Part 1

Capital Budgeting without debt financing

MSc course in finance

Topics Covered

1) Discounting:

- Adjusting for time value of money
- Adjusting for inflation
- Adjusting for risk:
\rightarrow Measures of risk
\rightarrow CAPM
\rightarrow Estimating cost of capital

Topics Covered

2) What to discount?

- Points to watch for (sunk costs, overheads...)
- Working capital
- Depreciation
- Free Cash Flows

Discounting

- Discount rate takes into account:
\rightarrow Time value of money
\rightarrow Business risk
\rightarrow Financial risk
- Discount at the correct opportunity cost of capital

Inflation

Inflation - Rate at which prices as a whole are increasing.

Nominal Interest Rate - Rate at which money invested grows.

Real Interest Rate - Rate at which the purchasing power of an investment increases.
Note: market interest rates are nominal rates

Inflation

$$
1+\text { real interest rate }=\frac{1+\text { nominal interest rate }}{1+\text { inflation rate }}
$$

approximation formula
Real int. rate» nominal int. rate-inflation rate

Inflation

Example

If the interest rate on one year govt. bonds is 5.9\% and the inflation rate is 3.3%, what is the real interest rate?
$1+$ real interest rate $=\frac{1+.059}{1+.033}$ Savings
$1+$ real interest rate $=1.025$ Bond

real interest rate $=.025$ or 2.5%
Approximation $=.059-.033=.026$ or 2.6%

Inflation

INFLATION RULE

- Be consistent in how you handle inflation!!
- Use nominal interest rates to discount nominal cash flows.
- Use real interest rates to discount real cash flows.
- You will get the same results, whether you use nominal or real figures

Inflation

Example

You own a lease that will cost you $\$ 8,000$ next year, increasing at 3% a year (the forecasted inflation rate) for 3 additional years (4 years total). If discount rates are 10% what is the present value cost of the lease?
$1+$ real interest rate $=\frac{1+\text { nominal interest rate }}{1+\text { inflation rate }}$

Inflation

Example - nominal figures

Year		Cash Flow
1	8000	$\frac{\text { PV @ } 10 \%}{\frac{8000}{1.10}=7272.73}$
2	$8000 \times 1.03=8240$	$\frac{8240}{1.10^{2}}=6809.92$
3	$8000 \times 1.03^{2}=8487.2$	$\frac{8487.20}{1.0^{3}}=6376.56$
4	$8000 \times 1.03^{3}=8741.82$	$\frac{8741.82}{1.10^{4}}=5970.78$
		$\$ 26,429.99$

Inflation

Example - real figures

Year CashFlow PV@6.7961

$$
\begin{aligned}
& 1 \quad \frac{8000}{1.03}=7766.99 \quad \frac{7766.99}{1.068}=727273 \\
& 2 \quad \frac{8240}{1.00^{3}}=7766.99 \quad \frac{776699}{1.068^{2}}=680992 \\
& 3 \quad \frac{8487.20}{1.03^{3}}=7766.99 \quad \frac{776699}{1.068^{\circ}}=637656 \\
& 4 \quad \frac{8741.82}{1.05^{4}}=7766.99 \quad \frac{776699}{1.068^{4}}=597078 \\
& \text { = \$2642999 }
\end{aligned}
$$

Adjusting for risk

-The standard deviation of the project's returns is a measure of the project's total risk
-Total risk can be decomposed into:
\rightarrow Market (=systematic, undiversifiable) risk
\rightarrow Idiosynchratic (=unsystematic, diversifiable) risk

- Beta is a measure of market risk

Individual stock volatility

Stock	Std Dev	Stock	Std Dev.
Amazon	110.6	Gen. Electric	26.8
Boeing	30.9	Gen. Motors	33.4
Coca-Cola	31.5	McDonald's	27.4
Dell	62.7	Pfizer	29.3
Exxon Mobil	17.4	Reebok	58.5

Measuring Risk

Beta and Unique Risk

1. Total risk = diversifiable risk + market risk
2. Market risk is measured by beta, the sensitivity to market changes

Beta and Unique Risk

Market Portfolio - Portfolio of all assets in the economy. In practice a broad stock market index, such as the S\&P Composite, is used to represent the market.

Beta - Sensitivity of a stock's return to the return on the market portfolio.

Estimating beta

- Beta can be estimated by regressing the project's returns on the returns on the market portfolio

$$
R_{i}=\alpha+\beta R_{m}+\varepsilon_{i}
$$

- Beta estimated from stock price returns captures both business and financial risk

Beta and Unique Risk

Variance of the market

Security Market Line

SML Equation: $R=r_{f}+B\left(r_{m}-r_{f}\right)$

Capital Asset Pricing Model

$$
R-r_{f}=B\left(r_{m}-r_{f}\right)
$$

CAPM

Estimating the cost of capital

- CAPM gives the cost of equity (if we have estimate for beta)
- The cost of equity can also be estimated using a dividend growth model:

$$
\begin{array}{r}
\text { share price }=P_{0}=\frac{D i v_{1}}{r g} \\
\text { costof equity }=r=\frac{D i v_{1}}{P_{0}}+g
\end{array}
$$

Estimating the cost of capital

- In other words:
return on equity =dividends + capital growth
- Dividend yield and growth rates are empirically observable
- We consider the effect of leverage later

What To Discount

Only Cash Flow is Relevant

What To Discount

Points to "Watch Out For"

DDo not confuse average with incremental payoffs (past payoffs are irrelevant)
OInclude all incidental effects
-Forget sunk costs
OInclude opportunity costs
-Beware of allocated overhead costs
DDo not forget working capital requirements

Working capital

- Working capital is:
\rightarrow Inventories
\rightarrow Work-in-progress
\rightarrow Accounts receivable less payables
- Working capital can often be sold or liquidated at the end of a project

Depreciation

- Reduction in the book (or market value) of an asset
- Portion of historical investment cost that can be deducted from taxable income
- Straight-line depreciation: an equal dollar amount of depreciation in each period
- Declining-balance depreciation: a fixed proportion of the remaining book value is depreciated each period

Depreciation: An example

Example: A machine is purchased for 100m. It is depreciated over 5 years in straight line. What is the annual depreciation? What is the annual depreciation tax shield if the tax rate is 40% ?

$$
\text { Annual depreciation }=\frac{100}{5}=20
$$

Net CF after taxes $=C F-(C F-D e p) * \tau=C F(1-\tau)+\tau^{*}$ Dep

Annual depr. tax shield $=\tau * D e p=0.4 * 20=8$

Free Cash Flow (FCF)

- Free Cash Flow
= Dividends - Financing required
= Div - $\{$ Inv Expenditure - Retained CF $\}$
= Div- Inv + [(CF-Dep)*(1-taxrate) +Dep -Div]
= (CF-Dep)(1-taxrate) + Dep - Inv
$=$ CF $-(\text { CF-Dep })^{*}$ taxrate - Inv
=CF- taxes - Inv
- Div + Inv = (CF-taxes)+ Financing Required

FCF and PV

- Free Cash Flows (FCF) should be the theoretical basis for all PV calculations.
- FCF is a more accurate measurement of PV than either Div or EPS.
- When valuing a business for purchase, always use FCF.

FCF and PV

Valuing a Business

The value of a business is usually computed as the discounted value of FCF out to a valuation horizon (H) plus the forecasted value of the business at the horizon (the terminal value), also discounted back to the present.

$$
P V=\frac{F C F_{1}}{(1+r)^{1}}+\frac{F C F_{2}}{(1+r)^{2}}+\ldots+\frac{F C F_{H}}{(1+r)^{H}}+\frac{P V_{H}}{(1+r)^{H}}
$$

