
Notes:

1. Duration: 2.5 hours

2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. (2 points) Let a convex set C ⊂ Rn and a point x0 6∈ C. Show that

conv (C ∪ {x0}) = {(1− θ)x+ θx0 : x ∈ C, θ ∈ [0, 1]}.

Solution: Observe that

{(1− θ)x+ θx0 : x ∈ C, θ ∈ [0, 1]} ⊆ conv (C ∪ {x0})

by the definition of the convex hull. So the interesting part of the proof is showing the inverse. To this effect, let y ∈
conv (C ∪ {x0}). It then follows

y = θ0x0 +

n∑
i=1

θixi = θ0x0 +

(
n∑

i=1

θi

)
n∑

i=1

(
θi∑n
i=1 θi

xi

)
,

where in the above the points xi ∈ C, for i = 1, . . . , n, and
∑n

i=0 θi = 1. The result easily follows by setting θ = θ0,
noting that then

∑n
i=1 θi = 1− θ, and observing that the last summation belongs to C, as it is convex.

2. (2 points)

(αʹ) Let f : [a, b] → R convex function defined on a closed interval. Show that f is bounded above by max{f(a), f(b)}.
(βʹ) Generalize this property when f : A → R and A ⊆ Rn and give its proof.

Solution:

(αʹ) By Jensen’s inequality, for any x ∈ [a, b] we have, for some θ ∈ [0, 1],

f(x) ≤ θf(a) + (1− θ)f(b) ≤ θmax{f(a), f(b)}+ (1− θ)max{f(a), f(b)} = max{f(a), f(b)}

(βʹ) The generalization that if f is defined in closed bounded set, then there is no interior point where the function attains

a global maximum greater than the supremum of all values in the boundary. Proof is easy, by assuming the property

does not hold and considering a properly defined line segment connecting an interior point that

3. (2 points) Let the function

f(x, y, z) = xyz,

defined for x, y, z ≥ 0. Is this function convex?

Solution: The function is not convex. Indeed, consider, e.g., the points (1, 1, 0) and (0, 1, 1) and any point on the line

segment connecting them. Jensen’s inequality will not hold for these points.

Alternative, we can study the Hessian and find negative eigenvalues for combinations of x, y, z.

∇f =

yzxz
xy

 , ∇2f =

0 z y
z 0 x
y x 0

 .

It is straightforward to see that the determinant of the Hessian is∣∣∣∣∣∣
−s z y
z −s x
y x −s

∣∣∣∣∣∣ = (−s)(s2 − x2)− z(−zs− xy) + y(xz + sy) = −s3 + sx2 + sz2 + xyz + xyz + sy2.

4. (2 points) Consider the problem

minimize: xyz

subject to: x+ y2 + z4 ≤ 1, x+ y + z = 1,

defined for x, y, z ∈ R3.
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(αʹ) Bring the problem in the standard form of an optimization problem.

(βʹ) Is the problem convex? Explain?

(γʹ) Write the Lagrangian.

(δʹ) Write the KKT conditions for this problem, but do NOT solve them.

Solution: The KKT conditions are:

x+ y2 + z4 ≤ 1,

x+ y + z = = 1,

λ ≥ 0,

λ(x+ y2 + z4 − 1) = 0,yzxz
xy

+ λ

 1
2y
4z3

+ µ

11
1

 = 0.

5. (2 points) Consider the problem

minimize: 1
2‖x− b‖2 + t,

subject to: t ≥ aTi x+ ci, i = 1, . . . ,m,

where we optimize with respect to both x ∈ Rn and t ∈ R, whereas b, ai ∈ Rn and ci ∈ R are parameters. Define the dual

problem (but do not solve it).

Solution: The Lagrangian is

L(x, t, λ) =
1

2
‖x − b‖2 + t +

m∑
i=1

λi(a
T
i x + ci − t) =

1

2
‖x − b‖2 +

m∑
i=1

λia
T
i x +

(
1−

m∑
i=1

λi

)
t +

m∑
i=1

λici.

Observe that if
∑m

i=1 λi 6= 1, then the Lagrangian can be made arbitrarily small, by taking the value of t → ±∞. Assuming∑m
i=1 λi = 1, to minimize the Lagrangian we need to find x we need to minimize the quantity

1

2
(x− b)T I(x− b) + λTATx,

where we defined the matrix A = [a1 a2 . . . am] of size n×m. The quadratic form is minimized when

x− b = −Aλ ⇔ x = b−Aλ.

Substituting in the Lagrangian, we find that, in this case,

g(λ) =
1

2
λTATAλ− λTATAλ+ λTAT b+ λc = −1

2
λTATAλ+ λT (AT b+ c),

and concluding, the dual function is

g(λ) =

{
−∞,

∑m
i=1 λi 6= 1,

− 1
2λ

TATAλ+ λT (AT b+ c),
∑m

i=1 λi = 1,

and the dual problem becomes

maximize: − 1
2λ

TATAλ+ λT (AT b+ c),

subject to: λi ≥ 0,
∑m

i=1 λi = 1.
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