File: Ch02, Chapter 2, The Simple Linear Regression Model ## Multiple Choice - 1. In an economic model that uses income to predict monthly expenditures on entertainment, what is the dependent variable? - a.) income - b.) monthly expenditures on entertainment - c.) income elasticity - d.) demand for entertainment Ans: b - 2. In an economic model that uses income to predict monthly expenditures on entertainment, what is the independent or explanatory variable? - a.) income - b.) monthly expenditures on entertainment - c.) income elasticity - d.) demand for entertainment Ans: a - 3. Which of the following is NOT an assumption of the Simple Linear Regression Model? - a.) The value of y, for each value of x, is $$y = \beta_1 + \beta_2 x + e$$ b.) The variance of the random error e is $$var(e) = \sigma^2$$ - c.) The covariance between any pair of random errors e_i and e_j is zero - d.) The parameter estimate of β_1 is unbiased. Ans: d - 4. The OLS estimators for β_1 and β_2 are formulas derived by minimizing _____. - a.) the sum of the error terms or residuals - b.) the sum of the squared residuals - c.) the slope of the regression line - d.) the fit of the regression line to the observed data. Ans: b | 5. Applying the OLS model to our data give us the following regression equation: $\hat{y}=3.41+12.89~x.$ What would the forecast value be when the independent variable is 15.0? a.) 196.76 b.) 16.30 c.) 244.50 d.) 32.19 Ans: a | |---| | 6. In the OLS model, what happens to var(b₁) as the sample size (N) increases? a.) it also increases b.) it decreases c.) it does not change d.) cannot be determined without more information Ans: b | | 7. If b_1 is an estimator for β_1 such that $E(b_1) = \beta_1$, then it must be the case that a.) b_1 is an efficient estimator b.) b_1 is an unbiased estimator c.) b_1 is a linear estimator d.) b_1 is a preferred estimator | | 8. What mathematical theorem allows for normally distributed least squares estimators when assumptions SR1 – SR5 hold but the error term is NOT normally distributed? a.) Central Limit Theorem b.) Gauss-Markov Theorem c.) Law of Large Numbers d.) the Least Squares Principle Ans: a | | 9. If we use $\frac{\sum \hat{e}_i^2}{N}$ as an estimator of σ^2 it is, but it can be corrected by a.) biased, changing the numerator to $\sum e_i^2$ | - b.) non-linear, changing the denominator to N 2 c.) biased, changing the denominator to N-2 d.) non-linear, taking the log of each term. Ans: c