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Chapter 9
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Management of Net Interest Income 
(Table 9.1, page 176)

 Suppose that the market’s best guess is that future short 
term rates will equal today’s rates

 What would happen if a bank posted the following rates?

 How can the bank manage its risks?

Maturity (yrs) Deposit Rate Mortgage 
Rate

1 3% 6%

5 3% 6%
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Management of Net Interest 
Income

 Most banks have asset-liability 
management groups to manage interest 
rate risk

 When long term loans are funded with 
short term deposits interest rate swaps 
can be used to hedge the interest rate risk

 But this does not hedge the liquidity risk
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LIBOR Rates and Swap Rates

 LIBOR rates are rates with maturities up to 
one year for interbank transactions where 
the borrower has a AA-rating

 Swap Rates are the fixed rates exchanged 
for floating in an interest rate swap 
agreement
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Understanding Swap Rates

 A bank can
 Lend to a series AA-rated borrowers for ten 

successive six month periods
 Swap the LIBOR interest received for the 

five-year swap rate
 This shows that the swap rate has the 

credit risk corresponding to a series of 
short-term loans to AA-rated borrowers
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Extending the LIBOR Curve

 Alternative 1: Create a term structure of interest rates 
showing the rate of interest at which a AA-rated 
company can borrow now for 1, 2, 3 … years

 Alternative 2: Use swap rates so that the term 
structure represents future short term AA borrowing 
rates

 Alternative 2 is the usual approach. It creates the 
LIBOR/swap term structure of interest rates
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Risk-Free Rate 

 Traders has traditionally assumed that the 
LIBOR/swap zero curve is the risk-free 
zero curve

 The Treasury curve is about 50 basis 
points below the LIBOR/swap zero curve

 Treasury rates are considered to be 
artificially low for a variety of regulatory 
and tax reasons
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OIS Rate

 LIBOR/swap rates were clearly not “risk-free” 
during the crisis

 As a result there has been a trend toward using 
overnight indexed swap (OIS) rates as proxies for 
the risk-free rate instead of LIBOR and swap rates

 The OIS rate is the rate swapped for the 
geometric average of overnight borrowing rates. 
(In the U.S. the relevant overnight rate is the fed 
funds rate) 
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3-month LIBOR-OIS Spread
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Repo Rate

 A financial institution owning securities 
agrees to sell them today for a certain 
price and buy them back in the future for a 
slightly higher price

 It is obtaining a secured loan
 The interest on the loan is the difference 

between the two prices
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Duration (page 182)

 Duration of a bond that provides cash flow ci at time ti is

where B is its price and y is its yield (continuously 
compounded)

 This leads to 
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Calculation of Duration for a 3-year bond 
paying a coupon 10%. Bond yield=12%. 
(Table 9.3, page 183)
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Time (yrs) Cash Flow 
($)

PV ($) Weight Time ×
Weight

0.5 5 4.709 0.050 0.025

1.0 5 4.435 0.047 0.047

1.5 5 4.176 0.044 0.066

2.0 5 3.933 0.042 0.083

2.5 5 3.704 0.039 0.098

3.0 105 73.256 0.778 2.333

Total 130 94.213 1.000 2.653



Duration Continued

 When the yield y is expressed with 
compounding m times per year

 The expression 

    

   is referred to as the “modified duration”
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Convexity (Page 185-187)

    The convexity of a bond is defined as
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Portfolios

 Duration and convexity can be defined 
similarly for portfolios of bonds and other 
interest-rate dependent securities

 The duration of a portfolio is the weighted 
average of the durations of the 
components of the portfolio. Similarly for 
convexity.
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What Duration and Convexity 
Measure

 Duration measures the effect of a small 
parallel shift in the yield curve

 Duration plus convexity measure the effect 
of a larger parallel shift in the yield curve

 However, they do not measure the effect 
of non-parallel shifts
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Other Measures

 Dollar Duration: Product of the portfolio 
value and its duration 

 Dollar Convexity: Product of convexity and 
value of the portfolio 
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Starting Zero Curve (Figure 9.4, page 190)
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Parallel Shift
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Partial Duration

 A partial duration calculates the effect on a 
portfolio of a change to just one point on 
the zero curve
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Partial Duration continued
(Figure 9.5, page 190)
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Example (Table 9.5, page 190)
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Maturity 
yrs

1 2 3 4 5 7 10 Total

Partial 
duration

0.2 0.6 0.9 1.6 2.0 −2.1 −3.0 0.2



Partial Durations Can Be Used to 
Investigate the Impact of Any Yield 
Curve Change

 Any yield curve change can be defined in 
terms of changes to individual points on the 
yield curve

 For example, to define a rotation we could 
change the 1-, 2-, 3-, 4-, 5-, 7, and 10-year 
maturities by −3e, − 2e, − e, 0, e, 3e, 6e
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Combining Partial Durations  to Create 
Rotation in the Yield Curve 
(Figure 9.6, page 191)
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Impact of Rotation

 The impact of the rotation on the 
proportional change in the value of the 
portfolio in the example is
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Alternative approach (Figure 9.7, page 192)
Bucket the yield curve and investigate the effect of a 
small change to each bucket
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Principal Components Analysis

 Attempts to identify standard shifts (or 
factors) for the yield curve so that most of 
the movements that are observed in 
practice are combinations of the standard 
shifts   
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Results (Tables 9.7 and 9.8)

 The first factor is a  roughly parallel shift 
(90.9% of variance explained)

 The second factor is a twist 6.8% of 
variance explained)

 The third factor is a bowing (1.3% of 
variance explained)
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The Three Factors (Figure 9.8 page 195)
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Alternatives for Calculating Multiple Deltas to 
Reflect Non-Parallel Shifts in Yield Curve

 Shift individual points on the yield curve by 
one basis point (the partial duration 
approach)

 Shift segments of the yield curve by one 
basis point (the bucketing approach)

 Shift quotes on instruments used to calculate 
the yield curve

 Calculate deltas with respect to the shifts 
given by a principal components analysis. 
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Gamma for Interest Rates

 Gamma has the form 

where xi and xj are yield curve shifts considered for 
delta

 To avoid information overload one possibility is 
consider only i = j

 Another is to consider only parallel shifts in the yield 
curve and calculate convexity

 Another is to consider the first two or three types of 
shift given by a principal components analysis

ji xx

P


 2

Risk Management and Financial Institutions, 4e, Chapter 9,  Copyright © John C. Hull 2015 31



Vega for Interest Rates

 One possibility is to make the same 
change to all interest rate implied 
volatilities. (However implied volatilities for 
long-dated options change by less than 
those for short-dated options.) 

 Another is to do a principal components 
analysis on implied volatility changes for 
the instruments that are traded
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