jarque—Bera statistic is given by:

$$JB = \frac{N}{6} \left(S^2 + \frac{\left(K - 3 \right)^2}{4} \right)$$

where

N =sample size

S = skewness

K = kurtosis

4.3.5
Are the Regression
Errors Normally
Distributed?

- When the residuals are normally distributed, the Jarque—Bera statistic has a chi-squared distribution with two degrees of freedom
 - We reject the hypothesis of normally distributed errors if a calculated value of the statistic exceeds a critical value selected from the chisquared distribution with two degrees of freedom
 - The 5% critical value from a χ^2 -distribution with two degrees of freedom is 5.99, and the 1% critical value is 9.21

4.3.5
Are the Regression
Errors Normally
Distributed?

■ For the food expenditure example, the Jarque— Bera statistic is:

$$JB = \frac{40}{6} \left(-0.097^2 + \frac{(2.99 - 3)^2}{4} \right) = 0.063$$

 Because 0.063 < 5.99 there is insufficient evidence from the residuals to conclude that the normal distribution assumption is unreasonable at the 5% level of significance

4.3.5
Are the Regression
Errors Normally
Distributed?

- We could reach the same conclusion by examining the *p*-value
 - The *p*-value appears in Figure 4.10 described as "Probability"
 - Thus, we also fail to reject the null hypothesis on the grounds that 0.9688 > 0.05

4.4 Polynomial Models

4.4.1 Quadratic and Cubic Equations

■ The general form of a quadratic equation with one independent variable is:

$$y = \beta_1 + \beta_2 x^2$$

■ The general form of a cubic equation is:

$$y = \beta_1 + \beta_2 x^3$$

Figure 4.11 Scatter plot of wheat yield over time

4.4.2 An Empirical Example

4.4 Polynomial Models

> 4.4.2 An Empirical Example

> > One problem with the linear equation

$$YIELD_t = \beta_2 + \beta_2 TIME + e_t$$

is that it implies that yield increases at the same constant rate β_2 , when, from Figure 4.11, we expect this rate to be increasing

■ The least squares fitted line is:

$$\widehat{YIELD_t} = 0.638 + 0.0210TIME_t$$
 $R^2 = 0.649$ (se) $(0.064)^{***}$ $(0.0022)^{***}$

Figure 4.12 Residuals from a linear yield equation

4.4.2 An Empirical Example

4.4 Polynomial Models

> 4.4.2 An Empirical Example

> > Perhaps a better model would be:

$$YIELD_t = \beta_1 + \beta_2 TIME_t^3 + e_t$$

But note that the values of $TIME_t^3$ can get very large

- This variable is a good candidate for scaling. Define $TIMECUBE_t = TIME_t^3/1000000$
- The least squares fitted line is:

$$\widehat{YIELD_t} = 0.874 + 9.68TIMECUBE_t$$
 $R^2 = 0.751$ (se) $(0.036)^{***}$ $(0.822)^{***}$

FI G U RE 4.13 Residuals from a cubic yield equation

4.4.2 An Empirical Example

4.5 Log-linear Models Principles of Econometrics, 4th Edition Chapter 4: Prediction, Goodness-of-fit, and Modeling Issues Page 81

- Econometric models that employ natural logarithms are very common
 - Logarithmic transformations are often used for variables that are monetary values
 - Wages, salaries, income, prices, sales, and expenditures
 - In general, for variables that measure the "size" of something
 - These variables have the characteristic that they are positive and often have distributions that are positively skewed, with a long tail to the right

4.5 Log-linear Models

- The log-linear model, $ln(y) = \beta_1 + \beta_2 x$, has a logarithmic term on the left-hand side of the equation and an untransformed (linear) variable on the right-hand side
 - Both its slope and elasticity change at each point and are the same sign as β_2
 - In the log-linear model, a one-unit increase in x leads, approximately, to a 100 β_2 % change in y

4.5.1 A Growth Model

- Suppose that the yield in year t is $YIELD_t = (1+g)YIELD_{t-1}$, with g being the fixed growth rate in 1 year
 - By substituting repeatedly we obtain $YIELD_t = YIELD_0(1+g)^t$
 - Here $YIELD_0$ is the yield in year "0," the year before the sample begins, so it is probably unknown

4.5.1 A Growth Model

■ Taking logarithms, we obtain:

$$\ln(YIELD_t) = \ln(YIELD_0) + [\ln(1+g)] \times t$$
$$= \beta_1 + \beta_2 t$$

■ The fitted model is:

$$\ln\left(\widehat{YIELD_t}\right) = -0.3434 + 0.0178t$$
(se) $(0.0584)^{***} (0.0021)^{***}$

4.5.1 A Growth Model

■ Using the property that $ln(1+x) \approx x$ if x is small, we estimate that the growth rate in wheat yield is approximately $\hat{g} = 0.0178$, or about 1.78% per year, over the period of the data.

> 4.5.2 The Wage Equation

- Suppose that the rate of return to an extra year of education is a constant *r*
 - A model for wages might be:

$$\ln(WAGE) = \ln(WAGE_0) + \left[\ln(1+r)\right] \times EDUC$$
$$= \beta_1 + \beta_2 EDUC$$

> 4.5.2 The Wage Equation

> > ■ A fitted model would be:

$$\ln(\widehat{WAGE}) = 1.6094 + 0.0904 \times EDUC$$
(se) $(0.0864)^{***} (0.0061)^{***}$

- An additional year of education increases the wage rate by approximately 9%
 - A 95% interval estimate for the value of an additional year of education is 7.8% to 10.2%

4.5.3 Prediction in the Log-linear Model

- In a log-linear regression the R^2 value automatically reported by statistical software is the percent of the variation in ln(y) explained by the model
 - However, our objective is to explain the variations in y, not ln(y)
 - Furthermore, the fitted regression line predicts

$$\widehat{\ln(y)} = b_1 + b_2 x$$

whereas we want to predict y

4.5.3 Prediction in the Log-linear Model

■ A natural choice for prediction is:

$$\hat{y}_n = \exp\left(\widehat{\ln(y)}\right) = \exp(b_1 + b_2 x)$$

- The subscript "n" is for "natural"
- But a better alternative is:

$$\hat{y}_c = \widehat{E(y)} = \exp(b_1 + b_2 x + \hat{\sigma}^2/2) = \hat{y}_n e^{\hat{\sigma}^2/2}$$

- The subscript "c" is for "corrected"
- This uses the properties of the log-normal distribution

4.5.3 Prediction in the Log-linear Model

- Recall that $\hat{\sigma}^2$ must be greater than zero and $e^0 = 1$
 - Thus, the effect of the correction is always to increase the value of the prediction, because $e^{\hat{\sigma}^2/2}$ is always greater than one
 - The natural predictor tends to systematically underpredict the value of *y* in a log-linear model, and the correction offsets the downward bias in large samples

4.5.3 Prediction in the Log-linear Model

■ For the wage equation:

$$\ln(WAGE) = 1.6094 + 0.0904 \times EDUC = 1.6094 + 0.0904 \times 12 = 2.6943$$

■ The natural predictor is:

$$\hat{y}_n = \exp(\widehat{\ln(y)}) = \exp(2.6943) = 14.7958$$

4.5.3 Prediction in the Log-linear Model

■ The corrected predictor is:

$$\hat{y}_c = \widehat{E(y)} = \hat{y}_n e^{\hat{\sigma}/2} = 14.7958 \times 1.1487 = 16.9964$$

- We predict that the wage for a worker with 12 years of education will be \$14.80 per hour if we use the natural predictor, and \$17.00 if we use the corrected predictor

4.5.3 Prediction in the Log-linear Model

4.5.4 A Generalized R^2 Measure

■ A general goodness-of-fit measure, or general R^2 , is:

$$R_g^2 = [\text{corr}(y, \hat{y})]^2 = r_{y\hat{y}}^2$$

4.5.4 A Generalized *R*² Measure

 \blacksquare For the wage equation, the general R^2 is:

$$R_g^2 = \left[\text{corr}(y, \hat{y}_c)\right]^2 = 0.4312^2 = 0.1859$$

– Compare this to the reported $R^2 = 0.1782$

4.5.5 Prediction Intervals in the Log-linear Model

■ A $100(1 - \alpha)$ % prediction interval for *y* is:

$$\left[\exp\left(\widehat{\ln(y)} - t_c se(f)\right), \exp\left(\widehat{\ln(y)} + t_c se(f)\right)\right]$$

4.5.5 Prediction Intervals in the Log-linear Model

■ For the wage equation, a 95% prediction interval for the wage of a worker with 12 years of education is:

$$\left[\exp(2.6943-1.96\times0.5270), \exp(2.6943+1.96\times0.5270)\right]$$

$$=[52604, 41.6158]$$

FIGURE 4.15 The 95% prediction interval for wage

4.5.5
Prediction
Intervals in the
Log-linear Model

- The log-log function, $ln(y) = \beta_1 + \beta_2 ln(x)$, is widely used to describe demand equations and production functions
 - In order to use this model, all values of y and x must be positive
 - The slopes of these curves change at every point, but the elasticity is constant and equal to β_2

- If $\beta_2 > 0$, then y is an increasing function of x
 - If $\beta_2 > 1$, then the function increases at an increasing rate
 - If $0 < \beta_2 < 1$, then the function is increasing, but at a decreasing rate
- If β_2 < 0, then there is an inverse relationship between y and x

FIGURE 4.16 Quantity and Price of Chicken

4.6.1 A Log-log Poultry Demand Equation

4.6.1 A Log-log Poultry Demand Equation

■ The estimated model is:

Eq. 4.15

$$\widehat{\ln(Q)} = 3.717 - 1.121 \times \ln(P) \qquad R_g^2 = 0.8817$$
(se) $(0.022)^{***}$ $(0.049)^{***}$

 We estimate that the price elasticity of demand is 1.121: a 1% increase in real price is estimated to reduce quantity consumed by 1.121%

4.6.1 A Log-log Poultry Demand Equation

■ Using the estimated error variance $\hat{\sigma}^2 = 0.0139$, the corrected predictor is:

$$\hat{Q}_{c} = \hat{Q}_{n} e^{\hat{\sigma}^{2}/2}$$

$$= \exp(\widehat{\ln(Q)}) e^{\hat{\sigma}^{2}/2}$$

$$= \exp(3.717 - 2.121 \times \ln(P)) e^{0.0139/2}$$

■ The generalized goodness-of-fit is:

$$R_g^2 = \left[\text{corr}(Q, \hat{Q}_c)\right]^2 = 0.939^2 = 0.8817$$

Keywords

- coefficient of determination
- correlation
- data scale
- forecast error
- forecast standard error
- functional form
- goodness-of-fit
- growth model

- Jarque-Bera test
- Kurtosis
- least squares predictor
- linear model
- linear relationship
- linear-log model
- log-linear model
- log-log model

- log-normal distribution
- Prediction
- prediction interval
- \blacksquare R²
- Residual
- skewness