
Notes:
1. Duration: 2.5 hours

2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:
1. (1 point) Prove that the convex hull convA of a set A is the smallest convex set that contains A, in the sense that it is a

subset of any convex set C that contains A.
Solution: Let any convex set C containing A. Let any point a ∈ convA. Then a =

∑n
i=1 θiai, where ai ∈ A, and so also

to C, therefore, since C is convex, a will also belong to C. Therefore, a ∈ A ⇒ a ∈ C, and the result follows.

2. (1.5 points) Let y, x2, x2, . . . , xp ∈ Rn. Prove that y ∈ conv{(x1, x2, . . . , xp}) if and only if

conv({x1, x2, . . . , xp}) = conv{(y, x1, x2, . . . , xp)}.

With conv{S} we denote the convex hull of the set S ⊆ Rn.
Solution: First, let us assume that y ∈ conv{(x1, x2, . . . , xp}). To prove that the two sets are equal, we will prove
that one is the subset of the other. To this effect, first observe that conv({x1, x2, . . . , xp}) ⊆ conv{(y, x1, x2, . . . , xp)},
because any point that can be written as a convex combination of the set {x1, x2, . . . , xp} can also be written as a convex
combination of the points in {y, x1, x2, . . . , xp}). To prove that conv{(y, x1, x2, . . . , xp)} ⊆ conv{(x1, x2, . . . , xp)}, let
some z ∈ {(y, x1, x2, . . . , xp)}. We have

z =

n∑
i=1

aixi + an+1y,

y =

n∑
i=1

bixi.

Combining the above,

z =

n∑
i=1

(ai + an+1bi)xi,

and the result follows.
Now let us assume that the equality of the two sets holds. Then, y ∈ conv({x1, x2, . . . , xp}) = conv{(y, x1, x2, . . . , xp)},
and so the results follows.

3. (2.5 points) Consider the problem

minimize: x2
1 + x2

2 + x2
3 + x2

4

subject to: x1 + x2 + x3 + x4 = 1, x4 ≤ K,

where K is a parameter.

(αʹ) Bring the problem in the standard form of an optimization problem.
(βʹ) Is the problem convex? Explain?
(γʹ) Write the Lagrangian.
(δʹ) Write the KKT conditions for this problem.
(εʹ) Find the solution of the problem as a function of the parameterK.

Solution:

(αʹ)

minimize: f0(x) = x2
1 + x2

2 + x2
3 + x2

4

subject to: h1(x) = x1 + x2 + x3 + x4 − 1 = 0, f1(x) = x4 −K ≤ 0,

(βʹ) Yes it is.
(γʹ)

L(x, λ, µ) = x2
1 + x2

2 + x2
3 + x2

4 + λ(x4 −K) + µ(x1 + x2 + x3 + x4 − 1)
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(δʹ)

x1 + x2 + x3 + x4 = 1,

x4 −K ≤ 0,

λ ≥ 0,

λ(x4 −K) = 0,

2


x1

x2

x3

x4

+ λ


0
0
0
1

+ µ


1
1
1
1

 = 0.

(εʹ) We take cases: assuming λ = 0, we have x1 = x2 = x3 = x4 = −µ
2 = 1

4 , so we need K ≥ 1
4 and the minimum

value is f(x) = 4
(
1
4

)2
= 1

4 .
Assuming λ > 0, we need x4 = K, and we have x1 = x2 = x3 = 1−K

3 = −µ
2 and the minimum value for f(x) is

f(x) = 3
(
1−K
3

)2
+K2.

4. (2.5 points) Find the Lagrangian, the dual function g(λ) and the dual problem of the problem

minimize: f0(x) =
1
2x

TQx+ cTx,

subject to: Ax ≥ b,

where Q is a positive definite n× n matrix.
Solution: The Lagrangian is

L(x, λ) =
1

2
xTQx+ cTx+ λ(b−Ax) =

1

2
xTQx+ (c−ATλ)Tx+ λb.

Regarding its minimization:

∇L(x, λ) = Qx+ (c−ATλ) = 0 ⇔ x = Q−1(ATλ− c),

therefore

g(λ) =
1

2
(ATλ− c)TQ−1QQ−1(ATλ− c) + (c−ATλ)TQ−1(ATλ− c) + λT b

= −1

2
(ATλ− c)TQ−1(ATλ− c) + λT b

= −1

2
(λTA− cT )Q−1(ATλ− c) + λT b

= −1

2
λTAQ−1ATλ− 1

2
cTQ−1c+

1

2
λTAQ−1c+

1

2
cTQ−1ATλ+ λT b

= λT (−1

2
AQ−1AT )λ+ (

1

2
cTQ−1AT + bT +

1

2
cTQ−1AT )λ− 1

2
cTQ−1c.

It follows that the resulting dual problem is

maximize: g(λ) = λTWλ+ V Tλ− u,

subject to: λ ≥ 0,

where
W = −1

2
AQ−1AT , V = b+AQ−1c, u = −1

2
cTQ−1c

5. (2.5 points) Let y1, y2, . . . , yp be p points in Rn. Show that the problem of finding the smallest possible ball that contains
all these points is a convex optimization problem. Write the KKT conditions for that problem. In the special case p = 3,
discuss different cases for the solution, without providing proofs, and with informal geometric arguments.
Solution:

(αʹ) Let x be the center of the ball. We want to minimize the following function:

max{∥x− y1∥2, ∥x− y2∥2, . . . , ∥x− yp∥2}
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which is a convex function, being the maximum of convex functions. The problem is equivalent to the following one:

minimize: t

subject to: ∥x− y1∥2 ≤ t,

∥x− y2∥2 ≤ t,

. . .

∥x− yp∥2 ≤ t.
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