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Σύντομες Λύσεις 

Οι παρακάτω λύσεις ενίοτε είναι πιο κοντά σε εκτεταμένες υποδείξεις παρά σε πλήρεις απαντήσεις. 

Δίνονται για να σας βοηθήσουν να λύσετε όσες ασκήσεις δεν μπορέσατε να ολοκληρώσετε μόνοι 

σας, αλλά δεν αποτελούν υπόδειγμα για το πως θα έπρεπε να γράφετε τις απαντήσεις σας. Για το 

τελευταίο ο καλύτερος οδηγός είναι οι λυμένες ασκήσεις που ανεβαίνουν κάθε εβδομάδα. 

Άσκηση 1. Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις Σωστή ή Λάθος. Να δώσετε 

μια πολύ σύντομη δικαιολόγηση της κάθε απάντησης (1-2 γραμμές ή ένα σχήμα αρκούν). 

1. Σ/Λ Υπάρχει γράφημα 𝐺 για το οποίο 𝑘(𝐺) < 𝜆(𝐺) < 𝛿(𝐺).  

Σωστό. Έχουμε δει τέτοια παραδείγματα στις διαλέξεις. Π.χ., για 𝑘(𝐺) = 1, 𝜆(𝐺) = 2,

𝛿(𝐺) = 3 ένα τέτοιο γράφημα είναι: 

2. Σ/Λ Αν δοθούν δύο από τις παραμέτρους ενός (𝑣, 𝑏, 𝑟, 𝑘, 𝜆)-σχεδιασμού, τότε μπορούν να 

προσδιοριστούν και οι υπόλοιπες τρεις. 

Λάθος. Αυτό ισχύει μόνο για τους συμμετρικούς σχεδιασμούς. Γενικά, χρειάζονται 3 

παράμετροι. 

3. Σ/Λ Ο αλγόριθμος του Prim θα επιστρέψει αναγκαστικά το ίδιο Ελάχιστο/Βέλτιστο 

Επικαλυπτικό Δέντρο αν εφαρμοστεί στο αρχικό γράφημα 𝐺 και στο γράφημα που προκύπτει 

από το 𝐺 αν αυξήσουμε το βάρος κάθε ακμής κατά 2025. (Θεωρήστε ότι ο τρόπος που ο 

αλγόριθμος σπάει τις ισοπαλίες μένει ο ίδιος.) 

Σωστό. Σε κάθε βήμα θα γίνει ακριβώς η ίδια επιλογή (εφόσον δεν αλλάξουμε τον τρόπο με 

τον σπάνε οι ισοπαλίες, διαφορετικά θα μπορούσαμε πράγματι να πάρουμε διαφορετικό 

δέντρο). 

4. Σ/Λ  Υπάρχει κυκλικός (31, 31, 15, 15, 7)-σχεδιασμός. 

Σωστό. Το 31 είναι πρώτος αριθμός της μορφής 4𝑛 − 1 (για 𝑛 = 8). Εφαρμόζουμε το 

Θεώρημα 7.5 (μαζί με την παρατήρηση που ακολουθεί και την παρατήρηση που κάναμε στη 

διάλεξη για την ύπαρξη τέτοιου 𝜃). 

5. Σ/Λ  Μια ακμή μέγιστου βάρους ανήκει σε κάθε Ελάχιστο/Βέλτιστο Επικαλυπτικό Δέντρο του 

𝐺 αν και μόνο αν είναι γέφυρα.  

Σωστό. Το «αν» είναι προφανές (κάθε γέφυρα ανήκει σε όλα τα ΒΕΔ). Για το «μόνο αν», αν η 

𝑒 μέγιστου βάρους ανήκει σε κάποιο επικαλυπτικό δέντρο 𝑇 και την αφαιρέσουμε, η 

προσθήκη οποιασδήποτε ακμής μεταξύ των συνιστωσών που προκύπτουν δίνει ένα  

επικαλυπτικό δέντρο 𝑇′ μικρότερου ή ίσου βάρους.  

6. Σ/Λ  Υπάρχει πλήρες διμερές Eulerian γράφημα που έχει περιττό πλήθος κορυφών. 



Λάθος. Ένα από τα μερίδια της διαμέρισης θα έχει περιττό πλήθος κορυφών και οι κορυφές 

του άλλου θα έχουν αναγκαστικά περιττούς βαθμούς. Άρα το γράφημα δεν είναι Eulerian. 

7. Σ/Λ Κάθε ακμή ενός 2-ακμών-συνεκτικού γραφήματος 𝐺 ανήκει σε κάποιον κύκλο του 𝐺. 

Σωστό. Αν μία ακμή δεν περιέχεται σε κανέναν κύκλο, τότε είναι γέφυρα και το 𝐺 δεν μπορεί 

να περιέχει γέφυρες.  

8. Σ/Λ Κάθε υπογράφημα διμερούς γραφήματος, είναι επίσης διμερές. 

Σωστό. Από το Θεώρημα 1.4. Εφόσον το γράφημα είναι διμερές, δεν περιέχει κύκλους 

περιττού μήκους. Κανένα υπογράφημα του δεν μπορεί να περιέχει κύκλους περιττού μήκους 

και άρα είναι διμερές. 

9. Σ/Λ Αν το 𝐺 είναι Hamiltonian και προσθέσουμε σε αυτό μία ακμή, το γράφημα που 

προκύπτει είναι Hamiltonian. 

Σωστό. Εφόσον δεν προστίθενται κορυφές και δεν αφαιρούνται ακμές, κάθε κύκλος Hamilton 

στο αρχικό γράφημα θα παραμείνει κύκλος Hamilton και στο νέο.  

10. Σ/Λ Αν το 𝐺 είναι Eulerian και προσθέσουμε σε αυτό μία ακμή, το γράφημα που προκύπτει 

είναι Eulerian. 

Λάθος. Η προσθήκη ακμών αλλάζει τους βαθμούς. Αν το αρχικό γράφημα είχε μόνο άρτιους 

βαθμούς και η νέα ακμή συνδέει δυο διαφορετικές κορυφές, τότε στο νέο γράφημα οι 

κορυφές αυτές θα έχουν περιττούς βαθμούς. 

Άσκηση 2. Έστω γράφημα 𝐺. Ξεκινώντας από το 𝐺, μπορούμε να φτιάξουμε ένα κατευθυνόμενο 

γράφημα 𝐺⃗ δίνοντας κατεύθυνση σε κάθε ακμή του 𝐺. Να δείξετε ότι μπορούμε να δώσουμε 

κατευθύνσεις στις ακμές του 𝐺 με τέτοιο τρόπο ώστε ο εσωβαθμός και ο εξωβαθμός κάθε κορυφής 

𝑢 του 𝐺⃗ να διαφέρουν το πολύ κατά 1, δηλαδή |𝑑
𝐺⃗
+(𝑢) − 𝑑

𝐺⃗
−(𝑢)| ≤ 1 για κάθε 𝑢 ∈ 𝑉(𝐺⃗).  

Ξεκινάμε με την εξής παρατήρηση: Αν το 𝐺 είναι Eulerian, τότε υπάρχει κάποιο ίχνος Euler 𝐶. 

Ξεκινώντας σε μία αυθαίρετη κορυφή και διατρέχοντας το 𝐶, δίνουμε κατεύθυνση σε κάθε ακμή του 

𝐺 που να συμφωνεί με την κατεύθυνση που τη διατρέχουμε μέσω του 𝐶. Έτσι παίρνουμε ένα 

κατευθυνόμενο γράφημα 𝐺⃗ . Επειδή διατρέχοντας ένα ίχνος Euler, όσες φορές ‘φτάνουμε’ σε μία 

κορυφή, τόσες φορές ‘φεύγουμε’ από αυτήν, έχουμε 𝑑
𝐺⃗
+(𝑢) = 𝑑

𝐺⃗
−(𝑢) για κάθε 𝑢 ∈ 𝑉(𝐺⃗). 

Για τη γενική περίπτωση, δηλαδή όταν το 𝐺 δεν είναι Eulerian, παρατηρούμε ότι υπάρχει άρτιο 

πλήθος κορυφών περιττού βαθμού ανά συνιστώσα του 𝐺. Τις συνδέουμε αυθαίρετα ανά δύο 

(δημιουργούμε δηλαδή ένα ταίριασμα στις κορυφές περιττού βαθμού ανά συνιστώσα), παίρνοντας 

έτσι το γράφημα 𝐻 που έχει μόνο κορυφές άρτιου βαθμού, και άρα κάθε συνιστώσα του είναι 

Eulerian. Όπως περιγράφεται παραπάνω, κατασκευάζουμε ένα κατευθυνόμενο γράφημα 𝐻⃗⃗⃗ στο 

οποίο 𝑑
𝐻⃗⃗⃗
+(𝑢) = 𝑑

𝐻⃗⃗⃗
−(𝑢) για κάθε 𝑢 ∈ 𝑉(𝐻⃗⃗⃗).  



Αν τώρα αφαιρέσουμε από το 𝐻⃗⃗⃗ τις ακμές που είχαμε προσθέσει με το ταίριασμα, προκύπτει ένα 

κατευθυνόμενο γράφημα 𝐺⃗ για το οποίο ισχύουν τα εξής: 

i. Το 𝐺⃗ αποτελεί μία κατευθυνόμενη εκδοχή του 𝐺. 

ii. Για κάθε κορυφή 𝑢 του 𝐺⃗ έχουμε αφαιρέσει το πολύ μία ακμή του 𝐻⃗⃗⃗, και άρα είτε 𝑑
𝐺⃗
+(𝑢) =

𝑑
𝐺⃗
−(𝑢), είτε 𝑑

𝐺⃗
+(𝑢) = 𝑑

𝐺⃗
−(𝑢) + 1, είτε 𝑑

𝐺⃗
+(𝑢) = 𝑑

𝐺⃗
−(𝑢) − 1. 

Συμπεραίνουμε ότι το 𝐺 είναι το ζητούμενο γράφημα.  

Άσκηση 3. Έστω γράφημα 𝐺, το οποίο περιέχει μονοπάτι Hamilton. Να αποδειχθεί ότι για κάθε 

υποσύνολο κορυφών 𝑆 ⊆ 𝑉(𝐺), ισχύει ότι 𝜔(𝐺 − 𝑆) ≤ |𝑆| + 1, δηλαδή ότι το πλήθος των 

συνιστωσών που προκύπτουν αφαιρώντας τις κορυφές του 𝑆 από το 𝐺 είναι το πολύ |𝑆| + 1. 

Η απόδειξη είναι πολύ παρόμοια με την Άσκηση 5.1(α), οπότε εδώ θα εστιάσω μόνο στις διαφορές. 

Έστω 𝑃 το μονοπάτι Hamilton και 𝐺1, 𝐺2, … , 𝐺ℓ οι συνιστώσες του 𝑃 − 𝑆. Ισχύει ότι 𝜔(𝐺 − 𝑆) ≤

𝜔(𝑃 − 𝑆) = ℓ. Γενικά, θα υπάρχουν τουλάχιστον 2 ακμές του 𝑃 μεταξύ του 𝑆 και κάθε συνιστώσας, 

με την πιθανή εξαίρεση μίας ή δύο συνιστωσών (ανάλογα με το πόσα από τα δύο άκρα του 𝑃 είναι 

στο 𝑆) με τις οποίες υπάρχει μόνο μία ακμή. Άρα υπάρχουν τουλάχιστον 2ℓ − 2 ακμές του 𝑃 μεταξύ 

του 𝑆 και του 𝑉(𝐺) ∖ 𝑆. 

Όπως και στην Άσκηση 5.1(α) εξακολουθεί να ισχύει ότι υπάρχουν το πολύ 2|𝑆| ακμές του 𝑃 

προσκείμενες σε κορυφές του 𝑆 (αν και το 𝑃 εδώ δεν είναι 2-κανονικό, το επιχείρημα είναι σχεδόν 

το ίδιο: όλοι οι βαθμοί του 𝑃 είναι 1 ή 2).  

Τελικά,  2|𝑆| ≥ 2ℓ − 2, ή ισοδύναμα, ℓ ≤ |𝑆| + 1. 

[Σημείωση: Όπως είδαμε στην τελευταία διάλεξη, υπάρχει απλούστερη λύση στην οποία 

προσθέτουμε μία ακμή ώστε να γίνει Hamiltonian το 𝐺, εφαρμόζουμε την Άσκηση 5.1(α) και μετά 

αφαιρούμε την πρόσθετη ακμή.] 

Άσκηση 4. Έστω 𝐺 απλό γράφημα 𝑛 κορυφών, με ελάχιστο βαθμό κορυφής 𝛿(𝐺) ≥ 𝑛
2⁄ . (Θυμηθείτε 

την Άσκηση 1.12 που συνεπάγεται πως το 𝐺 εδώ θα πρέπει να είναι συνεκτικό.) Να δείξετε ότι 

𝜆(𝐺) = 𝛿(𝐺), δηλαδή ότι η συνεκτικότητα–ακμών ισούται με τον ελάχιστο βαθμό.  

Γνωρίζουμε ότι 𝜆(𝐺) ≤ 𝛿(𝐺). Θα υποθέσουμε ότι 𝜆(𝐺) < 𝛿(𝐺) και θα δείξουμε ότι καταλήγουμε 

σε άτοπο. Έστω 𝑆 ένα ελάχιστο σύνολο-ακμών-αποκοπής (δηλαδή |𝑆| = 𝜆(𝐺)). Το γράφημα 𝐺 − 𝑆 

έχει δύο συνεκτικές συνιστώσες 𝐺1 και 𝐺2. Θεωρούμε τη συνιστώσα με το μικρότερο πλήθος 

κορυφών, έστω 𝐺1 και έστω 𝑥 = |𝑉(𝐺1)|. Θα ισχύει ότι 1 ≤ 𝑥 ≤ 𝑛/2. 

Έστω 𝑢 ∈ 𝑉(𝐺1). Επειδή 𝑑𝐺(𝑢) ≥ 𝛿(𝐺) ≥ 𝑛
2⁄  αλλά 𝑑𝐺1

(𝑢) ≤ 𝑥 − 1 ≤ 𝑛
2⁄ − 1, θα ισχύει ότι 

τουλάχιστον 𝑛 2⁄ − 𝑥 + 1 ακμές που στο 𝐺 είναι προσκείμενες στην 𝑢 ανήκουν στο σύνολο-ακμών-

αποκοπής 𝑆. Συνεπώς, 

|𝑆| ≥ ∑ (𝛿(𝐺) − 𝑥 + 1 )

𝑢∈𝑉(𝐺1)

= 𝑥(𝛿(𝐺) − 𝑥 + 1 ) 



Όμως, η συνάρτηση 𝑥(𝑎 − 𝑥) είναι αύξουσα στο διάστημα [0, 𝑎/2 ] και φθίνουσα στο [𝑎/2, 𝑎], όπου 

εδώ 𝑎 = 𝛿(𝐺) + 1. Εφόσον 1 ≤ 𝑥 ≤ 𝑛/2, το ελάχιστο (που θα δίνει ένα κάτω φράγμα στο |𝑆|) θα 

επιτυγχάνεται για 𝑥 = 1 ή 𝑥 = 𝑛/2. 

Για 𝑥 = 1, παίρνουμε |𝑆| ≥ 1 ⋅ (𝛿(𝐺) − 1 + 1 ) = 𝛿(𝐺) > 𝜆(𝐺) = |𝑆|. Άτοπο. 

Για 𝑥 = 𝑛/2, διακρίνουμε περιπτώσεις για τον ελάχιστο βαθμό 𝛿(𝐺). 

• Αν 𝛿(𝐺) = 𝑛/2, παίρνουμε |𝑆| ≥ 𝑛/2 ⋅ (𝑛/2 − 𝑛/2 + 1 ) = 𝑛/2 = 𝛿(𝐺) > 𝜆(𝐺) = |𝑆|. Άτοπο. 

• Αν 𝛿(𝐺) > 𝑛/2, παίρνουμε |𝑆| ≥
𝑛

2
⋅ (

𝑛

2
+ 1 −

𝑛

2
+ 1 ) = 𝑛 > 𝛿(𝐺) > 𝜆(𝐺) = |𝑆|. Άτοπο. 

Συμπεραίνουμε ότι 𝜆(𝐺) = 𝛿(𝐺). 

Άσκηση 5. Έστω (𝑣, 𝑏, 𝑟, 𝑘, 𝜆)-σχεδιασμός όπου 𝑘 = 3 και 𝜆 = 1 (ένας τέτοιος σχεδιασμός 

ονομάζεται Steiner triple system). Να αποδειχθεί ότι 

(i) το 𝑣 είναι περιττό 

(ii) 𝑏 =
1

6
𝑣(𝑣 − 1) 

(iii) 𝑣 = 6𝑚 + 1 ή 𝑣 = 6𝑚 + 3 για κάποιον ακέραιο 𝑚 ≥ 0. 

(i) Από το Θεώρημα 7.1, έχουμε 𝑣 − 1 =
𝑟(𝑘−1)

𝜆
= 2𝑟. Άρα 𝑣 = 2𝑟 + 1, που είναι περιττό. 

(ii) Πάλι από το Θεώρημα 7.1, έχουμε 
𝑏𝑘

𝑣
=

𝜆(𝑣−1)

𝑘−1
⟹

3𝑏

𝑣
=

𝑣−1

2
 και άρα 𝑏 =

1

6
𝑣(𝑣 − 1). 

(iii) Γενικά ισχύει ότι 𝑣 = 6𝑚 + ℓ, όπου 𝑚 ∈ ℕ και 0 ≤ ℓ ≤ 5. Επειδή το 𝑣 πρέπει να είναι περιττό, 

θα ισχύει ότι ℓ ∈ {1,3,5}. Ας υποθέσουμε ότι ℓ = 5. Τότε 

𝑏 =
1

6
𝑣(𝑣 − 1) =

(6𝑚 + 5)(6𝑚 + 4)

6
= 6𝑚2 + 9𝑚 +

20

6
 ∉ ℕ 

που είναι άτοπο. Επομένως ℓ ∈ {1,3}. 


