Notes:

1. Duration: 2.5 hours
2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. (2 points) Let a convex set $C \subset \mathbb{R}^{n}$ and a point $x_{0} \notin C$. Show that

$$
\operatorname{conv}\left(C \cup\left\{x_{0}\right\}\right)=\left\{(1-\theta) x+\theta x_{0}: x \in C, \theta \in[0,1]\right\} .
$$

2. (2 points)
$\left(\alpha^{\prime}\right)$ Let $f:[a, b] \rightarrow \mathbb{R}$ convex function defined on a closed interval. Show that f is bounded above by max $\{f(a), f(b)\}$.
(β^{\prime}) Generalize this property when $f: A \rightarrow \mathbb{R}$ and $A \subseteq \mathbb{R}^{n}$ and give its proof.
3. (2 points) Let the function

$$
f(x, y, z)=x y z,
$$

defined for $x, y, z \geq 0$. Is this function convex?
4. (2 points) Consider the problem

$$
\begin{aligned}
& \text { minimize: } \\
& \text { subject to: }
\end{aligned} \quad x+y^{2}+z^{4} \leq 1, \quad x+y+z=1,
$$

defined for $x, y, z \in \mathbb{R}^{3}$.
$\left(\alpha^{\prime}\right)$ Bring the problem in the standard form of an optimization problem.
$\left(\beta^{\prime}\right)$ Is the problem convex? Explain?
(γ^{\prime}) Write the Lagrangian.
$\left(\delta^{\prime}\right)$ Write the KKT conditions for this problem, but do NOT solve them.
5. (2 points) Consider the problem

$$
\begin{array}{lc}
\text { minimize: } & \frac{1}{2}\|x-b\|^{2}+t \\
\text { subject to: } & t \geq a_{i}^{T} x+c_{i}, \quad i=1, \ldots, m
\end{array}
$$

where we optimize with respect to both $x \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, whereas $b, a_{i} \in \mathbb{R}^{n}$ and $c_{i} \in \mathbb{R}$ are parameters. Define the dual problem (but do not solve it).

