

Ευφυή Κινητά Δίκτυα: Mobile Network Layer: Mobile IP and Distributed Mobility Management (DMM)

Εαρινό Εξάμηνο 2024-25 Βασίλειος Σύρης

1

Motivation for Mobile IP

- Internet started at a time when mobile computers did not exist
 - Internet today lacks mechanisms for supporting mobile users
 - IP is common base for many applications running over different networks
- Mobile IP adds mobility support to IP
- Key issue: Routing
 - Destination network prefix determines physical subnet
 - Change of physical subnet requires change of IP address

Supporting mobile nodes

- Create routes to mobile nodes?
 - Change all routing table entries to forward packets to destination mobile node
 - Scalability issues due to number of mobile nodes and frequent location changes
- Change IP address when mobile moves?
 - Need to modify IP address depending on location
 - Impossible to find mobile host; DNS not built for frequent updates
 - TCP connection breaks

3

Mobile IP requirements

- Transparency
 - Mobile nodes keep IP addresses
 - Point of connection to fixed network can change
 - Communication continues after link interruption
- Compatibility
 - Support same layer 2 protocols as IP
 - No changes to end systems and routers
 - Mobile nodes can communicate with fixed nodes

Mobile IP requirements (cont.)

- Security
 - Authentication of registration messages
- Efficiency
 - Few additional messages
- Scalability
 - Global support for large number of mobile nodes

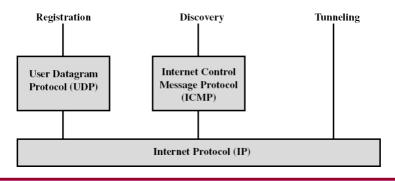
5

Real life analogy

- What happens when you move to a new house?
 - Leave forwarding address to your old post office
 - Old post office forwards your mail to new post office
 - New post office delivers it to you
- Mobile IP implements above procedure!

Mobile IP actors

- Mobile Node (MN)
 - Can change point of attachment to fixed network without changing IP address (Home address is static)
 - New Care-of Address (CoA) associated with new network attachment point
- Correspondent Node (CN)
 - Node wishing to communicate with mobile node


7

Mobile IP actors (cont.)

- Home Agent (HA)
 - System in home network of MN, usually router
 - Maintains current location of MN (CoA)
 - Tunnels IP packets to MN's CoA
- Foreign Agent (FA)
 - System in foreign network, usually router
 - Receives IP packets from HA
 - Forwards IP packets to MN

Mobile IP mechanisms

- Discovering the care-of address
- Registering the care-of address
- Tunneling packets to the care-of address


C

Discovering Care-of Address

- Built on top of existing ICMP router advertisements
- Router advertisements extended to carry available CoAs: agent advertisements
- Foreign (& home) agents periodically broadcast agent advertisements
- Mobile host can choose not to wait for advertisement and send solicitation message
 - If MH doesn't hear its current CoA from foreign agent, it seeks another CoA

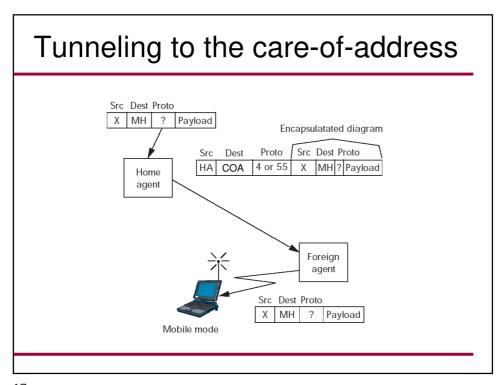
Agent advertisements

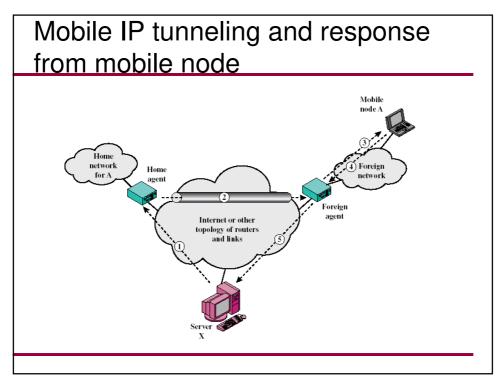
- Allows detection of mobility agents
- Lists one or more available care-of addresses
- · Informs mobiles about special features
- Mobile node checks whether agent is home agent or foreign agent

Registering Care-of Address

- Once mobile host receives CoA it registers it with its home agent
 - Registration request goes through foreign agent
- Home agent approves request and responds with a registration confirmation
 - Security is important
- · Registration has limited lifetime

13


Securing the registration procedure


- Home agent must be certain registration was originated by mobile node
- Security association based on Message Digest 5 (MD5)
- Use of timestamps or random numbers to avoid replay attacks

15

Home agent discovery

- Agents operate both as home and as foreign agents
- Home agents periodically send agent advertisements
- Mobile listens to agent advertisements to determine if it is in its home network or a foreign network
- If mobile is unable to communicate with home agent it broadcasts a home agent discovery message

Problems with Mobile IP

- Routing inefficiencies
 - Asymmetric routing (triangular routing)
 - Reverse tunneling
 - ◆ Solves issue with topologically correct sender addresses
 - ◆ Still inefficient since all packets (forward and reverse) go through home agent
 - Deliver care-of-address to correspondent node
 - Requires changes to end nodes that are not mobile
- Security
 - Authentication of foreign agent
- Packets can be lost when mobile changes network attachment point (handoff)

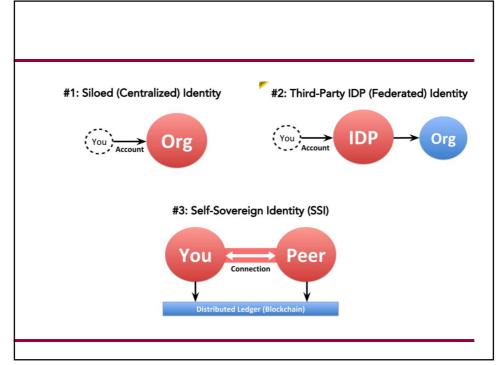
19

Mobile IP and IPv6

- Mobile IP was developed for IPv4, but IPv6 simplifies things
 - Security is integrated and not an add-on; IPv6 nodes implement strong authentication/encryption
 - CoAs can be assigned using auto-configuration
 - No need for separate foreign agents; all routers perform router advertisements, which can be used instead of agent advertisements
 - A mobile node can send the CoA directly to correspondent node (route optimization)

IP micro-mobility

- Micro-mobility support
 - Efficient local handover in foreign domain without involving home agent
 - Reduces control traffic on backbone
 - Needed in case of route optimization
- Approaches
 - Cellular IP
 - HAWAII
 - Hierarchical Mobile IP
 - ... many more


21

Bigger picture: identifiers & locators

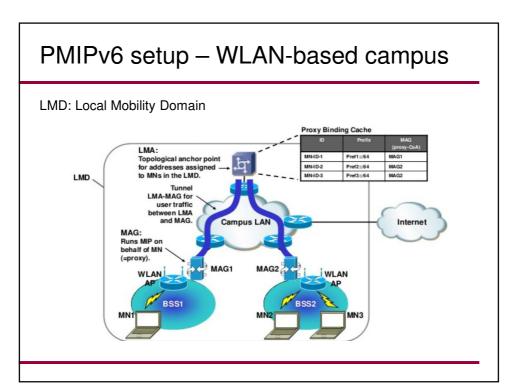
- IP addresses serve a dual role:
 - Identifiers of host interfaces
 - Locators for topological locations used for routing IP packets
- Above duality makes some things hard
 - Mobility
 - Multi-homing
 - Security/privacy, etc
- Proposals to separate ID & locator: Locator/ID Separation Protocol (LISP), Host Identity Protocol (HIP), etc

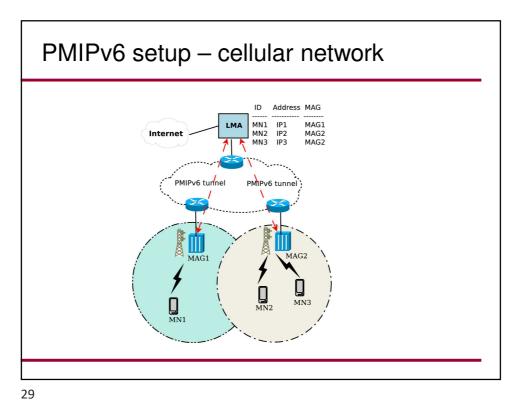
Identifiers

- Decentralized identifiers (DIDs): new type of identifier that enables verifiable, decentralized digital identity, i.e. independently of any centralized registry
- Self-sovereign identity (SSI): individual should own and control their identity without intervening administrative authorities

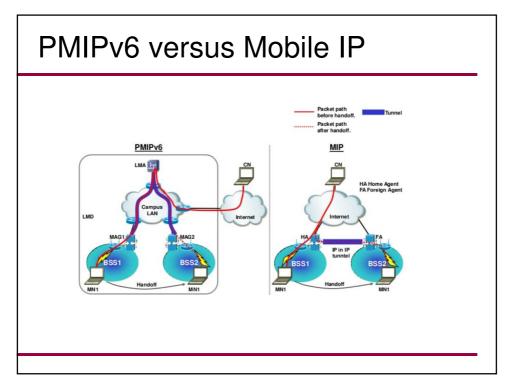
Mobility and IPv6 - MobileIPv6

- IPv6 Neighbor Discovery and Address
 Autoconfiguration allow hosts to operate in any location without any special support
- No need for Foreign Agent: IPv6 Address auto-configuration allows MN to obtain a CoA in foreign network
- Bi-directional tunneling mode
 - Does not require for the CN to support Mobile IPv6
 - Use of Reverse tunneling (for ingress filtering)

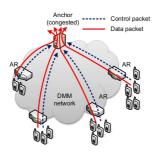

25

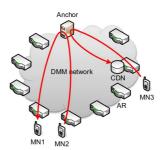

Mobility and IPv6 - MobileIPv6

- Route Optimization (RO) mode
 - Requires to register the MN's current binding at the CN
 - Shortest communications path
 - Eliminates congestion at the MN's HA and home link
 - Impact of any possible failure of the HA or networks on the path to or from it is reduced
- Dynamic Home Agent Address Discovery
 - Allows a MN to dynamically discover the IP address of a home agent on its home link


Proxy Mobile IPv6 (PMIPv6)

- Support mobility in the network rather than on mobile devices
 - Allows operators to have tighter control on mobility
- Introduces two new entities:
 - LMA: Local Mobility Anchor
 - MAG: Mobile Access Gateway
- Two deployment scenarios:
 - WLAN-based campus network
 - 3/4G Cellular networks

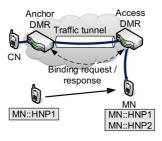




Issues with Centralized Mobility Management

- a) Single point of failure
- b) sub-optimal routing
- Centralized mobility management: both control and data traverse mobility anchor

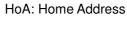
Figure sources: S. Jeon et al.: DMM for the Future Mobile Networks, IEEE Access, Vol. 5, 2017

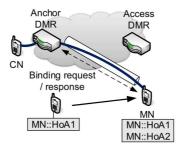

31

Distributed Mobility Management (DMM)

- IP mobility management functions:
 - Movement detection
 - Assignment of IP address/prefix
 - binding update
- Network-based: network performs all three functions
- Host-based: requires intelligence in MN to participate in above functions

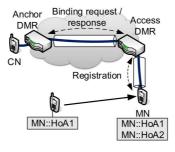
Network-based mobility


DMR: DMM-enabled router HNP: Home Network Prefix



33

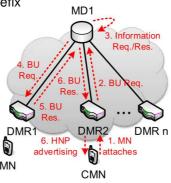
Host-based mobility


DMR: DMM-enabled router

Semi host-based mobility

DMR: DMM-enabled router HoA: Home Address

35

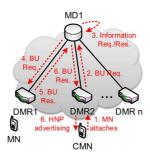

Distributed Mobility Management (DMM) flavors

- · Separate control from data path
- Goal is to make data path distributed
- Control can be centralized (partially distributed) or distributed (fully distributed)

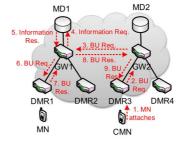
DMM with centralized control

DMR: DMM-enabled router MD: Mobility Database BU: Proxy Binding

HNP: Host Network Prefix

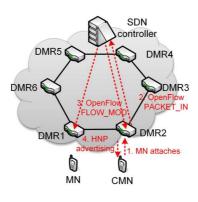


37


DMM with centralized control (cont.)

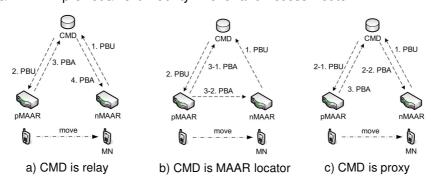
DMR: DMM-enabled router MD: Mobility Database BU: Proxy Binding

HNP: Host Network Prefix


a) Single MD

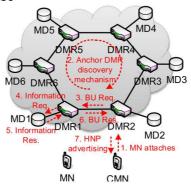
b) Multiple MDs

DMM with centralized control & SDN


DMR: DMM-enabled router

39

Network-based mobility management


PBU: Proxy Binding Update/Acknowledgement p/nMAAR: previous/next Mobility Anchor and Access Router

- CMD (Central Mobility Database)
 - Partially distributed mobility management
 - Only data path is distributed

DMM with decentralized control

DMR: DMM-enabled router MD: Mobility Database

- MD now distributed
- DMR: need discovery mechanisms, e.g. DHT (Distributed Hash Tables)