Notes:

1. Duration: 3 hours
2. Explain everything carefully. You will be graded on the clarity of your arguments.

Exercises:

1. We define the sum of two sets $A, B \subseteq \mathbb{R}^{n}$ and the product of a real number λ with a set $A \subseteq \mathbb{R}^{n}$ as:

$$
\begin{aligned}
A+B & \triangleq\{x=a+b: a \in A, b \in B\} \\
\lambda A & \triangleq\{x=\lambda a: a \in A\} .
\end{aligned}
$$

(α^{\prime}) (0.5 point) Prove that for all $\lambda \in \mathbb{R}$ and all $A, B \subseteq \mathbb{R}^{2}$ we have $\lambda(A+B)=\lambda A+\lambda B$.
(β^{\prime}) (0.5 point) Prove that, on the other hand, the following property does not hold, by providing a counterexample: for all $\lambda, \mu \in \mathbb{R}$, and $A \subseteq \mathbb{R}^{n},(\lambda+\mu) A=\lambda A+\mu A$.
$\left(\gamma^{\prime}\right)$ (1 point) Prove that if $\lambda, \mu \geq 0$ and $A \subset \mathbb{R}^{n}$ is convex, than $(\lambda+\mu) A=\lambda A+\mu A$.
(δ^{\prime}) (0.5 point) Prove that the previous property does not hold is A is not convex.
Hint: two sets A and B are equal iff $A \subseteq B$ and $B \subseteq A$.
2. (2 points) Prove that the following function is convex:

$$
f(x, y)=x^{2}-4 x y+5 y^{2}-\log (x y), \quad x, y>0
$$

3. Consider the following optimization problem:

$$
\begin{array}{cc}
\operatorname{minimize}: & 3 x_{1}+7 x_{2}+10 x_{3}, \\
\text { subject to: } & x_{1}+3 x_{2}+5 x_{3} \geq 7, \\
& x_{1}\left(1-x_{1}\right)=0, \quad x_{2}\left(1-x_{2}\right)=0, \quad x_{3}\left(1-x_{3}\right)=0 .
\end{array}
$$

(α^{\prime}) (0.5 point) What is the solution of the above problem?
(β^{\prime}) (0.5 point) Write the Lagrangian for the above problem.
$\left(\gamma^{\prime}\right)(0.5$ point $)$ What is the dual function when any $\mu_{i}>0$?
(δ^{\prime}) (1 point) What is the dual function when all $\mu_{i}<0$? (the other cases are trickier)
4. Consider the following optimization problem:

$$
\begin{aligned}
& \text { minimize: } \quad(x-2)^{2}+2(y-1)^{2} \\
& \text { subject to: } x+4 y \leq 3, \quad x \geq y
\end{aligned}
$$

(α^{\prime}) (0.5 point) Explain why it is a convex optimization problem.
$\left(\beta^{\prime}\right)(0.5$ point $)$ Draw a plot showing the constraints and the contours of the optimization function
(γ^{\prime}) (0.5 point) Write the Lagrangian.
(δ^{\prime}) (0.5 point) Write the KKT conditions.
(ε^{\prime}) (1 point) Solve the KKT conditions

