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IV. Differentiation – Differential Calculus 
 

1. Limits 
 
We define as the limit of a function y = f(x) as x 
approaches x0 a number L in which the function 
converges. Informally the function has a limit L at an 
input x0 if f(x) is “close” to L whenever x is “close” to 
x0. In other words, f(x) becomes closer and closer to L as 
x moves closer and closer to x0. In this case we write, 

0x x
limf (x) L


  

 
In order for the limit to exist the function f(x) should 
approach L both from the left and the right, that is, 

0 0x x x x
limf (x) limf (x) L

  
   

In the following graph this is not true. As you observe 
the function converges to different numbers as x 
approaches x0 from the left and the right. In this case the 
limit of f at x0 does not exist. 

f(x)
L 

x 
x0 

  

f(x) 
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Properties of limits:  
Assume that 

x p x p
limf (x) a, limg(x) b

 
  , then 

 
x p

lim f (x) a, for

     

 
x p

lim(f (x) g(x)) a b


    

 
x p

limf (x)g(x) ab


  

 
x p

f (x) a
lim , if b 0

g(x) b
   

 
x p

lim f (x) a


  

 n n

x p
limf (x) a


  

 
Limits can be used in order to determine the asymptotes 
of a function. The line y = a is the horizontal asymptote 
of a function f if: 

x x
limf (x) a or limf (x) a
 

   

The line x = a is the vertical asymptote of a function f 
if: 

x a x a
limf (x) or limf (x)

  
     

 
Example 13: Consider the function f(x) = 1/x. 

 
     q 

 

L 

 

x x0 

f(x) 
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Then we can prove that: 
 

x x
limf (x) 0 and limf (x) 0
 

  , so 0 is a horizontal 

asymptote of the function. 
 

x 0 x 0
limf (x) and limf (x)

  
    , so the function f is 

discontinuous at 0 and 0 is a vertical asymptote of 
the function. 
 

2. Continuity 
 
A function is continuous at x0 if: 

0
0x x

limf (x) f (x )


  

The above definition implies that for a function to be 
continuous at a specific point then the following 
conditions should be satisfied: 
 The limit of f(x) at x0 exists 
 This limit is equal to f(x0) 
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The function f is continuous at A if it continuous at every 
x A . 
 
Using the properties of limits one can easily show that if 
the functions f and g are continuous at x0 then the 

functions: n

0

f
f , f g, fg, if g(x ) 0, f and f

g
    are also 

continuous at x0.  
 
We can also define continuity using the left and right 
limits. 
If f is defined on x0 and 

0
0x x

limf (x) f (x )


  the function is 

right continuous at x0.  
If f is defined on x0 and 

0
0x x

limf (x) f (x )


  the function is 

left continuous at x0. 
A function f is continuous at x0 if it is both right and left 
continuous at this point, i.e, 

0 0
0x x x x

limf (x) limf (x) f (x )
  

   

 
If a function is not continuous at a point x0 it is called 
discontinuous at this point. From the above definition a 
function is discontinuous if one of the following 
conditions holds: 
 

0 0x x x x
limf (x), limf (x)

  
 do not exist 

 
0 0x x x x

limf (x) limf (x)
  

  

 
0 0

0x x x x
limf (x) limf (x) L f (x )

  
    
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3. Definition of the first derivative 
 
Assume a function y = f(x). Consider a point A with 
coordinates (x0,f(x0)) and B another point on the curve 
with coordinates (x,f(x)). The slope of the line AB is: 

0

0

f (x) f (x )

x x




, that is the rate of change of y with respect 

to the change of x. As x approaches x0 (or B approaches 
A) the line AB approaches the tangent line at the point A. 
The slope of this tangent line at A is the first derivative 
of the function f at x0. It is also called the instantaneous 
rate of change. Formally this is defined as: 

0

0

0x x

0

f (x) f (x )
lim f '(x )

x x





 

 

 
 
Alternatively, one could consider that the independent 
variable x changes by Δx, that is, from x0 to x0 + Δx. In 
this case the dependent variable would change from f(x0) 
to f(x0 + Δx). This change is equal to: Δy = f(x0 + Δx) - 
f(x0). The mean change of y with respect to x in the 
interval (x0, x0 + Δx) is: 

x

y 

y

  x0            x          x 

 
A

B B
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0 0

0

f (x x) f (x ) y

x x x x

   


   
 

If the limit 

x 0

y
lim

x 




 

is finite then we say that the function f is differentiable 
at x0. This limit is the first derivative of f at x0. Setting x 
= x0 + Δx we obtain the previous definition of the first 
derivative. 
 
If the function f is differentiable at a set A of its domain, 
then we define a new function on A that assigns to every 
point x A the first derivative of f at x. This function is 
called first derivative or simply derivative of f and it is 

denoted as f '(x)  or 
df (x) dy

dx dx
 .  

 
Example 14: Consider the function 2f (x) 3x 4  . Then 
we have that: 

22

0 0

2 22

0 0 0

2

0

0

y 3(x x) 4 (3x 4)

x x
3(x 2x x x ) 3x

x
6x x 3 x

6x 3 x
x

     
 

 
    

 


  
   



 

So, 
0x 0

y
lim 6x

x 





. 

Since x0 is an arbitrarily chosen point of the domain of f 
the last result implies that the derivative of f is: 

f '(x) 6x  
The above result implies that the instantaneous rate of 
change of y with respect to x is different at different 
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points of the domain. In other words, how much would y 
change with respect to x depends on the value of x.  
 
Theorem 1: If a function f is differentiable at a point x0 
of its domain, then f must also be continuous at x0. 
 
The opposite does not hold. Thus continuity of f is 
necessary but not sufficient for the differentiability of f at 
x0. In other words, if f is discontinuous at x0 then the 
derivative of f at x0 does not exist. On the other hand, if f 
is continuous at x0 the derivative may or may not exist. 
 

-4 -2 2 4

1
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4
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-4 -2 2 4
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0.5
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4. Rules of differentiation 
 
The following table gives the derivative of some well-
known functions. 
 

f (x)  f '(x)  
c 0 
x 1 

cxn cnxn-1 

ex ex 

lnx 1/x 
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The derivative has also the following properties: 

 
d

(f (x) g(x)) f '(x) g '(x)
dx

    

 
d

(f (x)g(x)) f '(x)g(x) f (x)g '(x)
dx

   

 
2

d f (x) f '(x)g(x) f (x)g '(x)
, if g(x) 0

dx g(x) g(x)

  
  

 
 

 1d 1
f (x)

dx f '(x)
   

 
d

f (g(x)) f '(g(x))g '(x)
dx

  (Chain rule) 

 
The last property and the results of the previous table 
imply: 

 n n 1d
f (x) nf (x) f '(x)

dx
  

 f ( x ) f ( x )d
e e f '(x)

dx
  

 
d f '(x)

ln f (x)
dx f (x)

  

 
5. The instantaneous rate of growth 
 
Assume that a variable y is a function of time t. For 
example the final amount of money which is 
compounded is a function of time, y = f(t). 
The instantaneous rate of growth of y is defined as: 

dy / dt f '(t)

y f (t)
  

which is also equivalent (see the last bullet) to: 
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d
ln y

dt
 

This last property enables us to determine the 
instantaneous rate of growth in many economic 
problems. 
 
Example 15: Assume that rt

0
y(t) y e . Then we can 

write, 
0

ln y(t) ln y rt   
and the instantaneous rate of growth equals: 

d
ln y r

dt
  

which is constant. If r > 0 the variable y exponentially 
increases with respect to t, while when r < 0 the variable 
exponentially decreases. 
The notion of constant instantaneous growth rate is very 
familiar in finance. Assume that r is an interest rate. Then 
y(t) gives the amount of money one would collect from 
time 0 (when he/she invests y0) to time t if this amount of 
money is continuously compounded. That is in every 
time period there is a flow of cash that increases your 
money by r. This r is equal to the percentage change of 
the variable in a very small period of time. Notice that 
the absolute change is not constant, actually it increases 
with respect to t, because the more money you invest the 
more you gain from them. 
The exponential function that appears in the continuous 
compounding formula is related to the well-known 
discrete compounding formula 

nt

0

r
y(t) y 1

n
   
 

 

This comes from the fact that: 
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nt

rt

n

r
lim 1 e

n

   
 

 

So, when the number of compounding during the year 
(given by n) approaches infinity the discrete 
compounding formula approaches the exponential 
function. 
 
5. Monotonicity 
 
Consider a function y = f(x). This function is called 
increasing (decreasing) over its domain if for every x1, 
x2 of the domain with x1 < x2 we have 

1 2
f (x ) f (x )  

(
1 2

f (x ) f (x ) ). This is equivalent to: 

1 2

1 2

y f (x ) f (x )
0( 0)

x x x

 
  

 
 

 
The function is called strictly increasing (strictly 
decreasing) if for x1 < x2 we have 

1 2
f (x ) f (x )  

(
1 2

f (x ) f (x ) ). 
 
Theorem 2: Consider a function f which is differentiable 
over its domain A. Then the following arguments hold: 
 f is increasing on A if and only if 

0
f '(x ) 0  for 

every 
0

x A . 

 f is decreasing on A if and only if 
0

f '(x ) 0  for 
every 

0
x A . 

 If 
0

f '(x ) 0  for every 
0

x A  then f is strictly 
increasing on A. 

 If 
0

f '(x ) 0  for every 
0

x A  then f is strictly 
decreasing on A. 
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From the theorem it is obvious that if f is strictly 
increasing (decreasing) this does not imply that 

0
f '(x ) 0  (

0
f '(x ) 0 ). For example the function f(x) = x3 

is strictly increasing but f '(0) 0 . 
 
6. Convexity 
 
Consider the function y = f(x). This function is called 
convex if for any two points x1 and x2 in its domain and 
any  t 0,1 , 

1 2 1 2
f (tx (1 t)x ) tf (x ) (1 t)f (x )      

The function is called concave if 
1 2 1 2

f (tx (1 t)x ) tf (x ) (1 t)f (x )      
If the order   in the definition of convexity is replaced 
by the strict order < then one obtains a strictly convex 
function. Again, by inverting the order symbol, one finds 
a strictly concave function.  
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Theorem 3: Consider a function f twice differentiable on 
its domain A. Then the following arguments hold: 
 f is convex on A if and only if 

0
f ''(x ) 0  for every 

0
x A .3 

 f is concave on A if and only if 
0

f ''(x ) 0  for every 

0
x A . 

 If 
0

f ''(x ) 0  for every 
0

x A  then f is strictly 
convex on A. 

 If 
0

f ''(x ) 0  for every 
0

x A  then f is strictly 
concave on A. 

 
7. Extrema 
 
A large of number of problems in economics, finance 
and business administration are related to determine the 
maximum or the minimum point of a function. In some 
of these problems additional constraints should be 
imposed, leading to the constrained optimization of the 
function. We will examine these problems in the 
reminder of the course. Examples of such problems are: 
 Find the optimal portfolio which maximizes return 

(or minimizes the risk) 
 Determine asset prices and returns assuming a 

representative investor maximizing his/her utility 
function 

 Determine the quantity of products that a firm 
should produce in order to maximize its profits 

 Determine the optimal timing of investing or selling 
an asset 

 
3 The function y f ''(x)  is the second derivative of the function f. It can be defined as the first 

derivative of the first derivative function y f '(x) . 
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A function f is said to have a local maximum at x*, if 
there exists some ε > 0 such that *f (x ) f (x)  when 

*x x   . 
A function f is said to have a local minimum at x*, if 
there exists some ε > 0 such that *f (x ) f (x)  when 

*x x   . 
A function is said to have a global maximum at x*, if 

*f (x ) f (x)  for all x. 
A function is said to have a global minimum at x*, if 

*f (x ) f (x)  for all x. 
The local (global) minima and maxima are known as the 
local (global) extrema.  
 

 
If the order or   is replaced by the strict order < or > 
for all *x x then the global and local maxima are 
unique. 
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Theorem 4: Consider a function f which is differentiable 
on the interior of its domain. If the point x* is a local 
extremum of the function then f '(x*) 0 . 
 
Remarks: 
 The above theorem implies that a point x* with 

f '(x*) 0  cannot be a local extremum of f. To this 
end, the above condition is a necessary condition 
for the existence of a local extremum. It is also 
called first order condition.  

 The opposite argument does not hold. For example 
the function f(x) = x3 has f '(0) 0  but 0 is not a 
local maximum or minimum. These points where 
the first derivative is equal to zero are called 
stationary points. 

 The requirement that x* belongs to the interior of the 
function domain is necessary. A function which is 
defined on a closed set could have local extrema on 
the bounds of this domain. For example the function 
f(x) = x2 + 1 defined on the closed set [1,4] has 
minimum on x = 1 and maximum on x = 4, but 
f '(1) 2 0   and f '(4) 8 0  . 

 A function could have local extrema in the interior 
of its domain without being differentiable at this 
point. For example the function f (x) x  is not 
differentiable on 0 but it has a local minimum on 
this point. 

 
In general a function f defined over a closed and bounded 
domain A can have an extremum in the following points: 
 Stationary points 
 Bounds of the domain A 
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 Points where f is not differentiable 
 Points where f is not continuous 

The points where f can have an extremum are called 
critical points of f. 
 
Consider that the function f has an extremum on the 
interior of its domain. Then the following theorem 
characterizes this extremum. 
 
Theorem 5: Consider a function f twice differentiable on 
the interior of its domain and a point x* of this interior 
with f '(x*) 0 . 
 If f ''(x*) 0 , then f has a local minimum on x*. 
 If f ''(x*) 0 , then f has a local maximum on x*. 

 
These conditions are known as the sufficient conditions 
for determining a local extremum. They are also called 
second order conditions. 
 
The sufficient conditions of the above theorem does not 
cover the case where f ''(x*) 0 . For example the 
function f(x) = x4 has f '(0) f ''(0) 0   and 0 is a local 
minimum. On the other hand the function f(x) = x5 has 
also f '(0) f ''(0) 0   but 0 is just a point of inflexion. 
Thus we need a more general statement than theorem 5 
to cover all the possible cases. This is given by the 
following theorem. 
 
Theorem 6: Consider a function f n-differentiable on the 
interior of its domain and consider a point x* of this 
interior for which: 

( n 1) ( n )f '(x*) f ''(x*) ... f (x*) 0, f (x*) 0      
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Then, 
 If n is even then, 

o If ( n )f (x*) 0 , then f has a local minimum on x* 
o If ( n )f (x*) 0 , then f has a local maximum on x* 

 If n is odd, then f has a point of inflexion on x*. 
 
For example the function f(x) = x6 has: 

(5)f '(0) f ''(0) ... f (0) 0     
and ( 6 )f (0) 720 0  . Thus it has a local minimum on 0. 
On the other hand the function f(x) = x5 has: 

( 4 )f '(0) f ''(0) ... f (0) 0     
and ( 5)f (0) 120 0  . Thus it has a point of inflexion on 
0. 
 
The above theorems characterize local minima and 
maxima. Under certain conditions these local extrema are 
also the global extrema of a function. These are given in 
the following theorem. 
 
Theorem 7: Consider a function f defined on a closed 
and bounded domain A. 
 If f is continuous and concave (convex) on A, then 

every local maximum (minimum) is also a global 
maximum (minimum). 

 If f is strictly concave (convex), then the global 
maximum (minimum) is unique. 

 

Example 16: Consider the function 3 21
f (x) x 4x 2

3
    

which is continuous and differentiable in the domain  . 
1. Find the local maxima and minima of f. 
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2. Find the intervals where f is increasing and 
decreasing. 

3. Find the intervals where f is convex and concave. 
 
Using the first order condition we specify the points 
which we may observe local extrema. Thus,  

      2* * * * *f ' x 0 x 8x 0 x x 8 0        

Thus, the stationary points of this function are *x 0  and 
*x 8 . Using the second order condition we would 

specify if these points are local extrema or points of 
inflexion. We have that, 
 f ''(x) 2x 8   
Thus, f ''(0) 8 0    and f ''(8) 8 0  . So, in x = 0 the 
function has a local maximum and in x = 8 it has a local 
minimum. 
To determine the intervals where f is increasing or 
increasing we should examine the sign of the first 
derivative. But we know that a function changes signs 
around its root. Solving for the first order condition we 
find that the roots of f ' are 0 and 8. At the interval 
 ,0 , f '(x) 0 , so the function f is (strictly) 

increasing. At the interval  0,8 , f '(x) 0 , and the 

function f is (strictly) decreasing. Finally, at the interval 
 8, , f '(x) 0 , so f is (strictly) increasing. 

To determine the intervals where f is concave or convex 
we should examine the sign of the second derivative 
function. If we solve f ''(x) 0 2x 8 0 x 4      , we 
find that f ''  changes signs around 4. At the interval 
 ,4 , f ''(x) 0 , so f is (strictly) concave, whereas at 

the interval  4, , f ''(x) 0 , so f is (strictly) convex.  
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8. Profit maximization 
 
The cost function C = C(Q) specifies the total cost C for 
the production of a quantity Q. We also define the 
marginal cost as 

dC
MC

dQ
  

and the average cost as 
C

AC
Q

  

According to economic theory the function C has the 
following characteristics: 
 It is strictly increasing (C'(Q) 0 ) because as the 

quantity increases the cost also increases. 
 For small values of Q the cost increases with a 

decreasing rate, so C''(Q) 0  for Q < Q1, and then it 
increases with increasing rate, so C''(Q) 0  for      
Q > Q1. Thus Q1 is a point of inflexion of C. This is 
due to the law of diminishing returns. 

 
The revenue function R = R(Q) specifies the total income 
R earned by selling a quantity Q. We define the marginal 
revenue as 

dR
MR

dQ
  

and the average revenue as 
R

AR
Q

  

 
Consider a firm which wants to determine the quantity of 
products Q that maximizes its profits. 
The profit function is defined as: 
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(Q) R(Q) C(Q)    
The first order condition determines that a local 
extremum Q* exists when: 

'(Q*) 0 R '(Q*) C'(Q*) MR MC       
that is, when marginal revenue is equal to marginal cost. 
The second order condition determines that this point 
correspond to a maximum if 

dMR dMC
''(Q*) 0 R ''(Q*) C''(Q*)

dQ dQ
       

Thus at the point where the profit function is maximized 
the slope of the marginal revenue is smaller to the slope 
of the marginal cost. 
 
Example 17: Assume that the firm is a monopoly. In this 
case the firm can determine itself the quantity and the 
price of the product. Even in this case the firm cannot 
impose an extremely high price because demand would 
decrease causing the decrease of profits. Assume that the 
relation between demand quantity Q and price P is 
determined by the function P = f(Q) for which f '(Q) 0 . 
Assume that f(Q) = 250 – 20Q. 
In this case the revenue function is equal to: 

2R(Q) QP Q(250 20Q) 250Q 20Q      
and the marginal revenue equals: 

dR
MR 250 40Q

dQ
    

Assume that 3 21 7
C(Q) Q Q 15Q 100

3 2
     

Then, 
2dC

MC Q 7Q 15
dQ

     

The first order condition gives: 
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2 2MR MC 250 40Q Q 7Q 15 Q 33Q 235 0         
 

The solutions of the last equation are Q1 = -39.02 which 
is rejected and Q2 = 6.02. 
The second order condition is: 

dMR dMC
40 2Q 7

dQ dQ
      

which holds for Q = 6.02, so at this point the profit of the 
firm is maximized. For this quantity demanded the price 
should be set at P = 129.6. 
 

4 6 8 10

100

200

300

400

500

600

  
  
Example 18: Assume that the firm operates in perfectly 
competitive market. In this case it cannot influence the 
price of the product and the price is considered constant 
both for demanders and suppliers. 
The revenue function is equal to: R(Q) PQ  and the 

marginal revenue is constant, MR P . 
Assume now that the firm of the previous example 
operates in a perfectly competitive market with P 50 . 
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The first order condition is: 
2 2MR MC 50 Q 7Q 15 Q 7Q 35 0          

The solutions of the last equation are Q1 = -3.37 which is 
rejected and Q2 = 10.37. 

dMR dMC
0 2Q 7

dQ dQ
     

For Q2 = 10.37 this condition is satisfied, so for this 
quantity produced the firm maximizes its profits. 
 

4 6 8 10 12 14

50

100

150

200

250

 
 
9. Partial derivatives 
 
In many real problems that we face in economics and 
finance a variable depends on a number of other 
variables. For example the demand for a specific car 
depends on its price, the prices of other cars in the same 
category, the income of consumers, the age of the car 
e.t.c. Thus we need to introduce multivariate functions 
in order to describe these types of relations. Their general 
form is: 

1 2 n
y f (x ,x ,..., x ) f (x)   
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where y is the dependent variable and 
1 2 n

x ' (x ,x ,..., x )  
is the vector of independent variables. 
A partial derivative measures the instantaneous rate of 
change of the dependent variable with respect to one 
independent variable assuming that all the others are 
constant. For the previous function f we can define n 
partial derivatives, 

1 2 n

f f f
, ,...,

x x x

  
  

 

 
The rules for calculating a partial derivative are the same 
to the rules of calculating a derivative and are given 
below: 

 If z f (x)g(x) , then 
j j j

z g g
f (x) g(x)

x x x

  
 

  
 

 If 
f (x)

z , g(x) 0
g(x)

   then j j

2

j

g g
f (x) g(x)

x xz

x g(x)

 
 




  

 If nz f (x)  then n 1

j j

z f
nf (x)

x x
 


 

 

 If z = f(x,y) with x = g(u,v) and y = h(u,v) then, 
z f x f y

u x u y u

    
 

    
 and 

z f x f y

v x v y v

    
 

    
. 

 
10. Constrained optimization 
 
In several problems that we face in economics and 
finance we must maximize or minimize a multivariate 
function with respect to several constraints. For example, 
 To maximize the production function with respect 

to budget constraints 
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 To maximize the expected utility of an investor with 
respect to budget constraints 

 To minimize the risk of a portfolio with respect to 
the return expected by the investor. 

 
The problem can be written as follows: 

1 n
1 nx ,...,x

j 1 n j

max f (x ,..., x )

s.t.c g (x ,..., x ) b , j 1,2,...,m. 
              (3) 

 
The following theorem helps us solve this problem. 
 
Theorem 8: If 

1 2 n
x* (x *,x *,..., x *) '  is a local extremum 

of the problem (3) then it exists a vector 

1 2 n
* ( *, *,..., *) '      such as 

m
j

j
j 1

i i

g (x*)f (x*)
* 0, i 1,2,...,n

x x


   

 
 

 
The above theorem implies that in order to find x* and λ* 
we must first write the Lagrangian function 

m

j j j
j 1

L(x, ) f (x) (b g (x))


      

where λ is the Lagnange multiplier. Then we must 
solve the following system of equations: 

i

j

L
0, i 1,2,...,n

x

L
0, j 1,2,...,m


 




 


 

The above system of equations determine the sufficient 
first order conditions for x* to be a local extremum of 
(3). 
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We need to determine if this extremum is a maximum or 
a minimum. For ease of simplicity we will solve the 
problem for n = 2 and m = 1. 
We define the bordered Hessian matrix as: 

1 2

2 2

L 21 2

1 1 1 2

2 2

2

2 2 1 2

g g
0

x x

g L L
H (x ,x )

x x x x

g L L

x x x x

  
   
   

      
   
     

 

 
If LH (x*) 0  then x* is a local maximum If LH (x*) 0  

then x* is a local minimum. These are the second order 
conditions.4 
 
Example 19: An individual’s expected utility of end-of-
period wealth W1 can be written as 

   1 s sE U W U Q      

where Qs = the number of pure securities paying a dollar 
if state s occurs. In this context, Qs represents the number 
of state s pure securities the individual buys as well as 
his end-of-period wealth if state s occurs. 
Now consider the problem we face when we must decide 
how to invest our initial wealth W0 (how much of each 
pure security we should buy) in order to maximize the 
expected utility. We therefore face a problem of 
maximizing the expected utility subject to a wealth 
constraint. The problem can be written as: 

 
4 In general the bordered Hessian matrix is of dimension (n m n n)   . In this case x* is a local 

maximum if the matrix is negative definite. If the matrix is positive definite x* is a local minimum.  
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s
s s

Q
s

max U(Q )  

subject to 

s s 0
s

p Q W  

Our portfolio decision consists of choices we make for 
Qs. To solve the above problem we construct the 
Lagrange function: 

s s s s 0
s s

L U(Q ) p Q W
       

   

where λ is a Lagrange multiplier. 
We take the first partial derivatives with respect to the 
unknown variables Qs and the Lagrange multiplier and 
we set them equal to zero. 

s s s
s

s s 0
s

L
U '(Q ) p 0 for every s

Q

L
p Q W 0


   




  
 

 

Solving the above system of equations we obtain the 
solution to our problem. 
 
Consider an investor with a logarithmic utility function 
of wealth, i.e., U(C) = lnC, and initial wealth $5,000. 
Assume a two-state world where the pure security prices 
are $0.4 and $0.6 and the state probabilities are 1/3 and 
2/3. The system of equations can be written as: 



Quantitative Methods                                                                    Leonidas S. Rompolis 

 48

1 1

2 2

1 2

L 1
0.4 0

Q 3Q

L 2
0.6 0

Q 3Q

L
5,000 0.4Q 0.6Q 0


   




   



   


 

Solving the first two equations we obtain: 

1

2

1
Q

1.2
1

Q
0.9







 

Substituting these equations to the last equation we 
obtain: 

0.4 0.6 1
5,000

1.2 0.9 5,000
    

 
 

Therefore, the optimal investment choices are: Q1 = 
4,166.7 and Q2 = 5,555.5. 
In order to ensure that the above solutions define a local 
maximum we must calculate the bordered Hessian 
matrix. We have that, 

1 2
1 2

g g
p , p

Q Q

 
 

 
 

and 
2 2 2

1 2
2 2 2 2

1 21 1 2 2

L L L
, , 0

Q QQ Q Q Q

    
    

  
 

So, 

1 2

2
L 1 1 1

2
2 2 2

0 p p

H p / Q 0

p 0 / Q

 
 

  
  
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and we can prove that LH 0 , so above solutions define 

a local maximum. 
 
 
V. Integration 
 
1. Indefinite integral 
 
When we differentiate a function f we calculate the 
instantaneous rate of change at a point of its domain. 
When this rate of change is known and we want to find 
the function itself we take the opposite path and we must 
apply integration. Thus integration is the opposite of 

differentiation. If y = f(x) then 
dy

f '(x)
dx

  and 

f '(x)dx f (x) c  . 

 
So in general we define the indefinite integral of a 
function f, denoted as f (x)dx , as a family of functions 

described by the formula 
f (x)dx F(x) c, where F'(x) f (x)    

 
Example 20: Consider the function f(x) = x3. The first 
derivative function is 2f '(x) 3x . So one could assume 

that the indefinite integral of f ' is 3f '(x)dx x . 

However, the first derivative function of f(x) = x3 + 2 is 
also equal to 2f '(x) 3x . So starting with f ' we are not 
exactly sure about f. However, one thing is certain that 
the family of functions that have the same f ' differs by a 
constant c. 
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In order to specify c a boundary condition should be 
given. If for example in the previous example we know 
that f(1) = 3 then, 

3f (x) x c f (1) 1 c 3 1 c c 2           
So, f(x) = x3 + 2. 
 
2. Rules of integration 

 
We now give the indefinite integrals of some basic 
functions: 
 adx ax c   

 n n 11
ax dx a x c, n 1

n 1
   

  

 1ax dx a ln x c    

 
bx

bx a
a dx c

bln a
   

 
ax

ax e
e dx c

a
   

 
The following rules also hold: 
 af (x)dx a f (x)dx   

  f (x) g(x) dx f (x)dx g(x)dx      

 f (x)g '(x)dx f (x)g(x) f '(x)g(x)dx   (integration 

by parts) 
 f (g(x))g '(x)dx f (u)du, with u g(x)    

(integration by substitution) 
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3. Definite integral 
 
Indefinite integrals can be used to compute definite 
integrals. If F'(x) f (x)  then 

b

a

f (x)dx F(b) F(a)   

 

 
This number defines the net signed area of the region 
bounded by the graph of the function f, the x-axis and the 
vertical lines x = a and x = b. 
 
The definite integrals have the following properties: 

 
b a

a b

f (x)dx f (x)dx    

 
a

a

f (x)dx 0  

 
b c c

a b a

f (x)dx f (x)dx f (x)dx     

  


