Chapter 3 Interval Estimation and Hypothesis Testing

Walter R. Paczkowski Rutgers University

Chapter Contents

- 3.1 Interval Estimation
- 3.2 Hypothesis Tests
- 3.3 Rejection Regions for Specific Alternatives
- 3.4 Examples of Hypothesis Tests
- 3.5 The *p*-value
- 3.6 Linear Combinations of Parameters

3.1 Interval Estimation

- There are two types of estimates
 - Point estimates
 - The estimate b_2 is a point estimate of the unknown population parameter in the regression model.
 - Interval estimates
 - Interval estimation proposes a range of values in which the true parameter is likely to fall
 - Providing a range of values gives a sense of what the parameter value might be, and the precision with which we have estimated it
 - Such intervals are often called **confidence intervals**.
 - We prefer to call them **interval estimates** because the term "confidence" is widely misunderstood and misused

■ The normal distribution of b_2 , the least squares estimator of β_2 , is

$$b_2 \sim N \left(\beta_2, \frac{\sigma^2}{\sum (x_i - \overline{x})^2} \right)$$

■ A standardized normal random variable is obtained from b₂ by subtracting its mean and dividing by its standard deviation:

$$Z = \frac{b_2 - \beta_2}{\sqrt{\sigma^2 / \sum (x_i - \overline{x})^2}} \sim N(0, 1)$$

Eq. 3.1

■ We know that:

$$P(-1.96 \le Z \le 1.96) = 0.95$$

Substituting:

$$P\left(-1.96 \le \frac{b_2 - \beta_2}{\sqrt{\sigma^2 / \sum (x_i - \overline{x})^2}} \le 1.96\right) = 0.95$$

■ Rearranging:

$$P\left(b_2 - 1.96\sqrt{\sigma^2/\sum(x_i - \bar{x})^2} \le \beta_2 \le b_2 + 1.96\sqrt{\sigma^2/\sum(x_i - \bar{x})^2}\right) = 0.95$$

- The two end-points $b_2 \pm 1.96 \sqrt{\sigma^2 / \sum (x_i \overline{x})^2}$ provide an interval estimator.
- In repeated sampling 95% of the intervals constructed this way will contain the true value of the parameter β_2 .
- This easy derivation of an interval estimator is based on the assumption SR6 and that we know the variance of the error term σ^2 .

■ Replacing σ^2 with $\hat{\sigma}^2$ creates a random variable t:

Eq. 3.2

$$t = \frac{b_2 - \beta_2}{\sqrt{\hat{\sigma}^2 / \sum (x_i - \overline{x})^2}} = \frac{b_2 - \beta_2}{\sqrt{\hat{var}(b_2)}} = \frac{b_2 - \beta_2}{se(b_2)} \sim t_{(N-2)}$$

The ratio $t = b_2 - \beta_2/se(b_2)$ has a *t*-distribution with (N-2) degrees of freedom, which we denote as:

$$t \sim t_{(N-2)}$$

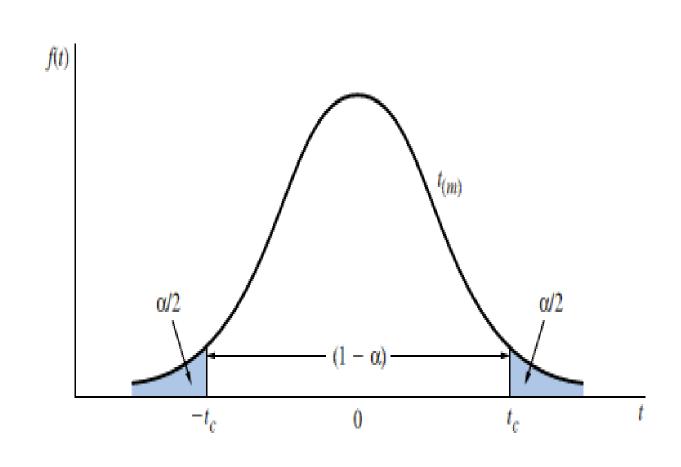
■ In general we can say, if assumptions SR1-SR6 hold in the simple linear regression model, then

$$t = \frac{b_k - \beta_k}{se(b_k)} \sim t_{(N-2)}$$
 for $k = 1,2$

- The *t*-distribution is a bell shaped curve centered at zero
- It looks like the standard normal distribution, except it is more spread out, with a larger variance and thicker tails
- The shape of the *t*-distribution is controlled by a single parameter called the **degrees of freedom**, often abbreviated as *df*

Figure 3.1 Critical values from a *t*-distribution.

3.1.1 The *t*-Distribution



■ We can find a "critical value" from a t-distribution such that

$$P(t \ge t_c) = P(t \le -t_c) = \alpha/2$$

where α is a probability often taken to be $\alpha = 0.01$ or $\alpha = 0.05$.

■ The critical value t_c for degrees of freedom m is the percentile value $t_{(1-\alpha/2, m)}$

- Each shaded "tail" area contains $\alpha/2$ of the probability, so that 1- α of the probability is contained in the center portion.
 - Consequently, we can make the probability statement

$$P(-t_c \le t \le t_c) = 1 - \alpha$$

or

$$P\left(-t_c \le \frac{b_k - \beta_k}{se(b_k)} \le t_c\right) = 1 - \alpha$$

Eq. 3.5

Eq. 3.4

$$P[b_k - t_c se(b_k) \le \beta_k \le b_k + t_c se(b_k)] = 1 - \alpha$$

- When b_k and $se(b_k)$ are estimated values (numbers), based on a given sample of data, then $b_k \pm t_c se(b_k)$ is called a $100(1-\alpha)\%$ interval estimate of b_k .
 - Equivalently it is called a $100(1-\alpha)\%$ confidence interval.
 - Usually $\alpha = 0.01$ or $\alpha = 0.05$, so that we obtain a 99% confidence interval or a 95% confidence interval.

- The interpretation of confidence intervals requires a great deal of care
 - The properties of the interval estimation procedure are based on the notion of repeated sampling
 - Any one interval estimate, based on one sample of data, may or may not contain the true parameter β_k , and because β_k is unknown, we will never know whether it does or does not
 - When "confidence intervals" are discussed, remember that our confidence is in the procedure used to construct the interval estimate; it is not in any one interval estimate calculated from a sample of data

■ For the food expenditure data

$$P[b_2 - 2.024se(b_2) \le \beta_2 \le b_2 + 2.024se(b_2)] = 0.95$$

- The critical value $t_c = 2.024$, which is appropriate for $\alpha = .05$ and 38 degrees of freedom
- To construct an interval estimate for β_2 we use the least squares estimate $b_2 = 10.21$ and its standard error

$$se(b_2) = \sqrt{\hat{var}(b_2)} = \sqrt{4.38} = 2.09$$

■ A "95% confidence interval estimate" for β_2 :

$$b_2 \pm t_c se(b_2) = 10.21 \pm 2.024(2.09) = [5.97,14.45]$$

- When the procedure we used is applied to many random samples of data from the same population, then 95% of all the interval estimates constructed using this procedure will contain the true parameter

- Is β₂ actually in the interval [5.97, 14.45]?
 - We do not know, and we will never know
 - What we do know is that when the procedure we used is applied to many random samples of data from the same population, then 95% of all the interval estimates constructed using this procedure will contain the true parameter
 - The interval estimation procedure "works" 95% of the time
 - What we can say about the interval estimate based on our one sample is that, given the reliability of the procedure, we would be "surprised" if β_2 is not in the interval [5.97, 14.45].

- What is the usefulness of an interval estimate of β_2 ?
 - When reporting regression results we always give a point estimate, such as $b_2 = 10.21$
 - However, the point estimate alone gives no sense of its reliability
 - Thus, we might also report an interval estimate
 - Interval estimates incorporate both the point estimate and the standard error of the estimate, which is a measure of the variability of the least squares estimator

Table 3.1 Least Squares Estimates from 10 Random Samples

3.1.4 The Repeated Sampling Context

Sample	b_1	$se(b_1)$	b_2	$se(b_2)$	$\hat{\sigma}^2$
1	131.69	40.58	6.48	1.96	7002.85
2	57.25	33.13	10.88	1.60	4668.63
3	103.91	37.22	8.14	1.79	5891.75
4	46.50	33.33	11.90	1.61	4722.58
5	84.23	41.15	9.29	1.98	7200.16
6	26.63	45.78	13.55	2.21	8911.43
7	64.21	32.03	10.93	1.54	4362.12
8	79.66	29.87	9.76	1.44	3793.83
9	97.30	29.14	8.05	1.41	3610.20
10	95.96	37.18	7.77	1.79	5878.71

Table 3.2 Interval Estimates from 10 Random Samples

3.1.4 The Repeated Sampling Context

Sample	$b_1 - t_c \operatorname{se}(b_1)$	$b_1 + t_c \operatorname{se}(b_1)$	$b_2 - t_c \operatorname{se}(b_2)$	$b_2 + t_c \operatorname{se}(b_2)$
1	49.54	213.85	2.52	10.44
2	-9.83	124.32	7.65	14.12
3	28.56	179.26	4.51	11.77
4	-20.96	113.97	8.65	15.15
5	0.93	167.53	5.27	13.30
6	-66.04	119.30	9.08	18.02
7	-0.63	129.05	7.81	14.06
8	19.19	140.13	6.85	12.68
9	38.32	156.29	5.21	10.89
10	20.69	171.23	4.14	11.40

3.2 Hypothesis Tests

- Hypothesis testing procedures compare a conjecture we have about a population to the information contained in a sample of data
 - Given an economic and statistical model, hypotheses are formed about economic behavior.
 - These hypotheses are then represented as statements about model parameters
 - Hypothesis tests use the information about a parameter that is contained in a sample of data, its least squares point estimate, and its standard error, to draw a conclusion about the hypothesis

COMPONENTS OF HYPOTHESIS TESTS

- 1. A null hypothesis H_0
- 2. An alternative hypothesis H_1
- 3. A test statistic
- 4. A rejection region
- 5. A conclusion

3.2.1 The Null Hypothesis

- A null hypothesis is the belief we will maintain until we are convinced by the sample evidence that it is not true, in which case we reject the null hypothesis
 - The null hypothesis is stated as H_0 : $\beta_k = c$, where c is a constant, and is an important value in the context of a specific regression model
 - A common value for c is 0

3.2.2 The Alternative Hypothesis

- Paired with every null hypothesis is a logical alternative hypothesis H_1 that we will accept if the null hypothesis is rejected
 - The alternative hypothesis is flexible and depends to some extent on economic theory

■ Possible Alternative hypotheses are:

$$H_1: \beta_k > c$$

$$H_1: \beta_k < c$$

$$H_1: \beta_k \neq c$$

3.2.3 The Test Statistic

- Based on the value of a test statistic we decide either to reject the null hypothesis or not to reject it
 - A test statistic has a special characteristic: its probability distribution is completely known when the null hypothesis is true, and it has some other distribution if the null hypothesis is not true

■ The primary test statistic is:

$$t = \frac{b_k - \beta_k}{\operatorname{se}(b_k)} \sim t_{(N-2)}$$

– If the null hypothesis $H_0: \beta_k = c$ is true, then we can substitute c for β_k and it follows that:

$$t = \frac{b_k - c}{\operatorname{se}(b_k)} \sim t_{(N-2)}$$

- If the null hypothesis is not true, then the t-statistic in Eq. 3.7 does not have a *t*-distribution with *N*-2 degrees of freedom

Eq. 3.7

- The rejection region depends on the form of the alternative
 - It is the range of values of the test statistic that leads to rejection of the null hypothesis
 - It is possible to construct a rejection region only if we have:
 - A test statistic whose distribution is known when the null hypothesis is true
 - An alternative hypothesis
 - A level of significance

- The rejection region consists of values that are unlikely and that have low probability of occurring when the null hypothesis is true
 - The chain of logic is:
 - "If a value of the test statistic is obtained that falls in a region of low probability, then it is unlikely that the test statistic has the assumed distribution, and thus it is unlikely that the null hypothesis is true"

- If the alternative hypothesis is true, then values of the test statistic will tend to be unusually large or unusually small
 - The terms "large" and "small" are determined by choosing a probability α, called the **level of significance of the test**, which provides a meaning for "an unlikely event"
 - The level of significance of the test α is usually chosen to be 0.01, 0.05 or 0.10

- We could commit two types of error
 - If we reject the null hypothesis when it is true,
 then we commit what is called a Type error
 - The level of significance of a test is the probability of committing a Type I error
 - P(Type I error) = α
 - If we do not reject a null hypothesis that is false, then we have committed a Type II error

3.2.5 Conclusion

- Do you reject the null hypothesis, or do you not reject the null hypothesis?
 - Avoid saying that you "accept" the null hypothesis
 - Make it standard practice to say what the conclusion means in the economic context of the problem you are working on and the economic significance of the finding

3.3 Rejection Regions for Specific Alternatives

- To have a rejection region for a null hypothesis, we need:
 - 1. A test statistic
 - 2. A specific alternative
 - 3. A level of significance, α , for the test

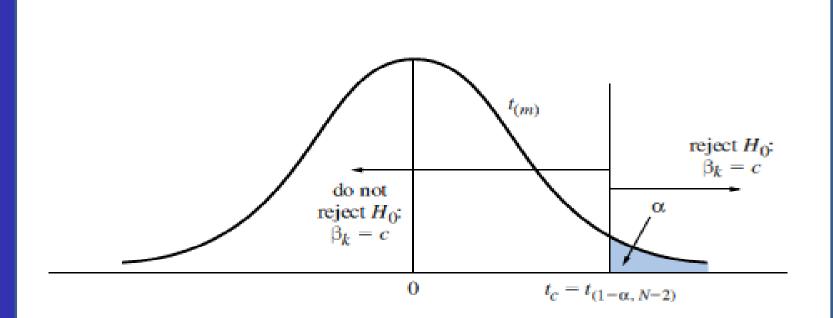
3.3.1
One-tail Test with
Alternative
"Greater Than"

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k > c$, reject the null hypothesis and accept the alternative hypothesis if

$$t \ge t_{(1-\alpha;N-2)}$$

Figure 3.2 Rejection region for a one-tail test of $H_0: \beta_k = c$ against $\overline{H_1: \beta_k > c}$

3.3.1 One-tail Test with Alternative "Greater Than"



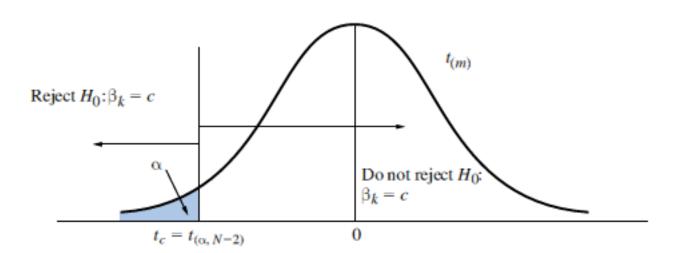
3.3.2 One-tail Test with Alternative "Less Than"

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k < c$, reject the null hypothesis and accept the alternative hypothesis if

$$t \leq t_{(\alpha;N-2)}$$

Figure 3.3 Rejection region for a one-tail test of $H_0: \beta_k = c$ against $H_1: \beta_k < c$

3.3.2 One-tail Test with Alternative "Less Than"



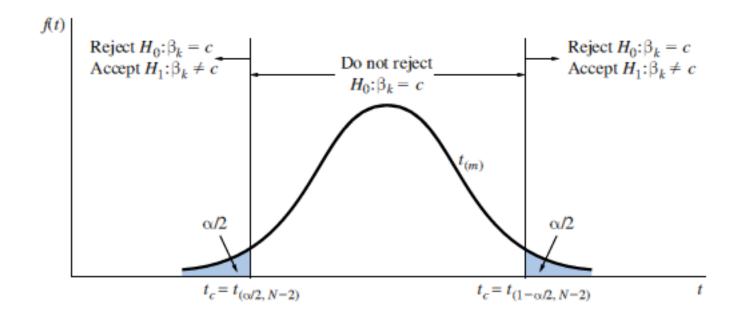
3.3.3 One-tail Test with Alternative "Not Equal To"

When testing the null hypothesis $H_0: \beta_k = c$ against the alternative hypothesis $H_1: \beta_k \neq c$, reject the null hypothesis and accept the alternative hypothesis if

$$t \le t_{(\alpha/2;N-2)}$$
 or $t \ge t_{(1-\alpha/2;N-2)}$

Figure 3.4 Rejection region for a test of $H_0: \beta_k = c$ against $H_1: \beta_k \neq c$

3.3.3 One-tail Test with Alternative "Not Equal To"



3.4 Examples of Hypothesis Tests

STEP-BY-STEP PROCEDURE FOR TESTING HYPOTHESES

- 1. Determine the null and alternative hypotheses.
- 2. Specify the test statistic and its distribution if the null hypothesis is true.
- 3. Select α and determine the rejection region.
- 4. Calculate the sample value of the test statistic.
- 5. State your conclusion.

3.4.1a One-tail Test of Significance

- The null hypothesis is $H_0: \beta_2 = 0$ The alternative hypothesis is $H_1: \beta_2 > 0$
- The test statistic is Eq. 3.7
 - In this case c = 0, so $t = b_2/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true
- \blacksquare Select $\alpha = 0.05$
 - The critical value for the right-tail rejection region is the 95th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(0.95,38)}=1.686$.
 - Thus we will reject the null hypothesis if the calculated value of $t \ge 1.686$.
 - If t < 1.686, we will not reject the null hypothesis.

3.4.1a One-tail Test of Significance

- Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$
 - The value of the test statistic is:

$$t = \frac{b_2}{\text{se}(b_2)} = \frac{10.21}{2.09} = 4.88$$

- Since t = 4.88 > 1.686, we reject the null hypothesis that $\beta_2 = 0$ and accept the alternative that $\beta_2 > 0$
 - That is, we reject the hypothesis that there is no relationship between income and food expenditure, and conclude that there is a *statistically significant* positive relationship between household income and food expenditure

3.4.1b One-tail Test of an Economic Hypothesis

- The economic profitability of a new supermarket depends on households spending at least \$5.5 out of each additional \$100 weekly income on food.
- The null hypothesis is $H_0: \beta_2 \le 5.5$ The alternative hypothesis is $H_1: \beta_2 > 5.5$
- The test statistic is $t = (b_2 5.5)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true
- Select $\alpha = 0.01$
 - The critical value for the right-tail rejection region is the 99th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(0.99,38)}=2.429$
 - Thus we will reject the null hypothesis if the calculated value of t > 2.429
 - If t < 2.429, we will not reject the null hypothesis

3.4.1b One-tail Test of an Economic Hypothesis

- Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$
 - The value of the test statistic is:

$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 5.5}{2.09} = 2.25$$

- Since t = 2.25 < 2.429 we do not reject the null hypothesis that $\beta_2 \le 5.5$
 - We are *not* able to conclude that the new supermarket will be profitable and will not begin construction

3.4.2 Left-tail Tests

- The null hypothesis is $H_0: \beta_2 \ge 15$ The alternative hypothesis is $H_1: \beta_2 < 15$
- The test statistic is $t = (b_2 15)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true
- \blacksquare Select $\alpha = 0.05$
 - The critical value for the left-tail rejection region is the 5th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(0.05,38)}=-1.686$.
 - Thus we will reject the null hypothesis if the calculated value of $t \le -1.686$
 - If t > -1.686, we will not reject the null hypothesis

3.4.2 Left-tail Tests

- Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$
 - The value of the test statistic is:

$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 15}{2.09} = -2.29$$

- Since t = -2.29 < -1.686 we reject the null hypothesis that $\beta_2 \ge 15$ and accept the alternative that $\beta_2 < 15$
 - We conclude that households spend less than
 \$15 from each additional \$100 income on food

3.4.3a Two-tail Test of an Economic Hypothesis

- The null hypothesis is $H_0: \beta_2 = 7.5$ The alternative hypothesis is $H_1: \beta_2 \neq 7.5$
- The test statistic is $t = (b_2 7.5)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true
- Select $\alpha = 0.05$
 - The critical value for the two-tail rejection region is the 2.5th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(0.025,38)}=-2.024$ and the 97.5th percentile $t_{(0.975,38)}=2.024$
 - Thus we will reject the null hypothesis if the calculated value of $t \ge 2.024$ or if $t \le -2.024$

3.4.3a Two-tail Test of an Economic Hypothesis

- Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$
 - The value of the test statistic is

$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 7.5}{2.09} = 1.29$$

- Since -2.024 < t = 1.29 < 2.024 we do not reject the null hypothesis that $\beta_2 = 7.5$
 - The sample data are consistent with the conjecture households will spend an additional \$7.50 per additional \$100 income on food.
 - We **do not** conclude from the test that $\beta_2 = 7.5$, only that the data are not incompatible with this parameter value.

3.4.3b Two-tail Test of Significance

- The null hypothesis is $H_0: \beta_2 = 0$ The alternative hypothesis is $H_1: \beta_2 \neq 0$
- The test statistic is $t = (b_2)/\text{se}(b_2) \sim t_{(N-2)}$ if the null hypothesis is true
- Select $\alpha = 0.05$
 - The critical value for the two-tail rejection region is the 2.5th percentile of the *t*-distribution with N-2=38 degrees of freedom, $t_{(0.025,38)}=-2.024$ and the 97.5th percentile $t_{(0.975,38)}=2.024$
 - Thus we will reject the null hypothesis if the calculated value of $t \ge 2.024$ or if $t \le -2.024$

3.4.3b Two-tail Test of Significance

- Using the food expenditure data, we found that $b_2 = 10.21$ with standard error $se(b_2) = 2.09$
 - The value of the test statistic is

$$t = \frac{b_2}{\text{se}(b_2)} = \frac{10.21}{2.09} = 4.88$$

- Since 4.88 > 2.024 we reject the null hypothesis that $\beta_2 = 0$
 - We conclude that there is a statistically significant relationship between income and food expenditure

3.4.3b Two-tail Test of Significance

■ From typical Eviews output, we can easily find the calculated *t* value used in this example

Variable	Coefficient	Std. Error	t-Statistic	Prob.
c	83.41600	43.41016	1.921578	0.0622
INCOME	10.20964	2.093264	4.877381	0.0000

3.5 The *p*-Value

- When reporting the outcome of statistical hypothesis tests, it has become standard practice to report the *p*-value (an abbreviation for probability value) of the test.
 - If we have the p-value of a test, p, we can determine the outcome of the test by comparing the p-value to the chosen level of significance, α , without looking up or calculating the critical values.
 - This is much more convenient

p-VALUE RULE

Reject the null hypothesis when the p-value is less than, or equal to, the level of significance α . That is, if $p \le \alpha$ then reject H_0 . If $p > \alpha$ then do not reject H_0 .

- If t is the calculated value of the t-statistic, then:
 - if H_1 : $\beta_K > c$

p = probability to the right of t

- if H_1 : $\beta_K < c$

p =probability to the left of t

- if H_1 : $\beta_K \neq c$

 $p = \underline{\text{sum}}$ of probabilities to the right of |t|and to the left of -|t| 3.5.1 p-Value for a Right-tail Test

- From Section 3.4.1b, we have
 - The null hypothesis is H_0 : $\beta_2 \le 5.5$
 - The alternative hypothesis is H_1 : $\beta_2 > 5.5$

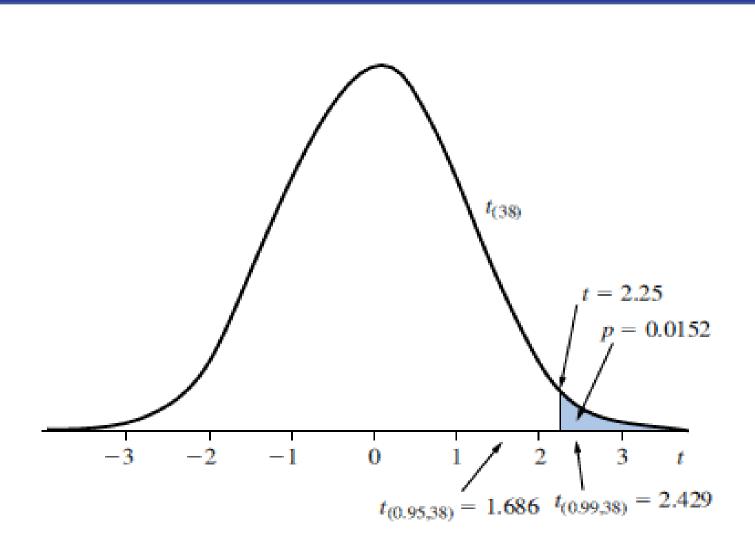
$$t = \frac{b_2 - 5.5}{\text{se}(b_2)} = \frac{10.21 - 5.5}{2.09} = 2.25$$

– The *p*-value is

$$p = P[t_{(38)} \ge 2.25] = 1 - P[t_{(38)} \le 2.25] = 1 - 0.9848 = 0.0152$$

Figure 3.5 The *p*-value for a right-tail test.

3.5.1 p-Value for a Right-tail Test



3.5.2 p-Value for a Left-tail Test

- From Section 3.4.2, we have
 - The null hypothesis is H_0 : $\beta_2 \ge 15$
 - The alternative hypothesis is H_1 : $\beta_2 < 15$

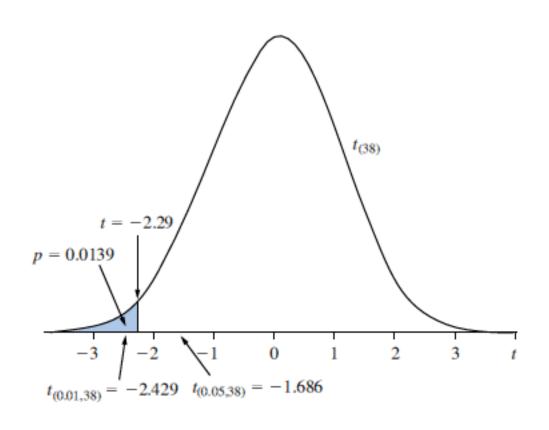
$$t = \frac{b_2 - 15}{\text{se}(b_2)} = \frac{10.21 - 15}{2.09} = -2.29$$

– The *p*-value is

$$p = P[t_{(38)} \le -2.29] = 0.0139$$

Figure 3.6 The *p*-value for a left-tail test.

3.5.2 p-Value for a Left-tail Test



3.5.3 p-Value for a Two-tail Test

- From Section 3.4.3a, we have
 - The null hypothesis is H_0 : $\beta_2 = 7.5$
 - The alternative hypothesis is H_1 : $\beta_2 \neq 7.5$

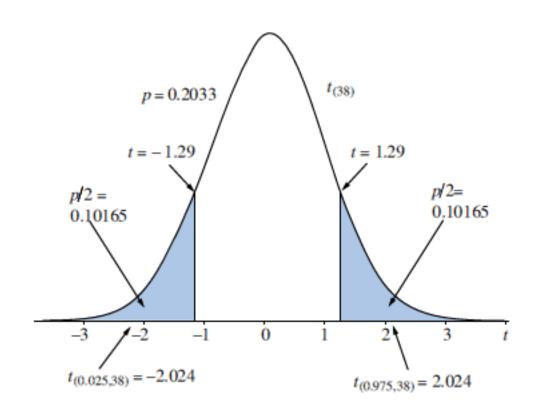
$$t = \frac{b_2 - 7.5}{\text{se}(b_2)} = \frac{10.21 - 7.5}{2.09} = 1.29$$

– The *p*-value is

$$p = P[t_{(38)} \ge 1.29] + P[t_{(38)} \le -1.29] = 0.2033$$

Figure 3.7 The *p*-value for a two-tail test of significance.

3.5.3 p-Value for a Two-tail Test



3.5.4 p-Value for a Two-tail Test of Significance

- From Section 3.4.3b, we have
 - The null hypothesis is H_0 : $\beta_2 = 0$
 - The alternative hypothesis is H_1 : $\beta_2 \neq 0$

$$t = \frac{b_2}{\text{se}(b_2)} = \frac{10.21}{2.09} = 4.88$$

– The *p*-value is

$$p = P[t_{(38)} \ge 4.88] + P[t_{(38)} \le -4.88] = 0.0000$$

3.5 The *p*-Value

3.5.4 p-Value for a Two-tail Test of Significance

■ From typical Eviews output, we can easily find the calculated *p*-value used in this example

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	83.41600	43.41016	1.921578	0.0622
INCOME	10.20964	2.093264	4.877381	0.0000

3.6
Linear Combinations of Parameters

- We may wish to estimate and test hypotheses about a linear combination of parameters $\lambda = c_1\beta_1 + c_2\beta_2$, where c_1 and c_2 are constants that we specify
 - Under assumptions SR1–SR5 the least squares estimators b_1 and b_2 are the best linear unbiased estimators of β_1 and β_2
 - It is also true that $\hat{\lambda} = c_1b_1 + c_2b_2$ is the best linear unbiased estimator of $\lambda = c_1\beta_1 + c_2\beta_2$

As an example of a linear combination, if we let $c_1 = 1$ and $c_2 = x_0$, then we have

$$\lambda = c_1 \beta_1 + c_2 \beta_2$$
$$= \beta_1 + x_0 \beta_2$$
$$= E(y \mid x = x_0)$$

which is just out basic model

■ The estimator $\hat{\lambda}$ is unbiased because

$$E(\hat{\lambda}) = E(c_1b_1 + c_2b_2)$$

$$= c_1E(b_1) + c_2E(b_2)$$

$$= c_1\beta_1 + c_2\beta_2$$

$$= \lambda$$

3.6 Linear Combinations of Parameters

■ The variance of $\hat{\lambda}$ is

Eq. 3.8

$$\operatorname{var}(\hat{\lambda}) = \operatorname{var}(c_1b_1 + c_2b_2)$$

$$= c_1^2 \operatorname{var}(b_1) + c_2^2 \operatorname{var}(b_2) + 2c_1c_2 \operatorname{cov}(b_1, b_2)$$

where the variances and covariances are given in Eq. 2.20 - 2.22

We estimate $\hat{\lambda}$ by replacing the unknown variances and covariances with their estimated variances and covariances in Eq. 2.20 - 2.22

Eq. 3.9

$$\widehat{\operatorname{var}}(\widehat{\lambda}) = \widehat{\operatorname{var}}(c_1b_1 + c_2b_2)$$

$$= c_1^2 \widehat{\operatorname{var}}(b_1) + c_2^2 \widehat{\operatorname{var}}(b_2) + 2c_1c_2 \widehat{\operatorname{cov}}(b_1, b_2)$$

■ The standard error of $\hat{\lambda}$ is the square root of the estimated variance

$$\operatorname{se}(\hat{\lambda}) = \operatorname{se}(c_1b_1 + c_2b_2)$$
$$= \sqrt{\widehat{\operatorname{var}}(c_1b_1 + c_2b_2)}$$

- If in addition SR6 holds, or if the sample is large, the least squares estimators b_1 and b_2 have normal distributions.
 - It is also true that linear combinations of normally distributed variables are normally distributed, so that

$$\hat{\lambda} = c_1 b_1 + c_2 b_2 \sim N[\lambda, \text{var}(\hat{\lambda})]$$

3.6.1 Estimating Expected Food Expenditure

■ We can estimate the average (or expected) expenditure on food as:

$$\widehat{FOOD}_{-}\widehat{EXP} = 83.4160 + 10.2096INCOME$$

- If the household income is \$2000, which is 20 since income is measured in \$100 units in this example, then the average expenditure is:

$$E(\widehat{FOOD}_{-}\widehat{EXP} | INCOME = 20) = b_1 + b_2 20$$
$$= 83.4160 + 10.2096(20)$$

We estimate that the expected food expenditure by a household with \$2,000 income is \$287.61 per week

3.6.2
An Interval
Estimate of
Expected Food
Expenditure

■ The t-statistic for the linear combination is:

Eq. 3.11

$$t = \frac{\hat{\lambda} - \lambda}{\sqrt{\widehat{\operatorname{var}}(\hat{\lambda})}}$$

$$= \frac{\hat{\lambda} - \lambda}{\operatorname{se}(\hat{\lambda})}$$

$$= \frac{(c_1b_1 + c_2b_2) - (c_1\beta_1 + c_2\beta_2)}{\operatorname{se}(c_1b_1 + c_2b_2)}$$

$$\sim t_{(N-2)}$$

■ Substituting the *t* value into $P(-t_c \le t \le t_c) = 1 - \alpha$, we get:

$$P\begin{bmatrix} (c_1b_1 + c_2b_2) - t_c \sec(c_1b_1 + c_2b_2) \le c_1\beta_1 + c_2\beta_2 \le \\ (c_1b_1 + c_2b_2) + t_c \sec(c_1b_1 + c_2b_2) \end{bmatrix} = 1 - \alpha$$

so that the $(1 - \alpha)\%$ interval is

$$(c_1b_1 + c_2b_2) \pm t_c se(c_1b_1 + c_2b_2)$$

3.6 Linear Combinations of Parameters

3.6.2
An Interval
Estimate of
Expected Food
Expenditure

■ For our example, the estimated variances and covariance is:

	C	Income
C	1884.442	-85.9032
Income	-85.9032	4.3818

■ The estimated variance of our expected food expenditure is:

$$\widehat{\text{var}}(b_1 + 20b_2) = \widehat{\text{var}}(b_1) + 20^2 \widehat{\text{var}}(b_2) + 2 \times 20 \times \widehat{\text{cov}}(b_1, b_2)$$

$$= 1884.442 + 20^2 \times 4.3818 + 2 \times 20 \times (-85.9032)$$

$$= 201.0169$$

and the corresponding standard error is:

$$se(b_1 + 20b_2) = \sqrt{\widehat{var}(b_1 + 20b_2)}$$
$$= \sqrt{201.0169}$$
$$= 14.1780$$

3.6.2
An Interval
Estimate of
Expected Food
Expenditure

■ The 95% interval is then:

$$(\beta_1 + \beta_2 20) \pm t_{(0.975,38)} \operatorname{se}(b_1 + 20b_2)$$

[287.6089 - 2.024(14.1789), 287.6089 + 2.024(14.1789)]= [258.91, 316.31]

We estimate with 95% confidence that the expected food expenditure by a household with\$2,000 income is between \$258.91 and \$316.31

or

3.6.3
Testing a
Linear
Combination of
Parameters

■ A general linear hypothesis involves both parameters, β_1 and β_2 and may be stated as:

$$H_0: (c_1\beta_1 + c_2\beta_2) = c_0$$

or, equivalently,

$$H_0: (c_1\beta_1 + c_2\beta_2) - c_0 = 0$$

3.6.3
Testing a
Linear
Combination of
Parameters

■ The alternative hypothesis might be any one of the following:

(i)
$$H_1: c_1\beta_1 + c_2\beta_2 \neq c_0$$
 two-tail test

(ii)
$$H_1: c_1\beta_1 + c_2\beta_2 > c_0$$
 right-tail test

(iii)
$$H_1: c_1\beta_1 + c_2\beta_2 < c_0$$
 left-tail test

3.6 Linear Combinations of Parameters

3.6.3
Testing a
Linear
Combination of
Parameters

■ The t-statistic is:

$$t = \frac{(c_1\beta_1 + c_2\beta_2) - c_0}{\operatorname{se}(c_1\beta_1 + c_2\beta_2)} \sim t_{(N-2)}$$

if the null hypothesis is true

- The rejection regions for the one- and two-tail alternatives (i) – (iii) are the same as those described in Section 3.3, and conclusions are interpreted the same way as well

■ Suppose we conjecture that:

$$E(FOOD _EXP | INCOME = 20) = \beta_1 + \beta_2 20 > 250$$

■ Use this as the alternative hypothesis:

$$H_1: \beta_1 + \beta_2 20 > 250$$

or

$$H_1: \beta_1 + \beta_2 20 - 250 > 0$$

■ The null hypothesis is the logical alternative:

$$H_0: \beta_1 + \beta_2 20 \le 250$$

or

$$H_0: \beta_1 + \beta_2 20 - 250 \le 0$$

- The null and alternative hypothesis are in the same form as the general linear hypothesis with $c_1=1,\,c_2=20,\,{\rm and}\,\,c_0=250$

3.6.4 Testing Expected Food Expenditure

■ The t-statistic is

$$t = \frac{(b_1 + 20b_2) - 250}{\text{se}(b_1 + 20b_2)}$$

$$= \frac{(83.4160 + 20 \times 10.2096) - 250}{14.1780}$$

$$= \frac{287.6089 - 250}{14.1780}$$

$$= \frac{37.6089}{14.1780}$$

$$= 2.65$$

3.6.4 Testing Expected Food Expenditure

Since $t = 2.65 > t_c = 1.686$, we reject the null hypothesis that a household with weekly income of \$2,000 will spend \$250 per week or less on food, and conclude that the conjecture that such households spend more than \$250 is correct, with the probability of Type I error 0.05

Key Words

- alternative hypothesis
- confidence intervals
- critical value
- degrees of freedom
- hypotheses
- hypothesis testing
- Inference

- interval estimation
- level of significance
- linear hypothesis
- null hypothesis
- one-tail tests
- point estimates
- probability value

- *p*-value
- rejection region
- test of significance
- test statistic
- two-tail tests
- Type I error
- Type II error