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Definitions

• An estimator of a population parameter is 
– a random variable that depends on sample 

information . . . 
– whose value provides an approximation to 

this unknown parameter

• A specific value of that random variable is 
called an estimate
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Point and Interval Estimates

• A point estimate is a single number, 
• a confidence interval provides 

additional information about variability

Point Estimate
Lower 
Confidence 
Limit

Upper
Confidence 
Limit

Width of 
confidence interval
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We can estimate a 
Population Parameter …

Point Estimates

with a Sample
Statistic

(a Point Estimate)

Mean

Proportion P

xμ

p̂
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Unbiasedness

• A point estimator      is said to be an 
unbiased estimator of the parameter  θ if the 
expected value, or mean, of the sampling 
distribution of      is  θ,

• Examples:  
– The sample mean is an unbiased estimator of μ
– The sample variance is an unbiased estimator of σ2

– The sample proportion is an unbiased estimator of P

θ̂

θ̂

θ)θE( =ˆ
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• is an unbiased estimator,       is 
biased:

1θ̂ 2θ̂

θ̂θ

1θ̂ 2θ̂

Unbiasedness
(continued)
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Bias

• Let      be an estimator of θ
• The bias in     is defined as the difference 

between its mean and θ

• The bias of an unbiased estimator is 0

θ̂

θ̂

θ)θE()θBias( −= ˆˆ
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Consistency

• Let      be an estimator of  θ
• is a consistent estimator of  θ if the 

difference between the expected value of     
and θ decreases as the sample size increases

• Consistency is desired when unbiased 
estimators cannot be obtained

θ̂
θ̂
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Most Efficient Estimator

• Suppose there are several unbiased estimators of θ
• The most efficient estimator or the minimum variance unbiased 

estimator of θ is the unbiased estimator with the smallest variance 

• Let         and         be two unbiased estimators of θ, based on the same 
number of sample observations.  Then,

– is said to be more efficient than     if 

– The relative efficiency of     with respect to     is the ratio of their 
variances:

)θVar()θVar( 21
ˆˆ <

)θVar(
)θVar(  Efficiency Relative

1

2
ˆ
ˆ

=

1θ̂ 2θ̂

1θ̂ 2θ̂

1θ̂ 2θ̂
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Confidence Intervals

• How much uncertainty is associated with a 
point estimate of a population parameter?

• An interval estimate provides more 
information about a population characteristic 
than does a point estimate

• Such interval estimates are called confidence 
intervals
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Confidence Interval Estimate

• An interval gives a range of values:
– Takes into consideration variation in sample 

statistics from sample to sample
– Based on observation from 1 sample
– Gives information about closeness to 

unknown population parameters
– Stated in terms of level of confidence

• Can never be 100% confident
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Confidence Interval and 
Confidence Level

• If P(a < θ < b) = 1 - α then the interval from  a  to  b  is 
called a  100(1 - α)%  confidence interval of  θ. 

• The quantity (1-α) is called the confidence level of the 
interval (α between 0 and 1)

– In repeated samples of the population, the true value 
of the parameter θ would be contained in 100(1 -
α)% of intervals calculated this way.  

– The confidence interval calculated in this manner is 
written as a < θ < b with 100(1 - α)% confidence
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Confidence Level, (1-α)

• Suppose confidence level = 95%   
• Also written (1 - α) = 0.95
• A relative frequency interpretation:

– From repeated samples, 95% of all the 
confidence intervals that can be constructed will 
contain the unknown true parameter

• A specific interval either will contain or will not 
contain the true parameter
– No probability involved in a specific interval

(continued)
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General Formula

• The general formula for all confidence 
intervals is:

• The value of the reliability factor 
depends on the desired level of 
confidence

Point Estimate ± (Reliability Factor)(Standard Error)
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Confidence Interval for μ
(σ2 Known)

• Assumptions
– Population variance σ2 is known
– Population is normally distributed
– If population is not normal, use large sample

• Confidence interval estimate:

(where zα/2 is the normal distribution value for a 
probability of α/2 in each tail)

n
σzxμ

n
σzx α/2α/2 +<<−



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

16

Margin of Error

• The confidence interval,

• Can also be written as
where ME is called the margin of error

• The interval width, w, is equal to twice the margin of 
error

n
σzxμ

n
σzx α/2α/2 +<<−

MEx ±

n
σzME α/2=
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Reducing the Margin of Error

The margin of error can be reduced if 
• the population standard deviation can be 

reduced (σ↓)
• The sample size is increased (n↑)
• The confidence level is decreased, (1-α) ↓

n
σzME α/2=
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Finding the Reliability Factor, zα/2

• Consider a 95% confidence interval:

z = -1.96 z = 1.96

.951 =α−

.025
2
α
= .025

2
α
=

Point Estimate
Lower 
Confidence 
Limit

Upper
Confidence 
Limit

Z units:

X units: Point Estimate

0

• Find z.025 = ±1.96 from the standard normal 
distribution table



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

19

Common Levels of Confidence

• Commonly used confidence levels are 90%, 
95%, and 99%

Confidence 
Level

Confidence 
Coefficient, Zα/2 value

1.28
1.645
1.96
2.33
2.58
3.08
3.27

.80

.90

.95

.98

.99

.998

.999

80%
90%
95%
98%
99%
99.8%
99.9%

α−1
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μμ x =

Intervals and Level of Confidence

Confidence Intervals

Intervals 
extend from

to    

100(1-α)%
of intervals 
constructed 
contain μ; 

100(α)% do 
not.

Sampling Distribution of the Mean

n
σzx −

n
σzx +

x

x1

x2

/2α /2αα−1
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Example

• A sample of 11 firms from a large normal 
population has a mean monthly return of 
2.20%.  We know from past testing that the 
population standard deviation is 0.35%.  

• Determine a 95% confidence interval for the 
true mean return of the population.



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

22

2.4068μ1.9932

.2068  2.20

)11(.35/ 1.96  2.20

n
σz x

<<

±=

±=

±

Example
(continued)
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Interpretation

• We are 95% confident that the true mean return 
is between 1.9932  and  2.4068 % 

• Although the true mean may or may not be in this 
interval, 95% of intervals formed in this manner 
will contain the true mean
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Student’s  t  Distribution

• Consider a random sample of n observations
– with mean x and standard deviation s 
– from a normally distributed population with 

mean  μ

• Then the variable

• follows the Student’s t distribution with (n - 1) 
degrees of freedom

ns/
μxt −

=
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• If the population standard deviation  σ is 
unknown, we can substitute the sample 
standard deviation, s 

• This introduces extra uncertainty, since  s  is 
variable from sample to sample

• So we use the  t  distribution instead of the 
normal distribution

Confidence Interval for μ
(σ2 Unknown)
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• Assumptions
– Population standard deviation is unknown
– Population is normally distributed
– If population is not normal, use large sample

• Use Student’s t  Distribution

• Confidence Interval Estimate:

where  tn-1,α/2 is the critical value of the t distribution with  n-
1  d.f. and an area of  α/2  in each tail: 

Confidence Interval for μ
(σ Unknown)

n
Stxμ

n
Stx α/21,-nα/21,-n +<<−

(continued)

α/2)tP(t α/21,n1n => −−
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Student’s t Distribution

• The  t  is a family of distributions

• The  t value  depends on degrees of freedom 
(d.f.)

– Number of observations that are free to vary 
after sample mean has been calculated

d.f. = n - 1
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Student’s t Distribution

t0

t  (df = 5)

t  (df = 13)
t-distributions are bell-
shaped and symmetric, but 
have ‘fatter’ tails than the 
normal

Standard 
Normal

(t with df = ∞)

Note:  t       Z  as  n  increases
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Student’s t Table

Upper Tail Area

df .10 .025.05

1 12.706

2

3 3.182

t0 2.920
The body of the table 
contains t values, not 
probabilities

Let: n = 3     
df = n - 1 = 2 

α = .10
α/2 =.05

α/2 = .05

3.078

1.886

1.638

6.314

2.920

2.353

4.303
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t distribution values
With comparison to the Z value

Confidence       t                 t                t           Z
Level       (10 d.f.) (20 d.f.) (30 d.f.)  ____

.80    1.372          1.325         1.310      1.282

.90              1.812          1.725         1.697      1.645

.95              2.228          2.086         2.042      1.960

.99              3.169          2.845         2.750      2.576

Note:  t       Z  as  n  increases
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Example

A random sample of n = 25 has x = 50 and 
s = 8.  Form a 95% confidence interval for μ

– d.f. = n – 1 = 24,  so
The confidence interval is 

2.0639tt 24,.025α/21,n ==−

53.302μ46.698
25
8(2.0639)50μ

25
8(2.0639)50

n
Stxμ

n
Stx α/21,-n α/21,-n

<<

+<<−

+<<−
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Confidence Intervals for the 
Population Proportion, p

• An interval estimate for the 
population proportion ( P ) can be 
calculated by adding an allowance 
for uncertainty to the sample 
proportion (    )p̂
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Confidence Intervals for the 
Population Proportion, p

• Recall that the distribution of the sample proportion 
is approximately normal if the sample size is large, 
with standard deviation

• We will estimate this with sample data:

(continued)

n
)p(1p ˆˆ −

n
P)P(1σP

−
=
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Confidence Interval Endpoints

• Upper and lower confidence limits for the 
population proportion are calculated with the 
formula

• where 
– zα/2 is the standard normal value for the level of confidence 

desired
– is the sample proportion
– n is the sample size

n
)p(1pzpP

n
)p(1pzp α/2α/2

ˆˆˆˆˆˆ −
+<<

−
−

p̂
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Example

• A random sample of 100 firms shows that 
25 did not pay dividend 

• Form a 95% confidence interval for the 
true proportion of non-paying firms



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

36

Example
(continued)

0.3349P0.1651

100
.25(.75)1.96

100
25P

100
.25(.75)1.96

100
25

n
)p(1pzpP

n
)p(1pzp α/2α/2

<<

+<<−

−
+<<

−
−

ˆˆˆˆˆˆ
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Interpretation

• We are 95% confident that the true 
percentage of non-paying firms in the 
population is between 

16.51% and 33.49%.  

• Although the interval from 0.1651 to 0.3349  
may or may not contain the true proportion, 
95% of intervals formed from samples of 
size 100 in this manner will contain the true 
proportion.
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Dependent Samples

Tests Means of 2 Related Populations
– Paired or matched samples
– Repeated measures (before/after)
– Use difference between paired values:

• Assumptions:
– Both Populations Are Normally 

Distributed

Dependent 
samples

di = xi - yi
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Mean Difference

The ith paired difference is  di , where

di = xi - yi

The point estimate for 
the population mean 
paired difference is  d : n

d
d

n

1i
i∑

==

n  is the number of matched pairs in the sample
1n

)d(d
S

n

1i

2
i

d −

−
=
∑
=

The sample 
standard 
deviation is:

Dependent 
samples
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Confidence Interval for
Mean Difference

The confidence interval for difference 
between population means, μd , is

Where 
n = the sample size

(number of matched pairs in the paired sample)

n
Stdμ

n
Std d

α/21,nd
d

α/21,n −− +<<−

Dependent 
samples
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• The margin of error is

• tn-1,α/2 is the value from the Student’s t  
distribution with (n – 1) degrees of 
freedom for which

Confidence Interval for
Mean Difference

(continued)

2
α)tP(t α/21,n1n => −−

n
stME d

α/21,n−=

Dependent 
samples
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• Six people sign up for a weight loss 
program. You collect the following data:

Paired Samples Example

Weight:
Person Before (x) After (y) Difference, di

1 136 125 11
2 205 195            10
3 157 150 7     
4 138 140 - 2
5 175 165 10
6 166 160 6  

42

d  = Σ di
n

4.82
1n

)d(d
S

2
i

d

=

−
−

= ∑

= 7.0
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• For a 95% confidence level, the appropriate  t  
value is  tn-1,α/2 =  t5,.025 = 2.571

• The 95% confidence interval for the difference 
between means, μd , is

12.06μ1.94
6

4.82(2.571)7μ
6

4.82(2.571)7

n
Stdμ

n
Std

d

d

d
α/21,nd

d
α/21,n

<<−

+<<−

+<<− −−

Paired Samples Example
(continued)

Since this interval contains zero, we cannot be 95% confident, given this 
limited data, that the weight loss program helps people lose weight
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Difference Between Two Means

Population means, 
independent 

samples

Goal: Form a confidence interval for 
the difference between two population 
means,  μx – μy

x – y

• Different data sources
– Unrelated
– Independent

• Sample selected from one population has no effect on 
the sample selected from the other population

• The point estimate is the difference between the two sample 
means:
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Difference Between Two Means

Population means, 
independent 

samples

Confidence interval uses  zα/2

Confidence interval uses a value 
from the Student’s  t distribution

σx
2 and σy

2

assumed equal

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal

(continued)
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Population means, 
independent 

samples

σx
2 and σy

2 Known

Assumptions:

Samples are randomly and
independently drawn

both population distributions
are normal

Population variances are
known

*σx
2 and σy

2 known

σx
2 and σy

2 unknown 
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Population means, 
independent 

samples

…and the random variable

has a standard normal distribution

When σx and σy are known and 
both populations are normal, the 

variance of  X – Y  is

y

2
y

x

2
x2

YX n
σ

n
σσ +=−

(continued)

*

Y

2
y

X

2
x

YX

n
σ

n
σ

)μ(μ)yx(Z

+

−−−
=

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2 Known
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Population means, 
independent 

samples

The confidence interval for 
μx – μy is:

Confidence Interval, 
σx

2 and σy
2 Known

*

y

2
Y

x

2
X

α/2YX
y

2
Y

x

2
X

α/2 n
σ

n
σz)yx(μμ

n
σ

n
σz)yx( ++−<−<+−−

σx
2 and σy

2 known

σx
2 and σy

2 unknown 



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

49

Population means, 
independent 

samples

σx
2 and σy

2 Unknown,
Assumed Equal

Assumptions:

Samples are randomly and
independently drawn

Populations are normally
distributed

Population variances are
unknown but assumed equal*σx

2 and σy
2

assumed equal

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal
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Population means, 
independent 

samples

(continued)

Forming interval 
estimates:

The population variances 
are assumed equal, so use
the two sample standard 
deviations and pool them to
estimate  σ

use a t value with  
(nx + ny – 2)  degrees of
freedom

*σx
2 and σy

2

assumed equal

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal

σx2 and σy
2 Unknown,

Assumed Equal
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Population means, 
independent 

samples

The pooled variance is

(continued)

* 2nn
1)s(n1)s(n

s
yx

2
yy

2
xx2

p −+

−+−
=

σx
2 and σy

2

assumed equal

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal

σx
2 and σy

2 Unknown,
Assumed Equal
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The confidence interval for
μ1 – μ2 is:

Where

*

Confidence Interval, 
σx

2 and σy
2 Unknown, Equal

σx
2 and σy

2

assumed equal

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal

y

2
p

x

2
p

α/22,nnYX
y

2
p

x

2
p

α/22,nn n
s

n
s

t)yx(μμ
n
s

n
s

t)yx(
yxyx

++−<−<+−− −+−+

2nn
1)s(n1)s(n

s
yx

2
yy

2
xx2

p −+

−+−
=
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Population means, 
independent 

samples

σx
2 and σy

2 Unknown,
Assumed Unequal

Assumptions:

Samples are randomly and
independently drawn

Populations are normally
distributed

Population variances are
unknown and assumed
unequal

*
σx

2 and σy
2

assumed equal

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal
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Population means, 
independent 

samples

σx
2 and σy

2 Unknown,
Assumed Unequal

(continued)

Forming interval estimates:

The population variances are
assumed unequal, so a pooled
variance is not appropriate

use a t value with ν degrees
of freedom, where

σx
2 and σy

2 known

σx
2 and σy

2 unknown 

*
σx

2 and σy
2

assumed equal

σx
2 and σy

2

assumed unequal
1)/(n

n
s

1)/(n
n
s

)
n
s

()
n
s(

y

2

y

2
y

x

2

x

2
x

2

y

2
y

x

2
x

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=v
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The confidence interval for
μ1 – μ2 is:

*

Confidence Interval, 
σx

2 and σy
2 Unknown, Unequal

σx
2 and σy

2

assumed equal

σx
2 and σy

2 unknown 

σx
2 and σy

2

assumed unequal

y

2
y

x

2
x

α/2,YX
y

2
y

x

2
x

α/2, n
s

n
st)yx(μμ

n
s

n
st)yx( ++−<−<+−− νν

1)/(n
n
s

1)/(n
n
s

)
n
s

()
n
s(

y

2

y

2
y

x

2

x

2
x

2

y

2
y

x

2
x

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=vWhere
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Two Population Proportions

Goal: Form a confidence interval for 
the difference between two 
population proportions,  Px – Py

The point estimate for 
the difference is

Population 
proportions

Assumptions:
Both sample sizes are large (generally at 
least 40 observations in each sample)

yx pp ˆˆ −
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Two Population Proportions

Population 
proportions

(continued)

• The random variable

is approximately normally 
distributed

y

yy

x

xx

yxyx

n
)p(1p

n
)p(1p

)p(p)pp(
Z

ˆˆˆˆ

ˆˆ

−
+

−

−−−
=
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Confidence Interval for
Two Population Proportions

Population 
proportions

The confidence limits for 
Px – Py are:

y

yy

x

xx
yx n

)p(1p
n

)p(1pZ )pp(
ˆˆˆˆˆˆ

2/

−
+

−
±− α
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Example: 
Two Population Proportions

Form a 90% confidence interval for the 
difference between the proportion of 
retail firms and the proportion of 
industrial firms who went bankrupt last 
year.

• In a random sample, 26 of 50 retail and 
28 of 40 industrial firms had gone 
bankrupt
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Example: 
Two Population Proportions

Retail:

Industrial:

0.1012
40

0.70(0.30)
50

0.52(0.48)
n

)p(1p
n

)p(1p
y

yy

x

xx =+=
−

+
− ˆˆˆˆ

0.52
50
26px ==ˆ

0.70
40
28py ==ˆ

(continued)

For 90% confidence, Zα/2 = 1.645
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Example: 
Two Population Proportions

The confidence limits are:

so the confidence interval is
-0.3465  <  Px – Py <  -0.0135

Since this interval does not contain zero we are 90% 
confident that the two proportions are not equal 

(continued)

(0.1012)1.645.70)(.52

n
)p(1p

n
)p(1pZ)pp(

y

yy

x

xx
α/2yx

±−=

−
+

−
±−

ˆˆˆˆˆˆ
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Confidence Intervals for the 
Population Variance

Population 
Variance

Goal: Form a confidence interval
for the population variance,  σ2

• The confidence interval is based  on 
the sample variance,  s2

• Assumed:  the population is 
normally distributed
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Confidence Intervals for the 
Population Variance

Population 
Variance

The random variable 

2

2
2

1n σ
1)s(n−

=−χ

follows a chi-square distribution 
with (n – 1) degrees of freedom 

(continued)

The chi-square value             denotes the number for which
2

 , 1n αχ −

α)P( 2
α , 1n

2
1n => −− χχ
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Confidence Intervals for the 
Population Variance

Population 
Variance

The (1 - α)% confidence interval 
for the population variance is

2
/2 - 1 , 1n

2
2

2
/2 , 1n

2 1)s(nσ1)s(n
αα χχ −−

−
<<

−

(continued)
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Hypothesis Testing
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What is a Hypothesis?

• A hypothesis is a claim  (assumption) about a 
population parameter:

• population mean / population proportion

Example:  The mean monthly cell phone bill 
of this city is  μ = $42

Example:  The proportion of adults in this 
city with cell phones is  p = .68
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The Null Hypothesis, H0

• States the assumption (numerical) to be tested

Example: The average number of TV sets in U.S. 
Homes is equal to three  (                  )

• Is always about a population parameter, not about a 
sample statistic 

3μ:H0 =

3μ:H0 = 3X:H0 =
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The Null Hypothesis, H0

• Begin with the assumption that the null 
hypothesis is true
– Similar to the notion of innocent until

proven guilty
• Refers to the status quo
• Always contains “=” , “≤” or “≥” sign
• May or may not be rejected

(continued)
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The Alternative Hypothesis, H1

• Is the opposite of the null hypothesis
– e.g., The average number of TV sets in U.S. 

homes is not equal to 3  ( H1: μ ≠ 3 )
• Challenges the status quo
• May or may not be supported
• Is generally the hypothesis that the researcher 

is trying to support
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Population

Claim: the
population
mean age is 50.
(Null Hypothesis:

REJECT

Suppose
the sample
mean age 
is 20: X = 20

Sample
Null Hypothesis

20 likely if  μ = 50?=Is

Hypothesis Testing Process

If not likely, 

Now select a 
random sample

H0: μ = 50 )

X
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Hypothesis Tests Design
• Is X likely given that μ = 50? If we believe that 

this not likely we will reject H0.
• How can we determine if the event is likely to 

occur given that H0 is true?
• We define a rejection region of the sampling 

distribution, X < c.

• So we want small values of α (significance 
level). According to α if we know the distribution 
of X we can determine c (critical value)

( ) ( )< μ = = = α0 0P X c 50 P Re ject H H true
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Hypothesis Tests Design

• If we find that for α = 1% the c = 22 then 
since 20 < 22 we will reject H0 at the 1% 
significance level.

• So for H0 being true the 1% of the samples 
would have X < c. The rest 99% would 
have a sample mean X > c. So we are 
99% confident that H0 should be rejected.

(continued)
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Hypothesis Tests Design

Sampling Distribution of X

μ = 50
If H0 is true

If it is unlikely 
that we would get 
a sample mean 
of this value ...

... then we 
reject the null 

hypothesis that 
μ = 50.

20

... if in fact this were
the population mean…

Xc = 22

α

(continued)
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Level of Significance, α

• Defines the unlikely values of the sample 
statistic if the null hypothesis is true
– Defines rejection region of the sampling 

distribution
• Is designated by  α , (level of significance)

– Typical values are .01, .05, or .10

• Is selected by the researcher at the beginning

• Provides the critical value(s) of the test
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Level of Significance 
and the Rejection Region

H0: μ ≥ 3   
H1: μ < 3

0

H0: μ ≤ 3  
H1: μ > 3

α

α

Represents
critical value

Lower-tail test

Level of significance = α

0Upper-tail test

Two-tail test
Rejection 
region is 
shaded

/2

0

α/2αH0: μ = 3    
H1: μ ≠ 3
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Errors in Making Decisions

• Type I Error
– Reject a true null hypothesis
– Considered a serious type of error

The probability of Type I Error is α
• Called level of significance of the test
• Set by researcher in advance
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Errors in Making Decisions

• Type II Error
– Fail to reject a false null hypothesis

The probability of Type II Error is  β

(continued)
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Outcomes and Probabilities

Actual Situation

Decision
Do Not
Reject

H0

No error
(1 - )α

Type II Error
( β )

Reject
H0

Type I Error
(    )α

Possible Hypothesis Test Outcomes

H0 FalseH0 True

Key:
Outcome

(Probability) No Error
( 1 - β )
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Type I & II Error Relationship

Type I and Type II errors can not happen at
the same time

Type I error can only occur if H0 is true

Type II error can only occur if H0 is false

If Type I error probability ( α )      , then 

Type II error probability ( β )
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Factors Affecting Type II Error

• All else equal,
– β when the difference between 

hypothesized parameter and its true 
value

– β when    α

– β when    σ

– β when    n
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Power of the Test

• The power of a test is the probability of 
rejecting a null hypothesis that is false

• i.e.,     Power = P(Reject H0 | H1 is true)

– Power of the test increases as the sample 
size increases
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Test of Hypothesis
for the Mean (σ Known)

• Convert sample result (   ) to a z value 

The decision rule is:

α
0

0 z

n
σ
μxz  if H Reject >

−
=

σ Known σ Unknown

Hypothesis 
Tests for μ

Consider the test

00 μμ:H =

01 μμ:H >

(Assume the population is normal)

x
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Reject H0Do not reject H0

Decision Rule

α

zα0

μ0

H0: μ = μ0

H1: μ > μ0

Critical value

Z

α
0

0 z

n
σ
μxz  if H Reject >

−
=

nσ/ZμX   if H Reject α00 +>

n
σzμ α0 +

Alternate rule:

x
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p-Value Approach to Testing

• p-value: Probability of obtaining a test 
statistic more extreme ( ≤ or ≥ ) than the 
observed sample value given H0 is true

– Also called observed level of significance

– Smallest value of  α for which H0 can be 
rejected 
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p-Value Approach to Testing

• Convert sample result (e.g.,    ) to test statistic 
(e.g., z statistic )

• Obtain the p-value
– For an upper 

tail test: 
• Decision rule: compare the p-value to  α

– If   p-value  <  α ,  reject H0

– If   p-value  ≥ α ,  do not reject H0

(continued)

x

)μμ  |  
nσ/
μ-x  P(Z

true) is H that given , 
nσ/
μ-x  P(Z  value-p

0
0

0
0

=>=

>=
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Example: Upper-Tail Z Test 
for Mean  (σ Known)

A phone industry manager thinks that 
customer monthly cell phone bill have 
increased, and now average over $52 per 
month.  The company wishes to test this 
claim.  (Assume σ = 10 is known)

H0: μ ≤ 52     the average is not over $52 per month

H1: μ > 52     the average is greater than $52 per month
(i.e., sufficient evidence exists to support the 
manager’s claim)

Form hypothesis test:
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Reject H0Do not reject H0

• Suppose that α = .10 is chosen for this test

Find the rejection region:

α = .10

1.280

Reject H0

Example: Find Rejection Region
(continued)

1.28
nσ/
μxz  if H Reject 0

0 >
−

=
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Obtain sample and compute the test statistic

Suppose a sample is taken with the following results:   n = 
64,  x = 53.1  (σ=10 was assumed known)

Using the sample results, 

0.88

64
10

5253.1

n
σ
μxz 0 =

−
=

−
=

Example: Sample Results
(continued)
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Reject H0Do not reject H0

Example: Decision

α = .10

1.280

Reject H0

Do not reject H0 since z = 0.88 < 1.28
i.e.: there is not sufficient evidence that the

mean bill is over $52

z = 0.88

Reach a decision and interpret the 
result:

(continued)
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Reject H0

α = .10

Do not reject H0 1.28
0

Reject H0

Z = .88

Calculate the p-value and compare to α
(assuming that μ = 52.0)

(continued)

.1894

.810610.88)P(z

6410/
52.053.1zP

52.0)  μ | 53.1xP(

=

−=≥=

⎟
⎠

⎞
⎜
⎝

⎛ −
≥=

=≥
p-value = .1894

Example: p-Value Solution

Do not reject H0 since p-value = .1894 > α = .10
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One-Tail Tests

• In many cases, the alternative hypothesis 
focuses on one particular direction

H0: μ ≥ 3   
H1: μ < 3

H0: μ ≤ 3  
H1: μ > 3

This is a lower-tail test since the 
alternative hypothesis is focused on 
the lower tail below the mean of 3

This is an upper-tail test since the 
alternative hypothesis is focused on 
the upper tail above the mean of 3
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Reject H0Do not reject H0

Upper-Tail Tests

α

zα0

μ

H0: μ ≤ 3  
H1: μ > 3

• There is only one 
critical value, 
since the 
rejection area is 
in only one tail

Critical value

Z
x
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Reject H0 Do not reject H0

• There is only one 
critical value, 
since the 
rejection area is 
in only one tail

Lower-Tail Tests

α

-zα 0

μ

H0: μ ≥ 3   
H1: μ < 3

Z

Critical value

x
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Do not reject H0 Reject H0Reject H0

• There are two 
critical values, 
defining the two 
regions of 
rejection

Two-Tail Tests

α/2

0

H0: μ = 3    
H1: μ ≠ 3

α/2

Lower critical value Upper
critical value

3

z

x

-zα/2 +zα/2

• In some settings, the 
alternative hypothesis does 
not specify a unique direction
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Hypothesis Testing Example

Test the claim that the true mean # of 
TV sets in US homes is equal to 3.

(Assume σ = 0.8)

• State the appropriate null and alternative
hypotheses
– H0: μ = 3 ,  H1: μ ≠ 3    (This is a two tailed test)

• Specify the desired level of significance
– Suppose that α = .05 is chosen for this test

• Choose a sample size
– Suppose a sample of size n = 100 is selected
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2.0
.08
.16

100
0.8

32.84

n
σ
μXz 0 −=

−
=

−
=

−
=

Hypothesis Testing Example

• Determine the appropriate technique
– σ is known so this is a  z  test

• Set up the critical values
– For α = .05 the critical  z  values are ±1.96

• Collect the data and compute the test statistic
– Suppose the sample results are 

n = 100,   x = 2.84  (σ = 0.8 is assumed known)
So the test statistic is:

(continued)



K. Drakos, Quantitative Methods 
for Finance

K. Drakos, Quantitative Methods 
for Finance

97

Reject H0 Do not reject H0

• Is the test statistic in the rejection 
region?

α = .05/2

-z = -1.96 0

Reject H0 if  
z < -1.96 or 
z > 1.96;  
otherwise 
do not 
reject H0

Hypothesis Testing Example
(continued)

α = .05/2

Reject H0

+z = +1.96

Here, z = -2.0 < -1.96, so the 
test statistic is in the rejection 
region
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• Reach a decision and interpret the 
result

-2.0

Since  z = -2.0 < -1.96,  we reject the null hypothesis
and conclude that there is sufficient evidence that the 
mean number of TVs in US homes is not equal to 3 

Hypothesis Testing Example
(continued)

Reject H0 Do not reject H0

α = .05/2

-z = -1.96 0

α = .05/2

Reject H0

+z = +1.96
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.0228

α/2 = .025

Example: p-Value

• Example:  How likely is it to see a sample mean of 2.84 
(or something further from the mean, in either direction) 
if the true mean is μ = 3.0?

-1.96 0
-2.0

.02282.0)P(z

.02282.0)P(z

=>

=−<

Z1.96
2.0

x = 2.84 is translated to 
a z score of z = -2.0 

p-value 

= .0228 + .0228 = .0456

.0228

α/2 = .025
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• Compare the p-value with  α

– If  p-value  <   α , reject H0

– If  p-value  ≥ α , do not reject 
H0

Here: p-value = .0456
α = .05

Since .0456 < .05, we 
reject the null 
hypothesis

(continued)

Example: p-Value

.0228

α/2 = .025

-1.96 0
-2.0

Z1.96
2.0

.0228

α/2 = .025
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t Test of Hypothesis for the Mean 
(σ Unknown)

• Convert sample result (   ) to a  t  test 
statistic 

σ Known σ Unknown

Hypothesis 
Tests for μ

x

The decision rule is:

α , 1-n
0

0 t

n
s
μxt  if H Reject >

−
=

Consider the test

00 μμ:H =

01 μμ:H >

(Assume the population is normal)
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t Test of Hypothesis for the Mean 
(σ Unknown)

• For a two-tailed test: 

The decision rule is:

α/2 , 1-n
0

α/2 , 1-n
0

0 t

n
s
μxt   if or  t

n
s
μxt  if H Reject >

−
=−<

−
=

Consider the test

00 μμ:H =

01 μμ:H ≠

(Assume the population is normal, 
and the population variance is 
unknown)

(continued)
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Example: Two-Tail Test
(σ Unknown)

The average cost of a 5-star 
hotel room in Athens is said 
to be 168 euros per night.  
A random sample of 25 
hotels resulted in    x  = 
172.50 euros  and  
s = 15.40 euros. Test at the 

α = 0.05  level.
(Assume the population distribution is normal)

H0: μ = 168   
H1: μ ≠ 168
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• n = 25

• a = 0.05

• σ is unknown, so 
use a t statistic

• Critical Value: 

t24 , 0.025 = ± 2.0639

Example Solution: 
Two-Tail Test

Do not reject H0: not sufficient evidence that 
true mean cost is different than $168

Reject H0Reject H0

α/2=.025

-t n-1,α/2

Do not reject H0

0

α/2=.025

-2.0639 2.0639

1.46

25
15.40

168172.50

n
s
μxt 1n =

−
=

−
=−

1.46

H0: μ = 168   
H1: μ ≠ 168

t n-1,α/2


