Notes:

1. Duration: 3 hours

2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. We define the sum of two sets $A, B \subseteq \mathbb{R}^n$ and the product of a real number λ with a set $A \subseteq \mathbb{R}^n$ as:

$$A + B \triangleq \{x = a + b : a \in A, b \in B\}$$
$$\lambda A \triangleq \{x = \lambda a : a \in A\}.$$

- (a') (0.5 point) Prove that for all $\lambda \in \mathbb{R}$ and all $A, B \subseteq \mathbb{R}^2$ we have $\lambda(A + B) = \lambda A + \lambda B$.
- (β ') (0.5 point) Prove that, on the other hand, the following property does not hold, by providing a counterexample: for all $\lambda, \mu \in \mathbb{R}$, and $A \subseteq \mathbb{R}^n$, $(\lambda + \mu)A = \lambda A + \mu A$.
- (γ) (1 point) Prove that if λ , $\mu \ge 0$ and $A \subset \mathbb{R}^n$ is convex, than $(\lambda + \mu)A = \lambda A + \mu A$.
- (δ) (0.5 point) Prove that the previous property does not hold is A is not convex.

Hint: two sets A and B are equal iff $A \subseteq B$ and $B \subseteq A$.

2. (2 points) Prove that the following function is convex:

$$f(x,y) = x^{2} - 4xy + 5y^{2} - \log(xy), \qquad x, y > 0$$

3. Consider the following optimization problem:

minimize:
$$3x_1 + 7x_2 + 10x_3$$
,
subject to: $x_1 + 3x_2 + 5x_3 \ge 7$,
 $x_1(1-x_1) = 0$, $x_2(1-x_2) = 0$, $x_3(1-x_3) = 0$

- (α') (0.5 point) What is the solution of the above problem?
- (β') (0.5 point) Write the Lagrangian for the above problem.
- (γ') (0.5 point) What is the dual function when any $\mu_i > 0$?
- (δ) (1 point) What is the dual function when all $\mu_i < 0$? (the other cases are trickier)
- 4. Consider the following optimization problem:

minimize:
$$(x-2)^2 + 2(y-1)^2$$

subject to: $x + 4y \le 3$, $x \ge y$

- (α ') (0.5 point) Explain why it is a convex optimization problem.
- (β') (0.5 point) Draw a plot showing the constraints and the contours of the optimization function
- (γ') (0.5 point) Write the Lagrangian.
- (δ) (0.5 point) Write the KKT conditions.
- (ε') (1 point) Solve the KKT conditions