Notes:

1. Duration: 2.5 hours
2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. (1 point) Prove that the convex hull conv A of a set A is the smallest convex set that contains A, in the sense that it is a subset of any convex set C that contains A.
Solution: Let any convex set C containing A. Let any point $a \in \operatorname{conv} A$. Then $a=\sum_{i=1}^{n} \theta_{i} a_{i}$, where $a_{i} \in A$, and so also to C, therefore, since C is convex, a will also belong to C. Therefore, $a \in A \Rightarrow a \in C$, and the result follows.
2. (1.5 points) Let $y, x_{2}, x_{2}, \ldots, x_{p} \in \mathbb{R}^{n}$. Prove that $y \in \operatorname{conv}\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right\}\right)$ if and only if

$$
\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}\right)=\operatorname{conv}\left\{\left(y, x_{1}, x_{2}, \ldots, x_{p}\right)\right\}
$$

With conv $\{S\}$ we denote the convex hull of the set $S \subseteq \mathbb{R}^{n}$.
Solution: First, let us assume that $y \in \operatorname{conv}\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right\}\right)$. To prove that the two sets are equal, we will prove that one is the subset of the other. To this effect, first observe that $\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}\right) \subseteq \operatorname{conv}\left\{\left(y, x_{1}, x_{2}, \ldots, x_{p}\right)\right\}$, because any point that can be written as a convex combination of the set $\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ can also be written as a convex combination of the points in $\left.\left\{y, x_{1}, x_{2}, \ldots, x_{p}\right\}\right)$. To prove that $\operatorname{conv}\left\{\left(y, x_{1}, x_{2}, \ldots, x_{p}\right)\right\} \subseteq \operatorname{conv}\left\{\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right\}$, let some $z \in\left\{\left(y, x_{1}, x_{2}, \ldots, x_{p}\right)\right\}$. We have

$$
\begin{aligned}
z & =\sum_{i=1}^{n} a_{i} x_{i}+a_{n+1} y \\
y & =\sum_{i=1}^{n} b_{i} x_{i}
\end{aligned}
$$

Combining the above,

$$
z=\sum_{i=1}^{n}\left(a_{i}+a_{n+1} b_{i}\right) x_{i}
$$

and the result follows.
Now let us assume that the equality of the two sets holds. Then, $y \in \operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}\right)=\operatorname{conv}\left\{\left(y, x_{1}, x_{2}, \ldots, x_{p}\right)\right\}$, and so the results follows.
3. (2.5 points) Consider the problem

$$
\begin{array}{lc}
\text { minimize: } & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
\text { subject to: } & x_{1}+x_{2}+x_{3}+x_{4}=1, \quad x_{4} \leq K,
\end{array}
$$

where K is a parameter.
$\left(\alpha^{\prime}\right)$ Bring the problem in the standard form of an optimization problem.
$\left(\beta^{\prime}\right)$ Is the problem convex? Explain?
$\left(\gamma^{\prime}\right)$ Write the Lagrangian.
$\left(\delta^{\prime}\right)$ Write the KKT conditions for this problem.
$\left(\varepsilon^{\prime}\right)$ Find the solution of the problem as a function of the parameter K.

Solution:

(α^{\prime})

$$
\begin{array}{lc}
\text { minimize: } & f_{0}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
\text { subject to: } & h_{1}(x)=x_{1}+x_{2}+x_{3}+x_{4}-1=0, \quad f_{1}(x)=x_{4}-K \leq 0,
\end{array}
$$

(β^{\prime}) Yes it is.
$\left(\gamma^{\prime}\right)$

$$
L(x, \lambda, \mu)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+\lambda\left(x_{4}-K\right)+\mu\left(x_{1}+x_{2}+x_{3}+x_{4}-1\right)
$$

$\left.{ }^{\prime} \delta^{\prime}\right)$

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =1, \\
x_{4}-K & \leq 0 \\
\lambda & \geq 0 \\
\lambda\left(x_{4}-K\right) & =0 \\
2\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) & =0 .
\end{aligned}
$$

(ε^{\prime}) We take cases: assuming $\lambda=0$, we have $x_{1}=x_{2}=x_{3}=x_{4}=-\frac{\mu}{2}=\frac{1}{4}$, so we need $K \geq \frac{1}{4}$ and the minimum value is $f(x)=4\left(\frac{1}{4}\right)^{2}=\frac{1}{4}$.
Assuming $\lambda>0$, we need $x_{4}=K$, and we have $x_{1}=x_{2}=x_{3}=\frac{1-K}{3}=-\frac{\mu}{2}$ and the minimum value for $f(x)$ is $f(x)=3\left(\frac{1-K}{3}\right)^{2}+K^{2}$.
4. (2.5 points) Find the Lagrangian, the dual function $g(\lambda)$ and the dual problem of the problem

$$
\begin{array}{lc}
\operatorname{minimize}: & f_{0}(x)=\frac{1}{2} x^{T} Q x+c^{T} x \\
\text { subject to: } & A x \geq b
\end{array}
$$

where Q is a positive definite $n \times n$ matrix.
Solution: The Lagrangian is

$$
L(x, \lambda)=\frac{1}{2} x^{T} Q x+c^{T} x+\lambda(b-A x)=\frac{1}{2} x^{T} Q x+\left(c-A^{T} \lambda\right)^{T} x+\lambda b .
$$

Regarding its minimization:

$$
\nabla L(x, \lambda)=Q x+\left(c-A^{T} \lambda\right)=0 \Leftrightarrow x=Q^{-1}\left(A^{T} \lambda-c\right),
$$

therefore

$$
\begin{aligned}
g(\lambda) & =\frac{1}{2}\left(A^{T} \lambda-c\right)^{T} Q^{-1} Q Q^{-1}\left(A^{T} \lambda-c\right)+\left(c-A^{T} \lambda\right)^{T} Q^{-1}\left(A^{T} \lambda-c\right)+\lambda^{T} b \\
& =-\frac{1}{2}\left(A^{T} \lambda-c\right)^{T} Q^{-1}\left(A^{T} \lambda-c\right)+\lambda^{T} b \\
& =-\frac{1}{2}\left(\lambda^{T} A-c^{T}\right) Q^{-1}\left(A^{T} \lambda-c\right)+\lambda^{T} b \\
& =-\frac{1}{2} \lambda^{T} A Q^{-1} A^{T} \lambda-\frac{1}{2} c^{T} Q^{-1} c+\frac{1}{2} \lambda^{T} A Q^{-1} c+\frac{1}{2} c^{T} Q^{-1} A^{T} \lambda+\lambda^{T} b \\
& =\lambda^{T}\left(-\frac{1}{2} A Q^{-1} A^{T}\right) \lambda+\left(\frac{1}{2} c^{T} Q^{-1} A^{T}+b^{T}+\frac{1}{2} c^{T} Q^{-1} A^{T}\right) \lambda-\frac{1}{2} c^{T} Q^{-1} c .
\end{aligned}
$$

It follows that the resulting dual problem is

$$
\begin{array}{cc}
\text { maximize: } & g(\lambda)=\lambda^{T} W \lambda+V^{T} \lambda-u, \\
\text { subject to: } & \lambda \geq 0
\end{array}
$$

where

$$
W=-\frac{1}{2} A Q^{-1} A^{T}, \quad V=b+A Q^{-1} c, \quad u=-\frac{1}{2} c^{T} Q^{-1} c
$$

5. (2.5 points) Let $y^{1}, y^{2}, \ldots, y^{p}$ be p points in \mathbb{R}^{n}. Show that the problem of finding the smallest possible ball that contains all these points is a convex optimization problem. Write the KKT conditions for that problem. In the special case $p=3$, discuss different cases for the solution, without providing proofs, and with informal geometric arguments.

Solution:

(α^{\prime}) Let x be the center of the ball. We want to minimize the following function:

$$
\max \left\{\left\|x-y^{1}\right\|^{2},\left\|x-y^{2}\right\|^{2}, \ldots,\left\|x-y^{p}\right\|^{2}\right\}
$$

which is a convex function, being the maximum of convex functions. The problem is equivalent to the following one:

$$
\begin{array}{cc}
\operatorname{minimize} & t \\
\text { subject to: } & \left\|x-y^{1}\right\|^{2} \leq t \\
& \left\|x-y^{2}\right\|^{2} \leq t \\
& \cdots \\
& \left\|x-y^{p}\right\|^{2} \leq t
\end{array}
$$

