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Economists have long recognized that investors care differently about downside

losses versus upside gains. Agents who place greater weight on downside risk demand

additional compensation for holding stocks with high sensitivities to downside mar-

ket movements. We show that the cross section of stock returns reflects a downside

risk premium of approximately 6% per annum. Stocks that covary strongly with the

market during market declines have high average returns. The reward for beasring

downside risk is not simply compensation for regular market beta, nor is it explained

by coskewness or liquidity risk, or by size, value, and momentum characteristics.

(JEL C12, C15, C32, G12)

If an asset tends to move downward in a declining market more than it

moves upward in a rising market, it is an unattractive asset to hold,

because it tends to have very low payoffs precisely when the wealth of

investors is low. Investors who are sensitive to downside losses, relative to

upside gains, require a premium for holding assets that covary strongly

with the market when the market declines. Hence, in an economy with

agents placing greater emphasis on downside risk than upside gains,

assets with high sensitivities to downside market movements have high
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average returns. In this article, we show that the cross-section of stock

returns reflects a premium for bearing downside risk.

As early as Roy (1952), economists have recognized that investors

care differently about downside losses than they care about upside

gains. Markowitz (1959) advocates using semivariance as a measure of

risk, rather than variance, because semivariance measures downside

losses rather than upside gains. More recently, the behavioral frame-

work of Kahneman and Tversky’s (1979) loss aversion preferences and
the axiomatic approach taken by Gul’s (1991) disappointment aversion

preferences allow agents to place greater weights on losses relative to

gains in their utility functions. Hence, in equilibrium, agents who are

averse to downside losses demand greater compensation, in the form of

higher expected returns, for holding stocks with high downside risk.

According to the Capital Asset Pricing Model (CAPM), a stock’s

expected excess return is proportional to its market beta, which is con-

stant across periods of high and low market returns. As Bawa and
Lindenberg (1977) suggest, a natural extension of the CAPM that takes

into account the asymmetric treatment of risk is to specify asymmetric

downside and upside betas. We compute downside (upside) betas over

periods when the excess market return is below (above) its mean. We

show that stocks with high downside betas have, on average, high uncon-

ditional average returns. We also find some mixed evidence that there

exists a discount for stocks that have high covariation conditional on

upside movements of the market.
Despite the intuitive appeal of downside risk, which closely corre-

sponds to how individual investors actually perceive risk, there has been

little empirical research into how downside risk is priced in the cross

section of stock returns. Early researchers found little evidence of a

downside risk premium because they did not focus on measuring the

downside risk premium using all individual stocks in the cross section.

For example, Jahankhani (1976) fails to find any improvement over the

traditional CAPM by using downside betas, but his investigation uses
portfolios formed from regular CAPM betas. Similarly, Harlow and Rao

(1989) only evaluate downside risk relative to the CAPM in a maximum-

likelihood framework and test whether the return on the zero-beta asset is

the same across all assets. All of these early authors do not directly

estimate a downside risk premium by demonstrating that assets which

covary more when the market declines have higher average returns.1

1 Pettengill, Sundaram, and Mathur (1995) and Isakov (1999) estimate the CAPM by splitting the full
sample into two subsamples that consist of observations where the realized excess market return is
positive or negative. Naturally, they estimate a positive (negative) market premium for the subsample
with positive (negative) excess market returns. In contrast, our approach examines premiums for asym-
metries in the factor loadings, rather than estimating factor models on different subsamples. Price, Price,
and Nantell (1982) demonstrate that skewness in U.S. equity returns causes downside betas to be different
from unconditional betas but do not relate downside betas to average stock returns.
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Our strategy for finding a premium for bearing downside risk in the

cross section is as follows. First, we directly show at the individual stock

level that stocks with higher downside betas contemporaneously have

higher average returns. Second, we claim that downside beta is a risk

attribute because stocks that have high covariation with the market when

the market declines exhibit high average returns over the same period.

This contemporaneous relationship between factor loadings and risk

premia is the foundation of a cross-sectional risk-return relationship,
and has been exploited from the earliest tests of the CAPM [see, among

others, Black, Jensen, and Scholes (1972) and Gibbons (1982)]. More

recently, Fama and French (1992) also seek, but fail to find, a relationship

between postformation market betas from an unconditional CAPM and

realized average stock returns over the same period. Our study differs

from these earlier tests by examining a series of short one-year samples

using daily data, rather than a single long sample using monthly data.

This strategy provides greater statistical power in an environment where
betas may be time-varying [see comments by Ang and Chen (2005) and

Lewellen and Nagel (2005)].

Third, we differentiate the reward for holding high downside-risk stocks

from other known cross-sectional effects. In particular, Rubinstein (1973),

Friend and Westerfield (1980), Kraus and Litzenberger (1976, 1983), and

Harvey and Siddique (2000) show that agents dislike stocks with negative

coskewness, so that stocks with low coskewness tend to have high average

returns. Downside risk is different from coskewness risk because downside
beta explicitly conditions for market downside movements in a nonlinear

fashion, whereras the coskewness statistic does not explicitly emphasize

asymmetries across down and up markets, even in settings where coskewness

may vary over time [as in Harvey and Siddique (1999)]. Since coskewness

captures some aspects of downside covariation, we are especially careful to

control for coskewness risk in assessing the premium for downside beta. We

also control for the standard list of known cross-sectional effects, including

size and book-to-market factor loadings and characteristics [Fama and
French (1993) and Daniel and Titman (1997)], liquidity risk factor loadings

[Pástor and Stambaugh (2003)], and past return characteristics [Jegadeesh

and Titman (1993)]. Controlling for these and other cross-sectional effects,

we estimate that the cross-sectional premium is approximately 6% per

annum.

Finally, we check if past downside betas predict future expected returns.

We find that, for the majority of the cross section, high past downside beta

predicts high future returns over the next month, similar to the contem-
poraneous relationship between realized downside beta and realized average

returns. However, this relation breaks down among stocks with very high

volatility. We attribute this to two effects. First, the future downside covar-

iation of very volatile stocks is difficult to predict using past betas—the

Downside Risk

1193

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/19/4/1191/1580531 by Athens U

niversity of Econ & Bus user on 29 Septem
ber 2023



average one-year autocorrelation of one-year betas for very volatile stocks is

only 17.3% compared to 43.5% for a typical stock. This is not surprising,

because high volatility increases measurement error. Second, stocks with

very high volatility exhibit anomalously low returns [see Ang, Hodrick,

Xing, and Zhang (2006)]. Fortunately, the proportion of the market

where past downside beta fails to predict future returns is small (less than

4% in terms of market capitalization). Confirming Harvey and Siddique

(2000), we find that past coskewness predicts future returns, but the pre-
dictive power of past coskewness is not because past coskewness captures

future exposure to downside risk. Hence, past downside beta and past

coskewness are different risk loadings.

The rest of this article is organized as follows. In Section 1, we present a

simple model to show how a downside risk premium may arise in a cross-

sectional equilibrium. The framework uses a representative agent with the

kinked disappointment aversion utility function of Gul (1991), which places

larger weight on downside outcomes. Section 2 demonstrates that stocks
with high downside betas have high average returns over the same period

that they strongly covary with declining market returns. In Section 3, we

examine the predictive ability of past downside risk loadings. Section 4

concludes.

1. A Simple Model of Downside Risk

In this section, we show how downside risk may be priced cross-sectionally

in an equilibrium setting. Specifically, we work with a rational disappoint-

ment aversion (DA) utility function that embeds downside risk following

Gul (1991). Our goal is to provide a simple motivating example of how a

representative agent with a larger aversion to losses, relative to his attrac-

tion to gains, gives rise to cross-sectional prices that embed compensation
for downside risk.2

However, our simple approach does not rule out other possible ways in

which downside risk may be priced in the cross section. For example,

Shumway (1997) develops an equilibrium behavioral model based on loss

averse investors. Barberis and Huang (2001) use a loss aversion utility

function, combined with mental accounting, to construct a cross-sectional

equilibrium. However, they do not relate expected stock returns to direct

measures of downside risk. Aversion to downside risk also arises in
models with constraints that bind only in one direction, for example,

binding short-sales constraints [Chen, Hong, and Stein (2001) and Hong

and Stein (2003)] or wealth constraints [Kyle and Xiong (2001)].

2 While standard power, or CRRA, utility also produces aversion to downside risk, the order of magnitude
of a downside risk premium, relative to upside potential, is economically negligible because CRRA
preferences are locally mean-variance.
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Rather than considering models with one-sided constraints or

agents with behavioral biases, we treat asymmetries in risk in a rational

representative-agent framework that abstracts from additional interac-

tions from one-sided constraints. The advantage of treating asymmetric

risk in a rational framework is that the disappointment utility function is

globally concave and provides solvable portfolio-allocation problems,

whereas optimal finite portfolio allocations for loss aversion utility may

not exist [see Ang, Bekaert, and Liu (2005)]. Our example with disap-
pointment utility differs from previous studies, because existing work

with Gul’s (1991) first-order risk aversion utility concentrates on the

equilibrium pricing of downside risk for only the aggregate market,

usually in a consumption setting [see, for example, Bekaert, Hodrick,

and Marshall (1997), Epstein and Zin (1990, 2001) and Routledge and

Zin (2003)]. While a full equilibrium analysis of downside risk would

entail using consumption data, in our simple example and in our empiri-

cal work, we measure aggregate wealth by the market portfolio, similar to
a CAPM setting.

Gul’s (1991) disappointment utility is implicitly defined by the follow-

ing equation:

Uð�W Þ ¼
1

K

Z �W

�1
UðWÞdFðWÞ þ A

Z 1
�W

UðWÞdFðWÞ
� �

; ð1Þ

where UðWÞ is the felicity function over end-of-period wealth W , which

we choose to be power utility, that is UðWÞ ¼W ð1��Þ=ð1� �Þ. The

parameter 0 < A � 1 is the coefficient of disappointment aversion, Fð�Þ
is the cumulative distribution function for wealth, �W is the certainty

equivalent (the certain level of wealth that generates the same utility as

the portfolio allocation determining W ), and K is a scalar given by:

K ¼ PrðW � �W Þ þ APrðW > �W Þ: ð2Þ

Outcomes above (below) the certainty equivalent �W are termed ‘‘elat-

ing’’ (‘‘disappointing’’) outcomes. If 0 < A < 1, then the utility function

(1) down-weights elating outcomes relative to disappointing outcomes.

Put another way, the disappointment-averse investor cares more about
downside versus upside risk. If A ¼ 1, disappointment utility reduces to

the special case of standard CRRA utility, which is closely approximated

by mean-variance utility.

To illustrate the effect of downside risk on the cross section of stock

returns, we work with two assets x and y. Asset x has three possible

payoffs ux, mx and dx, and asset y has two possible payoffs uy and dy.

These payoffs are in excess of the risk-free payoff. Our setup has the

minimum number of assets and states required to examine cross-sectional
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pricing (the expected returns of x and y relative to each other and to the

market portfolio, which consists of x and y), and to incorporate higher

moments (through the three states of x). The full set of payoffs and states

is given by:

The optimal portfolio weight for a DA investor is given by the solution

to:

max
wx;wy

Uð�W Þ; ð3Þ

where the certainty equivalent is defined in equation (1), wx (wy) is the

portfolio weight of asset x (y), end of period wealth W is given by:

W ¼ Rf þ wxxþ wyy; ð4Þ

and Rf is the gross risk-free rate. An equilibrium is characterized by a set

of asset payoffs, corresponding probabilities, and a set of portfolio weights

so that Equation (3) is maximized, and the representative agent holds the
market portfolio ðwx þ wy ¼ 1Þ with 0 < wx < 1 and 0 < wy < 1.

The equilibrium solution even for this simple case is computationally

nontrivial, because the solution to the asset allocation problem [Equation

(3)] entails simultaneously solving for both the certainty equivalent �W and

for the portfolio weights wx and wy. In contrast, a standard portfolio

allocation problem for CRRA utility only requires solving the first-order

conditions for the optimal wx and wy. We extend a solution algorithm for

the optimization of Equation (3) developed by Ang, Bekaert, and Liu
(2005) to multiple assets. Appendix A describes our solution method and

details the values used in the calibration. Computing the solution is challen-

ging, because for certain parameter values, equilibrium cannot exist because

nonparticipation may be optimal for low A under DA utility. This is unlike

the asset-allocation problem under standard CRRA utility, where agents

always optimally hold risky assets that have strictly positive risk premia.

In this simple model, the regular beta with respect to the market

portfolio (denoted by �) is not a sufficient statistic to describe the risk–
return relationship of an individual stock. In our calibration, an asset’s

Payoff Probability

ðux; uyÞ p1

ðmx; uyÞ p2

ðdx; uyÞ p3

ðux; dyÞ p4

ðmx; dyÞ p5

ðdx; dyÞ p6
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expected returns increase with �, but � does not fully reflect all risk. This

is because the representative agent cares in particular about downside

risk, through A < 1. Hence, measures of downside risk have explanatory

power for describing the cross section of expected returns. One measure

of downside risk introduced by Bawa and Lindenberg (1977) is the down-

side beta (denoted by ��):

�� ¼ covðri; rmjrm < �mÞ
varðrmjrm < �mÞ

; ð5Þ

where ri (rm) is security i’s (the market’s) excess return, and �m is the

average market excess return. We also compute a relative downside beta

(denoted by �� � �), relative to the regular CAPM beta, where

� ¼ covðri; rmÞ=varðrmÞ.
Figure 1 shows various risk–return relationships holding in our DA

cross-sectional equilibrium. In the left figure of the top row, mean excess

returns increase with ��. To make sure that �� is not merely reflecting
the regular CAPM beta, we define the CAPM alpha as the excess return

of an asset not accounted for by the regular CAPM beta,

� ¼ EðriÞ � �EðrmÞ. The figure in the right column in the top row of

Figure 1 shows that the CAPM alpha is increasing with ��. In the second

row, we also find that CAPM alpha is also increasing with relative

downside beta, ð�� � �Þ. Hence, higher downside risk is remunerated

by higher expected returns not captured by the CAPM.

The right-hand figure in the middle row of Figure 1 plots the CAPM
alpha versus coskewness, where coskewness is defined as:

coskew ¼ E½ðri � �iÞðrm � �mÞ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðriÞ

p
varðrmÞ

; ð6Þ

where �i is the average excess return of asset i. Harvey and Siddique

(2000) predict that lower coskewness should be associated with higher

expected returns. The coskewness measure can be motivated by a third-

order Taylor expansion of a general Euler equation:

Et

U
0 ðWtþ1Þ

U
0 ðWtÞ

ri;tþ1

� �
¼ 0; ð7Þ

where W is the total wealth of the representative agent, and U
0 ð�Þ can be

approximated by:

U
0 ¼ 1þWU

00
rm þ

1

2
W 2U

000
r2

m þ � � � : ð8Þ
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Relations in a v ersion Cross-Sectional
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Figure 1
Risk-Return Relations in a Disappointment Aversion Cross-Sectional Equilibrium
This figure shows risk-return relations for an asset in the DA cross-sectional equilibrium. In the top row
we have (i) a plot of the asset’s mean excess return versus downside beta ��, and (ii) a plot of the asset’s
CAPM alpha versus downside beta ��; in the second row, (iii) a plot of the asset’s CAPM alpha versus
relative downside beta, ð�� � �Þ, and (iv) a plot of the asset’s CAPM alpha versus coskewness; and in the
bottom row, (v) a plot of the asset’s CAPM alpha versus relative upside beta, ð�þ � �Þ, and (vi) a plot of
the asset’s CAPM alpha versus ð�þ � ��Þ.
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The Taylor expansion in Equation (8) is necessarily only an approx-

imation. In particular, since the DA utility function is kinked, polynomial

expansions of U , such as the expansions used by Bansal, Hsieh, and

Viswanathan (1993), may not be good global approximations if the

kink is large (or A is very small).3 Nevertheless, measures like coskewness

based on the Taylor approximation for the utility function should also

have some explanatory power for returns.

Downside beta and coskewness may potentially capture different
effects. Note that, for DA utility, both downside beta and coskewness

are approximations, because the utility function does not have an explicit

form [Equation (1) implicitly defines DA utility]. Since DA utility is

kinked at an endogenous certainty equivalent, skewness and other cen-

tered moments may not effectively capture aversion to risk across upside

and downside movements in all situations. This is because they are based

on unconditional approximations to a nonsmooth function. In contrast,

the downside beta in Equation (5) conditions directly on a downside event
that the market return is less than its unconditional mean. In Figure 1,

our model shows that more negative coskewness is compensated by

higher expected returns. However, the Appendix describes a case where

CAPM alphas may increase as coskewness increases, which is the oppo-

site of the relation predicted by the Taylor expansion.

With DA utility, a representative agent is willing to hold stocks with

high upside potential at a discount, all else being equal. A stock with high

upside potential relative to downside risk tends to pay off more when an
investor’s wealth is already high. Such stocks are not as desirable as

stocks that pay off when the market decreases. Consider two stocks

with the same downside beta, but with different payoffs in up markets.

The stock that covaries more with the market when the market rises has a

larger payoff when the market return is high. This stock does not need as

high an expected return in order for the representative agent to hold it.

Thus, there is a discount for stocks with high upside potential. To mea-

sure upside risk, we compute an upside beta (denoted by �þ) that takes
the same form as Equation (5), except we condition on movements of the

market excess return above its average value:

�þ ¼ covðri; rmjrm > �mÞ
varðrmjrm > �mÞ

: ð9Þ

Regular, downside, and upside betas are, by construction, not indepen-
dent of each other. To differentiate the effect of upside risk from down-

side risk, we introduce two additional measures. Similar to relative

3 Taylor expansions have been used to account for potential skewness and kurtosis preferences in asset
allocation problems by Guidolin and Timmerman (2002), Harvey, Liechty, Liechty, and Müller (2003),
and Jondeau and Rockinger (2006).
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downside beta, we compute a relative upside beta (denoted by �þ � �).

We also directly examine the difference between upside beta and down-

side beta by computing the difference between the two, ð�þ � ��Þ. In the

last row of Figure 1, our model shows that, controlling for regular beta or

downside beta, higher upside potential is indeed remunerated by lower

expected returns in our model.

Our simple example illustrates one possible mechanism by which com-

pensation to downside risk may arise in equilibrium and how downside
versus upside risk may priced differently. Of course, this example, having

only two assets, is simplistic. Nevertheless, the model provides motivation

to ask if downside risk demands compensation in the cross section of U.S.

stocks, and if such compensation is different in nature from compensation

for risk based on measures of higher moments, such as the Harvey-

Siddique (2000) coskewness measure. As our model shows, the compen-

sation for downside risk is in addition to the reward already incurred in

standard, unconditional risk exposures, such as the regular unconditional
exposure to the market factor reflected in the CAPM beta. In our empiri-

cal work, we investigate a premium for downside risk also controlling for

other known cross-sectional effects such as the size and book-to-market

effects explored by Fama and French (1992, 1993), the liquidity effect of

Pástor and Stambaugh (2003), and the momentum effect of Jegadeesh

and Titman (1993).

2. Downside Risk and Realized Returns

In this section, we document that stocks which strongly covary with the

market, conditional on down moves of the market, have contempora-

neously high average returns. We document this phenomenon by first

looking at patterns of realized returns for portfolios sorted on downside
risk in Section 2.1. Throughout, we take care in controlling for the regular

beta and emphasize the asymmetry in betas by focusing on relative down-

side beta in addition to downside beta. In Section 2.2, we examine the

reward to downside risk, controlling for other cross-sectional effects by

using Fama-MacBeth (1973) regressions. We disentangle the different

effects of coskewness risk and downside beta exposure in Section 2.3.

Section 2.4 conducts various robustness tests. In Section 2.5, we show

some additional usefulness of accounting for downside risk by examining
if the commonly used Fama-French (1993) portfolios sorted by size and

book-to-market characteristics exhibit exposure to downside risk.

2.1 Regular, Downside, and Upside Betas

2.1.1 Research design. If there is a cross-sectional relation between risk

and return, then we should observe patterns between average realized

returns and the factor loadings associated with exposure to risk. For
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example, the CAPM implies that stocks that covary strongly with the

market have contemporaneously high average returns over the same

period. In particular, the CAPM predicts an increasing relationship

between realized average returns and realized factor loadings, or con-

temporaneous expected returns and market betas. More generally, a

multifactor model implies that we should observe patterns between

average returns and sensitivities to different sources of risk over the

same time period used to compute the average returns and the factor
sensitivities.

Our research design follows Black, Jensen, and Scholes (1972), Fama

and MacBeth (1973), Fama and French (1992), Jagannathan and Wang

(1996), and others and focuses on the contemporaneous relation

between realized factor loadings and realized average returns. More

recently, in testing factor models, Lettau and Ludvigson (2001), Bansal,

Dittmar, and Lundblad (2005), and Lewellen and Nagel (2005), among

others all employ risk measures that are measured contemporaneously
with returns. While both Black, Jensen, and Scholes (1972) and Fama

and French (1992) form portfolios based on preformation factor load-

ings, they continue to perform their asset pricing tests using postranking

factor loadings, computed using the full sample. In particular, Fama

and French (1992) first form 25 portfolios ranked on the basis of pre-

formation size and market betas. Then, they compute ex post factor

loadings for these 25 portfolios over the full sample. At each month,

they assign the postformation beta of a stock in a Fama-MacBeth (1973)
cross-sectional regression to be the ex post market factor loading of the

appropriate size and book-to-market sorted portfolio to which that

stock belongs during that month. Hence, testing a factor relation entails

demonstrating a contemporaneous relationship between realized covar-

iance between a stock return and a factor with the realized average

return of that stock.

Our work differs from Fama and MacBeth (1973) and Fama and

French (1992) in one important way. Rather than forming portfolios
based on preformation regression criteria and then examining postforma-

tion factor loadings, we directly sort stocks on the realized factor loadings

within a period and then compute realized average returns over the same

period for these portfolios. Whereas preformation factor loadings reflect

both actual variation in factor loadings and measurement error effects,

postformation factor dispersion occurs almost exclusively from the actual

covariation of stock returns with risk factors. Moreover, we estimate

factor loadings using higher frequency data over shorter samples, rather
than lower frequency data over longer samples. Hence, our approach has

greater power.

A number of studies, including Fama and MacBeth (1973), Shanken

(1992), Ferson and Harvey (1991), and Pástor and Stambaugh (2003),
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compute predictive betas formed using conditional information avail-

able at time t and then examine returns over the next period. These

studies implicitly assume that risk exposures are constant and not time-

varying. Indeed, as noted by Daniel and Titman (1997), in settings

where the covariance matrix is stable over time, preformation factor

loadings are good instruments for the future expected (postformation)

factor loadings. If preformation betas are weak predictors of future

betas, then using preformation betas as instruments will also have low
power to detect ex post covariation between factor loadings and rea-

lized returns. We examine the relation between preformation estimates

of factor loadings with postformation realized factor loadings in

Section 3.

2.1.2 Empirical results. We investigate patterns between realized aver-

age returns and realized betas. While many cross-sectional asset pricing

studies use a horizon of one month, we work in intervals of 12 months,

from t to tþ 12, following Kothari, Shanken, and Sloan (1995). Our

choice of an annual horizon is motivated by two concerns. First, we

need a sufficiently large number of observations to condition on periods

of down markets. One month of daily data provides too short a window

for obtaining reliable estimates of downside variation. We check the
robustness of our results to using intervals of 24 months with weekly

frequency data to compute downside betas. Second, Fama and French

(1997), Ang and Chen (2005), and Lewellen and Nagel (2005) show that

market risk exposures are time-varying. Very long time intervals may

cause the estimates of conditional betas to be noisy. Fama and French

(2005) also advocate estimating betas using an annual horizon.

Over every 12-month period, we compute the sample counterparts to

various risk measures using daily data. We calculate a stock’s regular
beta, downside beta as described in Equation (5), and upside beta as

described in Equation (9). We also compute a stock’s relative downside

beta, �� � �, a stock’s relative upside beta, �þ � �, and the difference

between upside beta and downside beta, �þ � ��. Since these risk mea-

sures are calculated using realized returns, we refer to them as realized �,

realized ��, realized �þ, realized relative ��, realized relative �þ, and

realized �þ � ��.

In our empirical work, we concentrate on presenting the results of
equal-weighted portfolios and equal-weighted Fama-MacBeth (1973)

regressions. While a relationship between factor sensitivities and returns

should hold for both an average stock (equal weighting) or an average

dollar (value weighting), we focus on computing equal-weighted portfo-

lios, because past work on examining nonlinearities in the cross section

has found risk due to asymmetries to be bigger among smaller stocks. For
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example, the coskewness effect of Harvey and Siddique (2000) is strongest

for equal-weighted portfolios.4 We work with equally-weighted portfolios

to emphasize the differences between downside risk and coskewness. In a

series of robustness checks, we also examine if our findings hold using

value-weighted portfolios or in value-weighted Fama-MacBeth regres-

sions. We concentrate only on NYSE stocks to minimize the illiquidity

effects of small firms, but also consider all stocks on the NYSE, AMEX,

and NASDAQ in robustness tests.
At the beginning of the one-year period at time t, we sort stocks into five

quintiles based on their realized �, realized ��, realized �þ, realized

relative ��, realized relative �þ, or realized �þ � �� over the next 12

months. In the column labeled ‘‘Return,’’ Table 1 reports the average

realized excess return from time t to tþ 12 in each equally weighted

quintile portfolio. The table also reports the average cross-sectional rea-

lized �, ��, or �þ of each quintile portfolio. These average returns and

betas are computed over the same 12-month period. Hence, Table 1 shows
relationships between contemporaneous factor loadings and returns.

Although we use a 1-year horizon, we evaluate 12-month returns at a

monthly frequency. This use of overlapping information is more efficient

but induces moving average effects. To adjust for this, we report t-statistics

of differences in average excess returns between quintile portfolio 5 (high

betas) and quintile portfolio 1 (low betas) using 12 Newey-West (1987a)

lags.5 The sample period is from July 1963 to December 2001, with our last

12-month return period starting in January 2001. As part of our robustness
checks (below), we also examine nonoverlapping sample periods.

Panel A of Table 1 shows a monotonically increasing pattern between

realized average returns and realized �. Quintile 1 (5) has an average

excess return of 3.5% (13.9%) per annum, and the spread in average

excess returns between quintile portfolios 1 and 5 is 10.4% per annum,

with a corresponding difference in contemporaneous market betas of

1.36. Our results are consistent with the earliest studies testing the

CAPM, like Black, Jensen, and Scholes (1972), who find a reward for
holding higher-beta stocks. However, this evidence per se does not mean

that the CAPM holds, because the CAPM predicts that no other variable

other than beta should explain a firm’s expected return. Nevertheless, it

demonstrates that bearing high market risk is rewarded with high average

returns. Panel A also reports the positive and negative components of

beta (�� and �þ). By construction, higher �� or higher �þ must also

mean higher unconditional �, so high average returns are accompanied by

4 In their article, Harvey and Siddique (2000) state that they use value-weighted portfolios. From personal
correspondence with Cam Harvey, the coskewness effects arise most strongly in equal-weighted portfolios
rather than in value-weighted portfolios.

5 The theoretical number of lags required to absorb all the moving average error effects is 11, but we
include an additional lag for robustness.
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high ��, �þ, and regular �. Note that, for these portfolios sorted by

realized �, the spread in realized �� and �þ is also similar to the spread

in realized �. In the remainder of the panels in Table 1, we decompose

Table 1
Returns of Stocks Sorted by Realized Factor Loadings

Panel A: Stocks sorted by realized b Panel B: Stocks sorted by realized b�

Portfolio Return � �� �þ Portfolio Return � �� �þ

1 Low � 3.52% 0.28 0.36 0.19 1 Low �� 2.71% 0.40 0.19 0.42
2 6.07% 0.59 0.67 0.51 2 5.62% 0.63 0.61 0.62
3 7.58% 0.82 0.90 0.77 3 7.63% 0.83 0.89 0.79
4 9.48% 1.10 1.18 1.06 4 10.16% 1.06 1.23 0.99
5 High � 13.95% 1.64 1.72 1.63 5 High �� 14.49% 1.49 1.92 1.34

High-low 10.43% 1.36 1.36 1.44 High-low 11.78% 1.09 1.72 0.92
t-stat [4.98] t-stat [6.16]

Panel C: Stocks sorted by realized relative b� Panel D: Stocks sorted by realized bþ

Portfolio Return � �� �þ Portfolio Return � �� �þ

1 Low relative �� 4.09% 0.98 0.56 1.12 1 Low �þ 5.73% 0.44 0.63 �0:04
2 7.69% 0.83 0.73 0.84 2 7.42% 0.62 0.73 0.45
3 8.53% 0.80 0.86 0.75 3 8.29% 0.82 0.90 0.76
4 9.56% 0.84 1.08 0.72 4 9.33% 1.05 1.10 1.12
5 High relative �� 10.73% 0.98 1.60 0.71 5 High �þ 9.83% 1.49 1.46 1.85

High-low 6.64% 0.00 1.04 �0:41 High-low 4.11% 1.05 0.83 1.89
t-stat [7.70] t-stat [2.62]

Panel E: Stocks sorted by realized relative bþ Panel F: Stocks sorted by realized bþ � b�

Portfolio Return � �� �þ Portfolio Return � �� �þ

1 Low relative �þ 10.48% 0.91 1.19 0.25 1 Low �þ � �� 11.35% 0.94 1.45 0.37
2 9.51% 0.82 0.95 0.58 2 9.83% 0.83 1.03 0.62
3 8.53% 0.81 0.88 0.76 3 8.53% 0.80 0.87 0.75
4 7.72% 0.85 0.87 0.99 4 7.35% 0.84 0.78 0.95
5 High relative �þ 4.37% 1.03 0.95 1.56 5 High �þ � �� 3.55% 1.02 0.70 1.46

High-low �6:11% 0.12 �0:23 1.31 High-low �7:81% 0.08 �0:75 1.08
t-stat [9.02] t-stat [9.03]

This table lists the equal-weighted average returns and risk characteristics of stocks sorted by realized
betas. For each month, we calculate �; ��; �þ, relative �� (given by �� � �), relative �þ (given by
�þ � �), and �þ � �� with respect to the market of all stocks listed on the NYSE using daily continu-
ously compounded returns over the next 12 months. For each risk characteristic, we rank stocks into
quintiles (1–5) and form equal-weighted portfolios at the beginning of each 12-month period. The
number of stocks in each portfolio varies across time from 216 to 317 stocks. The column labeled
‘‘Return’’ reports the average return in excess of the one-month Treasury-bill rate over the next 12
months (which is the same period as the period used to compute �; ��, and �þ). The row labeled ‘‘High-
low’’ reports the difference between the returns of portfolio 5 and portfolio 1. The entry labeled ‘‘t-stat’’ in
square brackets is the t-statistic computed using Newey-West (1987a) heteroskedastic-robust standard
errors with 12 lags for the High-low difference. The columns labeled ‘‘�’’, ‘‘��’’ and ‘‘�þ’’ report the time-
series and cross-sectional average of equal-weighted individual stock betas over the 12-month holding
period. The sample period is from July 1963 to December 2001, with the last 12-month period from
January 2001 to December 2001, and observations are at a monthly frequency.
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the reward for unconditional market risk into downside and upside

components.

Panel B shows that stocks with high contemporaneous �� have high

average returns. Stocks in the quintile with the lowest (highest) �� earn

2.7% (14.5%) per annum in excess of the risk-free rate. The average

difference between quintile portfolios 1 and 5 is 11.8% per annum,

which is statistically significant at the 1% level. These results are consis-

tent with agents disliking downside risk and avoiding stocks that covary
strongly when the market dips, such as the DA representative agent

described in Section 1. Stocks with high �� must carry a premium in

order to entice agents to hold them. An alternative explanation is that

agents have no particular emphasis on downside risk versus upside

potential. High �� stocks may earn high returns simply because, by

construction, high �� stocks have high regular �. The average �� spread

between quintile portfolios 1 and 5 is very large (0.19 to 1.92), but sorting

on �� also produces variation in � and �þ. However, the variation in �
or �þ is not as disperse as the variation in ��. Another possible explana-

tion is that sorting on high contemporaneous covariance with the market

mechanically produces high contemporaneous returns. However, this

concern is not applicable to our downside risk measure, since we are

picking out precisely those observations for which stocks already have

very low returns when the market declines. In Panels C and D, we

demonstrate that it is the reward for downside risk alone that is behind

the pattern of high �� stocks earning high returns.
In panel C of Table 1, we sort stocks by realized relative downside beta

ð�� � �Þ. Relative downside beta focuses on the incremental impact of

downside beta over the regular, unconditional market beta. Panel C

shows that stocks with high realized relative �� have high average

returns. The difference in average excess returns between portfolios 5

and 1 is 6.6% per annum and is highly significant with a robust t-statistic

of 7.70. We can rule out that this pattern of returns is attributable to

regular beta because the � loadings are flat over portfolios 1 to 5. Hence,
the high realized returns from high relative �� are produced by the

exposure to downside risk, measured by high �� loadings.

Panel D shows a smaller spread for average realized excess returns for

stocks sorted on realized �þ, relative to the spreads for � and �� in panels

A and B. Since �þ only measures exposure to a rising market, stocks that

rise more when the market return increases should be more attractive

and, on average, earn low returns. We do not observe a discount for

stocks that have attractive upside exposure. We find that low (high) �þ

stocks earn, on average, 5.7% (9.8%) per annum in excess of the risk-free

rate. This pattern of high returns to high �þ loadings seems to be

inconsistent with agents having strong preferences for upside potential;

however, this measure does not control for the effects of regular � or for
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the effects of ��. Instead, the increasing pattern of returns in panel D

may be due to the patterns of � or ��, which increase from quintile

portfolios 1 to 5. The spread in regular � is 1.05, while the spread in �� is

0.83. From the CAPM, high � implies high returns, and if agents dislike

downside risk, high �� also implies high returns. Hence, we now turn to

measures that control for these confounding effects when we look for an

upside risk premium.

In panel E, we examine the effect of �þ while controlling for regular �
by sorting stocks according to realized relative upside beta, ð�þ � �Þ.
Examining relative �þ helps us to disentangle the effect of �þ from the

effects of regular � and ��. Panel E shows that stocks with high realized

relative �þ have low returns. We find that high (low) relative �þ stocks

earn, on average, 4.4% (10.5%) per annum in excess of the risk-free rate.

Furthermore, stocks sorted by relative upside beta produce a spread in

�þ while keeping the spread in regular � and �� relatively flat. The

differences in regular � and �� across the highest quintile and the lowest
quintile ð�þ � �Þ portfolios are relatively low at 0.12 and –0.23, respec-

tively. In contrast, we obtain a wide spread in �þ of 1.31 between the

highest quintile and the lowest quintile portfolios. This pattern of low

returns to high relative �þ stocks is consistent with agents accepting a

discount for holding stocks with high upside potential, which would

result from the DA agent equilibrium in Section 1.

Finally, we sort stocks by the realized difference between upside beta

and downside beta ð�þ � ��Þ in Table 1, panel F. We look at this
measure to gauge the effect of upside risk relative to downside risk. In

panel F, we observe a decreasing pattern in average realized excess returns

with increasing ð�þ � ��Þ. On average, we find that stocks with high

(low) ð�þ � ��Þ earn 3.6% (11.4%) per annum in excess of the risk-free

rate. While this direction is consistent with a premium for downside risk

and a discount for upside potential, it is hard to separate the effects of

downside risk independently from upside risk using these ð�þ � ��Þ
portfolio sorts. The quintile portfolios sorted by ð�þ � ��Þ show little
variation in regular �, but they show a decreasing pattern in �� and an

increasing pattern in �þ. Hence, it is difficult to separate whether the

patterns in realized returns arise because of exposure to downside losses

or exposure to upside gains. Thus, our preferred measures to examine

downside or upside risk are relative �� and relative �þ in panels C and E,

which control for the effect of �.

In summary, Table 1 demonstrates that downside risk is rewarded in

the cross section of stock returns. Stocks with high �� loadings earn high
average returns over the same period that are not mechanically driven by

high regular, unconditional betas. Stocks that covary strongly with the

market conditional on positive moves of the market command significant
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discounts. However, these relations do not control for other known

patterns in the cross section of stock returns, which we now investigate.

2.2 Fama-MacBeth Regressions

A long literature from Banz (1981) onward has shown that various firm

characteristics also have explanatory power in the cross section. The size

effect [Banz (1981)], the book-to-market effect [Basu (1983)], the momen-

tum effect [Jegadeesh and Titman (1993)], the volatility effect [Ang et al.
(2006)], exposure to coskewness risk [Harvey and Siddique (2000)], expo-

sure to cokurtosis risk [Scott and Horvarth (1980) and Dittmar (2002)],

and exposure to aggregate liquidity risk [Pástor and Stambaugh (2003)],

all imply different patterns for the cross section of expected returns. We

now demonstrate that downside risk is different from all of these effects

by performing a series of cross-sectional Fama and MacBeth (1973)

regressions at the firm level, over the sample period from July 1963 to

December 2001.
We run Fama-MacBeth regressions of excess returns on firm charac-

teristics and realized betas with respect to various sources of risk. We

use a 12-month horizon for excess returns to correspond to the con-

temporaneous period over which our risk measures are calculated. Since

the regressions are run using a 12-month horizon, but at the overlapping

monthly frequency, we compute the standard errors of the coefficients

by using 12 Newey-West (1987a) lags. Table 2 reports the results listed

by various sets of independent variables in Regressions I–VI. We also
report means and standard deviations to help gauge economic signifi-

cance. We regress realized firm returns over a 12-month horizon (t to

tþ 12) on realized market beta, downside beta, and upside beta, (�, ��,

and �þ) computed over the same period. Hence, these regressions

capture a contemporaneous relationship between average returns and

factor loadings or characteristics. We control for log-size, book-to-

market ratio, and past 12-month excess returns of the firm at the

beginning of the period t. We also include realized standard deviation
of the firm excess returns, realized coskewness, and realized cokurtosis

as control variables. All of these are also computed over the period

from t to tþ 12. We define cokurtosis in a similar manner to coskew-

ness in Equation (6):

cokurt ¼ E½ðri � �iÞðrm � �mÞ3�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðriÞ

p
varðrmÞ3=2

; ð10Þ

where ri is the firm excess return, rm is the market excess return, �i is the

average excess stock return, and �m is the average market excess returns.

Finally, we also include the Pástor and Stambaugh (2003) historical

liquidity beta at time t to proxy for liquidity exposure.
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In order to avoid putting too much weight on extreme observations,

each month we Winsorize all independent variables at the 1% and 99%

levels.6 Winsorization has been performed in cross-sectional regressions

by Knez and Ready (1997), among others, and ensures that extreme

outliers do not drive the results. It is particularly valuable for dealing

with the book-to-market ratio, because extremely large book-to-market

values are sometimes observed due to low prices, particularly before a
firm delists.

Table 2
Fama-MacBeth Regressions

Model I II III IV V VI Mean
(Std Dev)

Intercept 0.300 0.044 0.054 0.046 0.246 0.257
[9.35] [3.39] [1.66] [1.42] [7.62] [7.79]

� 0.177 0.828
[8.19] (0.550)

�� 0.069 0.064 0.028 0.062 0.056 0.882
[7.17] [7.44] [2.68] [6.00] [5.25] (0.739)

�þ �0:029 �0:025 0.003 0.020 0.017 0.722
[4.85] [4.15] [0.22] [2.33] [1.91] (0.842)

Log-size �0:039 �0:007 �0:013 �0:034 �0:034 5.614
[8.82] [1.47] [3.03] [7.77] [7.39] (1.523)

Bk-Mkt 0.017 0.024 0.023 0.017 0.018 0.768
[3.87] [5.17] [5.03] [3.67] [3.76] (0.700)

Past Ret 0.017 0.063 0.053 0.020 0.015 0.085
[1.91] [6.32] [5.40] [2.12] [1.50] (0.370)

Std Dev �8:433 �5:781 �6:459 0.355
[10.7] [6.41] [7.04] (0.174)

Coskewness �0:229 �0:181 �0:196 �0:188 �0.179
[10.7] [4.31] [5.07] [4.59] (0.188)

Cokurtosis 0.015 0.045 0.047 2.240
[1.57] [4.40] [4.52] (1.353)

�L �0:008 �0.166
[0.93] (0.456)

This table shows the results of Fama-MacBeth (1973) regressions of 12-month excess returns on firm
characteristics and realized-risk characteristics. The sample period is from July 1963 to December 2001,
with the last 12-month period from January 2001 to December 2001, and observations are at a monthly
frequency (451 months) for all stocks listed on the NYSE. For regression VI, the sample period is from
January 1967 to December 2001 (397 months). The number of stocks in each regression varies across time
from 1080 to 1582 stocks. The t-statistics in square brackets are computed using Newey-West (1987a)
heteroskedastic-robust standard errors with 12 lags. The firm characteristics are log of market capitali-
zations (‘‘Log-Size’’), book-to-market ratios (‘‘Bk-mkt’’), and past 12-month excess returns (‘‘Past ret’’),
all computed at the beginning of each period. The realized risk characteristics are �; ��; �þ, standard
deviations (‘‘Std Dev’’), coskewness and cokurtosis are all calculated over the following 12-month period
using daily continuously compounded returns. We also include the Pástor-Stambaugh (2003) liquidity
beta, �L, for January 1967 to January 2001. All independent variables are Winsorized at the 1% level and
at the 99% within each month. We report time-series averages of the cross-sectional mean and standard
deviation (in parentheses) of each independent variable in the last column.

6 For example, if an observation for the firm’s book-to-market ratio is extremely large and above the 99th
percentile of all the firms’ book-to-market ratios that month, we replace that firm’s book-to-market ratio
with the book-to-market ratio corresponding to the 99th percentile. The same is done for firms whose
book-to-market ratios lie below the 1%-tile of all firms’ book-to-market ratios that month.
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We begin with regression I in Table 2 to show the familiar, standard set

of cross-sectional return patterns. While the regular market beta carries a

positive coefficient, the one-factor CAPM is rejected because � is not a

sufficient statistic to explain the cross section of stock returns. The results

of the regression confirm several CAPM anomalies found in the litera-

ture. For example, small stocks and stocks with high book-to-market

ratios have high average returns [see Fama and French (1992)], while

stocks with high past returns also continue to have high returns [see
Jegadeesh and Titman, (1993)]. The very large and highly significant

negative coefficient (–8.43) on the firm’s realized volatility of excess

returns confirms the anomalous finding of Ang et al. (2006), who find

that stocks with high return volatilities have low average returns. Con-

sistent with Harvey and Siddique (2000), stocks with high coskewness

have low returns. Finally, stocks with positive cokurtosis tend to have

high returns, consistent with Dittmar (2002).

In regressions II–VI, we separately examine the downside and upside
components of beta and show that downside risk is priced.7 We turn first

to regression II, which reveals that downside risk and upside risk are

priced asymmetrically. The coefficient on downside risk is positive (0.069)

and highly significant, confirming the portfolio sorts in Table 1. The

coefficient on �þ is negative (–0.029), but lower in magnitude than the

coefficient on ��. These results are consistent with the positive premium

on relative �� and the discount on relative �� reported in panels C and E

of Table 1.
Regression III shows that the reward for both downside and upside risk

is robust to controlling for size, book-to-market, and momentum effects.

Note that asymmetric beta risk does not remove the book-to-market or

momentum effects. But, importantly, the Fama-MacBeth coefficients for

�� and �þ remain almost unchanged from their regression II estimates at

0.064 and –0.025, respectively. While neither �� nor �þ is a sufficient

statistic to explain the cross section of stock returns, Table 2 demon-

strates a robust reward for holding stocks with high (low) �� (�þ) load-
ings controlling for the standard size, book-to-market, and past return

effects.

In regressions IV–VI, accounting for additional measures of risk does

not drive out the significance of �� but drives out the significance of �þ.

Once we account for coskewness risk in regression IV, the coefficient on

�þ becomes very small (0.003) and becomes statistically insignificant,

with a t-statistic of 0.22. Controlling for coskewness also brings down

the coefficient on �� from 0.064 in regression III (without the coskewness

7 By construction, � is a weighted average of �� and �þ. If we place both � and �� on the right-hand side
of regressions II–VI and omit �þ, the coefficients on �� are the same to three decimal places as the ��

coefficients reported in Table 2. Similarly, if we specify both � and �þ to be regressors, the coefficients on
�þ are almost unchanged.
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risk control) to 0.028 in regression IV (with the coskewness risk control).

Nevertheless, the premium for downside risk remains positive and statis-

tically significant. In regression V, where we add controls for realized

firm volatility and realized firm cokurtosis, the coefficient on downside

risk remains consistently positive at 0.062 and also remains highly statis-

tically significant, with a robust t-statistic of 6.00. The preference func-

tion of Section 1 that weights downside outcomes more than upside

outcomes also produces a discount for upside potential. We observe
these patterns in data only for regressions II and III, where the upside

discount is about half the size in magnitude of the premium for downside

risk. After the additional controls beyond size, book-to-market, and

momentum are included in regressions IV and V, the discount for poten-

tial upside becomes fragile. Thus, the premium for downside risk dom-

inates in the cross section.

Finally, regression VI investigates the reward for downside and upside

risk, controlling for the full list of firm characteristics and realized factor
loadings. We lose five years of data in constructing the Pástor-Stambaugh

historical liquidity betas, so this regression is run from January 1967 to

December 2001. The coefficient on �� is 0.056, with a robust t-statistic of

5.25. In contrast, the coefficient on �þ is statistically insignificant,

whereas the premium for coskewness is significantly negative, at –0.188.

Since both �� and coskewness risk measure downside risk, and the

coefficients on both risk measures are statistically significant, we care-

fully disentangle the �� and coskewness effects in Section 2.4.
To help interpret the economic magnitudes of the risk premia reported

in the Fama-MacBeth regressions, the last column of Table 2 reports the

time-series average of the cross-sectional mean and standard deviation of

each of the factor loadings or characteristics. The average market beta is

less than one (0.83) because we are focusing on NYSE firms, which tend

to be skewed towards large firms with relatively low betas. The average

downside beta is 0.88, with a cross-sectional standard deviation of 0.74.

This implies that, for a downside risk premium of 6.9% per annum, a two-
standard-deviation move across stocks in terms of �� corresponds to a

change in expected returns of 2� 0:069� 0:74 ¼ 10:2% per annum.

While the premium on coskewness appears much larger in magnitude,

at approximately –19% per annum, coskewness is not a beta and must be

carefully interpreted. A two-standard-deviation movement across cos-

kewness changes expected returns by 2� 0:188� 0:19 ¼ 7:1% per

annum, which is slightly less than, but of the same order of magnitude

as, the effect of downside risk.
The consistent message from the regressions in Table 2 is that reward

for downside risk �� is always positive at approximately 6% per annum

and statistically significant. High downside beta is compensated for by

high average returns, and this result is robust to controlling for other
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firm characteristics and risk characteristics, including upside beta. More-

over, downside beta risk remains significantly positive in the presence of

coskewness risk controls. On the other hand, the reward for upside risk

(�þ) is fragile. A priori, we expect the coefficient on �þ to be negative,

but in data, it often flips sign and is insignificant when we control for

other cross-sectional risk attributes. Thus, aversion to downside risk is

priced more strongly, and more robustly, in the cross section than

investors’ attraction to upside potential.

2.3 Downside Beta Risk and Coskewness Risk

The Fama-MacBeth (1973) regressions in Table 2 demonstrate that

both downside beta and coskewness have predictive power for the

cross-section of stock returns. Since both �� and coskewness capture

the effect of asymmetric higher moments and downside risk, we now

measure the magnitude of the reward for exposure to downside beta,

while explicitly controlling for the effect of coskewness. Table 3 pre-
sents the results of this exercise.

To control for the effect of coskewness, we first form quintile portfolios

sorted on coskewness. Then, within each coskewness quintile, we sort

stocks into five equally weighted portfolios based on ��. Both coskewness

and �� are computed over the same 12-month horizon for which we

examine realized excess returns. After forming the 5� 5 coskewness and

�� portfolios, we average the realized excess returns of each �� quintile

over the five coskewness portfolios. This characteristic control procedure
creates a set of quintile �� portfolios with near-identical levels of coskew-

ness risk. Thus, these quintile �� portfolios control for differences in

coskewness.

Panel A of Table 3 reports average excess returns of the 25 coskewness

��� portfolios. The column labeled ‘‘Average’’ reports the average

12-month excess returns of the �� quintiles, controlling for coskewness

risk. The row labeled ‘‘High-low’’ reports the differences in average

returns between the first and fifth quintile �� portfolios within each
coskewness quintile. The last row reports the 5–1 quintile difference for

the �� quintiles that control for the effect of coskewness exposure. The

average excess return of 7.6% per annum in the bottom right entry of

Panel A is the difference in average returns between the fifth and first ��

quintile portfolios that control for coskewness risk. This difference has a

robust t-statistic of 4.16. Hence, coskewness risk cannot account for the

reward for bearing downside beta risk.

In Panel A, the patterns within each coskewness quintile moving from
low �� to high �� stocks (reading down each column) are very interest-

ing. As coskewness increases, the differences in average excess returns

due to different �� loadings decrease. The effect is quite pronounced. In

the first coskewness quintile, the difference in average returns between
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the low and high �� quintiles is 14.6% per annum. The average return

difference in the low and high �� portfolios decreases to 2.1% per annum

for the quintile of stocks with the highest coskewness.

The reason for this pattern is as follows. As defined in Equation (6),

coskewness is effectively the covariance of a stock’s return with the square

of the market return, or with the volatility of the market. A stock with

negative coskewness tends to have low returns when market volatility is
high. These are also usually, but not always, periods of low market

returns. Volatility of the market treats upside and downside risk symme-

trically, so both extreme upside and extreme downside movements of the

market have the same volatility. Hence, the prices of stocks with large

Table 3
Returns of Stocks Sorted by Realized Downside Beta and Coskewness

Panel A: b� Sorts controlling for coskewness

Coskewness Quintiles

Portfolio 1 Low 2 3 4 5 High Average

1 Low �� 7.21% 5.74% 4.03% 3.40% 0.22% 4.21%
2 10.55% 8.40% 6.94% 5.59% 2.61% 6.82%
3 13.63% 11.30% 8.30% 6.08% 3.76% 8.61%
4 15.63% 12.82% 9.35% 6.74% 2.56% 9.42%
5 High �� 21.84% 15.85% 11.51% 6.81% 2.32% 11.67%

High-low 14.64% 10.11% 7.48% 3.41% 2.10% 7.55%
t-stat [5.62] [5.22] [3.91] [1.87] [1.32] [4.16]

Panel B: Coskewness sorts controlling for b�

�� Quintiles

Portfolio 1 Low 2 3 4 5 High Average

1 Low coskew 4.69% 7.15% 9.30% 12.59% 17.61% 10.27%
2 4.17% 6.19% 9.61% 12.33% 18.21% 10.10%
3 2.74% 6.51% 8.68% 11.31% 16.07% 9.06%
4 1.50% 5.24% 6.68% 9.16% 12.83% 7.08%
5 High coskew 0.41% 2.96% 3.86% 5.37% 7.65% 4.05%

High-low �4:28% �4:18% �5:45% �7:22% �9:96% �6:22%
t-stat [4.23] [5.64] [7.12] [8.09] [7.94] [8.17]

This table examines the relation between �� and coskewness. For each month, we compute �� and
coskewness with respect to the market of all stocks listed on the NYSE using daily continuously
compounded returns over the next 12 months. In panel A, we first rank stocks into quintiles (1–5) at
the beginning of each 12-month period based on coskewness over the next 12 months. Then, we rank
stocks within each first-sort quintile into additional quintiles according to �� computed over the next 12
months. For each 5� 5 grouping, we form an equal-weighted portfolio. In panel B, we reverse the order
so that we first sort on �� and then on coskewness. The sample period is from July 1963 to December
2001, and the number of stocks in each portfolio varies across time from 43 to 64 stocks. We report the
average return in excess of the one-month Treasury bill rate over the next 12 months. For the column
labeled ‘‘Average’’, we report the average return of stocks in each second-sort quintile. This controls for
coskewness ð��Þ in panel A (B). The row labeled ‘‘High-low’’ reports the difference between the returns of
portfolio 1 and portfolio 5. The entry labeled ‘‘t-stat’’ in square brackets is the t-statistic computed using
Newey-West (1987a) heteroskedastic-robust standard errors with 12 lags for the High-low difference.
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negative coskewness tend to decrease when the market falls, but the prices

of these stocks may also decrease when the market rises. In contrast,

downside beta concentrates only on the former effect by explicitly con-

sidering only the downside case. When coskewness is low, there is a wide

spread in �� because there is large scope for market volatility to represent

both large negative and large positive changes. This explains the large

spread in average returns across the �� quintiles for stocks with low

coskewness.
The small 2.1% per annum 5–1 spread for the �� quintiles for the

highest coskewness stocks is due to the highest coskewness stocks exhi-

biting little asymmetry. The distribution of coskewness across stocks is

skewed towards the negative side and is negative on average. Across the

low to the high coskewness quintiles in panel A, the average coskewness

ranges from –0.41 to 0.09. Hence, the quintile of the highest coskewness

stocks have little coskewness. This means that high coskewness stocks

essentially do not change their behavior across periods where market
returns are stable or volatile. Furthermore, the range of �� in the highest

coskewness quintile is also smaller. The small range of �� for the highest

coskewness stocks explains the low 2.1% spread for the �� quintiles in

the second last column of panel A.

Panel B of Table 3 repeats the same exercise as panel A, except we

examine the reward for coskewness controlling for different levels of ��.

Panel B first sorts stocks on coskewness before sorting on ��, and then

averages across the �� quintiles. This exercise examines the coskewness
premium controlling for downside exposure. Controlling for ��, the 5–1

difference in average returns for coskewness portfolios is –6.2%, which is

highly statistically significant with a t-statistic of 8.17. Moreover, there

are large and highly statistically significant spreads for coskewness in

every �� quintile. Coskewness is able to maintain a high range within

each �� portfolio, unlike the diminishing range for �� within each

coskewness quintile in Panel A.

In summary, downside beta risk and coskewness risk are different. The
high returns to high �� stocks are robust to controlling for coskewness

risk and vice versa. Downside beta risk is strongest for stocks with low

coskewness. Coskewness does not differentiate between large market

movements on the upside or the downside. For stocks with low coskew-

ness, downside beta is better able to capture the downside risk premium

associated only with market declines than an unconditional coskewness

measure.

2.4 Robustness Checks

We now show that our results do not depend on the way we have

measured asymmetries in betas or the design of our empirical tests. In

particular, we show that our results are robust to measuring asymmetries
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with respect to different cutoff points across up markets and down

markets. We also show that our results are robust to using longer-

frequency data. Finally, we show that our results are not driven by

using equal weighting, concentrating on NYSE stocks, or using over-

lapping portfolios by checking robustness with respect to value weighting,

including all stocks listed on NYSE, AMEX, and NASDAQ, and using

nonoverlapping portfolios.

We begin by using other cutoff points to determine up markets and
down markets. Our measures of �� and �þ use returns relative to realized

average market excess return. Naturally, realized average market returns

vary across time and may have particularly low or high realizations.

Alternatively, rather than using the average market excess return as the

cutoff point between up markets and down markets, we can also use the

risk-free rate or the zero rate of return as the cutoff point. We define

downside and upside beta relative to the risk-free rate as:

��rf ¼
covðri; rmjrm < rf Þ

varðrmjrm < rf Þ
and �þrf ¼

covðri; rmjrm > rf Þ
varðrmjrm > rf Þ

: ð11Þ

We define downside and upside beta relative to the zero rate of return as:

��0 ¼
covðri; rmjrm < 0Þ

varðrmjrm < 0Þ and �þ0 ¼
covðri; rmjrm > 0Þ

varðrmjrm > 0Þ : ð12Þ

We show the correlations among these risk measures in Table 4, which

reports the time-series averages of the cross-sectional correlations of reg-

ular beta and the various downside and upside risk measures. Table 4

shows that ��, ��rf , and ��0 are all highly correlated with each other with

correlations greater than 0.96. Similarly, we find that �þ, �þrf , and �þ0 are

also highly correlated with each other. Given these correlations, it is not
surprising that reproducing Table 1 and Table 2 using either one of these

alternative cutoff points yields almost identical results.8 Therefore, the

finding of a downside risk premium is indeed being driven by emphasizing

losses versus gains, rather than by using a particular cutoff point for the

benchmark.

Table 4 also shows that the regular measure of beta is quite different

from measures of downside beta and upside beta. The correlation of

regular beta with downside beta or upside beta is 0.78 and 0.76, respec-
tively. Therefore, downside beta and upside beta capture different

aspects of risk, and are not simply reflective of the regular, uncondi-

tional market beta. Interestingly, the correlation between downside beta

and upside beta is only around 0.46. Thus, a high downside risk expo-

sure does not necessarily imply a high upside risk exposure. We examine

8 These results are available upon request.
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further the cross-sectional determinants of future downside risk expo-

sure in Section 3.

We now turn to additional robustness checks to make sure our findings

are being driven by variation in downside risk rather than by some

statistical bias introduced by our testing method. In Table 5, we subject

our results to a battery of additional robustness checks. Here, we check to
see if our results are robust to excluding small stocks, using longer-

frequency data to compute �� and relative ��, creating value-weighted

portfolios, using all stocks, and using nonoverlapping annual observa-

tions.9 We report the robustness checks for realized �� in panel A and for

realized relative �� in panel B. In each panel, we report average 12-

month (or 24-month) excess returns of quintile portfolios sorted by

realized ��, or realized relative ��, over the same period. The table

also reports the differences in average excess returns between quintile
portfolios 1 and 5 with robust t-statistics.

One possible worry is that our use of daily returns introduces a bias due

to nonsynchronous trading. Indeed, one of the reasons for our focus on

just the NYSE is to minimize these effects. To further check the influence

of very small stocks, the first column of Table 5 excludes from our sample

stocks that fall within the lowest size quintile. When small stocks are

Table 4
Correlations of Beta Measures

� �� ��rf ��0 �þ �þrf �þ0

� 1.000 0.779 0.770 0.762 0.760 0.769 0.776
�� 1.000 0.971 0.967 0.464 0.444 0.439
��rf 1.000 0.990 0.447 0.467 0.452
��z 1.000 0.447 0.461 0.464
�þ 1.000 0.972 0.969
�þrf 1.000 0.991
�þz 1.000

This table reports the time-series averages of cross-sectional correlations of various risk characteristics for
stocks listed on the NYSE. The risk characteristics are regular beta ð�Þ, downside beta ð��Þ, downside
beta defined relative to the risk-free rate ð��rf ), downside beta defined relative to a zero return ð��0 Þ,
upside beta ð�þÞ, upside beta relative to the risk-free rate ð�þrf Þ, and upside beta relative to a zero return
ð��0 Þ. The regular downside and upside beta, �� and �þ, respectively, are calculated relative to the
sample mean market return. All risk characteristics are computed using daily returns over the past 12
months. The sample period is from July 1963 to December 2001, with the last 12-month period from
January 2001 to December 2001. There are a total of 451 observations at a monthly frequency.

9 In addition, we conduct further robustness checks that are available upon request. In particular, to
control for the influence of nonsynchronous trading, we also repeat our exercise using control for
nonsynchronous trading in a manner analogous to using a Scholes-Williams (1977) correction to compute
the downside betas. Although this method is ad hoc, using this correction does not change our results. We
also find that the point estimates of the premiums are almost unchanged when we exclude stocks that fall
into the highest volatility quintile, but statistical significance increases dramatically.
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removed, the difference between quintiles 5 and 1 for the stocks sorted by

realized �� remains strongly statistically significant (with a robust t-statistic
of 4.54) at 8.34% per annum, but is slightly reduced from the 5–1 difference

of 11.8% per annum when small stocks are included in Table 1. Similarly,

the 5–1 difference in average returns for relative �� also remains highly

significant.

Table 5
Robustness Checks of Realized Downside Beta Portfolios

Portfolio Exclude small Two-year weekly Value-weighted All stocks Nonoverlapping

Panel A: Sorts by realized b�

1 Low 4.48% 7.08% 2.62% 4.14% 3.69%
2 6.25% 12.54% 4.23% 7.23% 5.74%
3 7.69% 16.86% 6.04% 8.84% 8.33%
4 10.33% 21.34% 9.32% 11.35% 10.68%
5 High 12.81% 29.35% 9.76% 19.37% 16.15%

High-low 8.34% 22.27% 7.14% 15.24% 12.46%
t-stat [4.54] [4.96] [3.30] [5.57] [3.51]

Panel B: Sorts by realized relative b�

1 Low 5.07% 11.46% 3.19% 5.58% 5.67%
2 8.01% 15.78% 6.86% 8.66% 8.78%
3 8.66% 18.06% 7.07% 9.41% 8.42%
4 9.44% 20.48% 7.56% 10.86% 9.67%
5 High 10.37% 21.37% 7.18% 14.21% 12.05%

High-low 5.30% 9.91% 3.99% 8.63% 6.38%
t-stat [6.46] [4.29] [3.06] [7.02] [3.87]

We perform robustness checks of the results in Table 1. For each month, we calculate �� and relative ��

using weekly (Wednesday to Tuesday) continuously compounded returns over each 24-month period or
daily continuously compounded returns over each 12-month period. We report the results using realized
�� in panel A and the results using realized relative �� (given by �� � �) in panel B. For each risk
characteristic, we rank stocks into quintiles (1–5). In the first column of each panel, we form equal-
weighted portfolios among NYSE stocks, but exclude stocks that fall in the lowest size quintile. In the
second column, we form equal-weighted portfolios among NYSE stocks formed by ranking on �� or
ð�� � �Þ computed using two years of weekly data. In the third column of each panel, we form value-
weighted portfolios using stocks listed on the NYSE at the beginning of each 12-month period. In the
fourth column, we use all stocks listed on the NYSE, AMEX, and NASDAQ and form equal-weighted
portfolios at the beginning of each period, using quintile breakpoints based on NYSE stocks. In the last
column, we compute the risk characteristics using stocks listed on the NYSE and form equal-weighted
portfolios at the beginning of each January using nonoverlapping 12-month horizon observations. We
report the average return in excess of the one-month T-bill rate over the next 12 months. The row labeled
‘‘High-low’’ reports the difference between the returns of portfolio 5 and portfolio 1. For the columns
labeled ‘‘Exclude small,’’ ‘‘Value-weighted,’’ and ‘‘All stocks,’’ the sample period is from July 1963 to
December 2001, with the last 12-month period from January 2001 to December 2001, with observations
at a monthly frequency. For the column labeled ‘‘Two-year weekly,’’ the sample period is from July 1963
to December 2001, with the last 24-month period spanning January 2000 to December 2001. For the
column labeled ‘‘Nonoverlapping,’’ the sample period is from January 1964 to December 2001, with the
last 12-month period lasting from January 2001 to December 2001. The number of stocks in each
portfolio varies across time from 216 to 317 stocks, except for ‘‘All stocks’’, where it varies from 289
to 2330 stocks. The entry labeled ‘‘t-stat’’ in square brackets is the t-statistic computed using Newey-West
(1987a) heteroskedastic-robust standard errors with 24 lags for the second column, 1 lag for the last
column, and 12 lags for all other columns for the High-low difference.
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The second column computes �� and (�� � �) using two years of

weekly data, rather than one year of daily data. We compute weekly

returns from Wednesdays to Tuesdays, and use two years of data to

ensure that we have a sufficient number of observations to compute the

factor loadings. We report the contemporaneous 24-month realized

return over the same 24-month period used to measure the downside

risk loadings. The table shows that there is no change in our basic

message: there exists a reward for exposures to downside risk and relative
downside risk.10

In the third column of Table 5, we examine the impact of constructing

value-weighted portfolios rather than equal-weighted portfolios. Using

value weighting preserves the large spreads in average excess returns for

sorts by �� and relative ��. In particular, the 5–1 spread of value-

weighted quintile portfolios in realized returns from sorting on realized

�� is 7.1% per annum. Although this has reduced from 11.8% per annum

using equal-weighted portfolios in Table 1, the difference remains statis-
tically significant at the 1% level. Similarly, the 5–1 spread in relative ��

portfolios in panel B reduces from 6.6% per annum using equal weighting

to 4.0% per annum with value weighting. This difference is also signifi-

cant at the 1% level.

In the fourth column, labeled ‘‘All stocks,’’ we use all stocks listed on

the NYSE, AMEX, and NASDAQ, rather than restricting ourselves to

stocks listed on the NYSE. We form equal-weighted quintile portfolios at

the beginning of the period based on realized beta rankings. To keep our
results comparable with our earlier results, we use breakpoints calculated

over just the NYSE stocks. Using all stocks increases the average excess

returns, so our main results using only the NYSE universe are conserva-

tive. The 5–1 spreads in average excess returns increase substantially using

all stocks. For the �� (relative ��) quintile portfolios, the 5–1 difference

increases to 15.2% (8.6%) per annum, compared to 11.8% (6.6%) per

annum using only NYSE stocks. By limiting our universe to NYSE

stocks, we deliberately understate our results to avoid confounding
influences of illiquidity and nonsynchronous trading.

In our last robustness check in Table 5, we use nonoverlapping

observations. While the use of the overlapping 12-month horizon in

Tables 1 and 2 is statistically efficient, we examine the effect of using

nonoverlapping 12-month periods in the last column of Table 5.

Our 12-month periods start at the beginning of January and end in

December of each calendar year. With nonoverlapping samples, it is not

necessary to control for the moving average errors with robust t-statistics,

10 We have also reproduced the Fama-MacBeth regressions using risk measures calculated at the weekly
frequency and found virtually identical results to Table 2. In addition, when we examine realized betas
and realized returns over a 60-month horizon using monthly frequency returns, we find the same
qualitative patterns that are as statistically significant as using a 12-month horizon.
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but we have fewer observations. Nevertheless, the results show that the

point estimates of the 5–1 spreads are still statistically significant at the 1%

level. Not surprisingly, the point estimates remain roughly unchanged

from Table 1.

In unreported results, we also conduct additional robustness checks

to value weighting and using all stocks in a Fama-MacBeth regression

setting. First, we run a set of value-weighted Fama-MacBeth regres-

sions to make sure that small stocks are not driving our results. We
do this by running a cross-sectional weighted least squares regression

for each period, where the weights are the market capitalization of a

firm at the beginning of each period. Using value-weighted regressions

continues to produce a strong, statistically significant, positive rela-

tion between downside risk and contemporaneous returns with or

without any additional controls. Similar to the results of using all

stocks in the portfolio formations of Table 5, using all stocks in the

Fama-MacBeth regressions only increases the magnitude of the down-
side risk premium, which remains overwhelmingly statistically signifi-

cant.

2.5 Downside Risk in Size and Book-to-Market Portfolios

While we have demonstrated that exposures to high �� or high relative

�� loadings are compensated by high average returns and this effect is

consistent with investors placing greater weight on downside risk, we

have not demonstrated that downside risk is useful in pricing portfolios
sorted on other attributes. We now examine if portfolios of stocks sorted

by other stock characteristics also exhibit contemporaneous exposure to

downside risk. We focus on the Fama and French (1993) set of 25

portfolios sorted by size and book-to-market. To price these portfolios,

Fama and French (1993) develop a linear asset pricing model that aug-

ments the excess market return factor, rm, with size and value factors

(SMB and HML, respectively). Table 6 examines if these portfolios

exhibit exposure to downside risk, even after controlling for the standard
Fama-French model.

In Table 6, we examine linear factor models of the form:

m ¼ aþ bm � rm þ bm� � r�m þ bSMB � SMBþ bHML �HML; ð13Þ

where r�m ¼ minðrm; �mÞ equals rm if the excess market return is below its

sample mean, or its sample mean otherwise. We estimate the coefficients

bm, bm� , bSMB, and bHML by GMM using the moment conditions:

EðmrÞ ¼ 0; ð14Þ
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where r is a vector of the 25 Fama-French portfolios. The coefficient bm�

reveals the exposure of the test portfolios to downside risk.11 We conduct

a �2 specification test to examine the fit with and fit without the down-

side risk exposure of various specifications of Equation (13). Specifically,

we compute a �J �2 difference test of Newey and West (1987b) using an

optimal weighting matrix of the moment conditions under the unrest-

ricted model of the alternative hypothesis. In particular, if we reject the

null hypothesis that bm� ¼ 0, then we conclude that the restrictions

imposed by the null hypothesis model that there is no downside risk
exposure is too restrictive.

We consider two null models in Table 6, the null of the CAPM (Spe-

cification I) and the null of the Fama-French model (Specification III). In

both alternatives (Specifications II and IV), Table 6 shows that the

coefficient bm� is statistically significant at the 5% level. This indicates

that, for pricing the size and book-to-market portfolios, the downside

portion of market return plays a significant role, even in the presence of

Table 6
GMM Specification Tests

Linear factor model coefficients

a bm bm� bSMB bHML �J �2 test

Specification I
1.02 �5:25

[57.6] [3.87]

Specification II
1.35 �17:73 22.84 H0: Spec I 3.85

[8.70] [3.03] [2.16] vs H1: Spec II (0.05)

Specification III
1.08 �7:82 �0:95 �10:24

[34.5] [5.21] [0.50] [4.41]

Specification IV
1.60 �26:97 35.73 �3:63 �11:09 H0: Spec III 9.49

[7.70] [3.42] [2.56] [1.52] [4.11] vs H1: Spec IV (0.00)

This table reports GMM estimates and GMM specification tests using the 25 Fama and French (1993)
size and book-to-market sorted portfolios as base assets. Each linear factor model specification takes the
form of Equation (13), with specifications I–III being special cases of Equation (13). In each case, we
estimate the coefficients using the moment conditions in Equation (14). The column labeled ‘‘�J’’
provides a �2 difference test of a restricted specification ðH0Þ versus an alternative specification ðH1Þ.
We report the �2 statistic with p-values below in parentheses. The sample period is from July 1963 to
December 2001. In the table, robust t-statistics are reported in square brackets.

11 Note that the factor r�m is not traded, and thus the alpha of a time-series regression using the factors in
Equation (13) does not represent the return of an investable strategy. Therefore, the alpha cannot be
tested against the value of zero to examine possible mispricing. Similarly, we cannot compute a premium
for a traded downside risk factor from Equation (13).
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the standard market factor. This is true even when we allow for SMB and

HML to be present in the model. This is a strong result because the SMB

and HML factors are constructed specifically to explain the size and

value premia of the 25 Fama-French portfolios. For both the CAPM

and the Fama-French model, the �J test strongly rejects both specifica-

tions in favor of allowing for downside market risk. For the Fama-

French model, the p-value of the rejection is almost zero.

Thus, not only do individual stocks sorted directly on �� loadings
reveal a large reward for stocks with high downside risk exposure, but

other portfolios commonly used in asset pricing also exhibit exposure to

downside risk. In particular, linear factor model tests using the Fama and

French (1993) size and book-to-market portfolios reject the hypothesis

that these portfolios do not have exposure to downside market risk.

3. Predicting Future Downside Risk

The previous section demonstrates a strong positive relationship between

stocks that exhibit high downside risk and returns for holding such stocks

over the same period. While this is the essence of the relationship implied

by a risk-to-reward explanation, knowing this relationship may not be of

practical value if we cannot predict downside risk prior to the holding
period. Therefore, we now examine if we can predict downside risk in a

future period using past information. If today’s information can predict

future downside risk, then we can form an investable trading strategy that

has exposure to downside risk. In particular, one potential valuable

predictor of future downside risk exposure may be the covariation of a

stock with market down movements in the past if downside risk is a

persistent risk characteristic of stocks.

In Section 3.1, we explore the determinants of downside risk using past
information. Section 3.2 examines returns of portfolios of stocks sorted

by past downside risk, as well as sorts by past coskewness. We find that

forecasting future downside risk is difficult for stocks with high volatility

and we explore why in Section 3.3. Nevertheless, we can forecast future

downside risk, and predict high future returns for stocks with high past

downside risk for a large portion of the market. We conduct additional

robustness checks in Section 3.4.

3.1 Determinants of Future Downside Risk Exposure

In this section, we begin by exploring the cross-sectional determinants of

downside risk. Since we have very little theoretical guidance as to what

firm characteristics determine riskiness of a stock, our investigation is

merely exploratory in nature. Our analysis complements Harvey and

Siddique (1999), who characterize coskewness loadings, and Ang and

Chen (2002), who examine how some stock characteristics are related
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with upside and downside correlations. Neither one of these studies

examine how downside beta is related to firm characteristics at the

individual stock level. In Table 7, we explore how relative downside

betas are correlated with other cross-sectional variables. We run Fama-

MacBeth (1973) regressions of realized relative downside beta on various

firm characteristics that are known ex ante and on other future risk

characteristics measured ex post. In particular, finding some firm char-

acteristics that are cross-sectionally correlated with future downside beta
can help us develop some possible investable strategy that generates a

future spread in downside beta, and hence, future returns.

In Table 7, we first consider regressions of future realized relative down-

side beta over the next 12 months on variables that are estimated over the

past 12 months in the columns labeled ‘‘Past variables.’’ All the indepen-

dent variables in these regressions are measured in a period prior to the

realization of relative downside beta. The regressions are run at a monthly

frequency, so we use 12 Newey-West (1987a) lags. Regressions I–X use one
independent variable at a time, in addition to industry dummy variables,

while regression XI uses all the past variables simultaneously.12

Regression I shows that past relative beta does predict future relative

beta over the next 12 months. However, while highly statistically signifi-

cant, the coefficient is only 0.077 and far from one. Hence, future relative

downside beta is difficult to predict simply by using past relative down-

side risk. In fact, the average 12-month autocorrelation of relative down-

side risk across all NYSE stocks is only 0.082, which is significantly lower
than the average autocorrelation of downside beta at 0.435 and regular

beta at 0.675. Thus, although past downside risk can also be used to

predict future downside risk, we should expect that using only past down-

side risk to predict future downside risk may be difficult.

In regressions II–X, we examine how past firm characteristics are

related to future relative downside beta. Past standard volatility increases

relative downside beta, while smaller stocks tend to exhibit greater rela-

tive downside risk. While regression IV suggests that value stocks exhibit
greater relative downside risk, controlling for additional characteristics in

regression XI indicates that it is growth stocks that tend to have more

relative downside risk. This is consistent with the results in Table 6 that

downside risk is present in the Fama-French size and book-to-market

portfolios. Stocks that are past winners also exhibit greater relative down-

side risk, consistent with the interpretation in Rouwenhorst (1998).

12 Industry classifications are based on groupings of two-digit Standard Industrial Classification (SIC)
codes following Ferson and Harvey (1991). They are Miscellaneous, Petroleum, Finance, Durables, Basic
Industry, Food & Tobacco, Construction, Capital Goods, Transportation, Utilities, Textile & Trade,
Service, and Leisure. In unreported results, we find very little pattern of downside risk exposure across
industries, except that utilities generally exhibit lower exposure to downside risk than other industries.
This is consistent with the notion that utilities are traditionally defensive stocks that tend to hold their
value relative to other industries during market downturns.
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Table 7
Determinants of Relative Downside Beta

Past variables Realized risk measures

Regression
Past

rel. beta
Past

std dev
Log
size Bk-mkt

Past
ret ROE

Asset
growth

Sales
growth Leverage

Ind
[Div]

Std
dev Coskew Cokurt

Liquidity
beta

Indstry
dummy?

I 0.007 Yes
[10.7]

II 0.251 Yes
[6.10]

III �0:038 Yes
[10.8]

IV 0.007 Yes
[2.04]

V 0.052 Yes
[4.85]

VI �0:020 Yes
[3.04]

VII �0.003 Yes
[0.43]

VIII �0.006 Yes
[1.04]

IX 0.000 Yes
[0.13]

X �0:066 Yes
[6.82]
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Table 7
(continued)

Past variables Realized risk measures

Regression
Past

rel. beta
Past

std dev
Log
size Bk-mkt

Past
ret ROE

Asset
growth

Sales
growth Leverage

Ind
[Div]

Std
dev Coskew Cokurt

Liquidity
beta

Indstry
dummy?

XI 0.040 0.094 �0:035 �0:010 0.063 �0:011 0.032 �0:001 0.001 �0:005 Yes
[10.7] [2.58] [12.8] [3.56] [8.12] [1.10] [2.62] [0.09] [1.47] [1.08]

XII 0.022 �0:150 �0:042 �0:006 0.003 0.007 0.016 �0:009 0.000 0.004 0.273 �2:441 0.092 Yes
[9.19] [6.39] [18.8] [3.08] [0.78] [1.21] [2.02] [1.34] [0.63] [1.16] [7.08] [23.5] [3.21]

XIII 0.017 �0:145 �0:041 �0:005 0.001 0.008 0.011 �0:001 �0:001 0.004 0.275 �2:484 0.106 0.006 Yes
[5.72] [5.88] [18.5] [2.64] [0.33] [1.33] [1.40] [1.46] [1.46] [1.10] [6.79] [22.5] [3.48] [1.54]

This table reports the results of Fama-MacBeth (1973) regressions of realized relative downside risk ð�� � �Þ over a 12-month period on various firm characteristics and risk
measures. The independent variables include both past variables in the information set observable at time t (‘‘Past variables’’) and also risk measures with contemporaneous
realization as the dependent variables (‘‘Realized risk measures’’). For all specifications except regression XIII, the sample period is from July 1963 to December 2001, with the
last 12-month period from January 2001 to December 2001, and observations are at a monthly frequency (451 months) for all stocks listed on the NYSE. For regression XIII,
the sample period is from January 1967 to December 2001 (397 months). The t-statistics in square brackets are computed using Newey-West (1987a) heteroskedastic-robust
standard errors with 12 lags. All regressions include industry dummy variables using the industry classification codes of Ferson and Harvey (1991). The past variables include
realized relative downside risk beta (‘‘Past relative ��’’) and realized volatility (‘‘Past std dev’’) over the previous 12-month period. The firm characteristics are log of market
capitalization (‘‘Log-size’’), the firm book-to-market ratio (‘‘Bk-mkt’’), and past 12-month excess returns (‘‘Past ret’’), all computed at the beginning of each period. We also
include firm growth measured over the most recently available four-quarter period—return on equity (‘‘ROE’’), the growth rate of assets (‘‘Asset growth’’), and the growth rate
of sales (‘‘Sales growth’’)—as well as book leverage (‘‘Leverage’’), and an indicator which equals one if the firm pays dividends (‘‘Ind[Div]’’). The realized risk characteristics
measured contemporaneously as the realized relative downside beta dependent variable are the standard deviation of excess returns (‘‘Std dev’’), coskewness, and cokurtosis. All
of the realized characteristics are computed over the same 12-month period as the relative downside beta using daily continuously compounded returns. We also include the
realized Pástor-Stambaugh (2003) liquidity beta, �L, for January 1967 to January 2001. All independent variables are Winsorized at the 1% level and at the 99% within each
month.
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Regressions VI–VIII relate accounting measures of performance

(return on equity, ROE; asset growth; and sales growth) with downside

risk. There is strong evidence that stocks with high past ROE tend to have

high future exposure to downside risk. In contrast, the evidence for asset

or sales growth as predictors of future downside relative beta is weak, as

either one of these variables are statistically insignificant on their own, or

statistically insignificant in the full regression XI. Regression IX shows

that there is little leverage effect in relative downside risk. In regression X,
we use a dummy variable that equals one if the firm has paid a dividend in

the past 12 months. Dividend-paying firms exhibit less relative downside

risk, though this relation disappears when we include all of these variables

simultaneously in regression XI.13

In regressions XII and XIII of Table 7, we include other contempora-

neous risk measures on the right-hand side. The motivation behind these

regressions is that we want to remove any possible confounding effects of

other risk factors that are correlated with downside risk. We include as
independent variables the stock’s standard deviation, coskewness, cokur-

tosis, and Pástor-Stambaugh (2003) liquidity betas, all of which are

measured over the same 12-month interval as the realized relative down-

side beta. We find that high volatility, negative coskewness, and high

cokurtosis are all related to greater future relative downside risk. Note

that realized high relative downside beta is contemporaneously correlated

with negative coskewness and high cokurtosis, both of which are asso-

ciated with average high returns [see Harvey and Siddique (2000) and
Dittmar (2002)]. The earlier Tables 2 and Table 3 show that the downside

beta is different from coskewness and cokurtosis risk. However, the effect

of standard deviation is just the opposite—high downside beta is con-

temporaneously associated with high average returns, but high standard

deviation is associated with lower average returns. This is consistent with

Ang et al. (2006). Therefore, regression XII suggests that, in order to find

an investable strategy that provides a spread in downside beta, control-

ling for volatility may be necessary. Finally, regression XIII shows that
the Pástor-Stambaugh liquidity effect is not related to relative downside

risk.

3.2 Past Downside Risk and Future Returns

The results of Section 2 suggest that downside betas are contempora-

neously correlated with high average returns. However, a trading strategy

to exploit this pattern of expected returns must successfully predict future

downside beta loadings from past information. We now examine if stocks

13 In an unreported table, we do find that firms with low ROE, high growth, and high leverage have high
downside beta—but, these characteristics do not add more than what is already captured by regular beta.
We also find that dividend-paying firms exhibit less downside risk, without accounting for the regular
beta.
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simply sorted on past downside risk provide enough variation in future

downside risk to provide large spreads in future returns. However, given

the results of Table 7, we expect that using only past downside beta to

predict future downside beta might be difficult, since past downside beta

is a poor predictor of future downside beta. We confirm that this is indeed

the case using a portfolio trading rule. Fortunately, the Fama-MacBeth

regressions in Table 7 also suggest a way of refining the simple trading

strategies, which we implement in Section 3.3.
To construct these investable portfolios, we sort stocks into portfolios

at time t based on preformation characteristics and then examine

monthly holding period returns from t to tþ 1. Our main preformation

criterion is downside beta computed using daily returns over the past 12

months. At the beginning of each month t, we sort stocks into five

quintiles based on their past �� and coskewness. In the column labeled

‘‘Return’’ in Table 8, we report the average realized excess return over the

next month from t to tþ 1. The sample period is from July 1962 to
January 2001, with our first 12-month risk measurement period ending

in June 1963 for the portfolio formation in July 1963.

Panel A of Table 8 reports the differences in the excess returns between

the highest and the lowest past �� quintile portfolios in the row labeled

‘‘High-low.’’ We also report the cross-sectional realized �, ��, and �þ of

each quintile portfolio. These realized factor loadings are computed over

the following 12 months. The last column of Table 8 shows the cross-

sectional realized coskewness of each quintile portfolios, also computed
over the next 12 months.14

Panel A reports a monotonically increasing pattern in the realized

downside betas of stocks sorted on past downside betas. That is, stocks

with low (high) �� in the past continue to have low (high) �� going

forward. The difference in the realized �� between portfolios 5 and 1

sorted on past �� is 0.80. Hence, past �� seems to predict future ��, but

this range is far less than the range of �� loadings for portfolios sorted on

realized downside beta. In contrast, Table 1 shows that the range of
realized �� loadings is much wider at 1.72. Although past downside

beta is persistent, it is far from a perfect predictor of future downside

risk exposure. This is also illustrated by the 12-month autocorrelation of

�� among stocks listed on the NYSE, which is only 0.43. The difference

in realized �, at 0.77, is similar to the difference in realized ��. Panel A

also shows that the past variation of �� produces little variation in

realized coskewness. Hence, the past �� sorts are not reflecting coskew-

ness risk.

14 We find that past �þ has no predictive ability for future returns, even excluding the most volatile stocks
as in Section 3.3. This is consistent with the results in Section 2, which fails to find a consistent
contemporaneous pattern in expected returns for realized �þ risk. These results are available on request.
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While the ex post �� loadings maintain their monotonic pattern, panel
A disappointingly shows a very weak relationship between past �� and

future returns. We do observe a strictly increasing pattern moving from

the first-quintile �� portfolio to the fourth-quintile �� portfolio from

0.59% to 0.84% per month. This difference is statistically significant with

a t-statistic of 2.06. However, the highest �� quintile portfolio has a low

average excess return of 0.70% per month. Thus, the predictive relation is

not as strong among stocks with the highest past ��.

In contrast, panel B of Table 8 shows the relation between past coskew-
ness, future returns, and future risk attributes. The portfolios of stocks

sorted by past coskewness do not exhibit large ex post variation in

coskewness. The average preranking spread in coskewness between

Table 8
Returns of Stocks Sorted by Past Asymmetry Measures

Realized statistics

Portfolio
Average next
month return � �� �þ Coskew

Panel A: Stocks sorted by past b�

1 Low �� 0.59% 0.54 0.61 0.48 �0:13
2 0.71% 0.70 0.77 0.65 �0:15
3 0.77% 0.85 0.93 0.80 �0:17
4 0.84% 1.02 1.11 0.96 �0:18

5 High �� 0.70% 1.31 1.41 1.25 �0:18

High-low 0.11% 0.77 0.80 0.77 �0:05
t-stat [0.60]

Panel B: Stocks sorted by past coskewness

1 Low coskew 0.84% 0.91 1.01 0.85 �0:19
2 0.82% 0.90 0.99 0.84 �0:17
3 0.76% 0.89 0.97 0.83 �0:16
4 0.60% 0.87 0.95 0.82 �0:15
5 High coskew 0.57% 0.85 0.91 0.81 �0:13

High-low �0:28% �0:06 �0:10 �0:04 0.05
t-stat [2.76]

This table reports the equal-weighted average returns and risk characteristics of stocks sorted by past ��

(panel A) and past coskewness (panel B). For each month, we compute �� and coskewness with respect
to the market of all stocks listed on the NYSE using daily continuously compounded returns over the
previous 12 months. For each risk characteristic, we rank stocks into quintiles (1–5) and form equal-
weighted portfolios at the beginning of each month. The sample period is from July 1962 to January
2001. The number of stocks in each portfolio varies across time from 221 to 346 stocks. The column
labeled ‘‘Average next month return’’ reports the average return in excess of the one-month Treasury bill
rate over the next month. The row labeled ‘‘High-low’’ reports the difference between the returns of
portfolio 5 and portfolio 1. The entry labeled ‘‘t-stat’’ is the simple OLS t-statistic in square brackets. The
columns labeled ‘‘�’’, ‘‘��,’’ and ‘‘�þ’’ report the time-series averages of equal-weighted cross-sectional
averages of individual stock betas over the next 12-month period. The column labeled ‘‘Coskew’’ reports
the time-series averages of equal-weighted cross-sectional averages of individual stock coskewness over
the next 12-month period of the High-low difference.
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portfolios 5 and 1 is 0.50, while the average postranking spread in realized

coskewness is only 0.05. Nevertheless, we observe a strong, strictly

decreasing pattern in the returns of stocks sorted by past coskewness.

The portfolio of the most negative coskewness stocks (quintile 1) has an

average excess return of 0.84% per month, whereas the portfolio of the

least negative coskewness stocks (quintile 5) has an average excess return

of 0.57% per month. This pattern is consistent with Harvey and Siddique

(2000). The strong predictive pattern of past coskewness and future
returns does not have a relationship with downside beta. The future ��

loadings from past coskewness are almost flat. Hence, the predictive

pattern for cross-sectional returns from past coskewness is not picking

up downside risk.

3.3 Investable Portfolios with a Spread in Downside Risk

The Fama-MacBeth regressions in Table 7 suggest that a simple trading

strategy of forming portfolios on past �� to predict future exposure to
downside risk can be refined by considering subsets of portfolios focusing

on volatility, book-to-market, and momentum interactions with down-

side risk. In this section, we consider one possible refinement of predict-

ing future �� using past ��, which the Fama-MacBeth regressions of the

determinants of �� in Table 7 suggest is an important confounding

influence. Specifically, we examine the role of stock return volatility and

�� and show that only for stocks with the highest volatility levels does

past high �� fail to predict future high average returns.
There are two reasons why high stock volatility causes past �� to be a

poor predictor of future ��. First, in order for the strong contempora-

neous pattern between �� loadings and average returns to be exploited in

an investable portfolio strategy, we must accurately forecast future ��

exposure. When return volatility is very high, the past �� estimates

contain substantial measurement error. Thus, high volatility causes the

persistence of �� to be lower, and thus future �� loadings to be less

predictable, because of sampling error.
Second, Ang et al. (2006) identify a puzzling anomaly that stocks with

very high total or idiosyncratic volatility have extremely low returns. We

suspect that this effect confounds the relationship between high �� and

high return. High-volatility stocks also tend to be high-beta stocks

because, holding correlation between the market and the stock return

constant, a high individual stock volatility implies a high �. To clearly see

the confounding interaction between downside beta and volatility, we

rewrite Equation (5) as:

�� ¼ �� � �
�
i

��m
; ð15Þ
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where �� ¼ corrðri; rmjrm < �mÞ is downside correlation, and

��i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrijrm < �mÞ

p
and ��m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrmjrm < �mÞ

p
represent stock

and market volatilities conditional on down markets, respectively. High

downside beta can be produced by high downside correlation, ��, or by

high downside volatility, ��i . But, holding constant ��, stocks with high

volatility, or ��i , tend to have low returns, which is exactly opposite to

the high ��, high average return effect that we wish to observe.15 There-

fore the Ang et al. (2006) volatility effect works in the opposite way as the
expected return pattern for ��, making it hard to predict downside risk

for stocks with very high volatility.

Table 9 shows that past �� poorly predicts future �� only for high

volatility stocks. In panel A, we report selected summary statistics of

portfolios sorted by volatility, measured using daily continuously com-

pounded returns over the previous 12 months. For the overall sample and

for each of the highest volatility groups, we report the average market

capitalization, past ��, and average returns adjusted for size and book-
to-market using a characteristic control similar to Daniel, Grinblatt,

Titman, and Wermers (1997). While the average stock has an annualized

volatility of 36%, stocks in the highest volatility quintile have a consider-

ably higher average volatility of 61% per annum. Stocks in the highest

demi-decile (5%-tile) have an average volatility of over 85% per annum.

The second row of panel A reports that the quintile of stocks with the

highest volatility constitutes, on average, only 3.9% of the overall market

capitalization. Hence, by excluding the highest quintile of volatile stocks,
we exclude stocks that represent only a small fraction of the market. In

fact, the highest demi-decile (5%-tile) of the most volatile stocks consti-

tutes only 0.4% of the total market capitalization. Hence, not surpris-

ingly, the highest volatility stocks tend to be small. In the third row, we

report the size and book-to-market adjusted returns.16 Stocks in the

highest volatility quintile (demi-decile) underperform their benchmark

portfolios by, on average, a large 0.38% (0.67%) per month. This is the

puzzling Ang et al. (2006) effect—stocks with very high total or idiosyn-
cratic volatility have low average returns.

The last two rows of panel A explore the interaction between volatility

and ��. While an average stock has a past �� loading of almost one

(0.99), high-volatility stocks tend to have high past ��. In particular, the

average past �� is 1.44 for the stocks in the highest volatility quintile. We

15 In contrast, when ��i is held constant, increasing downside correlation can only increase ��. Hence, we
tend to see high average future returns for stocks with high past downside correlation. Ang, Chen, and
Xing (2002) report that the difference in average future returns over the next month between the tenth
and first decile portfolios sorted on past �� is approximately 5% per annum.

16 Since we use all stocks listed on the NYSE, AMEX, and NASDAQ in constructing size and book-to-
market benchmark portfolios, the average adjusted returns of all stocks listed on the NYSE does not sum
up to 0.0%.
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compare this with stocks in the highest realized �� quintile of Table 1,

which have an average �� of 1.92. Thus, on the one hand, stocks with

high volatility tend to have high ��. On the other hand, high �� stocks

are not completely stocks with high volatilities.

Moreover, the fact that high-volatility stocks have high past �� load-

ings does not imply that they continue to exhibit high �� loadings in the

following period. For stocks in the highest volatility quintile, the average
�� loading over the next 12 months is only 1.25, compared to the �� over

the past 12 months of 1.44. This accounts for the fairly low persistence of

the 12-month downside betas of 26%, compared to the average 12-month

�� autocorrelation of 43.5%. If we narrow our focus to stocks on the

Table 9
Stocks Sorted by Past b� Excluding the Most Volatile Stocks

Panel A: Selected characteristics of volatility portfolios

Stocks of the highest volatility

All stocks Quintile Octile Decile 5%-tile

Proportion of market capitalization 100.0% 3.9% 1.9% 1.3% 0.4%
Annualized volatility 35.9% 61.0% 68.4% 72.5% 85.6%
Size/book-to-market adjusted returns �0.08% �0.38% �0.50% �0.56% �0.67%
Past �� 0.99 1.44 1.47 1.48 1.44
12-month autocorrelation of �� 43.5% 25.8% 21.8% 20.5% 17.3%

Panel B: Average excess returns

�� Quintiles excluding most volatile stocks

1 Low 2 3 4 5 High High-low Q4-low

0.58% 0.69% 0.82% 0.82% 0.92% 0.34% 0.25%
[2.31] [2.28]

In panel A, each month, we calculate individual stock volatility of all stocks listed on the NYSE using
daily continuously compounded returns over the previous 12 months. We sort stocks according to
volatility into quintiles, octiles, deciles, and demi-deciles (5%-tiles). Panel A reports selected average
characteristics of stocks in each volatility group. The first column reports the characteristics over the
entire sample. The other columns report the characteristics within the highest volatility groups. The row
labeled ‘‘Annualized volatility’’ reports the average stock volatility over the past 12 months, while the row
labeled ‘‘Market cap’’ reports the time-series averages of cumulative market capitalization represented by
the stocks in each group. The other rows report the returns adjusted for size and book-to-market using a
characteristic control similar to Daniel et al. (1997), the past �� over the previous 12 months, and the
autocorrelation of �� between the past 12 months and the following 12 months. For each characteristic,
we report the time-series averages of equal-weighted cross-sectional averages. In panel B, we report the
average return in excess of the 1-month Treasury bill rate over the next one month of portfolios sorted
on past �� that exclude the highest volatility quintile of stocks. Each month, we first sort stocks into
quintiles according to volatility measured using daily continuously compounded returns over the
previous 12 months. Then, we exclude the stocks that fall into the highest volatility quintile and rank
the remaining stocks into equal-weighted quintiles (1–5) according to past �� measured using continu-
ously compounded returns over the previous 12 months. We report the average excess return over the
next month. The row labeled ‘‘High-low’’ (‘‘Q4-low’’) reports the difference between the returns of
portfolio 5 (portfolio 4) and portfolio 1. We report simple t-statistics in square brackets. The number
of stocks in each portfolio varies across time and groupings from 177 to 346 stocks. The sample period is
from July 1962 to January 2001.
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highest volatility octile, decile or demi-decile, we find that these stocks

exhibit even lower persistence of �� across the formation period and

future holding periods. We conjecture that this lower correspondence of

past �� to future �� arises, in part, from the fact that high volatility

increases the sampling error of the past �� as a predictor of future

downside risk. Large measurement error makes the preformation ��

loadings a more unreliable predictor of actual, postformation, downside

betas. If we focus on stocks with lower volatility, our past �� loadings
are more accurate ex ante predictors of future ex post downside risk

loadings.

In panel B of Table 9, we examine the average return patterns to

ranking on past �� when we exclude the most volatile stocks. Fortu-

nately, panel A shows that the segment of stocks where past �� provides

a poor predictor of future �� constitutes only a small fraction of total

market capitalization (less than 4%). We first sort stocks based on their

past total volatility over the past year. Then, we exclude stocks in the
highest volatility quintile and sort the remaining stocks into quintiles

according to past ��. We report the difference in average (unadjusted)

returns between the highest quintile and the lowest quintile �� portfolios,

as well as the difference in returns between the second highest and the

lowest quintile portfolios. Panel B shows that, by excluding stocks in the

highest volatility quintile, the average difference between the highest and

the lowest quintile �� portfolios of 0.34% per month is statistically

significant with a t-statistic of 2.31. The difference between the second
highest and the lowest quintile �� portfolios is slightly smaller at 0.25%

per month, but has approximately the same statistical significance.17

3.4 Robustness Checks

In Table 10, we check that the predictive relation between past �� and

future returns, excluding the most volatile stocks, is not due to size,

book-to-market, momentum, coskewness, or liquidity effects. The first

column of Table 10 shows the average size and book-to-market adjusted
returns of portfolios sorted by past ��. We observe a monotonically

increasing relation between past �� and next month returns. Controlling

for size and book-to-market increases the average difference in returns

between the lowest and highest �� quintile to 0.44% per month from

0.34% per month in panel B of Table 9. This difference is highly statis-

tically significant, with a t-statistic of 3.36.

17 If we exclude fewer stocks and only exclude stocks in the highest volatility octile or decile, the return
difference between highest �� portfolio and the lowest �� portfolio is about the same order of magnitude
(roughly 0.31% per month), but the statistical significance is somewhat weaker, with p-values of 0.051
and 0.063, respectively. However, the return difference between quintiles 1 and 4 is unaffected for all the
volatility exclusions at 0.25% per month and is always statistically significant at the 5% level. This is due
to the fact that the volatility effect is strongest among high-volatility stocks which tend to have the
highest past ��.
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In the next three columns, we control for additional past return char-

acteristics: momentum, coskewness, and liquidity. For each additional

control, we first perform a quintile sort based on the characteristic and

then on past �� excluding the highest � quintile of stocks. Then, we

average the �� quintiles across the characteristic quintiles and report size

and book-to-market matched returns within each �� quintile. To control
for momentum, we use past 12-month returns. Liquidity is measured

using the historical liquidity betas of Pástor and Stambaugh (2003).

Table 10 clearly shows that the spreads in size and book-to-market

adjusted returns between the �� quintiles 5 and 1 remain significant

at the 5% level after controlling for momentum, coskewness, and liquid-

ity. In each case, the point estimates of the differences average over 0.30%

per month. Therefore, our predictive pattern of returns for past �� are

not due to size, book-to-market, past return, coskewness, or liquidity
effects.

Finally, as an alternative control for volatility, we consider orthogona-

lizing the �� portfolios with respect to volatility in Table 11. We first

rank stocks according to past 12-month volatility into quintiles. Then, we

Table 10
Characteristic Controls on Stocks Sorted by Past b�

Including additional controls for

Size/bk-mkt adjusted Momentum Coskewness Liquidity

1 Low �� �0:25% �0:21% �0:21% �0:17%
2 �0:09% �0:07% �0:07% �0:02%
3 0.05% 0.04% 0.07% 0.05%
4 0.07% 0.10% 0.04% 0.10%
5 High �� 0.20% 0.12% 0.15% 0.13%

High-low 0.44% 0.32% 0.36% 0.30%
t-stat [3.36] [2.71] [2.69] [2.15]

The table reports robustness checks of the results in Table 9. For each month, we compute individual stock
volatility and �� with respect to the market of all NYSE stocks using daily continuously compounded
returns over the previous 12 months. We first sort stocks according to volatility into quintiles and exclude
stocks that fall within the highest volatility quintile. We rank the remaining stocks into quintiles (1–5)
according to past �� and form equal-weighted portfolios at the beginning of each month. The table reports
characteristic-adjusted holding period returns over the next month of the �� quintiles that exclude stocks
in the highest � quintile. In column labeled ‘‘Size/bk-mkt adjusted,’’ we report the average returns in excess
of size and book-to-market matched benchmark portfolios similar to Daniel et al. (1997). In the next three
columns, we include additional controls for momentum (as measured by past 12-month returns), past
coskewness, and past liquidity betas, computed following Pástor and Stambaugh (2003). For each addi-
tional control, we first perform a quintile sort based on the characteristic and then on past �� excluding the
highest � quintile of stocks. Then, we average the �� quintiles across the characteristic quintiles and report
size and book-to-market matched returns within each �� quintile. The number of stocks in each portfolio
varies across time from 177 to 277 stocks. The row labeled ‘‘High-low’’ reports the difference between the
returns of quintile portfolios 1 and 5. The entry labeled ‘‘t-stat’’ in square brackets is the simple t-statistic
for the High-low difference. The sample period is from July 1962 to January 2001, except in the last
column, where the sample period is from January 1967 to January 2001.
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perform a second ranking within each volatility quintile into quintiles
according to �� over the past 12 months. We then form equal-weighted

portfolios within each doubly sorted group, hold the portfolio over the

next one month, and report average size and book-to-market adjusted

returns.

Table 11 shows a strong positive relation between past downside beta

and the next one-month size and book-to-market adjusted return within

each volatility quintile. In fact, the differences between the highest and the

lowest downside beta quintile returns are significant in all quintiles,
except in the highest volatility quintile. When we average the returns of

�� portfolios across volatility quintiles (in the last column), we find that

there is a statistically significant difference in returns of 0.31% per month

across the highest quintile downside beta stocks and the lowest quintile

downside beta stocks. Hence, controlling for volatility, there is a strong

predictive relation between past �� and future returns.

In summary, although there is a strong contemporaneous relation

between downside risk and average returns, this relation does not hold
predictively for stocks with very high volatility. For the vast majority of

stocks, we can use past downside beta to predict future returns. For

stocks with high volatility, factor loadings contain large measurement

error, making past downside beta a less reliable predictor of future down-

side risk, and Ang et al. (2006) report that stocks with high volatility have

Table 11
Returns of Stocks Sorted by Past Volatility and Past Realized Downside Beta

Past volatility quintiles

Portfolio 1 Low 2 3 4 5 High Average

1 Low �� �0:26% �0:07% �0:21% �0:27% �0:43% �0:25%
2 �0:23% 0.01% �0:01% 0.08% �0:37% �0:13%
3 �0:15% 0.07% 0.03% 0.00% �0:31% �0:07%
4 0.01% 0.11% 0.23% 0.17% �0:47% 0.01%
5 High �� 0.08% 0.17% 0.22% 0.14% �0:31% 0.06%

High-low 0.35% 0.25% 0.43% 0.41% 0.12% 0.31%
t-stat [3.25] [2.35] [3.59] [2.84] [0.55] [3.14]

The table examines the relation between past realized volatility and past realized ��. For each month, we
compute past volatility and past �� with respect to the market of all stocks listed on NYSE using daily
continuously compounded returns over the past 12 months. We first rank stocks into quintiles (1–5) at
the beginning of each month based on volatility calculated over the previous 12 months. Then, we rank
stocks within each first-sort quintile into additional quintiles according to realized ��, computed over
the previous 12 months. For each 5� 5 grouping, we form an equal-weighted portfolio. In each cell, we
report the average returns in excess of size and book-to-market matched benchmark portfolios similar to
Daniel et al. (1997). In the column labeled ‘‘Average’’, we report the average size and book-to-market
adjusted return of stocks in each second sort quintile, which controls for realized volatility. The row
labeled ‘‘High-low’’ reports the difference between the returns of quintile portfolios 5 and portfolio 1.
The entry labeled ‘‘t-stat’’ in square brackets is the simple t-statistic. The sample period is from July 1963
to December 2001.
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low returns. Fortunately, these very volatile stocks constitute a small

fraction of the total market capitalizations of only 4%. If we focus on

stocks not in the highest volatility quintile, we find a strong pattern

between past �� and future holding period returns. However, by not

examining the predictive ability of downside risk among stocks with very

high volatility, we completely abstract from the puzzling Ang et al. (2006)

volatility effect, which we cannot resolve in this article.

4. Conclusion

The cross section of stock returns reflects a premium for downside risk.

Stocks that covary strongly with the market, conditional on market

declines, have high average returns. This risk–return relation is consistent
with an economy where agents place greater weight on downside risk than

they place on upside gains. Agents with aversion to downside risk require

a premium to hold assets that have high sensitivities to market down-

turns. Hence, stocks with high downside risk exposure, or high downside

betas, have high average returns.

We find that the contemporaneous high average returns earned by

stocks with high downside betas are not explained by a list of cross-

sectional effects, including size and book-to-market effects, coskewness
risk, liquidity risk, and momentum effect. The effect is also different from

regular market beta. Controlling for these and other cross-sectional

effects, we estimate that the cross-sectional premium for bearing down-

side beta risk is approximately 6% per annum. The downside premium is

robust across a battery of robustness tests. In particular, we find that the

premium captured by downside beta is quite different from the coskew-

ness effect of Harvey and Siddique (2000). Downside beta measures risk

conditional only on market declines, whereas coskewness captures the
unconditional covariation of a stock with extreme downside movements

of the market. In contrast, we find that the premium for upside risk is

weak in the data and often changes signs depending on the set of cross-

sectional risk controls.

Past downside beta is a good predictor of future covariation with

down market movements, except for stocks that are extremely volatile.

For the vast majority of stocks, past downside beta cross-sectionally

predicts future returns. However, for stocks with very high volatility,
consisting of less than 4% of market capitalization, past downside beta

provides a poor predictor of future downside risk. While high-volatility

stocks constitute only a small fraction of the total market, so a pre-

dictive downside beta relationship holds for the vast majority of stocks,

it remains to be explored why the cross-sectional predictive relation

for downside risk does not hold for stocks with very high levels of

volatility.
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Appendix

A Solution of the Disappointment Aversion Asset Allocation Problem
Ang, Bekaert, and Liu (2005) develop an algorithm for solving the portfolio allocation

problem for DA utility that transforms the DA asset allocation problem in Equation (3)

into a series of standard CRRA problems under a transformed measure that involves the

degree of disappointment aversion A. The simplicity of their algorithm relies crucially on the

assumption of a discretized state space that is ordered by wealth. However, their setup is only

for a single risky asset. We extend their algorithm to a multiple-asset case, by considering all

possible combinations of the six states. This appendix outlines this numerical solution.

Epstein and Zin (1990, 2001) show that the First-Order Conditions (FOC) for Equation

(3) are given by:

E
@UðWÞ
@W

x1fW��W g

� �
þ A � E @UðW Þ

@W
x1fW>�W g

� �
¼ 0

and E
@UðWÞ
@W

y1fW��W g

� �
þ A � E @UðWÞ

@W
y1fW>�W g

� �
¼ 0;

ðA-1Þ

where 1f�g is an indicator function.

Over a discrete-state space over states ðxs; ysÞ indexed by s, the definition of the certainty

equivalent �W in Equation (1) can be written as:

�1��
W ¼ 1

K

X
s:Ws��W

psW
1��
s þ
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1��
s

 !
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where wealth in state s is given by:

Ws ¼ Rf þ wxxs þ wyys;

and the FOC (A-1) take the form:
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ðA-3Þ

Ang, Bekaert, and Liu (2005) note that Equation (A-3) is a standard CRRA maximization

problem with a changed probability measure, where the probabilities for wealth above the

certainty equivalent are down-weighted. That is, defining the probabilities as:

	i �
ðp1;…; pi ;Apiþ1;…;ApN Þ´

ðp1 þ…þ piÞ þ Aðpiþ1 þ…þ pN Þ
; ðA-4Þ

allows Equation (A-3) to be re-written as:X
s

	sW
��
s xs ¼ 0 and

X
s

	sW
��
s ys ¼ 0: ðA-5Þ

The algorithm starts with a state i, solves the standard CRRA problem with probability

distribution f	ig for the optimal portfolio weights w*
xi and w*

yi, and then computes the

certainty equivalent �*
Wi, given by:

�*
Wi ¼

XN

s¼1

ðW *
s Þ

1��	is

 ! 1
1��

:
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We must find the state i where:

�*
Wi 2 ½Rf þ w*

xixi þ w*
yiyi; Rf þ w*

xixiþ1 þ w*
yiyiþ1Þ: ðA-6Þ

If this condition holds, then the optimal portfolio weights for x and y, w*
x and w*

y, have been

found, so w*
x ¼ w*

xi and w*
y ¼ w*

yi and the optimal utility is given by �*
W ¼ �*

Wi.

The Condition (A-6) relies on ordering the states in increasing wealth. To modify this

algorithm, we take all possible M orderings of the states. Then, we find state i of ordering j

where Condition (A-6) is satisfied. This provides the solution to the DA asset allocation

problem over the two assets x and y.

For our calibrations, we set � ¼ 6, A ¼ 0:8 and set the gross-risk free rate to be

Rf ¼ 1:05. For a baseline case, we take ux ¼ 0:25þ �, mx ¼ 0:16þ �, dx ¼ �0:25þ �,

uy ¼ 0:40, and dy ¼ �0:15. The six states have probabilities given by p1 ¼ 0:15, p2 ¼ 0:20,

p3 ¼ 0:15, p4 ¼ 0:25, and p5 ¼ 0:20. In equilibrium, the value of � ¼ 0:0021. This gives us

equilibrium weights of w*
x ¼ 0:5543 and w*

y ¼ 0:4457, which sum to 1 and which represents

the market. In this specification, the mean excess returns, standard deviations, and betas of

the two assets and the market are given by:

To obtain the relations between the �, downside beta �� and coskewness and alphas, we

alter xd from �0:16 to �0:30. Figure 1 shows the risk-return relations for asset x.

With an alternative set of parameters, CAPM alphas increase with increasing �� but also

increasing coskewness. For this case, � ¼ 6, A ¼ 0:7, Rf ¼ 1:05, xu ¼ 0:50þ �,

xm ¼ 0:20þ �, xd ¼ �0:30þ �, yu ¼ 0:35, and yd ¼ �0:7. The probabilities are given by

p1 ¼ 0:10, p2 ¼ 0:20, p3 ¼ 0:20, p4 ¼ 0:20, and p5 ¼ 0:20. If p1 is altered between 0.08 and

0.10 and � solved for each case to obtain equilibrium, then we have:

However, this case is unrealistic because the values of the ��s are extremely high.

B Data and Portfolio Construction
We use data from the Center for Research in Security Prices (CRSP) to construct portfolios

of stocks sorted by various characteristics of returns. We confine our attention to ordinary

common stocks listed on NYSE, AMEX, and NASDAQ, omitting ADRs, REITs, closed-

end funds, foreign firms, and other securities which do not have a CRSP share type code of

10 or 11. We use daily and monthly returns from CRSP for the period covering July 3, 1962

to December 31, 2001, including NASDAQ data, which is only available after 1972. We use

the one-month Treasury bill rate from Ibbotson Associates as the risk-free rate and take

CRSP’s value-weighted returns of all stocks as the market portfolio. All our returns are

expressed as continuously compounded returns. We also use book value information found

on COMPUSTAT.

mean stdev b

x 0.1168 0.1863 0.6944
y 0.1250 0.2750 1.3800
mkt 0.1200 0.1375 1.0000

CAPMa b b� co-skew

0.0273 0.9567 2.9883 �0.1417
0.0317 0.8473 3.1752 �0.1087
0.0348 0.7326 3.3873 �0.0598
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For every 12-month period, we construct portfolios based on measures of risk between

asset i’s excess return, rit, and the market’s excess return, rmt. We exclude stocks with more

than five missing observations from our analysis. We first demean returns within each

period and denote ~rit as the demeaned excess return of asset i and ~rmt as the demeaned

market excess return. We obtain estimates of the regular market �, denoted �̂, and the

individual stock volatility �, denoted �̂, in the usual manner as:

�̂ ¼
P

~rit~rmtP
~r2

mt

; and � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

X
~r2

it

r
; ðB-7Þ

where T is the number of trading days in a period. We estimate downside beta and upside

beta by conditioning the observations for which the market realization is below or above the

sample mean, �̂m ¼ 1
T

P
rmt. We calculate demeaned excess return of asset i and demeaned

market excess returns conditional on market excess return being below the sample means,

denoted ~r�it and ~r�mt, respectively. We also calculate demeaned excess return of asset i and

demeaned market excess returns conditional on market excess return being above the

sample means, denoted ~rþit and ~rþmt, respectively. We then calculate �̂� and �̂þ as:

�̂� ¼
P
frmt<�̂mg ~r�it ~r

�
mtP

frmt<�̂mg ~r�2
mt

; and �̂þ ¼
P
frmt>�̂mg ~rþit ~r

þ
mtP

frmt>�̂mg ~rþ2
mt

: ðB-8Þ

We calculate higher-order moments of stock returns using continuously compounded

daily returns over each 12-month period. Coskewness and cokurtosis are estimated as:

dcoskew ¼
1
T

P
~ri~r

2
mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

P
~r2

it

q
1
T

P
~r2

mt

� � and dcokurt ¼
1
T

P
~ri~r

3
mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T

P
~r2

it

q
1
T

P
~r2

mt

� �3=2
: ðB-9Þ

We also collect market capitalizations, book-to-market ratio, and past 12-month returns at

the beginning of each 12-month period for each stock.

To calculate the liquidity betas for individual stocks, at the end of each month, we identify

stocks listed on NYSE, AMEX, and NASDAQ with at least five years of monthly returns.

For each stock, we estimate a liquidity beta, �L
i , by running the following regression using

the most recent five years of monthly data:

ri;t ¼ �0
i þ �L

i Lt þ �M
i rm;t þ �S

i SMBt þ �H
i HMLt þ 
i;t; ðB-10Þ

where Lt is the innovation in aggregate liquidity, and SMBt and HMLt are size and book-

to-market factors of Fama and French (1993). The details of the construction of Lt is in

Pástor and Stambaugh (2003).

Once portfolios are formed, we calculate the returns to holding these portfolios. Over

each 12-month period, we collect the cumulative returns of each stock in excess of the one-

month Treasury bill rate over the period. We also collect the excess stock return over the next

month, as well as stock returns in excess of size and book-to-market matched benchmark

portfolios. These size and book-to-market adjusted returns are calculated in a manner

similar to Daniel et al. (1997). Each month, stocks listed on NYSE, AMEX, and NASDAQ

are sorted into quintiles according to their beginning-of-period market capitalizations based

on NYSE breakpoints. Then within each of these quintiles, stocks are further sorted into

quintiles according to their book-to-market ratios based on NYSE breakpoints. For each

5� 5 grouping, we calculate the return on an equal-weighted portfolio consisting of all

stocks that fall into that grouping. For each stock, size and book-to-market adjusted returns

are defined as the return in excess of the portfolio return of the 5� 5 grouping to which the

stock belongs. All of these returns are calculated with an adjustment for delisting by taking
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the delisting return at the time the stock is delisted. If a return is missing, we take the next

available return.
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